
On Improving Tunstall Codes∗

Shmuel T. Klein1 and Dana Shapira2

1 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
2 Dept. of Computer Science, Ashkelon Academic College, Ashkelon 78211, Israel

Abstract. Though many compression methods are based on the use of variable length codes,

there has recently been a trend to search for alternatives in which the lengths of the codewords

are more restricted, which can be useful for fast decoding and compressed searches. This paper

explores the construction of variable-to-fixed length codes, which have been suggested long

ago by Tunstall. Using new heuristics based on suffix trees, the performance of Tunstall codes

can in some cases be improved by more than 40%.

1 Introduction and Background

Huffman’s classical algorithm [8] designs an optimal variable length code for a given

distribution of frequencies of elements to be encoded. These elements can be simple

characters, in which case this is a fixed-to-variable length code, but better compres-

sion can be obtained if the text at hand can be parsed into a sequence of variable

length strings, the set of which is then encoded according to the probabilities of the

occurrences of its elements, yielding a variable-to-variable length encoding.

If one considers, however, also other aspects of variable length codes, not just

their compression ratio, there might be incentives to revert back to fixed length

codes. Decoding, for instance, is more complicated with variable length, as the end

of each codeword must be determined. Variable length codewords carry usually also a

processing time penalty, especially for decoding and also for other desirable features,

like the possibility to search directly within the compressed text, without the need

to decompress first.

This led to the development of several compromises. In a first step, the optimal

binary Huffman codes were replaced by a 256-ary variant [14], in which the lengths of

all the codewords are integral multiples of bytes. The loss in compression efficiency,

which might be large for small alphabets, becomes tolerable and almost not significant

as the alphabet size increases, in particular considering the trend set by the Huffword

variant [13], of encoding entire words as basic elements rather than just individual

characters. On the other hand, the byte-wise processing is much faster and easier to

implement.

⋆ This is an extended version of a paper that has been presented at the 15th Annual Symposium on String

Processing and Information Retrieval (SPIRE’08) in Melbourne, and appeared in its Proceedings, LNCS

5280, 39–50.

When searches in the compressed text should also be supported, Huffman codes

suffer from a problem of synchronization: denoting by E the encoding function, the

compressed form E(x) of an element x may appear in the compressed text E(T),
without corresponding to an actual occurrence of x in the text T , because the oc-

currence of E(x) is not necessarily aligned on codeword boundaries. A probabilistic

solution to this problem has been suggested in [12]. As alternative, [14] propose to

change the Huffman code by reserving the first bit of each byte as tag , which is used

to identify the last byte of each codeword, thereby reducing the order of the Huffman

tree from 256-ary to 128-ary. These Tagged Huffman codes have then been replaced

by End-Tagged Dense codes (ETDC) in [3] and by (s, c)-Dense codes (SCDC) in [2].

An alternative code based on higher order Fibonacci numeration systems and yield-

ing similar features is studied in [11]. The three last mentioned codes consist of fixed

codewords which do not depend on the probabilities of the items to be encoded. Thus

their construction is simpler than that of Huffman codes: all one has to do is to sort

the items by non-increasing frequency and then assign the codewords accordingly,

starting with the shortest ones.

This paper’s objective is to push the idea of the compromise one step further by

advocating again the use of fixed length codes. To still get reasonable compression,

the elements to be encoded, rather than the codewords, will be of variable length,

thus forming a variable-to-fixed length encoding. In a certain sense, this can be

considered as the inverse of the basic problem solved by Huffman’s algorithm. The

original problem assumed that the set of elements to be encoded is given and sought

for an optimal set of variable length codewords to encode those elements; the inverse

problem considers the set of codewords as given, assuming furthermore that they are

of fixed length, and looks for an optimal set of variable length substrings of the text

which should be encoded by those codewords.

Dealing with the inverse problem can be justified by a shift in the point of view.

The classical problem had as main objective to maximize the compression savings,

or equivalently, using Huffman’s formulation, to minimize the redundancy. The com-

plementary approach considers as its main target a fast and easy decoding, for which

a fixed length code is the best solution, but still tries to achieve good compression

under these constraints. There are good reasons to view the coding problem as asym-

metrical and to prefer the decoding side: in many applications, such as larger textual

Information Retrieval systems, encoding is done only once while building the system,

whereas decoding is repeatedly needed and directly affects the response time.

In the next section, we shall define the problem formally and also bring in previous

work, in particular on Tunstall codes [18], which are variable-to-fixed length codes.

In Section 3 we suggest new algorithms, compare them with other variable to fixed

length codes in Section 4 and describe experimental results in Section 5.

2 Variable to fixed length encoding

Consider a text of length n characters T = t1t2 · · · tn to be encoded, where ti ∈ Σ and

Σ is some general alphabet, for example ASCII. The text is to be encoded by a fixed

length code in which each codeword is of length k bits, k being the only parameter

of the system. The objective is to devise a dictionary D of different substrings of

the text, such that |D| ≤ 2k so that each of the elements of the dictionary can be

assigned one of the k-bit codewords, and such that the text T can be parsed into a

sequence of m dictionary elements, that is T = c1c2 · · · cm, such that

m+
∑
cj∈D
|cj| (1)

is minimized.

The size of the encoded text will be km, which explains why one wishes to mini-

mize the number m of elements into which the text is parsed. The reason for adding

the combined size of the elements in the dictionary
∑

cj∈D |cj| in (1) is to avoid a

bias: usually, the size of the dictionary is negligible relative to the size of the text,

so that m will be dominant in (1), but without the sum, one could define one of the

dictionary elements to be the entire text itself, which would yield m = 1.

More specifically, we are looking for an increasing sequence of integers

1 ≤ i1 < i2 < · · · < im−1 < im = n,

which are the indices of the last characters in the parsed elements of the text, so

that c1 = t1 · · · ti1 , and for 1 < j ≤ m, cj = tij−1+1 · · · tij . Denote by ℓ = |{cj, j =

1, . . . ,m}| the number of different strings cj in the parsing, and by d1, . . . , dℓ the

elements of D themselves. Each parsed substring cj of the text, 1 ≤ j ≤ m, is one of

the elements di of the dictionary, 1 ≤ i ≤ ℓ, and the constraints are

ℓ ≤ 2k and m+
ℓ∑

i=1

|di| is minimized.

The number of possible partitions for fixed m is
(
n−1
m−1

)
, and if one sums over

the possible values of m, we get
∑n

m=1

(
n−1
m−1

)
= 2n−1, so that an exhaustive search

over the possible partitions is clearly not feasible for even moderately large texts.

Choosing an optimal set of strings cj might be intractable, since even if the strings

are restricted to be the prefixes or suffixes of words in the text, the problem of finding

the set is NP-complete [7], and other similar problems of devising a code have also

been shown to be NP-complete in [5, 10, 6]. A natural approach is thus to suggest

heuristical solutions and compare their efficiencies.

A well known variable-to-fixed length code has been suggested by Tunstall [18].

Assuming that the letters in the text appear independently from each other, the

Tunstall code3 is iteratively built as follows: if Σ denotes the alphabet, the dictionary

D of elements to be encoded is initialized as D ←− Σ. As long as the size of D
does not exceed 2k, the preset size of the desired fixed length k-bit code, one then

repeatedly chooses an element d ∈ D with highest probability (where the probability

of a string is defined as the product of the probabilities of its constituent characters),

removes it from D and adds all its one letter extensions instead, that is, one performs

D ←− D − {d} ∪
(∪
σ∈Σ

dσ

)
.

The resulting set D is a prefix free set, where no element is the prefix of any

other, implying unique encodability . This property may be convenient in practical

applications, but is not really necessary: even if the parsing of the text into elements

of D can be done in more than one way, there are several possible choices of parsing

heuristics for actually breaking the text into pieces, for example a greedy approach,

choosing at each step the longest possible match. On the other hand, removing the

constraint of unique encodability enlarges the set of potential dictionaries, which

might lead to better compression.

Tunstall’s procedure has been extensively analyzed [1], and the assumption of

independent character appearance has been extended to sources with memory [15,

17]. Our approach is a more practical one: instead of trying to model the text and

choosing the dictionary based on the expected probabilities of the strings as induced

by the model, we deal directly with the substrings that actually appear in the text

and which can be processed by means of the text’s suffix tree. This can be motivated

by the fact that any theoretical model of the character generation process yields

only an imperfect description of natural language text. For example, a Tunstall code

assuming character independence may assign a codeword to the string eee according

to its high associated probability, even though the string might possibly not appear

at all in a real text; conversely, the probabilities of positively correlated strings like

the or qu will probably be underestimated. The use of a suffix tree may restrict the

strings to be chosen to such that actually appear, and possibly even frequently, in

the text.

On the other hand, one might object that there is a considerable effort involved

in the construction and the processing of a suffix tree. Though there are algorithms

that are linear in the size of the given text, once the alphabet size is considered

fixed, e.g. [19], the overhead relative to the simple Tunstall construction might be

larger than could be justified. But for applications where encoding is done only once,

e.g., for large static IR systems as mentioned above, the additional time and space

requirements might not be an issue. The details of the suggested heuristics are given

in the following section.

3 Formally, a code is a set of codewords which encode some source elements, so in our case, the code is

of fixed length and consists of the 2k possible binary k-bit strings; what has to be built by Tunstall’s

algorithm is not the code, but rather the dictionary, the set of variable length strings to be encoded.

3 A new procedure for constructing a variable-to-fixed

length code

Given the text T = t1 · · · tn, we start by forming the set S of all the suffixes si =

titi+1 · · · tn$ of the string T$, where $ is a character not belonging to the original

alphabet Σ and considered smaller than any other character to ensure lexicographical

order. Each such string si is unique and may be used to identify the position i in

the text T . The strings si are then stored in a trie, which is a labeled tree structure,

as follows: every internal node of the trie has one or more children, and all edges

are directed from a node to one of its children; the edges emanating from a node

are labeled by different characters of Σ, ordered left to right. Every node v of the

trie is associated with a string s(v), which is obtained by concatenating, top down,

the labels on the edges forming the path from the root to node v. The suffix tree of

T$ is defined as the trie for which the set of strings associated to its leaves is the

set S of the suffixes of T$. A preorder traversal of the suffix tree visits its nodes in

lexicographical order of the corresponding strings.

This basic definition may yield a structure of size Ω(n2), which can be reduced to

O(n) by compaction, i.e., deleting, for every node v that has only a single outgoing

edge to a node w, both the node v and this edge (v, w), appending the label of the

deleted edge to the right of the label of the edge e which entered v, and directing e

now to point to w. Schematically, a structure

x
α
−→ v

b
−→ w is transformed into x

αb
−→ w,

where α ∈ Σ+ denotes a string and b ∈ Σ is a character. This compaction process

is applied repeatedly until no nodes with single outgoing edges are left. Thus in the

compacted suffix tree, also called a suffix trie, edges may be labeled by strings, not

just characters. Suffix trees and the related suffix arrays have been used for a myriad

of applications in string processing, including recently for data compression [4]. Our

approach is different and will be described next.

Each node v can also be assigned a frequency f(v), defined as the number of

leaves of the subtree rooted at v. All the frequencies can be evaluated in a post-order

traversal of the suffix tree. As mentioned, both the construction and the assignment

of labels and frequencies can be done in time linear in the size n of the text.

The problem of constructing a variable to fixed length code, once the size 2k of

the set of codewords is fixed, is to choose an appropriate subset of the nodes of the

suffix tree and use the corresponding labels as elements of the dictionary. The choice

of the subset will be guided by the following analogy: an element that appears with

probability p is ideally encoded in − log2 p bits. This is closely approached by an

arithmetic encoder, and approximated in Huffman coding, because of the additional

constraint that the length of a codeword is an integral number of bits. Looking at

the relation between the probability and the corresponding codeword length, but

reversing the roles of what is given (codewords of length k bits) and what we are

looking for (elements to be encoded), we conclude in our case that all the strings to

be chosen should have approximately probability 2−k.

The frequencies f(v) associated with the nodes in the suffix tree can be used to

estimate the desired probabilities, but one has to be aware that several approxima-

tions are involved in the process. First, consider two strings x and y, such that a

proper suffix of the first is a proper prefix of the second, in other words, there are

non-empty strings x′, y′ and z, such that x = x′z and y = zy′. The frequencies

f(x) and f(y) give the number of occurrences of these strings in the text T , but not

necessarily in any parsing of T into codewords. Since x and y may be overlapping,

a part of the occurrences of y may not appear in the parsing. It does not even help

to know the number of occurrences of the contracted superstring x′zy′, because the

parsing is not necessarily forced to start the encoding of this string at its beginning:

x′ itself may have a proper prefix w, such that x′ = wx′′, which could be encoded

as part of a preceding codeword, for example if wx′′zy′ is preceded in the text by

h and hw happens to be a dictionary item. This example can obviously be further

extended.

Second, in order to translate the desired probabilities 2−k into frequencies which

can be compared to those stored in the suffix tree, one needs to multiply them by

the total number of elements in the partition of T , which has been denoted in the

introduction by m. However, this gives rise to a chicken and egg problem: one needs

knowledge of m to evaluate the frequencies, with the help of which an appropriate

subset of nodes can be selected; the corresponding strings then form the dictionary

and induce a partition of the text T into m′ occurrences of the dictionary terms.

There is no guarantee that m = m′.

We still shall base our heuristic on the frequencies f(v), but do not claim that

these values reflect the actual number of occurrences. They can, nevertheless, serve

as some rough estimate if one assumes that the overlaps mentioned above, which

will bias the counts, are spread evenly over all the processed strings. To describe the

heuristic, we need some definitions.

Definition 1: Given a compacted suffix tree, we define a cut C of the tree as a line

crossing the path from the root to each of the leaves at exactly one edge.

Definition 2: The lower border of a cut, LB(C), is the set of nodes of the suffix tree

just below the cut, where we refer to the convention of drawing (suffix) trees with

the root on the top and with edges leading from a parent to a child node pointing

downwards.

Definition 3: The upper border of a cut, UB(C), is the set of nodes of the suffix tree

which are parent nodes of at least one node of the lower border.

Figure 1: Schematic representation of a cut in a suffix tree

Figure 1 is a schematic representation of a small suffix tree visualizing these

definitions. The cut is the broken line traversing the full breadth of the tree. Nodes

above the cut are drawn as circles and those below the cut as squares. The nodes of

the borders are filled with color (black squares for the lower border and black circles

for the upper one), and those not belonging to any of the borders are only outlined.

The following properties will be useful below.

Theorem: Given a compacted suffix tree with n leaves, and any cut C of the tree, we

have ∑
v∈LB(C)

f(v) = n,

that is, the sum of the frequencies of the nodes of the lower border of all possible

cuts is constant, and equal to the size of the underlying text n.

Proof: Each node in the lower border LB(C) is either a leaf node, or it is the root

r of a subtree R for which f(r) is the number of leaves in the tree R. Since all the

leaves are counted exactly once in the sum, the result follows.

Observation: Given a compacted suffix tree with n leaves, and any cut C of the tree,

the strings associated with the nodes of the lower border LB(C) form a dictionary

D which ensures unique encodability.

Proof: For the fact that at most one encoding is possible, it suffices to show that the

strings form a prefix set. Assume on the contrary that there are two strings v and

w in D such that v is a prefix of w, and denote the corresponding nodes in the tree

by nv and nw, respectively. Then nv is an ancestor node of nw in the tree, and since

both nodes belong to LB(C), the cut C crosses the path from the root to nw twice:

once at the edge entering nw and once at the edge entering nv, in contradiction with

the definition of a cut. Thus no string of D is the prefix of any other.

At least one encoding is always possible due to the completeness of the set, in

the sense that a cut has been defined as a line crossing every path in tree. As a

constructive proof, suppose that the prefix of length i − 1 of T has already been

uniquely encoded, we show that exactly one codeword can be parsed starting at the

beginning of the remaining suffix titi+1 · · ·. Consider a pointer pointing to the root of

the suffix tree, and use the characters titi+1 · · · to be processed as guides to traverse

the tree. For each character x read, follow the edge emanating from the current

node and labeled by x. Such an edge must exist, because the tree reflects all the

substrings that appear in the text. This procedure of stepping deeper into the tree

at each iteration must ultimately cross the cut C, and the string associated with the

first node encountered after crossing the cut, is the next element in the parsing.

Note that the strings associated with the upper border of a cut do not always

form a prefix set, as can be seen in the example in Figure 1.

From the observation we learn that it might be a good idea to define the dictionary

as the lower border of some cut, so we should look for cuts C for which |LB(C)| = 2k.

Our first heuristic, which we call STT for Suffix-Trie-Tunstall, extends the Tunstall

procedure, but working top-down on the compacted suffix tree with actual frequencies

instead of an artificial tree with estimated probabilities.

STT: Top-down construction of D

D ←− nodes on level 1 of suffix trie

while |D| < 2k

v ←− element of D with maximal f(v)

w1, . . . , wr ←− children of v

D ←− D − {v} ∪ {w1, . . . , wr}
end while

if |D| > 2k undo last assignment

As alternative, the second heuristic, which we call DynC for Dynamic Cut, also

works on the suffix trie, but traverses it left to right and constructs the lower border

of the desired cut according to the local frequencies. One of the problems mentioned

earlier was that one cannot estimate the frequencies without knowing their total sum.

But because of the above Theorem, we know that if we restrict ourselves to choose

the elements of the lower border of a cut, the sum of all frequencies will remain

constant. We can therefore look for nodes v in the tree for which f(v)/n ≃ 2−k, that

is f(v) ≃ n2−k.

Ideally, there should be 2k such elements, but in practice, there is a great vari-

ability in the frequencies. We therefore suggest to build the dictionary incrementally

in a left to right scan of the tree, adapting the target value of the desired frequency

for the current element dynamically, according to the cumulative frequencies of the

elements that are already in the dictionary. More formally:

DynC: Left-to-right construction of D

D ←− ∅
target ←− n2−k

cumul ←− 0

scan the suffix trie in DFS order while |D| < 2k

v ←− next node in scan order for which f(v) ≤ target

D ←− D ∪ {v}
cumul ←− cumul +f(v)

target ←− n− cumul
2k − |D|

end while

The updated target value is obtained by dividing the expected sum of the fre-

quencies of the remaining elements to be added by their number. This allows the

procedure to set the target higher than initially, in case some elements have been

chosen with very low occurrence frequency.

The strict compliance with the constraints imposed by deciding that D should

be a complete prefix set turned out to be too restrictive. In many cases, a node with

quite high frequency could have several children with very low occurrence rate, and

including the strings associated with these children nodes in D would eventually clog

the dictionary with many strings that are practically useless for compression. To

avoid the bias caused by the low values, a lower bound B has been imposed on f(v)

for the string s(v) to be considered as a candidate to be included in D. As a result,

the dictionary was not complete any more, so to ensure that the text can be parsed

in at least one way, D was initialized with the set of single characters. This, in turn,

implied the loss of the prefix property, so the parsing with the help of the suffix tree

needed to be supplemented with some heuristic, for example a greedy one, trying at

each step to parse the longest possible dictionary element.

Decoding of the fixed length code is of course extremely simple. All one has to do

is to store the strings of D consecutively as a string S, and refer to each element by

its offset and length in the string S. These (off,len) pairs are stored in the dictionary

table DT , which is accessed by 2-byte indices (in the case k = 16) forming the

compressed text. Formally:

Decoding of STT or DynC encoded text

while (i ←− read next 2 bytes) succeeds

(off,len) ←− DT [i]

output S[off ·· off+len−1]

For k = 12, in order to keep byte alignment, one could process the compressed

text by blocks of 3 bytes, each of which decodes to two dictionary elements.

4 Comparison with other variable-to-fixed length codes

We now turn to a comparison with other variable-to-fixed length schemes, in par-

ticular those based on the various Lempel-Ziv techniques, though these are usually

implemented with variable length codings. But the encodings can easily be trans-

formed to be of fixed length, yielding a tradeoff between compression efficiency and

decoding simplicity.

One of the Lempel-Ziv algorithms [24], known as LZ78, and its popular variant

LZW [21] are based on parsing the text into phrases belonging to a dictionary, which

is dynamically built during the parsing process itself. The output of LZW consists

of a sequence of pointers, and the size of the encoding of the pointers is usually

adapted to the growing dictionary: starting with a dictionary of 512 entries, one

uses 9-bit pointers to refer to its elements, until the dictionary fills up. At that

stage, the number of potential entries is doubled and the length of the pointers is

increased by 1. This procedure is repeated until the size of the dictionary reaches

some predetermined limit, say 64K with 16-bit pointers. In principle, the dictionary

could be extended even further, but erasing it and starting over from scratch has the

advantage of allowing improved adaptation to dynamically changing texts, while only

marginally hurting the compression efficiency on many typical texts. A fixed length

encoding variant of LZW could thus fix the size |D| of the dictionary in advance and

use throughout log |D| bits for each of the pointers.

The other LZ algorithm [23], known as LZ77, produces an output consisting

of a strictly alternating sequence of single characters and pointers, but no external

dictionary is involved and the pointers, consisting of (offset, length) pairs, refer to the

previously scanned text itself. The variant in [16] suggests to replace strict alternation

by a set of flag-bits indicating whether the next element is a single character or an

(offset, length) pair. A simple implementation, like in [22] uses 8 bits to encode a

character, 12 bits for the offset and 4 bits for the length. Excluding the flag-bits, we

thus get codewords of lengths 8 or 16. To get a fixed length encoding, the length of

the shortest character sequence to be copied is set to 3 (rather than 2 in the original

algorithm); thus when looking for the longest previously occurring sequence P which

matches the sequence of characters C starting at the current point in the text, if

the length of P is less than 3, we encode the first 2 characters of C. In the original

algorithm, if the length of P was less than 2, we encoded only the first character of

C. The resulting encoding therefore uses only 16 bits elements, regardless of if they

represent character pairs or (offset, length) pairs. To efficiently deal also with the

flag bits, one can use the same technique as in [22], aggregating them into blocks of

16 elements each.

One of the challenges of LZ77 is the way to locate the longest matching pre-

viously occurring substring. Various techniques have been suggested, approximating

the requested longest match by means of trees or hashing. We use here an adaptation

of the fast method suggested in [22], replacing the hashing of character pairs by a

lookup in a table of size 216 and extending a previous occurrence as much as possible.

Note, however, that the fixed length variant of LZ77 is no real competitor to Tunstall

or the suggested heuristics, since there is no single fixed dictionary that can be used

throughout. It is thus not possible to decode only selected short fragments.

There are several criteria by which different coding techniques could be compared.

Those mentioned in [2] are compression ratio, encoding and decoding speed, and the

facility to perform compressed matching, that is, searching for sub-strings directly

in the compressed file. For our current study, we shall restrict attention only to

compression efficiency and decoding time. Encoding is supposed to be done offline, as

mentioned earlier, and in applications for which the encoding time is also important,

one can hardly justify a heuristic using a suffix tree. As to compressed matching, all

variable to fixed length encodings would perform equally badly: the problem is that

a pattern to be searched for is not necessarily restricted to be one of the elements

of the dictionary at hand, but could appear as a substring of the concatenation of

several elements, and the number of relevant concatenations might be exponential in

the length of the pattern.

5 Experimental results

To empirically test the suggested heuristics, we chose the following input files of

different sizes and languages: the Bible (King James version) in English, the French

version of the European Union’s joc corpus, a collection of pairs of questions and

answers on various topics used in the arcade evaluation project [20], and the con-

catenated text of all the xml files of the inex database [9]. To get also different

alphabet sizes, the Bible text was stripped of all punctuation signs, leaving only

blank, upper and lower case letters4, whereas the other texts have not been altered5.

Table 1 compares the compression efficiency of the suggested heuristics with that

of the Tunstall codes, for both k = 12, corresponding to a small dictionary of 4096

4 Uppercase X did not appear in the text, hence a total of only 52 characters.
5 the French text included many accented letters, which explains the large alphabet.

File Bits
Tunstall

STT
DynC

expected actual B compression

English

2.96 MB

52 chars

160 0.488

12 0.617 0.614 0.475 190 0.481

220 0.497

8 0.411

16 0.589 0.587 0.334 11 0.395

14 0.428

French

7.26 MB

131 chars

300 0.526

12 0.744 0.751 0.568 450 0.496

600 0.547

15 0.416

16 0.691 0.689 0.384 22 0.401

30 0.410

XML

494.7 MB

94 chars

20000 0.607

12 0.745 0.754 0.691 30000 0.594

40000 0.646

800 0.505

16 0.710 0.709 0.481 900 0.493

1000 0.495

Table 1: Comparison of compression performance between Tunstall, STT and DynC

entries, and k = 16, for a larger dictionary with 65536 elements. The first column

lists also relevant statistics, the size of the files and the size of the alphabets, and the

second column gives the parameter k. All compression figures are given as the ratio of

the size of the compressed file to the full size before compression. The column headed

expected gives the expected compression of the Tunstall code: let A =
∑

v∈L pvℓv be

the average length of a Tunstall dictionary string, where L is the set of leaves of the

Tunstall tree, pv is the probability corresponding to leaf v, and ℓv is its depth in the

tree. Then n/A is the expected number of codewords used for the encoding of the

text, so the expected size of the compressed text is kn/8A, and the compression ratio

is k/8A. As noted above, the Tunstall dictionary contains many strings that are not

really used. The column headed actual is the result of actually parsing the text with

the given dictionary, giving quite similar results.

A significant improvement can be observed for the use of STT versus that of

Tunstall, and for the larger dictionaries, with k = 16, STT was even able to cut

the Tunstall encoded files to about 55–68% of their size. The results for DynC are

given for several bounds. Interestingly, on all our examples, compression first im-

proves with increasing bound, reaches some optimum, and then drops again. This

can be explained by the fact that increasing the bound leads to longer strings in the

dictionary, but increasing it too much will imply the loss of too many useful shorter

strings. Table 1 shows three examples of different bounds B for each file and each

k. One can see that DynC reduces the file by additional 20–40% relative to Tunstall,

and on the smaller dictionaries, with k = 12, may improve also over STT for certain

values of the bound B. The best values for each category are boldfaced.

 25

 30

 35

 40

 45

 50

 12 13 14 15 16 17 18

Bible - STT
Bible - LZW

Figure 2: Comparing STT with fixed LZW compression as function of the number of encoding bits

The graph in Figure 2 compares the performance of STT with that of a fixed

length LZW variant, as described above, for encodings of lengths 12 to 18 bits.

To enable similar decoding conditions, the dictionary of LZW has been chosen to

be fixed, so once it filled up in the initial stage, it did not change any more. The

plotted values are the relative sizes, in percent, of the compressed files relative to the

uncompressed ones, and correspond to the English text used in Table 1. We see that

while both curves are clearly decreasing, the fixed length LZW is preferable up to 15

bits encodings, but for larger dictionaries, STT is clearly better.

Tunstall Huffman LZ77 LZW STT DynC SCDC Fib3

English 100 89.9 112.7 58.1 56.7 67.1 43.1 39.2

French 100 83.9 105.9 50.2 55.6 58.2 44.6 38.8

XML 100 88.5 89.7 68.2 67.8 69.5 57.8 51.7

Table 2: Comparison of compression performance of STT and DynC with other methods

A comparison of STT and DynC with other methods can be found in Table 2.

The sizes are given as a percentage of the size of the file compressed by Tunstall,

corresponding to 100%, with a dictionary of 216 entries. Regular Huffman coding,

based on the individual characters, is only 10–12% better than Tunstall. The values

for LZW and LZ77 correspond also to 16-bit codewords, as explained in Section 4

above. Note that the compression figures by LZ77 are actually worse than those of

Tunstall for the French and English files, and are brought here only for reference,

since the method is inherently adaptive and thus cannot compete with the others,

which are all based on static dictionaries. The values for DynC correspond to the

parameter B that gave the best results in Table 1. On the given examples, DynC is

inferior to STT and even to LZW, but we saw in Table 1 that this is not always the

case.

Still better compression can be obtained if one does not insist on fixed length

codes, as for SCDC [2], where the values are given for the best (s, c) pair, or Fib3

[11]. These last two methods are only mentioned to give an idea of the compressibility

of the test files and cannot directly be compared with the other methods, because

SCDC and Fib3 are based on encoding the different words of the text, rather than

the characters. We here limited the number of encoded elements also to 216, which

is more than the number of words in the Bible. For the French and xml texts, the

excess words were encoded letter by letter, so that the total dictionary consisted of

216 elements.

Huffman k = 12 k = 16

Tunstall STT DynC Tunstall STT DynC

English 0.35 0.14 0.12 0.12 0.16 0.14 0.12

French 0.93 0.38 0.33 0.31 0.32 0.24 0.25

XML 68.87 26.56 25.36 24.32 21.52 18.63 18.55

Table 3: Comparison of decoding time

Table 3 is a comparison of timing results, measuring the decoding time of the

entire file. Values are given in seconds. We see that the decoding time is roughly

proportional to the size of the file for the fixed length codes, and thus slightly better

for STT and DynC than for Tunstall. On the other hand, the decoding of the variable

length Huffman codes is more involved and takes on our tests about 2.5 times longer,

even though the files are shorter than for the corresponding fixed length encodings.

We conclude that if one has good reasons to trade compression efficiency for

the simplicity of fixed length codes, the suggested heuristics may be a worthwhile

alternative to the classical Tunstall codes.

References

[1] Abrahams J., Code and parse trees for lossless source encoding, Comm. in

Information and Systems 1(2) (2001) 113–146.

[2] Brisaboa N.R., Fariña A., Navarro G., Esteller M.F., (s,c)-dense

coding: an optimized compression code for natural language text databases,

Proc. Symposium on String Processing and Information Retrieval SPIRE’03 ,

LNCS 2857, Springer Verlag (2003) 122–136.

[3] Brisaboa N.R., Iglesias E.L., Navarro G., Paramá J.R., An efficient

compression code for text databases, Proc. European Conference on Informa-

tion Retrieval ECIR’03 , Pisa, Italy, LNCS 2633, Springer Verlag (2003) 468–

481.

[4] Crochemore M., Ilie L., Smyth W.F.,, A Simple Algorithm for Comput-

ing the Lempel Ziv Factorization, Proc. Data Compression Conference DCC–

2008, Snowbird, Utah (2008) 482–488.

[5] Fraenkel A.S., Klein S.T., Complexity Aspects of Guessing Prefix Codes,

Algorithmica 12 (1994) 409–419.

[6] Chrobak M., Kolman P., Sgall J., The greedy algorithm for the mini-

mum common string partition problem ACM Transactions on Algorithms 1(2)

(2005) 350–366.

[7] Fraenkel A.S., Mor M., Perl Y., Is text compression by prefixes and

suffixes practical? Acta Informatica 20 (1983) 371–389.

[8] Huffman D., A method for the construction of minimum redundancy codes,

Proc. of the IRE 40 (1952) 1098–1101.

[9] Kazai G., Gövert N., Lalmas M., Fuhr N., The INEX Evaluation Ini-

tiative, in Intelligent Search on XML data, LNCS 2818 (2003) 279–293.

[10] Klein S.T., Improving static compression schemes by alphabet extension,

Proc. 11th Symp. on Combinatorial Pattern Matching, Montreal, Canada, Lec-

ture Notes in Computer Science 1848, Springer Verlag, Berlin (2000) 210–221.

[11] Klein S.T., Kopel Ben-Nissan M., On the Usefulness of Fibonacci

Compression Codes, to appear in The Computer Journal 52 (2009)

doi:10.1093/comjnl/bxp046.

[12] Klein S.T., Shapira D., Pattern matching in Huffman encoded texts, In-

formation Processing & Management 41(4) (2005) 829–841.

[13] Moffat A., Word-based text compression Software – Practice & Experience

19 (1989) 185–198.

[14] de Moura E.S., Navarro G., Ziviani N., Baeza-Yates R., Fast and

flexible word searching on compressed text, ACM Trans. on Information Sys-

tems 18 (2000) 113–139.

[15] Savari S.A., Gallager R.G., Generalized Tunstall codes for sources with

memory, IEEE Trans. Info. Theory IT–43 (1997) 658–668.

[16] Storer J.A., Szymanski T.G., Data Compression Via Textual Substitu-

tion, Journal of the ACM, 29(4) (1982) 928–951.

[17] Tjalkens T.J., Willems F.M.J., Variable to fixed length codes for Markov

sources, IEEE Trans. Info. Theory IT–33 (1987) 246–257.

[18] Tunstall B.P., Synthesis of noiseless compression codes, PhD dissertation,

Georgia Institute of Technology, Atlanta, GA (1967).

[19] Ukkonen E., On-line construction of suffix trees, Algorithmica 14(3) (1995)

249–260.

[20] Véronis, J., Langlais, P., Evaluation of parallel text alignment systems:

The arcade project, in Parallel Text Processing, J. Véronis, ed., Kluwer Aca-

demic Publishers, Dordrecht (2000) 369–388.

[21] Welch T.A., A technique for high performance data compression, IEEE

Computer 17 (1984) 8–19.

[22] Williams R.N., An extremely fast Ziv-Lempel data compression algorithm,

Proc. Data Compression Conference DCC–91, Snowbird, Utah (1991) 362–371.

[23] Ziv J. and Lempel A., A Universal Algorithm for sequential data compres-

sion, IEEE Trans. on Information Theory 23 (1977) 337–343.

[24] Ziv J. and Lempel A., Compression of individual sequence via variable rate

coding, IEEE Trans. on Information Theory 24 (1978) 530–536.

