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Abstract

We describe some of the design choices that were made
during the development of a fast, scalable, inline, dedu-
plication device. The system’s design goals and how
they were achieved are presented. This is the firs dedu-
plication device that uses similarity matching. The pa-
per provides the following original research contribu-
tions: we show how similarity signatures can serve in
a deduplication scheme; a novel type of similarity sig-
natures is presented and its advantages in the context
of deduplication requirements are explained. It is also
shown how to combine similarity matching schemes
with byte by byte comparison or hash based identity
schemes.

Categories and Subject DescriptorsH.3.1 [Infor-
mation Storage and Retrieval]: Content Analysis and
Indexing—Indexing methods; E.5 [Data]: Files—
Backup/Recovery

General Terms Design, Performance

1. Introduction

Storing large amounts of data efficientl , in terms of
both time and space, is of paramount concern in the de-
sign of backup and restore systems. Users might wish
to periodically (e.g., hourly, daily or weekly) backup
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data which is stored on their computers as a precau-
tion against possible crashes, corruption or accidental
deletion of important data. It commonly occurs that
most of the data has not changed since the last backup
has been performed, and therefore much of the cur-
rent data can already be found in the backup repository,
with only minor changes. If the data, in the repository,
that is similar to the current backup data, can be lo-
cated efficientl , then there is no need to store the data
again, rather, only the changes need be recorded. This
process of storing common data once only is known
as data deduplication. Data deduplication is much eas-
ier to achieve with disk based storage than with tape
backup. The technology bridges the price gap between
disk based backup and tape based backup, making disk
based backup affordable. Disk based backup has sev-
eral distinctive advantages over tape backup in terms
of reducing backup windows and improving restore re-
liability and speed.

In a backup and restore system with deduplication it
is very likely that a new input data stream is similar to
data already in the repository, but many different types
of changes are possible. The new data may have addi-
tions and deletions when compared with previous data.
It may also have a different block alignment. Given the
potential size of the repository which may have hun-
dreds of terabytes of data, identifying the regions of
similarity to the new incoming data is a major chal-
lenge. In addition, the similarity matching must be per-
formed quickly in order to maintain high backup band-
width requirements.

There are many deduplication systems, both sci-
entifi and industrial, which are based on identifying
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identical segments via hash functions, see [3, 22, 24,
29], among others. However, these systems, currently,
do not scale to support a petabyte of deduplicated data
because they require very large index tables for their
support. To obtain high performance such index ta-
bles must be summarized in cache and this translates
into large cache requirements, which may substantially
raise the cost of the solution.

In this paper we describe an efficien system for
achieving high speed data deduplication in very large
repositories, as implemented in the IBM TS7650G Pro-
tecTier. The paper explains our design choices and
more generally outlines the design possibilities for a
large class of deduplication systems, whose common
feature is the identificatio of data similarities.

From the outset the system design requirements in-
cluded support for a repository with a petabyte of dedu-
plicated data (a usable physical capacity of 1 petabyte),
at a deduplication rate of at least 350MB per second,
using only 4GB of cache memory and byte by byte
comparison for verifying identical data. These design
goals were achieved and even exceeded, leading to a
highly scalable system.

The main difference between the system described
in this paper and segment identity based systems is
that this system computes similarity indicators for
large chunks of data rather than identity indicators for
smaller segments. Similarity indicators were firs intro-
duced in the context of plagiarism detection [5, 25, 26]
and identificatio (and elimination) of near duplicate
documents [6, 14, 20].

Working with similarities rather than identities al-
lows us to work at a coarser granularity than identity
based systems and with smaller hash signatures whose
computation is optimized.

We describe new similarity signatures which, for
deduplication requirements, improve upon the previ-
ous ones described in [5, 6, 14, 20]. The signatures de-
tect similarity even if there are considerably changes to
the data, all that is required is that a fair percentage of
data blocks remain unchanged. The small size of the
index allows us to store it in fast random access mem-
ory. The similarity signatures detect similarities with a
high probability, make few errors and are computed ef-
ficientl .

Once a similarity between an incoming piece of data
(a chunk) and a piece of the repository has been identi-
fied the system performs a byte by byte comparison be-

tween the repository data and the new chunk and stores
only the difference. The data from the search stage is
used to anchor the comparison, leading to an efficien
comparison process.

This allows us to incorporate new data into the
repository in deduplicated form, on the fl , without
compromising bandwidth and with strong data integrity
guarantees.

We will also describe an alternative design that is
based on similarities, yet retains the identity hash com-
parison of identity based systems, rather than the byte
by byte comparison.

The paper is organized as follows: In Section 2 we
describe segment identity based schemes. Section 3
then describes similarity based systems and in partic-
ular our system with an emphasis on the design criteria
that have led us to our choice of similarity based sig-
nature. In Section 4, we present results from some lab
tests, compare the results to those of other systems and
present some data from a real production system.

2. Identity based deduplication

Searching for similar data may be considered an ex-
tension of the classical problem of pattern matching,
in which a repository (text) T of length n is searched
for the appearance of a string P of length m. Typically,
n is much larger than m. Many publications present
search methods which attempt to solve this problem ef-
ficientl , that is, faster than the naive approach of test-
ing each location in T to determine if P appears there.
By preprocessing the pattern, some algorithms achieve
better complexity, for example see [18, 4, 17] All of
these algorithms work in time that is of order O(n+m),
which means that the search time grows linearly with
the size of the repository.

One problem with these algorithms is that they are
not scalable beyond some restrictive limit which falls
far short of the petabyte range. Another disadvantage
of the above algorithms is that they announce only
exact matches, and are not easily extended to perform
approximate matching.

Instead of preprocessing the pattern, one may pre-
process the repository data itself, building a data struc-
ture known as a suffix tree; this is described in [28, 27].
If preprocessing is done off-line, then the preprocessing
time may not be problematic. Subsequent searches can
then be performed, using a suffi tree, in time O(m)
only (i.e., depending only on the pattern size, not on



the text size), but again, only exact matches can be
found. Moreover, the size of the suffi tree may be
larger than the repository itself. For backup and restore,
it would be desirable to use an algorithm for approxi-
mate pattern matching because it will usually be the
case that not an exact replica of the input data can be
found in the repository, but rather a copy that is strictly
speaking different, but nevertheless very similar, ac-
cording to some define similarity criterion. Approx-
imate pattern matching has been extensively studied,
as described in [12, 23] One recent algorithm works in
time O(n

√
k log(k)), where n is the size of the repos-

itory and k is the number of allowed mismatches be-
tween the pattern and the text [1]. We note again that
this is at least linear in the size of the repository and
not feasible for large k.

Another family of algorithms is based on hashing
functions. These are sometimes known as CAS (Con-
tent Addressable Storage), as described in [22, 24, 29],
among others. The general paradigm is as follows: the
repository data is partitioned into segments, and a hash
value, also called a fingerprin or a signature, is pro-
duced for each segment; all of these hash values are
stored in an index. To locate some given input data,
called the version, it is also broken into segments and
the same hash function (that has been applied to the
repository blocks) is applied to each of the version seg-
ments. If the hash value of a version segment is found
in the index, a match is announced. Since in many cases
bytes are added or deleted, segments may shift and thus
a match may be missed.

To avoid this issue, it is customary to use variable
size segments with content determined boundaries.
Typically, a boundary is declared any time a reason-
able, byte dependent, hash function has a particular
k bit pattern. Assuming that hash values are uniform,
this will lead to variable sized segments with an aver-
age size of 2k bits and reasonably small variance. We
note that shifting bytes will correspondingly shift the
boundaries, preserving the matching.

The advantage of CAS over the previous methods
is that the search for similar data is now performed on
the index, rather than on the repository text itself. If the
index is stored using an appropriate data structure, the
search time may be significantl reduced. In particular
it can be done in time which is essentially independent
of the size of the repository data.

There are, however, disadvantages to this scheme.
As before, only exact matches are found, that is, only
if a segment of input is identical to a segment of the
repository will a match be announced. One of the re-
quirements of a good hash function is that when two
segments are different, even only slightly, the corre-
sponding hash values should be completely different,
which is required to assure a good distribution of the
hash values. But in backup and restore applications,
this means that if two segments are only approximately
equal, a hashing scheme will not detect their similar-
ity. This creates a dilemma of how to choose the size s
of the segments. If a large segment size is chosen, one
achieves a smaller index (since the index needs to store
n/s hash values) and the probability of a false match is
reduced, but at the same time, the probability of find
ing a matching segment is reduced, which ultimately
reduces the efficien y of deduplication. If, on the other
hand, a small segment size is chosen, the overall effi
ciency of deduplication may increase, but the increased
number of blocks may require an index so large that the
index itself presents a storage problem.

Consider the case of a petabyte (250 bytes) of dedu-
plicated data. A typical segment size for identity based
systems is 8K which is 213 bytes [29]. This means
that the system will contain 237 segments. Using a
Bloom filte optimization [2] as in [29], we would need
roughly one byte per segment to verify whether it is a
copy of a segment in the repository. This means that at a
minimum we would need 237 bytes of memory and any
additional information about the whereabouts of the
identical segment would likely lead to 239–240 bytes
of memory or roughly a terabyte. To make the dedupli-
cation efficien the system described in [29] stores this
information in memory rather than on disk. Since it is
assumed that the hash table is large enough to avoid
random collisions, once a match has been found there
are no further comparisons and an identity is declared
between a new segment and an existing repository seg-
ment. The repository data itself is not accessed.

3. Similarity based deduplication

Unlike hash functions which are built to detect exact
matching, we base our deduplication scheme on de-
tection of similarities. Looking for similarities means
that we can substantially increase the size of the basic
units which we call chunks rather than segments. Since
chunks are much larger than segments there are fewer



of them and therefore the size of the memory index can
be substantially reduced. Working with 16MB chunks,
we show that one can store all the relevant information
about their similarities in roughly 64 bytes of memory
per chunk, leading to 4GB of memory for 1 petabyte of
deduplicated data. It is important to note that our calcu-
lations assume that the petabyte of data is deduplicated
(essentially unique), however, we do not assume that it
is compressed. Most deduplication systems, including
the one described here, compress data after deduplica-
tion. This enlarges the amount of data resident in the
system and consequently increases the size of the in-
dex. Thus, for example, if 30 petabytes of backup data
are reduced in size via deduplication to 3 petabytes and
then compression further reduces the size of the data
to 1 petabyte, we would need 12GB of memory, rather
than 4GB, because compression acts on the data and
not on the index.

Another requirement for our deduplication applica-
tion was the ability to deduplicate inline. By this we
mean the ability to deduplicate on the fl , sending to
disk only the deduplicated data. The other approach
is to firs back-up to disk and then at a later time,
deduplicate as a background process. This process re-
quires more disk accesses and longer backup resources
which can also slow down foreground applications. For
a deduplication application to work inline it must deter-
mine very quickly whether an incoming piece of data
is likely to be similar to other data which was previ-
ously backed up. The metadata, which is required to
make such a decision therefore lies in memory. Work-
ing with chunks makes this possible since all data can
fi in memory.

As noted earlier, the use of similarities, rather than
identities, necessitates an added step of comparing the
new data to old data from the repository which is simi-
lar to it. One of our design goals was to do that using a
byte by byte comparison which is safer than relying on
hashes to establish identity. To get good performance
we integrate the similarity findin process with the byte
by byte comparison.

We now describe the system in more detail. As stated
earlier, we consider the case of a petabyte of dedupli-
cated data, while ignoring the multiplicative effect of
the compression ratio on the size of the index. Also,
to simplify matters we will assign specifi values to
the different parameters. In addition, we use rather
naive, yet fairly accurate, probabilistic arguments. The

naivety of the discussion has a negligible effect on the
computations and has no bearing on the correctness of
comparative statements.

3.1 The similarity signatures

Consider a stream or streams of data which are sent
to backup. The data is partitioned into chunksof equal
size, say 16MB = 224 bytes. Denote by bi the byte
in position i of the chunk, and choose a basic unit of
small size, say one block (512 bytes). The i-th unit
of a chunk, denoted Ji, consists of bibi+1 · · · bi+511,
the sequence of 512 consecutive bytes starting at byte-
position i, for i = 0, . . . , 224 − 512.

Informally, a similarity signature for a chunk con-
sists of a small number of block based signatures, each
consisting of a small number of bytes, such that if the
chunk shares a considerable number of blocks with
another chunk (say, more than some threshold), there
is a reasonable probability (threshold dependent), that
the two chunks will share one or more common block
based signatures. We also want the property that if two
chunks are not similar, which means that they have no
blocks in common then with high probability the sim-
ilarity signatures of the chunks will not have common
block based signatures.

We compute a similarity signature for each chunk
as follows. A hash function is then computed for each
block sized unit, which is conveniently done using a
sliding window and a rolling hash function. Let P >
256 be some prime number. The Karp-Rabin signature
[17] of a number n, denoted S(n), is simply S(n) =
n mod P , the remainder after dividing n by P .

Given the unit Ji, we can think of the sequence of
consecutive bytes bi · · · bi+511 as a large number with
512 digits written in the base of 28, with ji+511 being
the least significan digit, or equivalently as a number
with 4096 binary digits (bits) written in base 2. Either
way we get the same number which we still call Ji.
Since P > 256, the signature of a single byte is itself.

The Karp-Rabin signature can be used as a rolling
hash function, as the value of the signature on Ji can
be easily computed from the value of Ji−1. Indeed, Ji

is obtained from Ji−1 by firs discarding the old most
significan byte bi−1, then shifting the common bytes
bibi+1 · · · bi+510 one byte to the left (multiplying by
28), finall adding the new byte bi+511. This leads to
the formula

Ji = (Ji−1 − bi−1 ∗ 24088) ∗ 28 + bi+511.



The same formula applies to the signatures, namely we
have

S(Ji) = S(S(S(Ji−1)−S(24088∗bi−1))∗28+bi+511).

Assume that P has 55 bits. The formula shows that we
can calculate S(Ji) from S(Ji−1) with high efficien y
on a 64 bit machine. Indeed, all the values will have
at most 64 bits, multiplication by 28 is simply a shift
and since S(24088) is a constant, the values of S(24088∗
bi−1) can be pre-calculated and placed in a lookup table
of 256 entries. In addition, if the prime P is chosen
randomly one can prove that the Karp-Rabin signature
will have nice properties as a hash function, see [17].

Let ki = S(Ji) be the signature of the i-th unit.
Choose the h largest hash values, viewed as integers,
among the ki (for the purposes of this paper, consider
the case h = 4), and let i1, . . . , i4, be the indices
of the units whose hash values were the largest, that
is, S(Ji1), S(Ji2), S(Ji3) and S(Ji1) are the 4 largest
values of the 224 − 511 signatures S(Ji) produced for
a given chunk.

A good hash function usually spreads its values uni-
formly over its range, but the maximal values ki are
not uniformly distributed, and will have a tendency to
belong to a small sub-interval at the higher end of the
range. Therefore, choosing the values ki as signatures
of the chunk would lead to many collisions. The main
novel idea of the suggested signature is to use the val-
ues i1, . . . , i4 only to get the location of some special
units, and to use as valuesnot the signatures at these
locations, but to apply some small shift of m bytes to
the locations, with m > 0, and defin the signatures as
the values

S(Jm+i1), . . . , S(Jm+i4).

Since another property of hash functions is that even
a small change in the argument generally leads to a
significan change in the hash value, the hashes at the
shifted locations will again be uniformly distributed,
as requested. The shift m should be small so that it is
unlikely that the index i4 + m will not be within the
chunk range. For the purposes of this paper, we will
consider the choice m = 8.

The similarity signature values of all the chunks
in the repository are held in memory. In addition, the
location of the chunk and the specifi index within the
chunk which gave rise to the signature are also listed.

A given similarity signature may belong to more than
one chunk, in which case all its appearances are listed.

When a new chunk is considered, its 4 similarity
signatures are calculated. If any of them equals an ex-
isting similarity signature, a process of comparing the
new chunk to an existing piece of the repository be-
gins, in order to fin identical portions. This process,
which will be explained in more detail below, requires
to bring data from disk, therefore the similarity as-
sumption should be statistically justified

If no suspected similarities are found, the similarity
signatures of the new chunk are added to the index of
similarity signatures which is stored in memory. The
index contains the similarity signatures themselves, 7
bytes each, along with a pointer to the block which
gave rise to the signature, again 7 bytes. The index will
therefore contain 14 ∗ 4 bytes for each chunk of 224

bytes. As there can be at most 226 different chunks in a
petabyte, the required cache size will be at most 226∗56
which is about 3.5GB, as required. We still have some
memory left for other calculations and requirement.

To explain our choice of similarity signatures, con-
sider firs two other possibilities. The firs can be traced
to Brin et al. [5], while the second to the work of Broder
[6, 7, 8, 9, 10, 11] and independently to Heintze [14],
with a similar approach presented in [20]. The con-
texts of findin similarities in these papers is somewhat
simpler since they try to fin similarities between file
which are well define objects with specifie content,
nonetheless they are useful in our context as well. The
third option represents our choice, and we show how
it merges the advantages of the two previous choices.
Again we consider the case of h = 4 signatures.

1. Choose 4 random blocks Ji1 , ..., Ji4 of 512 bytes
within the chunk and let its Karp-Rabin signature
be the similarity signature of the chunk.

2. Compute the Karp-Rabin signatures of all the blocks
Ji within a chunk, and take the 4 maximal value as
the similarity signature.

3. (Our choice) Compute the Karp-Rabin signature
of all blocks Ji within the chunk. Assume that
Ji1 , ..., Ji4 produced the maximal values, then take
the Karp-Rabin signatures of Jil+8, l = 1, ...4 to be
the similarity signatures of the chunk.



The choices will be judged according to the follow-
ing four criteria:

A – Processing speed. The processing of a chunk
should be as efficien as possible.

B – Similarity detection. We would like to maximize
the probability that a chunk A which is similar to some
chunk B in the repository will be identifie as such.

C – Elimination of false positives. If a chunk is not
similar to any other previous piece of the repository,
the algorithm should not falsely claim that it is.

D – Resolution. In case there are several previous
pieces which are similar to a new chunk A, the al-
gorithm should point to the one which is most similar
with high probability.

Consider the firs choice, firs with respect to cri-
terion B, namely, similarity detection. Suppose that a
new chunk A is given, and that B is a piece of data
in the repository, roughly the size of a chunk, that has
a portion 0 ≤ x ≤ 1 of its blocks in common with
A. We consider pieces of data in the repository, rather
than chunks, because chunk boundaries may shift and
the piece of data which is similar to a new chunk may
be composed of portions of more than one old chunk.
Since the signature of a completely random block in B
has been chosen, there is a probability x that the block
is still part of A. In that case, if one computes the Karp-
Rabin signatures for all blocks Ji in A, one will fin
among them the similarity signature of B with proba-
bility x. The amount of space which will be required to
save the difference between A and B is approximately
a 1− x fraction of the size of A.

Assuming 4 signatures, the probability of having a
common signature between A and B becomes 1− (1−
x)4. For example, consider x = 0.5. In that case, with
probability 15/16 one will identify the opportunity to
write a new data set which is half the size of A. The
opportunity is wasted with probability 1/16. The same
computation for x = 3/4 shows that the opportunity to
write a set which is 1/4 of the size of A is wasted with
probability 1/256.

Assuming that a new chunk A has a similarity of
x with some piece of the repository with probability
distribution function r(x), the average amount of data

written per new block will be
∫ 1

0
((1− x)(1− (1− x)4) + (1− x)4)r(x)dx

=
∫ 1

0
((1− x) + (1− x)4 − (1− x)5)r(x)dx.

This should be compared with the ideal deduplication
where one always identifie the similar piece in the
repository, in which case the average written data has
size ∫ 1

0
(1− x)r(x)dx.

Consider for example the uniform distribution given by
r(x) = 1, the ideal amount of data will then be

∫ 1

0
(1− x)dx = 1/2,

while according to our similarity identificatio scheme
one would get

∫ 1

0
((1− x) + (1− x)4 − (1− x)5)dx

= 1/2 + 1/5− 1/6 = 1/2 + 1/30 = 16/30.

As can be seen, the difference is minuscule in this case.
Experience with actual systems shows that r(x) tends
to be concentrated in the interval [0.9, 1] in which case
the difference is even smaller.

We now consider the fli side of similarity detection,
which is criterion C, namely false positives or pseudo
matches. Assume that A is really a new chunk which is
not similar to any piece of the repository. What are the
chances that one will mistakenly think that A is similar
to an existing piece. If that happens, time will be wasted
to bring the pseudo similar piece from the disk.

Examining a chunk A, one computes the 224 Karp-
Rabin signatures of its blocks Ji, and asks whether
these match any of the roughly 228 similarity signatures
in the repository. There are roughly 228 ∗ 224 = 252

pairs of possible matches. While matches among these
pairs are not really independent events, they have very
low correlation and can be assumed to be independent.
The total range of possible signatures p has at most
55 bits, so the probability for a single pair to match is
roughly 2−55, a number which is dangerously close to
the reciprocal of the number of pairs. The probability
of a random matching is 1 − (1 − 2−55)2

52 , which is
roughly 1/9. While this is a rather small number, it is
non-negligible.



In addition it requires to take care of another issue:
if the new chunk is incorrectly flagge as being simi-
lar to older data, then it might happen that the chunk’s
similarity signatures will not appear in the index, so
one will not be able to identify future similarities us-
ing them. This can be overcome by insisting on a mini-
mal similarity following the bit by bit comparison, be-
yond which the chunks are treated as unconnected, but
again this comes to show that pseudo similarities are
not desirable. The number of pseudo matches can also
increase if one chooses a smaller p (to save some cache
space) or increases the resolution, say to 8 signatures
per chunk.

Consider now the behavior of the second choice with
respect to criterion C. By choosing the 4 largest Karp-
Rabin signatures as the similarity signatures, the search
in the new chunk is narrowed from all 224 signatures to
just the top 4. Comparing these 4 to the 228 signatures
in the repository gives only 230 pairs, which is a lot
less than the 252 we had previously. Unfortunately,
being maximal values and therefore large by definition
means that the signatures are not uniformly distributed
over all 255 possible values. Consider for example the
largest value. The probability that the largest value is
in the range [P − 231, P − 1] is (1 − 2−24)2

24 ∼
e−1 ∼ 0.37, whereas the probability that a uniformly
distributed value would fall into that range is only 2−24.
The effects of the smaller range and the smaller number
of locations of the similarity signatures roughly cancel
out, and the probability of a pseudo similarity remains
roughly the same. There is a small penalty in terms of
the probability of identifying a match (criterion B), but
we will discuss this issue in the context of the third
option.

The third option solves the problem of non unifor-
mity of the similarity signatures, while retaining the
good property of the second choice, that the possible
locations within the chunk of the similarity signatures
are anchored near maximal values. The values of the
Karp-Rabin signatures are nearly uniform since the 8
new bytes that enter the calculations, 64 bits in all
(more than the 55 bits of the signature) smooth out
the non uniformity which was inherent in the large val-
ues. We are now in a situation where 4 (nearly) uni-
formly distributed signatures are compared with 228

signatures that have been uniformly chosen from a 55
bit range, so the chance of a random matching is about
228+2−55 = 2−25, which is a tiny probability. This also

means that if one modify with the numbers slightly,
changing the number of similarity signatures, the sizes
of the chunks or even reduces the size of the signature
to 40 bits to make the index smaller, there will still be
very few pseudo similarities. The solution is very ro-
bust in this way.

The second and third choices have a distinct advan-
tage in terms of processing speed, criterion A, over
the firs choice. We note that the firs choice requires
a comparison of each of the 224 signatures to the in-
dex, whose size is measured in gigabytes. These ac-
cesses are therefore not aimed at the fastest cache of
the processor. In comparison, only 4 word sized regis-
ters are needed to hold the 4 largest signatures and the
224 comparisons are performed against one of them, the
one that holds the fourth largest signature. Very rarely
(logarithmically many times) additional comparisons
are needed with the registers holding the larger signa-
tures. Only 4 searches are then performed against the
large secondary cache.

The second and third choices pay a small price in
terms of criterion B. Before, if the new chunk A had a
similarity of x to a repository piece B, then per signa-
ture there was a probability x that the similarity signa-
ture would remain intact as one of the signatures which
were computed for A. In the new situation, not all sig-
natures of Ji are considered when comparing with the
similarity signatures of B, rather only 4 specifi ones
are compared. For them to survive intact, we need that
the nearby maxima still remain maxima of A. Con-
sider the data in B and the data in A which is not in
B. The size of the union, in fractions of a chunk, is
1 + (1 − x) = 2 − x. Let us compute the 4 maximal
signatures of the union. Each of the 4 maximal values
has a 1/(2− x) chance of coming from B. In addition
they have an x chance of surviving in A. If any comes
from B and survives in A, it will allow us to detect a
possible similarity between A and B. We conclude that
the probability of similarity detection is

1− (1− x/(2− x))4.

Plugging in x = 1/2 for example, leads to 1−(2/3)4 =
65/81 = 0.8. This is not as good as the 0.94 that we
had before for the firs choice, but still fairly good. In
the more realistic situation where x = 0.9 or more, the
result is essentially the same as with the random sig-
natures, since the extra factor of 2 − x is very close to
1. This shows that in terms of similarity detection, the



second and third choice act nearly as well as the first
If we are still bothered with the discrepancy between
the methods, one can reduce or eliminate the differ-
ence in several ways. First one may compute the h > 4
maximal values, preserving only the top 4 in the index
for new chunks. As h grows, the issue of detection be-
comes the issue of the survival of any of the 4 top sig-
natures of B in A, and this is precisely the computation
for the firs choice. Even mild choices such as h = 8
will nearly equate the probabilities. This has essentially
no effect on the speed of processing or the probability
for false positives.

Another option which is applicable only in the third
choice is to take a smaller value of P with 40 bits. This
will allow in the same cache size (even smaller) to hold
5 signatures per chunk. The fift signature will improve
the similarity detection probability for x = 1/2 to
0.88. In fact, for the third choice, both techniques can
be combined to get a better detection probability than
either of the firs two choices.

We still need to address another issue, criterion D,
which is related to similarity detection and that is the
issue of multiple similarity choices or stated otherwise,
an embarrassment of riches. There may be more than
one piece of the repository that is detected as being
similar to A. Assume that these pieces are B1, . . . , Bk.
Their portion of similarity with A will be x1, . . . , xk.
We want to be able to fin the Bi, with the largest sim-
ilarity xi with high probability. The simplest differen-
tiator is the number of similarity signatures which the
chunk Bi shares with A. To simplify the discussion, as-
sume there are 2 candidates B1 and B2 and that B1 is
in fact identical with A. Obviously all 4 similarity sig-
natures will be common to B1 and A. Suppose B2 is
not identical to A, hence x = x2 < 1. For B2 to match
B1 as a candidate for similarity with A, it will have to
share with A all 4 similarity candidates as well. The
probability for that to happen is x4 in the case of the
firs choice, and (x/(2 − x))4 in the second and third
choices. The probability that we will not be fooled is
therefore

1− x4

for the firs choice and

1− (x/(2− x))4

for the second and third choices. If x = 0.75, we get
1 − 81/256 = 0.7 in the firs case and 1 − 81/625 =

0.88 with the second or third choices. We see that the
second and third choices provide much better resolu-
tion than randomly chosen similarity signatures and are
not easily fooled. When x = 0.9 the probability of not
being fooled is about 0.4 in the firs case and 0.6 for our
choice. The penalty in this case is diminished though
since 90% similarity will also produce very good space
savings. We note that a fift signature per chunk will
improve the resolution further.

The issue of resolution between competing similar-
ity candidates also explains why it is better to have sev-
eral similarity signatures per chunk. If there were just a
single signature for say a 4 MB chunk, one would have
been more easily fooled by chunks with less similarity.
On the other hand using very large chunks with many
similarity signatures is also not a good idea since the
level of similarity within the chunk will be uneven and
different parts of the chunk may be related to different
pieces in the repository. The amount of time needed to
bring a very large piece of data from the disk will be
large, and bringing several pieces for different parts of
the chunk may be prohibitive. Therefore we must strike
a balance between the number of similarity signatures
and the size of the chunk, which explains our choice
of a relatively small number of signatures, 4, which
still gives good resolution. This resolution can be fur-
ther improved by considering recent chunks and prefer-
ring pieces of the repository which are contiguous with
pieces that proved similar to the previous chunks.

We note that it is possible to increase resolution (cri-
terion D), using a method of Broder [6], who uses super
signatures which are signatures of sets of signatures.
His method is inspired by his application which is to
identify near identical (rather than simply similar) cor-
respondences between chunks and repository pieces.
The method, which can be applied in the context of the
second and third choices, requires a penalty in terms of
processing speed, since it requires the computation of
some permutations on the signatures. It seems that it is
not needed for deduplication purposes.

To summarize, the firs choice does well with respect
to criterion B and to a lesser degree criterion D. The
second choice does well with respect to A, B and D,
while the third choices does well with respect to all
criteria and is at least as good and sometimes better
than the other two on all accounts. A deduplication
system can use either of the three choices but it seems
that the third choice is the most effective.



3.2 Post similarity match processing

Once a chunk A has been found to be similar to a spe-
cifi piece of data B, a byte by byte comparison is per-
formed which will leave us with the difference. The
process of taking the difference, storing and indexing
it, is just as crucial to the success and efficien y of
the deduplication device as the similarity search. How-
ever, since in this paper we chose to highlight similar-
ity based deduplication, this process will be discussed
in less detail. There are many known techniques for
working out the comparison, some of which are re-
lated to our specifi technique. We refer the reader to
[3, 15, 19] and their bibliography for more information
on this issue. As discussed earlier, some of the meth-
ods do not compare bytes but rather compare hashes
which are produced from the chunk and the repository
piece. We describe how such methods can also work
with similarity based matching and what are the trade-
offs involved.

Each of the 4 similarity signatures can match to dif-
ferent pieces in the repository, belonging, say, to back-
ups taken on different days, as may happen when one
cuts and pastes parts of documents. The matches which
correspond to a specifi piece of the backup stream
are identifie by measuring address differences. Two
matches are said to be coherent, if the address differ-
ence between the locations of the blocks in the chunk
and the address difference of the matching blocks in
the repository are equal (or at least close to each other).
The matches are divided into sets of mutually coherent
matches. Each mutually coherent set suggests a match
between the incoming chunk and a single piece of the
repository which is roughly the size of a chunk. The
repository piece which has the largest number of co-
herent matches with the incoming chunk is read from
disk for the purpose of comparison. There are several
tie breakers in addition to the number of matches. The
specifi matches coming from the signatures serve as
anchors for the comparison between the chunk and the
repository piece.

The matching between the blocks, which occurred
at the signatures level, is verifie as an actual identity
between the corresponding block. This identity (if it
holds) is then extended backwards and forwards as an
identity between a portion of the chunk surrounding the
block and a portion of the repository piece surrounding
the matching block. The procedure is performed around
any match in the coherent set which corresponds to the

piece. If the forward identity region of one matching
block meets the backward identity region of the next
matching block, the regions are coalesced. At the end
of the procedure we are left with one or more non
overlapping regions of the chunk which are identical to
a corresponding set of non overlapping regions in the
repository piece.

Between the regions there may be islands of non
matched data in both the chunk and the repository
piece. One can then try to fin fine , partial matches, be-
tween portions of the islands in the chunk and the corre-
sponding islands in the data piece. The procedure can
now be carried out recursively for each island. Since
the signatures of blocks in the chunk have already been
computed, one can compute samples of the Karp-Rabin
signatures of blocks from the islands of the repository
piece and match again, extending each match as previ-
ously to identical regions. Most of the calculations are
typically simple byte by byte comparisons, which can
be aggregated to words. The number of comparisons is
essentially given by the size of the chunk, leading to
high efficien y. At the end of the process identities be-
tween various regions of the chunk and the repository
piece are resegmented to produce a decomposition of
the chunk into a sequence of segments, some of which
are identical to previously existing segments. This se-
quence is indexed and stored.

After the data which needs to be written to disk is
identified a Lempel-Ziv like compression algorithm
is applied to the data before it is stored. We refer the
reader to [30] for more on the Lempel-Ziv algorithm.

One feature of identity based de-duplication schemes,
is that they can avoid byte by byte comparisons if
their hashes are considered to be large enough. The
main advantage is that instead of reading from disk,
the repository piece which is supposed to match the
chunk, we can read only the signatures of the data
segments. Assuming 8KB segments, the signatures are
about 50 times smaller than the segments themselves.
If we write on disk an index of hashes and if the hashes
corresponding to a specifi chunk happen to be written
sequentially in the disk, then reading only the hashes
can result in high savings.

Disk accesses are not always the performance bot-
tleneck for deduplication systems, but in those cases
where we use a small number of slow disks for our stor-
age, they may become the bottleneck. In our current im-
plementation, we avoid hash based comparisons, since



we (and many customers) believe that it is safer to
use byte by byte comparisons. We would like to show,
however, that we can implement such ideas within our
framework of similarity based signatures.

To see how it can work, consider our choice of Karp-
Rabin similarity signatures, but assume that the prime
which is used has 200 bits instead of 55. In addition
every time that some sequence of 13 specifi bits of
the hash has a certain fi ed value, we mark the loca-
tion within the chunk of this occurrence as a segment
boundary. This segmenting procedure goes back to the
work of Manber [20]. For each segment, we also com-
pute its Karp-Rabin signature. This requires almost no
overhead beyond our previous computations. To see
this, consider the process of taking two numbers, M1

and M2, each with m bytes, and concatenating their
byte sequences to produce one large number M with
2m bytes. In terms of Karp-Rabin signatures we have

S(M) = S(S(M1) + S(S(28m) ∗ S(M2)))

The factor S(28m) can be pre-computed and placed in
a table. We see that the signature of the concatenated
sequence can be computed using a small number of
arithmetic operations on m-byte integers. A segment
will be the concatenation of its non-overlapping blocks
and a fina partial block remainder. The Karp-Rabin
signatures of the blocks are computed anyway, and we
will need to compute the Karp-Rabin signature of the
remainder, which is at most the size of a single block
separately. The expected number of concatenations will
be 16, since there are expected to be about that many
blocks in a segment, so the overall overhead beyond our
basic computation is very small. In terms of criterion
A (computational efficien y), the main issue is that
the computations do not take place within words of
a 64 bit processor. Still the process is very efficient
The problem of false positives is essentially eliminated
by the use of the much larger prime, while similarity
detection and resolution remain as before. The size of
the similarity signature index will increase from 56 bits
per chunk to 128 bits per chunk, which is a doubling
of the space, but since the index is so efficien to begin
with, such an increase can certainly be tolerated for a
petabyte of data. Alternatively we can retain the old 55
bit signature computations to be done in parallel to the
new signature computation and preserve the old index
for similarity matching.

Either way, when a new chunk enters the system,
we identify a similar piece of the repository using the
similarity index as described before. Once the piece is
identified the (200 bit) hashes of the segments of the
piece, rather than the piece itself, are read from disk
and compared with the hashes of the chunk. The un-
matched data and hashes are then stored to disk. Since
we have decoupled the similarity index and the hash
comparison, we can decrease the size of the segments
to obtain better deduplication ratios without affecting
the size of the index. This is an advantage over classi-
cal, segment identity based systems.

3.3 System architecture

The IBM TS7650G ProtecTier system, some of whose
design features are described in this paper, is a gateway
which consists of processors and memory for storing
the index and other metadata. In the standard config
uration, the gateway (node) has a quadcore 2.9 GHz
Xeon processor and 32GB of RAM memory. The gate-
way runs Diligent’s VTL (virtual tape library) and the
deduplication application which uses the HyperFactor
technology which the paper partially describes.

The gateway is connected on one side to servers
which generate the back-up streams and on the other
side to an external storage system in which the de-
duplicated data is stored. Diligent’s VTL makes the
disk storage system seem to the servers like an auto-
mated tape library. The servers issue the backup and
restore commands as if the data is stored on tape. Two
gateways can be combined to form a clustered failover
pair which works on the same repository. In the case
of a failure to one of the two gateways, the streams
are rerouted to the other gateway which takes over re-
sponsibility for all deduplication activity, until the other
gateway is repaired or replaced. This option improves
the reliability of the system, an important feature in
enterprize class solutions. The fact that the gateways
deduplicate a common repository improves deduplica-
tion ratios in comparison with a two node system each
working separately on half the repository, since each
node can now detect similarities over a wider reposi-
tory.

4. Experimental Results

In this section we provide some experimental results,
based on data from a large customer installation, and
also report on some lab tests which checked the rate



of deduplication that the system is capable of. We also
compare the results, with those reported for other sys-
tems.

4.1 Comparison of throughput and capacity with
other systems

Real customer data cannot always provide evidence on
the performance envelope of a product since the user
may not be driving the system to its peak capabilities.
Consequently, we provide the results of some lab test-
ing which was designed specificall to test the system’s
performance limits. The tests were conducted by an
independent company, Enterprise Strategy Group Inc.
(ESG), which was asked to verify the throughput for
a system with a single node and a clustered system of
two nodes working on the same repository. The full re-
port can be found in [13], we recall here some of the
results which provide some relevant information on the
system’s capabilities.

The system that was tested had a clustered pair of
two IBM TS7650G gateways (nodes) based on an IBM
x3850 server each with a quad core 2.9 GHz Xeon
processor and 32 GB of RAM (a standard configura
tion). The nodes were attached to a storage repository
consisting of an IBM DS8300 with 256 300 GB 15K
RPM FC drives configure with 36 RAID-5 LUNs for
50 TB of backup data (20 7+1, 8 6+1) and four RAID-
10 LUNs for meta data (4+4), with a total of 50TB
of usable capacity. The nodes received backup streams
from a Symantec Veritas NetBackup, Version 6, SP 5,
backup application running on three media servers, that
were connected to the nodes through a QLogic SAN-
box 5200 fibr channel switch, having a total of 8,
4Gbps FC. The gateways were also connected, through
8, 4Gbps FC lines, to the storage system.

The test consisted of storing a firs generation of
a backup stream followed by more generations, each
differing from the previous one by about 3%.

The two node cluster had a sustained throughput of
125 MB per second for a single backup stream, nearly
400 MB/Sec on 4 streams, a little over 1 GB/Sec on 24
streams and nearly 1.5 GB per second on 64 streams.
The data reconstruction (restore) rate for the 64 streams
was nearly 2 GB/Sec. For a single node with 64 streams
the deduplication rate was around 870 MB/Sec, while
the reconstruction rate was nearly 1.5 GB/Sec.

It is hard to compare throughput for different sys-
tems since they use different hardware, configuration

and backup streams. Nonetheless for the sake of com-
pleteness we report here the most up to date informa-
tion, cited in the literature and on the web, regarding
competing systems. In [29] the authors describe fea-
tures of the Data Domain deduplication system. It is
reported that the system had a sustained throughput
of 110 MB/Sec for a single stream, and 220 MB/Sec
for 4 streams. A recent upgrade announcement to Data
Domain’s 690 series (the more advanced product se-
ries) refers to throughput on multiple streams and states
that in its largest configuratio for a single repository
the system has maximal throughput of 750 MB/Sec.
The restore rate for 4 streams cited in [29] starts off
at 220 MB/Sec for the firs generation and stabilizes at
140MB/Sec beyond the third generation.

An inline deduplication system which uses simi-
larity based indexing coupled with a hash based data
identificatio scheme is presented in [16]. The tech-
nology described in that paper was implemented in
HP’s D2D2500 and D2D4000 deduplication appli-
ances. The paper provides the following information on
the performance of the larger D2D4000 appliance. For
a single stream the deduplication rate was 90 MB/Sec,
for 4 streams it was 120 MB/Sec. The product data
sheet states that the maximal deduplication rate for the
largest configuratio is at least 150 MB/Sec, presum-
ably for multiple streams. The restore rate for a single
stream is reported in [16] to be 50MB/Sec while for 4
streams the rate drops to 35 MB/Sec.

A comparison of the results suggest that the dedu-
plication throughput of a single Protectier node is ei-
ther favorably comparable or strictly better than that of
competing products, despite the fact that it is the only
product that performs the costly byte to byte compari-
son. The two node cluster that works on a single repos-
itory, nearly doubles the performance of a single node.
As noted already in [29], restore throughput is just
as important as deduplication throughput especially on
full system restores, since it may directly affect the data
outage period. The restore throughput rate is strongly
related to the efficien y of the method of storing the
deduplicated data. While we postpone a detailed as-
sessment of this design issue to a future paper, we can
provide a system comparison in this respect as well. In
Protectier with a single node the restore throughput is
about 1.6 times faster than the deduplication rate. From
the information in [29] we deduce that in the Data Do-
main product it is about 1.3 times faster, while for mul-



tiple streams in the HP product, restore is about 3 times
slower than deduplication, though the accompanying
paper [16] is optimistic about the prospects of future
improvements. In general, restores are faster than dedu-
plication (when properly engineered) because restores
do not require much processing beyond data decom-
pression.

Next, we consider capacity. As noted previously,
Protectier was designed from the outset to support a
repository whose physical capacity is 1 PB and that
is the maximal physical capacity that the product sup-
ports. Real production systems rarely require such large
physical capacity and in addition such repositories may
require tremendous bandwidth. There are however, sin-
gle system installations with 256 TB of physical stor-
age, so the system capacity limits may soon be tested.
The largest physical capacity of a single repository for
a Data Domain product is 50 TB, while for an HP
D2D4000 system it is 9 TB. Rather optimistically, the
accompanying paper, [16] discusses memory require-
ments for a 100 TB system. It is estimated there that a
system which uses a Bloom filte as described in [29]
would require about 12 GB of memory (consistent with
our estimate of 237 bits per 1 PB for the filter) For their
own system, the authors estimate using 3 GB. As we
have seen, our methods would require about 0.5 GB.
These estimates may explain the current capacity limit
for systems which use the methods of [29], but they
fail to explain why the HP system is limited to 9 TB,
perhaps there are other unknown bottlenecks.

4.2 Results from a customer site

We consider results from a single node which is part
of a large, 9 nodes, installation residing at the data
center of a major energy manufacturer. The system
performs daily backups using multiple streams. The
system has been running for a while and we present
data which was captured during a six week window
in June-July 2008. The data represents a mature and
rather stationary state of the system. Figure 1 shows
the factoring (deduplication ratio), which is the ratio
between the amount of data backed up and the actual
amount of physical space occupied by the data. Since
the system is mature, we see only little fluctuation
during the 2 day period of measurement. The ratio is
approximately 40:1, that is, the physical space required
to store the deduplicated data is only about 2.5% of the
size of the data itself.

Figure1. Factoring ratio

Figure2. Storage capacity

In Figure 2, we see the same information given
in absolute terms which indicate the size of the sys-
tem. The data to be stored amounts to approximately
800,000GB or 0.8PB (petabytes). The actual (physical)
storage space is about 20,000GB or 20TB. Figures 3
and 4 show how much data is backed up every day
and at what times. Figure 3 shows the amount of data
which was backed up, the amount of matching data
from the repository that was found and the amount of



data actually stored which is the difference. Figure 4
tracks the backup process over a shorter 3 day period.
As can be seen from Figure 4, the backup process takes
place at night, as is expected since online processing
which competes with backup over server and storage
resources is mostly active during the workday. The
peak rates for the node reach nearly 500MB per sec-
ond and the backup operates with 16 streams. A rate
of 500MB per seconds translates into 1.8 TB per hour,
which means that the system can backup about 21 TB
in a 12 hour backup window.

Over the 45 day period for which the system was
tracked, the peak backup size was around 20TB which
is close to the calculated backup size for a single node
system over a nightly backup window. This shows that
efficien y in the deduplication scheme is a very real
and important issue and that some customers can really
drive the system near its limits. This has also led the
customer to a multiple node configuration The actual
amount of storage used on the day of peak raw activity
was fairly small, on the order of 2TB, however, looking
at Figure 3 again, one sees that on June 16, the system
used about 9TB of storage space to store around 13–
14TB of raw data. Apparently this is a situation where
some new data was backed up for the firs time. From
some additional data from the site we know that more
than 90% of signature matches extended to matching
regions whose size was over a megabyte. In almost all
other cases the match was very local, with a size of
less than 16KB. Matches in the range of 16KB to 1MB,
were almost non existent. We note, though, that this is
data from a single customer.

5. Conclusions

At the end of [29], the authors make the prediction that
It will be a relatively short time before a large-scale
deduplication storage system shows up with 400-800
MB/sec throughput with a modest amount of physical
memory.

In this paper we have shown that a system which
achieves and even surpasses the predicted goals, the
Protectier system, already existed at the time [29] was
written. We have shown that the memory requirements
are modest enough to easily support 1 PB of physical
capacity, and explained the criteria behind our design,
focusing on similarity detection techniques and the is-
sue of decoupling the detection and comparison stages
of deduplication, while keeping them synergized.

Figure3. Size of backup on a daily basis

Figure4. Backup rate over a two day period
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