
Compressed Matching for Feature Vectors∗

Shmuel T. Kleina, Dana Shapirab

aDepartment of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

bDepartment of Computer Science and Mathematics, Ariel University, Ariel 40700, Israel
shapird@ariel.ac.il

Abstract

The problem of compressing a large collection of feature vectors is investigated, so
that object identification can be processed on the compressed form of the features.
The idea is to perform matching of a query image against an image database, using
directly the compressed form of the descriptor vectors, without decompression.
Specifically, we concentrate on the Scale Invariant Feature Transform (SIFT), a
known object detection method, as well as on Dense SIFT and PHOW features,
that contain, for each image, about 300 times as many vectors as the original SIFT.
Given two feature vectors, we suggest achieving our goal by compressing them
using a lossless encoding by means of a Fibonacci code, for which the pairwise
matching can be done directly on the compressed files. In our experiments, this
approach improves the processing time and incurs only a small loss in compression
efficiency relative to standard compressors requiring a decoding phase.

Keywords: Data Compression; Feature vectors; SIFT; Fibonacci code.

1. Introduction

One of the topics on which Amihood Amir has done pioneering work is known
as Compressed Matching. This is an extension of the classical Pattern Matching
paradigm, in which the match has to be performed in the compressed domain, with-
out first decompressing. Given a pattern P , a text T and complementing encoding
and decoding functions E and D, the Compressed Matching problem is to locate

∗This is an extended version of papers that have been presented at the Information Mining and
Management Conference (IMMM 2014) and the Prague Stringology Conference (PSC’14) in 2014,
and appeared in their Proceedings.

Preprint submitted to Theoretical Computer Science May 1, 2016

P in the compressed text E(T). While the traditional approach searches for the
pattern in the decompressed text, i.e., searching for P in D(E(T)), compressed
matching calls for rather compressing the pattern too, and looking for E(P) in
E(T), with the necessary adaptations. This has first been mentioned in Amir’s
paper with Benson dealing with two-dimensional run-length coding at the Data
Compression Conference in 1992 [1, 2], and has since then triggered a myriad of
related investigations. As a tribute to Amir, we present here yet another application
of the compressed matching idea, this time to compressed feature vectors used in
Image Processing.

The tremendous storage requirements and ever increasing resolutions of digi-
tal images, necessitate automated analysis and compression tools for information
processing and extraction. A main challenge is detecting patterns even if they were
rotated or scaled, working directly on the compressed form of the image. In a more
general setting, a collection of images could be given, and the subset of those in-
cluding at least one object, which is a rotated or scaled copy of the original object,
is sought. An example for the former could be an aerial photograph of a city in
which a certain building is to be located, an example for the more general case
could be a set of pictures of faces of potential suspects, which have to be matched
against some known identifying feature, like a nose or an eyebrow.

There are several methods for transforming an image into a set of feature vec-
tors for the purpose of object detection, such as SIFT (Scale Invariant Feature
Transform) by Lowe [29], GLOH (Gradient Location and Orientation Histogram)
[31], and SURF (Speed-up-Robust Features) [5], to mention only a few.

SIFT is a high probability object detection and identification method, which is
done by matching the query image against a large database of local image features.
Lowe’s object recognition method transforms an image into a set of feature vec-
tors, each of which is invariant to image translation, scaling, and rotation, partially
invariant to illumination changes and robust to local geometric distortion. Feature
descriptor vectors are computed for the extracted key points of objects from a set
of reference images, which are then stored in a database. An object in a new image
is identified after matching its features against this database using the Euclidean
L2 distance.

The matching process consists in a first stage of comparing each feature vector
of the query image with each feature vector in the database. In a second stage,
the best matching candidates are filtered out, and a clustering process is applied.
Finally, each cluster passes a further more detailed model verification [29]. While
the first stage could be done in a single sequential scan of the database, the latter
stages require the possibility of direct access to the individual feature vectors.

The main idea of SIFT is to carefully choose a subset of the features so that
this reduced set will be representative of the original image and will be processed

2

instead. Obviously, there are applications in which working on a dense set of fea-
tures, rather than the sparse subsets mentioned above, is much better, since a larger
set of local image descriptors provides more information than the corresponding
descriptors evaluated only at selected interest points. In the case of object category
or scene classification, experimental evaluations show that better classification re-
sults are often obtained by computing the so-called Dense SIFT descriptors (or
DSIFT for short) as opposed to SIFT on a sparse set of interest points [7]. The
dense sets may contain about 300 times more vectors than the sparse sets.

Query feature compression can contribute to faster retrieval, for example, when
the query data is transmitted over a network, as in the case when mobile visual ap-
plications are used for identifying products in comparison shopping. Moreover,
since the memory space on the mobile device is restricted, working directly on
the compressed form of the data is sometimes required. A device with restricted
memory is also an example showing that one still may need the space saving im-
plications of compression, even though the time savings are often emphasized.

In this paper we suggest to apply metric preserving compression methods on
the features of an image so that they can be processed in their compressed form.
There are two ways to interpret the expected gains: on the one hand, one may
consider the reduction of the required space; on the other hand, assuming that
the space to be used is fixed in advance, compression allows the storage of more
vectors, so that, instead of choosing a representative set of interest points, possibly
reducing the object detection accuracy, one can increase the number of key points
that can be processed using the same amount of memory storage.

2. Related Work

A feature descriptor encoder is presented in Chandrasekhar et al. [15]. They
transfer the compressed features over the network and decompress them once data
is received for further pairwise image matching. Chen et al. [16] perform tree-
based retrieval, using a scalable vocabulary tree. Since the tree histogram suffices
for accurate classification, the histogram is transmitted instead of individual feature
descriptors. Also [13] encode a set of feature descriptors jointly and use tree-
based retrieval when the order in which data is transmitted does not matter, as
in our case. Several other SIFT feature vector compressors were proposed, and
we refer the reader to [12] for a comprehensive survey. DiLillo et al. [19, 20]
applied compression-based tools (dimensionality reduction, vector quantization,
and coding) to provide object recognition as a preprocessing step. These are lossy
techniques, in which a part of the data cannot be recovered. We propose a special
encoding, which is a lossless alternative to the above, and is not only compact in
its representation, but can also be processed directly without any decompression.

3

Figure 1 visually represents our approach as opposed to the traditional one of
feature based object detectors and previous research regarding feature descriptors
compression. The client uses any feature detector for extracting key points from
the image, and computes the relevant vectors. These features are then sent along
a network to the server, where pairwise pattern matching is applied against the
stored database, as shown in Figure 1(a). Figure 1(b) depicts the scenario assumed
in previous research that deals with compressed feature descriptors: compression
is applied to the vectors before transmission, and decompression is performed once
the descriptors are received on the server’s side. Unlike traditional work, the cur-
rent suggestion omits the decompression stage, and performs pairwise matching
directly on the compressed data, as shown in Figure 1(c). Similar work, using
quantization, has been suggested by Chandrasekhar et al. [14]. We do not apply
quantization, and rather use a lossless encoding.

Figure 1: Block diagram showing (a) the traditional image retrieval system, (b) the scenario assumed
by previous research, as opposed to (c) the scenario suggested in this paper.

We thus wish to perform the matching against the query image in the com-
pressed form of the feature descriptor vectors so that the metric is retained, i.e.,
vectors are close in the original distance (e.g., Euclidean distance based on nearest
neighbors according to the Best-Bin-First-Search algorithm in SIFT) if and only if
they are close in their compressed counterparts. This can be done either by using
the same metric but requiring that the compression should not affect the metric, or
by changing the distance so that the number of false matches and true mismatches
does not increase under this new distance. In the present work, we stick to the first
alternative and do not change the L2 metric used in SIFT.

For the formal description of the general case, let {~f1, ~f2, . . . , ~fn} be a set
of feature descriptor vectors generated using some feature based object detector,
and let ‖ ‖M be a metric associated with the pairwise matching of this object
detector. The Compressed Feature Based Matching Problem (CFBM) is to find a
compression encoding of the vectors, denoted E(~fi), and an equivalent metric m
so that for every ε > 0 there exists a δ > 0 in which ∀i, j ∈ {1, . . . , n}

‖~fi − ~fj‖M < ε ⇐⇒ ‖E(~fi)− E(~fj)‖m < δ. (1)

The rest of the paper is organized as follows. Section 3 gives a brief description
of SIFT; Section 4 presents our lossless encoding for SIFT, DSIFT and PHOW
(Pyramid Histogram Of visual Words) [7] feature vectors, especially suited for
CFBM; Section 5 presents the algorithm used for compressed pairwise matching;
Section 6 presents results on the compression performance of our lossless encoding
for these particular features, and, finally, the last section concludes.

4

3. Brief Description of SIFT

Matching features across different images appearing in different scales and ro-
tations is a common problem in computer vision, and SIFT is one of the famous
tools dealing with it. The SIFT algorithm first preprocesses the original image
in order to construct a scale space to ensure scale invariance. SIFT repeatedly
generates progressively blurred out images of the original image and resizes it to
half the size. The Laplacian of Gaussian (LoG) operation calculates second order
derivatives on the blurred images. The blur smoothes out the noise and makes the
second order derivative more stable. The LoG operation locates edges and corners
in the image, which are used for finding keypoints. However, since calculating the
LoG is computationally intensive, it is approximated by the Difference of Gaus-
sians (DoG), calculating the difference between two consecutive scales, resulting
in scale invariant keypoints.

Each pixel of the DoG scales is compared to all 26 of its neighbors, 8 neighbors
in the current scale image and 18 more in the images of the scales one above and
below it. Maxima and minima pixels are chosen as keypoints, which cannot be de-
tected in the lowest or highest scales. Edges and low contrast pixels are eliminated
from the set of keypoints. An orientation is calculated for each keypoint, choosing
the most dominant one(s) around the keypoint. Any further calculations are done
relative to this orientation. This effectively cancels out the effect of orientation,
making it rotation invariant.

Highly distinctive vectors are then created for each keypoint as follows. A
16 × 16 window of pixels around the keypoint is taken. The window is split into
sixteen 4× 4 windows, each of which used to generate a histogram of 8 bins. Each
bin corresponds to a different orientation (first bin for 0-44 degrees, second for 45-
89 degrees, etc.), and the gradient orientations are put into these bins. To achieve
rotation independence, the keypoint’s rotation is subtracted from each orientation,
so that each gradient orientation is relative to that of the keypoint. Finally, the 128
values which are attained are normalized.

4. Lossless Encoding for Feature Vectors

Given two feature vectors obtained by SIFT, we suggest achieving our goal
to compress them using a lossless encoding so that the pairwise matching can be
done directly on the compressed form of the file, by means of a Fibonacci code.
Note that while the encoding will be different, the metric used in SIFT does not
change, or in terms of the above notation, M and m refer to the same Euclidean
metric generally denoted as L2. We also apply the same code on the dense variants
of SIFT, DSIFT and PHOW.

5

The following reflections led, among the many possible alternatives, to the
choice of the Fibonacci code. Since direct random access is requested, adaptive
schemes, like those based on Ziv-Lempel algorithms, are ruled out. Static Huffman
codes would be possible, and would yield better compression, but the code has to
be generated for each set, and the encoded numbers are not directly comparable.
Moreover, since some given feature vectors are to be compared with those of entire
sets of images to find the most fitting match, the use of Huffman codes would
require, at decoding time, to deal with a different code, or construct a different
tree, for every image.

Families of fixed codeword sets have been studied by Elias [21] in what he
called universal codes. His γ and δ-codes encode the integers by the binary se-
quences:

1, 010, 011, 00100, 00101, 00110, 00111, 0001000, . . . for γ,

1, 0100, 0101, 01100, 01101, 01110, 01111, 00100000, . . . for δ.

The Elias codes could be used directly in their compressed forms, as the difference
between integers represented by codewords of the same length can be evaluated
by subtracting the representations themselves, but handling codewords of different
lengths is more involved. The codes are also only efficient for quite large alphabets,
whereas the number of different elements in the SIFT feature vectors is small. The
same is true for several other universal sets such as ETDC [10] and (s, c)-dense
codes [8] and other byte-codes, in which each codeword consists of an integral
number of bytes; they are not appropriate for our application for which even a
fixed length code of length one byte might suffice.

Directly accessible codes (DACs) are investigated in [11]: the standard binary
representation of the integers is broken into blocks of b bits, and a flag bit is ad-
joined to each block to indicate whether it is the last block in the representation of a
given integer. The parameter b cannot be chosen too small, otherwise the overhead
caused by the flag bits might be significant, but for larger b, the shortest codewords
are too long to be efficient for small sets as required in our application. Hence
Fibonacci codewords are preferable here and are also easier to compare directly.

More research on direct access to variable length encoding schemes has re-
cently been published, generally based on fast implementations of rank and select
operations on bit-vectors and coupled with the use of Wavelet trees, as in [28] for
Rice and Elias codes, [24] for Huffman trees and more generally in [32]. These
data structures need additional space to enable direct access to a greater extent
than is needed for our application.

Our problem of compressing vectors of integers is reminiscent of the process-
ing of lists of indices in full text Information Retrieval Systems. In both areas, the

6

distribution of the numbers is skewed, with higher probability to smaller values.
The compression of such lists has been addressed, among others in [34, 4, 3, 17],
though here we also need the possibility of processing the numbers in their com-
pressed form.

4.1. The Fibonacci Code

The Fibonacci code is a universal variable length encoding of the integers based
on the Fibonacci sequence rather than on powers of 2. A prefix of this infinite
encoding sequence can be used as a fixed alternative to Huffman codes, giving
obviously less compression, but adding simplicity (there is no need to generate a
new code every time), robustness and speed [22, 26]. The particular property of the
binary Fibonacci encoding is that there are no adjacent 1’s, so that the string 11 can
act like a comma between codewords. More precisely, the codeword set consists
of all the binary strings for which the substring 11 appears exactly once, at the left
end of the string.

The connection to the Fibonacci sequence can be seen as follows: just as any
integer k has a standard binary representation, that is, it can be uniquely represented
as a sum of powers of 2, k =

∑
i≥0 bi2

i, with bi ∈ {0, 1}, there is another possible
binary representation based on Fibonacci numbers, k =

∑
i≥0 fiF (i), with fi ∈

{0, 1}, where it is convenient to define the Fibonacci sequence here by

F (0) = 1, F (1) = 2; F (i) = F (i− 1) + F (i− 2) for i ≥ 2.

This Fibonacci representation will be unique if, when encoding an integer, one
repeatedly tries to fit in the largest possible Fibonacci number.

For example, the largest Fibonacci number fitting into 19 is F (5) = 13, for
the remainder 6 one can use the Fibonacci number F (3) = 5, and the remainder
F (0) = 1 is a Fibonacci number itself. So one would represent 19 as 19 = 13 +
5 + 1, yielding the binary string 101001. Note that the bit positions correspond
to F (i) for increasing values of i from right to left, just as for the standard binary
representation, in which 19 = 16 + 2 + 1 would be represented by 10011. Each
such Fibonacci representation starts with a 1, so by preceding it with an additional
1, one gets a sequence of uniquely decipherable codewords.

Decoding, however, would not be instantaneous, because the set lacks the pre-
fix property. For example, a first attempt to start the parsing of the encoded string
1101111111110 by 110 11 11 11 11 would fail, because the remaining suffix 10
is not the prefix of any codeword. So only after having read 5 codewords in this
case (and the example can obviously be extended) would one know that the cor-
rect parsing is 1101 11 11 11 110. To overcome this problem, the Fibonacci code
defined in [22] simply reverses each of the codewords. The adjacent 1s are then at

7

the right instead of at the left end of each codeword, thus yielding the prefix code
{11, 011, 0011, 1011, 00011, 10011, 01011, 000011, 100011, 010011, 001011,
101011, 0000011,. . .}.

A disadvantage of this reversing process is that the order preserving of the
previous representation is lost, e.g., the codewords corresponding to 17 and 19 are
1010011 and 1001011, but if we compare them as if they were standard binary
representations of integers, the first, with value 83, is larger than the second, with
value 75. At first sight, this seems to be critical, because we want to compare
numbers in order to subtract the smaller from the larger. But in fact, since we
calculate the L2 norm, the square of the differences of the coordinates is needed.
It therefore does not matter if we calculate x− y or y− x, and there is no problem
dealing with negative numbers. The reversed representation can therefore be kept.

4.2. Using a Fibonacci Code for feature vectors

We wish to encode SIFT, DSIFT and PHOW feature vectors, each consisting
of exactly 128 coordinates. Thus, in addition to the ability of parsing an encoded
feature vector into its constituting coordinates, separating adjacent vectors could
simply be done by counting the number of codewords, which is easily done with a
prefix code.

Empirically, SIFT, DSIFT and PHOW vectors are characterized by having
smaller integers appear with higher probability. To illustrate this, we considered
the Lenna image (an almost standard compression benchmark) and first applied
Matlab’s SIFT application on it, generating 737 feature vectors. The number of
occurrences of 0 was 28,182, and that of the following numbers 1 to 25 is plotted
in Figure 2(a). All the numbers were between 0 and 255 and could thus be encoded
in a single byte. The total raw size of the feature vectors for Lenna was thus
94,336 bytes. We then applied Matlab’s DSIFT and PHOW applications on it,
generating 253,009 and 237,182 feature vectors, respectively, of 128 coordinates
each. The numbers (thousands of occurrences for values from 2 to 255) are plotted
in Figure 2(b).

(a) SIFT (b) DSIFT and PHOW

Figure 2: Value distribution in feature vectors.

SIFT, DSIFT and PHOW feature vectors contain repeated zero-runs, as could
be expected by the high number of zeros. This led to the idea of representing a
pair of adjacent 0s by a single codeword. That is, the pair 00 is assigned the first
Fibonacci codeword 11, a single 0 is encoded by the second codeword 011, and

8

generally, the integer k is represented by the Fibonacci codeword corresponding to
the integer k + 2, for k ≥ 0.

The usual approach for using an universal code, such as the Fibonacci code,
is first sorting the probabilities of the source alphabet symbols in decreasing order
and then assigning the universal codewords by increasing codeword lengths, so that
high probability alphabet symbols are given the shorter codewords. In our case, in
order to be able to perform compressed pairwise matching, we omit sorting the
probabilities, as already suggested in [9] for byte-codes and in [27] for Huffman
coding. Figure 2 shows that the order is not strictly monotonic, but that the fluctua-
tions are very small. Indeed, experimental results show that encoding the numbers
themselves, instead of their indices in the list sorted by their decreasing values, has
hardly any influence (0.1% for SIFT and less than 0.4% for DSIFT and PHOW on
our test images).

As example, consider the 25th PHOW feature vector of Lenna’s Image. The
first 20 coordinates of this vector are

8, 19, 3, 1, 5, 7, 0, 0, 0, 0, 1, 1, 32, 60, 0, 0, 0, 0, 0, 0, . . .

Instead of encoding it as

100011 0101011 1011 011 10011 000011 11 11 11 11

011 011 00101011 1001000011 11 11 11 11 11 11

in which 11 represents a single 0, we rather encode it as

010011 00000011 00011 0011 01011 100011 11 11

0011 0011 000000011 0101000011 11 11 11

where the 11 stands for 00, and thereby reduce the size of this compressed prefix
from 75 bits to 71, as opposed to 160 bits for the first 20 elements of the original
uncompressed PHOW vector using one byte per integer.

Note that since all numbers are simply shifted by 2, the difference between two
Fibonacci encodings is preserved, which is an essential property for computing
their distance in the compressed form.

5. Compressed Pairwise Matching

We start with a general algorithm, Sub(), for subtraction which is used in
SIFT, DSIFT and PHOW L2 norm computations. Given two encoded descriptors,
one needs to compute their L2 norm. Each component is first subtracted from
the corresponding one, then the squares of these differences are summed. The

9

algorithm for computing the subtraction of two Fibonacci encoded coordinates A
and B is given in Figure 3. We start by stripping the trailing 1s from both, and
pad, if necessary, the shorter codeword with zeros at its right end so that both
representations are of equal length. Note that the term first, second and next refer
to the order from right to left.

Sub(A,B)
scan the bits of A and B from right to left
a1 ←− first bit of A
a2 ←− second bit of A

while next bit of A exists {
a3 ←− next bit of A
b1 ←− next bit of B
a1 ←− a1 − b1
a2 ←− a1 + a2
a3 ←− a1 + a3
a1 ←− a2
a2 ←− a3}

b←− value of last 2 bits of B
if b 6= 0 then b←− 3− b
return 2 ∗ a1 + a2 − b

Figure 3: Subtraction of Fibonacci Codewords.

At the end of the while loop, there are 2 unread bits left in B, which can be
00, 10 or 01, with values 0, 1 or 2 in the Fibonacci representation, but when read
as standard binary numbers, the values are 0, 2 and 1. This is corrected in the
commands after the while loop of the algorithm. The evaluation relies on the fact
that a 1 in position i of the Fibonacci representation is equivalent to, and can thus be
replaced by, 1s in positions i+1 and i+2. This allows us to iteratively process the
subtraction, independently of the Fibonacci number corresponding to the leading
bits of the given numbers. Processing is, therefore, done in time proportional to the
size of the compressed file, without any decoding.

As example, consider the numbers A = 130 and B = 65, encoded by the

10

strings representing 132 and 67, which are 10001001011 and 1010100011, respec-
tively. The upper part of Figure 4 shows the results of applying the subtraction
algorithm on A and B, which appear, in their reduced form (without trailing 1,
but with B padded by 0 to get to the same length) in the boxed first line and last
column. The last (i.e., leftmost) two bits of B do not appear in the boxed col-
umn in the figure. At the end, b is assigned the value 1, and the result is indeed
130 − 65 = 65 = 2 ∗ 25 + 16 − 1. Note that had we subtracted A from B, the
values in columns a1 and a2 would be negative or 0 (except in the first row), as can
be seen in the lower part of the figure, but the algorithm would still work correctly.
In that case, the result is indeed 65− 130 = −65 = 2 ∗ (−25)− 14− 1.

a3 a2 a1 b1
1 0 0 0 1 0 0 1 0 1 0

1 0 0 0 1 0 0 2 1 1
1 0 0 0 1 0 0 2 0

1 0 0 0 1 2 2 0
1 0 0 0 3 4 0

1 0 0 4 7 1
1 0 6 10 0

1 10 16 1
16 25

a3 a2 a1 b1
1 0 1 0 1 0 0 0 1 0 1

1 0 1 0 1 0 0 -1 0 0
1 0 1 0 1 0 0 -1 1

1 0 1 0 1 -2 -2 0
1 0 1 0 -1 -4 0

1 0 1 -4 -5 1
1 0 -5 -10 0

1 -10 -15 0
-14 -25

Figure 4: Example of direct differencing.

To calculate the L2 norm, the two Fibonacci encoded input vectors have to be
scanned in parallel from left to right. In each iteration, the first codeword (identified
as the shortest prefix ending in 11) is removed from each of the two input vectors,
and each pair of coordinates is processed according to the procedure Sub(A,B)
above. The codeword 11, representing two consecutive zeros, needs a special treat-
ment: if one of the codewords is 11, but the other, say B, is not, the 11 should be

11

L2Norm(V1, V2)
SSQ←− 0
while V1 and V2 are not empty {

remove first codeword from V1 and assign it to A
remove first codeword from V2 and assign it to B
if A 6= B then

if A = 11 then
S ←− Sub(B, 011)
V1 ←− 011 ‖ V1

else if B = 11 then
S ←− Sub(A, 011)
V2 ←− 011 ‖ V2

else S ←− Sub(A,B)

SSQ←− SSQ + S2

}
return

√
SSQ

Figure 5: SIFT and PHOW compressed L2 norm computation.

replaced by two codewords 011 011, each representing a single zero. We thus per-
form Sub(B, 011), and then concatenate the second 011 in front of the remaining
input vector, to be processed in the following iteration. The details appear in Fig-
ure 5, where ‖ denotes concatenation and the variable SSQ, accumulating the sum
of the squares of the differences, is initialized to 0. At each iteration, the result, S,
of the subtraction of the two given Fibonacci encoded numbers is computed by the
function Sub(); it is then squared and added to the accumulated value SSQ. By
definition, the L2 norm is the square root of the sum of the squares.

6. Compression Performance

An empirical study is supposed to apply the suggested methods to a represen-
tative set of example images. It is, however, not realistic to assume that such a set
can be found, yet the compressibility and processing times are strongly related to
the specific characteristics of the chosen images. We therefore chose just a small
sample of what seemed to be typical images in our eyes, and we do not claim that
one might infer from the results that similar performances are expected for other
sets.

12

At first, three images are considered in our experiments: Lenna, House and
Aerial (5.1.10), taken from the Miscellaneous set of the SIPI (Signal and Image
Processing Institute) Image Data Base1. The last lines in the tables below corre-
spond to the average values obtained for all the images in this set of size 256×256
or 512 × 512 pixels, generating between 100 and 2000 feature vectors. There are
37 images in this set.

Table 1 presents the results for the SIFT vectors. The second column shows
the number of feature vectors generated by Matlab when applied on the given im-
age. The other figures are file sizes, in KB. The third column presents the size of
the uncompressed file, using a single byte for each of the 128 coordinates of each
feature vector, since all values are below 256. The column entitled Fib gives the
size of the file when each number is represented by its Fibonacci encoding, but re-
serving the first codeword for encoding 00. For comparison, the file sizes achieved
by other compression methods are listed in the following columns. The column
headed Huff corresponds to a Huffman code whose first element is again a pair
of zeros 00 as for the Fibonacci encoding, and keeping the following elements in
order of the represented values themselves, not of their frequencies, as suggested
above. Then come the file sizes for Elias’ γ and δ codes, and finally the last two
columns give the compression performances of gzip (with parameter -9 for max-
imal compression) and bzip2. These are adaptive compression schemes, and as
such no real competitors to Huffman or Fibonacci coding: while their performance
on text files is often superior, taking advantage also of the order in which the char-
acters appear, and not just of their frequencies, they cannot be used when direct
access to a part of the compressed file is required, as in our case of feature vectors,
and they require a sequential scan from their beginning for the decoding.

As can be seen, the use of Fibonacci instead of Huffman coding incurs a com-
pression loss of about 6–10%, and in this case even gzip is 3–7% worse than Huff-
man. The use of an Elias-δ code would increase the file size by 18–24%.

To evaluate the compression loss due to omitting the sorting of the frequencies,
we considered the compression where each symbol is encoded using the Fibonacci
codeword assigned according to its position in the list of frequencies ordered by
decreasing values. For Huffman coding, the elements were sorted according to
their frequencies. The difference in compression was negligible in all cases, about
0.1–0.3%.

Tables 2 and 3 present the compression performance for the PHOW and DSIFT
vectors, respectively, using the same format as above, only the file sizes are now
given in MB. For these larger files, Fibonacci encoding increases the files by 12–

1http://sipi.usc.edu/database/

13

Table 1: Raw and compressed file sizes for SIFT feature vectors in KB.

Image Vectors Size Fib Huff γ δ gzip bzip2
Lenna 737 92.1 64.2 60.6 72.6 71.7 65.0 66.0
House 991 123.9 93.7 86.9 107.0 104.9 91.9 92.6
Aerial 477 59.6 50.1 45.3 57.8 56.4 46.8 47.5
average 823 108.2 86.3 78.9 99.2 97.0 82.4 82.7

Table 2: Raw and compressed file sizes for PHOW feature vectors in MB.

Image Vectors Size Fib Huff γ δ gzip bzip2
Lenna 237,182 29.0 18.3 17.5 20.4 20.2 16.5 16.5
House 237,182 29.0 20.1 18.7 22.7 22.2 17.4 17.4
Aerial 53,374 6.5 5.9 5.2 6.8 6.6 5.1 5.2
average 172,601 21.1 16.0 14.3 18.3 17.8 13.8 13.8

14% relative to Huffman coding, but gzip might sometimes compress more than
Huffman by about 5%. The reason for the better performance of gzip on the larger
files is the appearance of longer runs of zeros, all of which are encoded as single
elements, whereas our Huffman or Fibonacci codes break 0-runs into a sequence
of 00 pairs. Note that γ and δ codes yield sometimes encoded files that are larger
than the original, thus giving negative compression.

Table 4 brings some more statistical data on the compression tests. To evalu-
ate the influence of the image size, the 37 images are partitioned into two classes
according to the number of pixels used: 13 images of 256× 256 and 24 images of
512 × 512 pixels. As to the examples used above, Aerial belongs to the first set,
and Lenna and House to the second. The average number of feature vectors gen-
erated by Matlab for SIFT was 248 for the smaller set, with standard deviation 88,
and 1135 for the larger, with standard deviation 267. For PHOW and DSIFT, the
number of generated feature vectors was constant within each set and can be found
in the Vectors columns of Tables 2 and 3. For each of the methods SIFT, PHOW
and DSIFT, and the two sets labeled 256 and 512, Table 4 displays the average
compression ratio, its standard deviation in the set, as well as the minimum and
maximum values obtained. The compression ratio is the size of the compressed
file divided by the corresponding uncompressed file using a single byte for each of
the 128 elements of each feature vector.

As can be seen, for SIFT and DSIFT, there is only a small difference of 4–
9% between the two sets, but for PHOW, the set of the features of the smaller
images seems to be more compressible, though with higher fluctuations. The or-
der between the columns, representing the different compression methods, is not

14

Table 3: Raw and compressed file sizes for DSIFT feature vectors in MB.

Image Vectors Size Fib Huff γ δ gzip bzip2
Lenna 253,009 30.9 26.7 23.8 31.1 30.1 23.8 24.1
House 253,009 30.9 26.4 23.6 30.6 29.7 24.0 24.5
Aerial 61,009 7.4 6.4 5.7 7.4 7.2 5.8 5.9
average 177,157 21.6 19.3 16.9 22.5 21.7 17.0 17.3

affected.
The following tests were run to empirically evaluate the processing times. To

simulate a large number of different L2 norm calculations, we considered, for each
of the test images, the 100 first feature vectors, and calculated their L2 distance
from each of the other vectors in the file. For example, for Lenna’s SIFT fea-
tures, 100 × 737 = 73,700 vector pairs were processed. This was done for all
the images in the set used above, and Table 5 lists the processing time, in sec-
onds, for the three test images and the average time for all the files in the set. The
columns correspond to the three scenarios described in Figure 1: (a) calculating
the norms using the uncompressed feature vectors; (b) using a canonical Huffman
code, decoding and calculating then the norm; finally (c) using a Fibonacci code
and calculating the norm without decompressing. These test were then repeated
for PHOW and DSIFT, but only with the 10 first vectors, so for Lenna’s PHOW
features, 10×237,182=2,371,820 vector pairs were processed. All the tests have
been run on an Intel Xeon CPU E5-2650 at 2.00Ghz with cache size 20MB and
16GB of RAM.

We see that using the raw data, Method (a), is obviously the fastest, but that
using the Fibonacci code directly in its compressed form, Method (c), may yield
time savings of about 36% over the standard approach, Method (b), of decoding (a
Huffman code in our tests) and then calculating the norm.

Table 6 gives again more statistical data, including average time, its standard
deviation, minimum and maximum times, after partitioning the images into the
two sets labeled 256 and 512, as above. The times are given in micro-seconds
and have been normalized by dividing the total times of Table 5 by the number of
processed pairs for each image. We see that there are no significant differences,
neither for the different image sizes, nor between the feature vector sets SIFT,
PHOW and DSIFT, and that the relative order of processing methods (a), (b) and
(c) is maintained.

15

Table 4: Statistical data on compression ratios.

Fib Huff γ δ gzip bzip2
SIFT 256 Avg 0.718 0.672 0.815 0.799 0.710 0.723

Std 0.060 0.044 0.077 0.073 0.042 0.045
min 0.637 0.605 0.714 0.691 0.635 0.625
max 0.839 0.759 0.970 0.946 0.785 0.797

512 Avg 0.774 0.710 0.886 0.867 0.744 0.748
Std 0.081 0.064 0.103 0.098 0.065 0.063
min 0.478 0.464 0.515 0.509 0.479 0.489
max 0.852 0.766 0.987 0.960 0.790 0.789

PHOW 256 Avg 0.598 0.553 0.662 0.651 0.517 0.522
Std 0.193 0.168 0.245 0.237 0.188 0.193
min 0.345 0.312 0.340 0.338 0.261 0.254
max 0.912 0.794 1.063 1.034 0.791 0.798

512 Avg 0.778 0.695 0.892 0.868 0.672 0.674
Std 0.171 0.134 0.219 0.206 0.150 0.153
min 0.299 0.257 0.282 0.280 0.195 0.191
max 0.960 0.815 1.128 1.084 0.802 0.808

DSIFT 256 Avg 0.809 0.721 0.934 0.907 0.727 0.740
Std 0.164 0.142 0.209 0.199 0.153 0.159
min 0.289 0.246 0.274 0.269 0.207 0.200
max 0.980 0.814 1.158 1.104 0.812 0.831

512 Avg 0.898 0.784 1.049 1.013 0.788 0.803
Std 0.051 0.033 0.065 0.058 0.031 0.032
min 0.788 0.674 0.926 0.889 0.676 0.688
max 0.982 0.820 1.159 1.109 0.817 0.841

7. Conclusion

We have dealt with the problem of compressing sets of feature vectors known
as SIFT, DSIFT and PHOW, under the constraint of processing the data directly
in its compressed form. Such an approach may be advantageous not only to save
storage space, but may also improve manipulation speed, and in fact the whole data
handling from transmission to processing.

Our solution is based on encoding the vector elements by means of a Fibonacci
code, which is generally inferior to Huffman coding from the compression point
of view, but has several advantages, turning it into a preferred choice in our case:
(a) simplicity – the code is fixed and need not be generated anew for different
distributions; (b) the possibility to identify each individual codeword – avoiding the
necessity of adding separators, and not requiring a sequential scan; (c) allowing to
perform subtractions using the compressed form – and thereby calculating the L2

16

Table 5: Processing times of calculating a set of L2 norms, in seconds.

SIFT PHOW DSIFT
Image (a) (b) (c) (a) (b) (c) (a) (b) (c)
Lenna 0.06 1.38 0.89 5.29 55.01 36.84 5.51 54.98 36.90
House 0.09 2.09 1.25 5.09 43.20 30.64 5.26 54.90 33.51
Aerial 0.04 1.10 0.64 1.07 12.09 7.73 1.23 13.42 8.78
average 0.06 1.65 1.04 3.66 33.87 21.58 3.92 39.16 25.10

Table 6: Statistical data on normalized processing times, in µ-seconds.

SIFT PHOW DSIFT
(a) (b) (c) (a) (b) (c) (a) (b) (c)

256 Avg 0.69 19.66 11.63 2.13 15.58 9.10 2.18 20.70 12.85
Std 0.16 1.86 0.89 0.38 4.87 3.57 0.38 4.25 2.87
min 0.44 17.10 10.36 1.93 8.82 4.20 1.93 6.98 3.66
max 0.99 23.06 13.42 3.35 22.65 14.48 3.39 23.95 14.59

512 Avg 0.80 20.34 12.88 2.12 20.12 12.91 2.15 21.57 14.04
Std 0.07 0.88 0.66 0.06 3.91 2.36 0.09 4.19 1.25
min 0.75 18.39 11.57 2.03 8.25 7.78 1.83 3.39 10.26
max 1.03 21.60 13.66 2.23 23.66 15.53 2.22 23.75 15.16

norm, whereas a Huffman code would have to use some translation table; (d) using
a lossless encoding scheme, whereas previous approaches to work with compressed
data suggested the use of quantization or dimensionality reduction, in which a part
of the data is lost.

On our experiments, there is only a small loss, of 6–14%, in compression ef-
ficiency relative to the optimal Huffman codes, which might be worth a price to
pay for the improved processing. Other standard compressors, like gzip or bzip2,
might improve even on Huffman, but do not allow random access.

The basic techniques of the present work can be extended to a different, yet
related problem: the Compressed Approximate Pattern Matching paradigm. When
searching for a pattern in a given text one may also be interested in locating strings
that are not completely identical to the original pattern, but are quite similar. In the
literature this problem is referred to as Approximate Pattern Matching, which is to
find all occurrences of substrings in a given text T that are at a given “distance”
k or less from a pattern P under some metric. This is yet another of the favorite
research topics of Amihood Amir, who has contributed many of the seminal papers
in this area.

The Compressed Approximate Matching Problem (CAMP) is locating similar
patterns to the searched one working directly on the compressed form of the text.

17

Defining similarity formally necessities the existence of a metric so that if the dis-
tance between two patterns under this metric is small, searching for one of them in
the compressed form of the file will be able to locate both patterns. Approximate
compressed pattern matching was first introduced in [2] as an open problem. It
has been solved for many cases, e.g., for byte Huffman coding of words [18], for
run length encoded strings [30], for Lempel-Ziv compressed text in [33, 25], and
Straight Line Programs [6, 23].

More formally, given a patternP , a compressed text E(T), and a metric ‖ ‖M ,
the CAMP is to locate all patterns Q in E(T) so that ‖P − Q‖M ≤ ε for some
ε ≥ 0. This is a generalization of the compressed pattern matching problem in
which ε = 0.

A tempting definition is dealing with two metrics, ‖ ‖M and ‖ ‖m, so that
if ‖P − Q‖M ≤ ε for some ε ≥ 0 in T , then there exist a corresponding metric
‖ ‖m and δ ≥ 0 so that ‖E(P) − E(Q)‖m ≤ δ in the compressed file E(T). In
this paper, we dealt with the specific case in which the patterns are feature vectors
and M = m = L2.

References

[1] A. AMIR AND G. BENSON: Efficient two-dimensional compressed match-
ing, in Proceedings of the IEEE Data Compression Conference, DCC 1992,
Snowbird, Utah, March 24-27, 1992., 1992, pp. 279–288.

[2] A. AMIR, G. BENSON, AND M. FARACH: An alphabet independent ap-
proach to two-dimensional pattern matching. SIAM J. Comput., 23(2) 1994,
pp. 313–323.

[3] V. N. ANH AND A. MOFFAT: Compressed inverted files with reduced decod-
ing overheads, in SIGIR ’98: Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, August 24-28 1998, Melbourne, Australia, 1998, pp. 290–297.

[4] : Inverted index compression using word-aligned binary codes. Inf.
Retr., 8(1) 2005, pp. 151–166.

[5] H. BAY, T. TUYTELAARS, AND L. GOOL: SURF: Speeded Up Robust Fea-
tures, in European Conference on Computer Vision (ECCV), 2006, pp. 404–
417.

[6] P. BILLE, G. M. LANDAU, R. RAMAN, K. SADAKANE, S. R. SATTI, AND

O. WEIMANN: Random access to grammar-compressed strings, in Sympo-
sium on Discrete Algorithms (SODA), 2011, pp. 373–389.

18

[7] A. BOSCH, A. ZISSERMAN, AND X. MUNOZ: Image classification using
random forests and ferns, in Proc. 11th International Conference on Com-
puter Vision (ICCV’07), Rio de Janeiro, Brazil, 2007, pp. 1–8.

[8] N. R. BRISABOA, A. FARIÑA, G. NAVARRO, AND M. F. ESTELLER: (s, c)-
dense coding: An optimized compression code for natural language text
databases, in String Processing and Information Retrieval, 10th International
Symposium, SPIRE 2003, Manaus, Brazil, October 8-10, 2003, Proceedings,
2003, pp. 122–136.

[9] N. R. BRISABOA, A. FARIÑA, G. NAVARRO, AND J. R. PARAMÁ:
Lightweight natural language text compression. Inf. Retr., 10(1) 2007, pp. 1–
33.

[10] N. R. BRISABOA, E. L. IGLESIAS, G. NAVARRO, AND J. R. PARAMÁ:
An efficient compression code for text databases, in Advances in Information
Retrieval, 25th European Conference on IR Research, ECIR 2003, Pisa, Italy,
April 14-16, 2003, Proceedings, 2003, pp. 468–481.

[11] N. R. BRISABOA, S. LADRA, AND G. NAVARRO: Dacs: Bringing direct
access to variable-length codes. Inf. Process. Manage., 49(1) 2013, pp. 392–
404.

[12] V. CHANDRASEKHAR, M. MAKAR, G. TAKACS, D. CHEN, S. S. TSAI,
N. M. CHEUNG, R. GRZESZCZUK, Y. A. REZNIK, AND B. GIROD: Sur-
vey of SIFT compression schemes, in Int. Workshop on Mobile Multimedia
Processing (WMMP), 2010.

[13] V. CHANDRASEKHAR, Y. A. REZNIK, G. TAKACS, D. M. CHEN, S. S.
TSAI, R. GRZESZCZUK, AND B. GIROD: Compressing Feature Sets with
Digital Search Trees, in ICCV Workshops, 2011, pp. 32–39.

[14] V. CHANDRASEKHAR, G. TAKACS, D. M. CHEN, S. S. TSAI, Y. A.
REZNIK, R. GRZESZCZUK, AND B. GIROD: Compressed Histogram of Gra-
dients: A Low-Bitrate Descriptor. International Journal of Computer Vision,
96(3) 2012, pp. 384–399.

[15] V. CHANDRASEKHAR, G. TAKACS, D. M. CHEN, S. S. TSAI, J. SINGH,
AND B. GIROD: Transform Coding of Image Feature Descriptors, in Visual
Communications and Image Processing, vol. 7257 (1), 2009, pp. 725710–
725710–9.

19

[16] D. M. CHEN, S. S. TSAI, V. CHANDRASEKHAR, G. TAKACS, J. P. SINGH,
AND B. GIROD: Tree Histogram Coding for Mobile Image Matching, in Data
Compression Conference, DCC–09, 2009, pp. 143–152.

[17] Y. CHOUEKA, A. S. FRAENKEL, AND S. T. KLEIN: Compression of con-
cordances in full-text retrieval systems, in SIGIR’88, Proceedings of the 11th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Grenoble, France, June 13-15, 1988, 1988, pp. 597–
612.

[18] E. DE MOURA, G. NAVARRO, N. ZIVIANI, AND R. BAEZA-YATES: Fast
and flexible word searching on compressed text. ACM Trans. Inform. Syst.
(TOIS), 18 (2) 2000, pp. 113–139.

[19] A. DILILLO, A. DAPTARDAR, G. MOTTA, K. THOMAS, AND J. STORER:
Applications of Compression to Content Based Image Retrieval and Object
Recognition, in Proceedings International Conference On Data Compression,
Communication, and Processing (CPP–11), 2011, pp. 179–189.

[20] A. DILILLO, G. MOTTA, K. THOMAS, AND J. STORER: Compression-
Based Tools for Navigation with and Image Database. Algorithms, 5 2012,
pp. 1–17.

[21] P. ELIAS: Universal codeword set and representations of the integers. IEEE
Trans. Information Theory, IT–21(2) 1975, pp. 194–203.

[22] A. S. FRAENKEL AND S. T. KLEIN: Robust universal complete codes
for transmission and compression. Discrete Applied Mathematics, 64 1996,
pp. 31–55.

[23] T. GAGIE, P. GAWRYCHOWSKI, AND S. J. PUGLISI: Faster Approximate
Pattern Matching in Compressed Repetitive Texts, in Algorithms and Com-
putation - 22nd International Symposium, ISAAC 2011, Yokohama, Japan,
December 5-8, 2011. Proceedings, 2011, pp. 653–662.

[24] R. GROSSI, A. GUPTA, AND J. S. VITTER: High-order entropy-compressed
text indexes, in Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland,
USA., 2003, pp. 841–850.

[25] J. KÄRKKÄINEN, G. NAVARRO, AND E. UKKONEN: Approximate string
matching on Ziv-Lempel compressed text. Discrete Algorithms, 1 (3-4) 2003,
pp. 313–338.

20

[26] S. T. KLEIN AND M. KOPEL BEN-NISSAN: On the Usefulness of Fibonacci
Compression Codes. The Computer Journal, 53 2010, pp. 701–716.

[27] S. T. KLEIN AND D. SHAPIRA: Huffman Coding with Non-Sorted Frequen-
cies. Mathematics in Computer Science, 5(2) 2011, pp. 171–178.

[28] M. O. KÜLEKCI: Enhanced variable-length codes: Improved compression
with efficient random access, in Data Compression Conference, DCC 2014,
Snowbird, UT, USA, 26-28 March, 2014, 2014, pp. 362–371.

[29] D. G. LOWE: Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60 (2) 2004, pp. 91–110.

[30] V. MÄKINEN, G. NAVARRO, AND E. UKKONEN: Approximate Matching of
Run-Length Compressed Strings. Algorithmica, 35 (4) 2003, pp. 347–369.

[31] K. MIKOLAJCZYK, T. TUYTELAARS, C. SCHMID, A. ZISSERMAN,
J. MATAS, F. SCHAFFALITZKY, T. KADIR, AND L. VAN GOOL: A Compar-
ison of Affine Region Detectors, in International Journal of Computer Vision,
vol. 65 (1-2), 2005, pp. 43–72.

[32] G. NAVARRO: Wavelet trees for all. J. Discrete Algorithms, 25 2014, pp. 2–
20.

[33] G. NAVARRO AND M. RAFFINOT: A general practical approach to pattern
matching over Ziv-Lempel compressed text, in Proceedings of Combinatorial
Pattern Matching (CPM), 1999, pp. 14–36.

[34] I. H. WITTEN, A. MOFFAT, AND T. C. BELL: Managing Gigabytes:
Compressing and Indexing Documents and Images, Second Edition, Morgan
Kaufmann, 1999.

21

