
Skeleton Trees for theE�cient Decoding ofHu�man Encoded Texts�Shmuel T. KleinDepartment of Mathematics and Computer ScienceBar Ilan University, Ramat-Gan 52900, IsraelTel: (972{3) 531 8865 Fax: (972{3) 535 3325tomi@cs.biu.ac.il
Abstract: A new data structure is investigated, which allows fastdecoding of texts encoded by canonical Hu�man codes. The storagerequirements are much lower than for conventional Hu�man trees,O(log2 n) for trees of depth O(log n), and decoding is faster, be-cause a part of the bit-comparisons necessary for the decoding maybe saved. Empirical results on large real-life distributions show areduction of up to 50% and more in the number of bit operations.The basic idea is then generalized, yielding further savings.�This is an extended version of a paper which has been presented at the8th Annual Symposium on Combinatorial Pattern Matching (CPM'97),and appeared in its proceedings, pp. 65{75.

{ 1 {

1. IntroductionThe importance and usefulness of Data Compression for Information Retrieval (IR) Systems istoday well-established, and many authors have commented on it [1, 17, 31, 27]. Large full-textIR Systems are indeed voracious consumers of storage space realtive to the size of the rawtextual database, because not only the text has to be kept, but also various auxiliary �les likedictionaries and concordances, which are usually adjoined to the system to make the retrievalprocess e�cient. Moreover, certain data structures, such as decoding tables or trees, have tobe resident in RAM, so that large systems require more and more powerful machines. It istherefore quite natural that e�orts have been made to compress the text and other necessary�les, thereby reducing the demand for storage or RAM, or equivalently, for a �xed machinewith given resources, e�ectively increasing the size of the data base that can still be handlede�ciently.Most of the popular compression methods are based on the works of Lempel and Ziv[29, 30], but these are adaptive methods which are not always suitable for IR applications. Inthe context of full-text retrieval, a large number of small passages is accessed simultaneously,e.g., when producing a KWIC (Key-Word-In-Context) index in response to a submitted query,and all these text fragments should be decodable, regardless of their exact location. Whenan adaptive coding method has been used, this would then force us to start the decodingat the beginning of the text or the logical block that contains the retrieved passage. So wewould either decode much more than needed, which may imply increased processing time, orprepare a priori smaller blocks, which would cost us compression e�ciency. In both cases,the advantage of using adaptive methods, which often yield better compression than staticones, may be lost.Hu�man coding [14] is still one of the best known and most popular static data compres-sion methods. While for certain applications, such as data transmission over a communicationchannel, both coding and decoding ought to be fast, for other applications, like the IR sce-nario we focus on in this paper, compression and decompression are not symmetrical tasks.Compression is done only once, while building the system, whereas decompression is neededduring the processing of every query and directly a�ects response time. There is thus a specialinterest in fast decoding techniques (see e.g., [15]).The data structures needed for the decoding of a Hu�man encoded �le (a Hu�man tree orlookup table) are generally considered negligible overhead relative to large texts. However, notall texts are large, and if Hu�man coding is applied in connection with a Markov model [2],the required Hu�man forest may become itself a storage problem. Moreover, the \alphabet"to be encoded is not necessarily small, and may, e.g., consist of all the di�erent words in thetext, so that Hu�man trees with thousands and even millions of nodes are not uncommon [23].We try, in this paper, to reduce the necessary internal memory space by devising e�cient waysto encode these trees. In addition, the new suggested data structure also allows a speed-up ofthe decompression process, by reducing the number of necessary bit comparisons.The manipulation of individual bits is indeed the main cause for the slow decoding ofHu�man encoded text. A method based on large tables constructed in a pre-processing stageis suggested in [5], with the help of which the entire decoding process can be performed usingonly byte oriented commands (see also [26]). However, the internal memory required for thestorage of these tables may be very large. Another possibility to avoid accessing individual bits{ 2 {

is by using 256-ary instead of the optimal binary Hu�man codes. This obviously reduces thecompression e�ciency, but de Moura et al. [6] report that the degradation is not signi�cant.In the next section, we recall the necessary de�nitions of canonical Hu�man trees as theyare used below. Section 3 presents the new suggested data structure and includes experimentalresults. In Section 4, the main idea is then extended, yielding yet smaller trees and even fasterdecoding.2. Canonical Hu�man codes0 0 0 01 0 0 1 02 0 0 1 13 0 1 0 04 0 1 0 1 05 0 1 0 1 16 0 1 1 0 07 0 1 1 0 18 0 1 1 1 0 09 0 1 1 1 0 110 0 1 1 1 1 011 0 1 1 1 1 112 1 0 0 0 0 013 1 0 0 0 0 114 1 0 0 0 1 015 1 0 0 0 1 116 1 0 0 1 0 0017 1 0 0 1 0 0118 1 0 0 1 0 1019 1 0 0 1 0 11� � � � � �29 1 0 1 0 1 0130 1 0 1 0 1 1031 1 0 1 0 1 11 032 1 0 1 0 1 11 133 1 0 1 1 0 00 0� � � � � �61 1 1 0 0 1 10 062 1 1 0 0 1 10 163 1 1 0 0 1 11 0 064 1 1 0 0 1 11 0 1� � � � � �124 1 1 1 0 1 10 0 1125 1 1 1 0 1 10 1 0126 1 1 1 0 1 10 1 1 0127 1 1 1 0 1 10 1 1 1� � � � � �198 1 1 1 1 1 11 1 1 0199 1 1 1 1 1 11 1 1 1Figure 1: CanonicalHu�man code forZipf-200

For a given probability distribution, there might be quite a large numberof di�erent Hu�man trees, since interchanging the left and right subtreesof any internal node will result in a di�erent tree whenever the twosubtrees are di�erent in structure, but the weighted average path lengthis not a�ected by such an interchange. There are often also other optimaltrees, which cannot be obtained via Hu�man's algorithm. One maythus choose one of the trees that has some additional properties. Thepreferred choice for many applications is the canonical tree, de�ned bySchwartz and Kallick [25], and recommended by many others (see, e.g.,[15, 27]).Denote by (p1; : : : ; pn) the given probability distribution, wherewe assume that p1 � p2 � � � � � pn, and let `i be the length in bitsof the codeword assigned by Hu�man's procedure to the element withprobability pi, i.e., `i is the depth of the leaf corresponding to pi in theHu�man tree. A tree is called canonical if, when scanning its leavesfrom left to right, they appear in non-decreasing order of their depth(or equivalently, in non-increasing order, as in [22]). The idea is thatHu�man's algorithm is only used to generate the lengths f`ig of thecodewords, rather than the codewords themselves; the latter are easilyobtained as follows: the i-th codeword consists of the �rst `i bits imme-diately to the right of the \binary point" in the in�nite binary expansionof Pi�1j=1 2�`j , for i = 1; : : : ; n [12]. Many properties of canonical codesare mentioned in [15, 3].The following will be used as a running example in this paper.Consider the probability distribution implied by Zipf's law, de�ned bythe weights pi = 1=(iHn), for 1 � i � n, where Hn = Pnj=1(1=j)is the n-th harmonic number. This law is believed to govern the dis-tribution of the most common words in a large natural language text[28]. A canonical code can be represented by the string hn1; n2; : : : ; nki,called a source, where k denotes, here and below, the length of the longest codeword (thedepth of the tree), and ni is the number of codewords of length i, i = 1; : : : ; k. The sourcecorresponding to Zipf's distribution for n = 200 is h0; 0; 1; 3; 4; 8; 15; 32; 63; 74i. The code isdepicted in Figure 1.We shall assume, for the ease of description, that the source has no \holes", i.e., there{ 3 {

are no three integers i < j < ` such that ni 6= 0; n` 6= 0, but nj = 0. This is true for manyreal-life distributions, and in particular for all the examples below. On the other hand, thedistribution of one of the alphabets used for compressing a set of sparse bitmaps in [8] ish1; 0; 0; 1; 7; 0; 1; 28; 0; 46; 59; 114i. All the techniques suggested herein can be easily adaptedto the general case using a vector succ(i), giving for each codeword length i, the next largercodeword length j for which nj > 0. But to make the exposition clearer, we shall suppressreference to succ(i), since for all distributions without holes, succ(i) = i+ 1.One of the properties of canonical codes is that the set of codewords having the same lengthcomprises the binary representations of consecutive integers. For example, in our case, thecodewords of length 9 bits are the binary integers in the range from 110011100 to 111011010.This fact can be exploited to enable e�cient decoding with relatively small overhead: once acodeword of ` bits is detected, one can get its relative index within the sequence of codewordsof length ` by simple subtraction.The following information is thus needed: let m = minfi j ni > 0g be the length of theshortest codeword, and let base(i) be the integer value of the �rst codeword of length i. Wethen have base(m) = 0base(i) = 2 (base(i� 1) + ni�1) for m < i � k:Let Bs(k) denote the standard s-bit binary representation of the integer k (with leading zeros,if necessary). Then the j-th codeword of length i, for j = 0; 1; : : : ; ni � 1, is Bi(base(i) + j).Let seq(i) be the sequential index of the �rst codeword of length i:seq(m) = 0seq(i) = seq(i� 1) + ni�1 for m < i � k:Suppose now that we have detected a codeword w of length `. If I(w) is the integer value of thebinary string w (i.e., w = B`(I(w))), then I(w)� base(`) is the relative index of w within theblock of codewords of length `. Thus seq(`)+ I(w)� base(`) is the relative index of w withinthe full list of codewords. This can be rewritten as I(w)�diff(`), for diff(`) = base(`)�seq(`).Thus all one needs is the list of integers diff(`). Table 1 gives the values of ni, base(i), seq(i)and diff(i) for our example. i ni base(i) seq(i) diff(i)3 1 0 0 04 3 2 1 15 4 10 4 66 8 28 8 207 15 72 16 568 32 174 31 1439 63 412 63 34910 74 950 126 824Table 1: Decode values for canonical Hu�man code for Zipf-200We suggest in the next section a new representation of canonical Hu�man codes, whichnot only is space-e�cient, but may also speed up the decoding process, by permitting, attimes, the decoding of more than a single bit in one iteration.{ 4 {

3. Skeleton trees for fast decodingThe following small example, using the data above, shows how such savings are possible.Suppose that while decoding, we detect that the next codeword starts with 1101. This infor-mation should be enough to decide that the following codeword ought to be of length 9 bits.We should thus be able, after having detected the �rst 4 bits of this codeword, to read thefollowing 5 bits as a block, without having to check after each bit if the end of a codewordhas been reached. Our goal is to construct an e�cient data-structure, that permits similardecisions as soon as they are possible. The fourth bit was the earliest possible in the aboveexample, since there are also codewords of length 8 starting with 110.3.1 Decoding with sk-treesThe suggested solution is a binary tree, called below an sk-tree (for skeleton-tree), the structureof which is induced by the underlying Hu�man tree, but which has generally signi�cantly fewernodes. The tree will be traversed like a regular Hu�man tree. That is, we start with a pointerto the root of the tree, and another pointer to the �rst bit of the encoded binary sequence.This sequence is scanned, and after having read a zero (resp., a 1), we proceed to the left(resp., right) child of the current node. In a regular Hu�man tree, the leaves correspond to fullcodewords that have been scanned, so the decoding algorithm just outputs the correspondingitem, resets the tree-pointer to the root and proceeds with scanning the binary string. In ourcase, however, we visit the tree only up to the depth necessary to identify the length of thecurrent codeword. The leaves of the sk-tree then contain the lengths of the correspondingcodewords.f tree pointer � rooti � 1start � 1while i < length of stringf if string [i] = 0 tree pointer � left (tree pointer)else tree pointer � right (tree pointer)if value (tree pointer) > 0f codeword � string [start � � � (start + value (tree pointer)� 1)]output � table [I(codeword)� diff [value (tree pointer)]]tree pointer � rootstart � start + value (tree pointer)i � startgelse i � i+ 1gg Figure 2: Decoding procedure using sk-tree{ 5 {

The formal decoding process using an sk-tree is depicted in Figure 2. The variable startpoints to the index of the bit at the beginning of the current codeword in the encoded string,which is stored in the vector string []. Each node of the sk-tree consists of three �elds: a leftand a right pointer, which are not null if the node is not a leaf, and a value-�eld, which iszero for internal nodes, but contains the length in bits of the current codeword, if the nodeis a leaf. In an actual implementation, we can use the fact that any internal node has eitherzero or two children, and store the value-�eld and the right-�eld in the same space, withleft = null serving as
ag for the use of the right pointer. The procedure also uses two tables:table [j], 0 � j < n, giving the j-th element (in non-increasing order of frequency) of theencoded alphabet; and diff [i] de�ned above, for i varying from m to k, that is from the lengthof the shortest to the length of the longest codeword.The procedure passes from one level in the tree to the one below according to the bits ofthe encoded string. Once a leaf is reached, the rest of the current codeword can be read inone operation. Note that not all the bits of the input vector are individually scanned, whichyields possible time savings. t ttt t t t t tt t-?? ? ? ? ?- - - --8 98 89 9 9 9 910 10 10tttttt tt t tt t t -??? --??? --?? ? ? ?- -63 4 4 5 5 6 7 787 7 8Figure 3: sk-tree for Zipf-200 distributionFigure 3 shows the sk-tree corresponding to Zipf's distribution for n = 200. The tree istilted by 45�, so that left (right) children are indicated by arrows pointing down (to the right).The framed leaves correspond to the last codewords of the indicated length. The sk-tree ofour example consists of only 49 nodes, as opposed to 399 nodes of the original Hu�man tree.An idea similar to the sk-tree, but based on tables rather than on trees, has been suggestedby Mo�at and Turpin [22]. Instead of identifying roots of subtrees in which all codewordshave the same depth, they essentially form a complete tree to a �xed depth no less than thedepth of the code tree (by extending any shorter branches), and examine the code tree nodesat that depth to determine the minimum codeword length in each subsidiary subtree. To �ndthe length of a codeword, a �xed-sized window of the compressed bitstream, considered as abinary value, is compared with left-justi�ed base values in a sequence of hard-coded cascadingif-statements. Each such comparison is equivalent to a transition to a left or right child of thesk-tree, and the replacement of bit comparisons by equivalent byte or word based comparisonsis reminiscent of a mechanism suggested in [5].{ 6 {

3.2 Construction of sk-treesWhile traversing a standard canonical Hu�man tree to decode a given codeword, one maystop as soon as one gets to the root of any full subtree of depth h, for h � 1, i.e., a subtree ofdepth h that has 2h leaves, since at this stage it is known that exactly h more bits are neededto complete the codeword. One way to look at sk-trees is therefore as standard Hu�man treesfrom which all full subtrees of depth h � 1 have been pruned. A more direct and much moree�cient construction is as follows.The one-to-one correspondence between the codewords and the paths from the root to theleaves in a Hu�man tree can be extended to de�ne, for any binary string S = s1 � � � se, thepath P (S) induced by it in a tree with given root r0. This path will consist of e+ 1 nodes ri,0 � i � e, where for i > 0, ri is the left (resp. right) child of ri�1, if si = 0 (resp. if si = 1).For example, in Figure 3, P (111) consists of the four nodes represented as bullets in the topline. The skeleton of the sk-tree will consist of the paths corresponding to the last codewordof every length. Let these codewords be denoted by Li, m � i � k ; they are, for our example,000, 0100, 01101, 100011, etc. The idea is that P (Li) serves as \demarcation line": any nodeto the left (resp. right) of P (Li), i.e., a left (resp. right) child of one of the nodes in P (Li),corresponds to a pre�x of a codeword with length � i (resp. > i).As a �rst approximation, the construction procedure thus takes the tree obtained bySk�1i=m P (Li) (there is clearly no need to include the longest codeword Lk, which is always astring of k 1's), and adjoins the missing children to turn it into a complete tree in which eachinternal node has both a left and a right child. The label on such a new leaf is set equal tothe label of the closest leaf following it in an inorder traversal. In other words, when creatingthe path for Li, one �rst follows a few nodes in the already existing tree, then one brancheso� creating new nodes; as to the labeling, the missing right child of any node in the path willbe labeled i + 1 (basing ourselves on the assumption that there are no holes), but only themissing left children of any new node in the path will be labeled i.A closer look then implies the following re�nement. Suppose a codeword Li has a zero inits rightmost position, i.e., Li = �0 for some string � of length i� 1. Then the �rst codewordof length i+ 1 is �10. It follows that only when getting to the i-th bit one can decide if thelength of the current codeword is i or i+1. But if Li terminates in a string of 1's, Li = �01a,with a > 0 and j�j+ a = i� 1, then the �rst codeword of length i+1 is �10a+1, so the lengthof the codeword can be deduced already after having read the bit following �. It follows thatone does not always need the full string Li in the sk-tree, but only its pre�x up to and notincluding the rightmost zero. Let L�i = � denote this pre�x. The revised version of the aboveprocedure starts with the tree obtained by Sk�1i=m P (L�i). The nodes of this tree are depictedas bullets in Figure 3. For each path P (L�i) there is a leaf in the tree, and the left child ofthis leaf is the new terminal node, represented in Figure 3 by a box containing the number i.The additional leaves are then �lled in as explained above.3.3 Space complexityTo evaluate the size of the sk-tree, we count the number of nodes added by path P (L�i), form � i < k. Since the codewords in a canonical code, when ordered by their correspondingfrequencies, are also alphabetically sorted, it su�ces to compare Li to Li�1. Let
(m) ={ 7 {

empty string, and for i > m, let
(i) be the longest common pre�x of Li and Li�1, e.g.,
(7)is the string 10 in our example. Then the number of nodes in the sk-tree is given by:size = 2 k�1Xi=mmax(0; jL�i j � j
(i)j)!� 1; (1)since the summation alone is the number of internal nodes (the bullets in Figure 3).The maximum function comes to prevent an extreme case in which the di�erence mightbe negative. For example, if L6 = 010001 and L7 = 0101111, then the longest common pre�xis
(7) = 010, but since we consider only the bits up to and not including the rightmost zero,we have L�7 = 01. In this case, indeed, no new nodes are added for P (L�7).An immediate bound on the number of nodes in the sk-tree is O(min(n; k2)), since on theone hand, there are up to k � 1 paths P (L�i) of lengths � k � 2, but on the other hand, itcannot exceed the number of nodes in the underlying Hu�man tree, which is 2n � 1. To geta tighter bound, consider the nodes in the upper levels of the sk-tree belonging to the fullbinary tree F with k � 1 leaves and having the same root as the sk-tree. The depth of F isd = dlog2(k � 1)e, and all its leaves are at level d or d � 1. The tree F is the part of thesk-tree where some of the paths P (L�i) must be overlapping, so we account for the nodes in Fand for those below separately. There are at most 2k � 1 nodes in F ; there are at most k� 1disjoint paths below it, with path P (L�i) extending at most i� 2� blog2(k� 1)c nodes belowF , for log2(k � 1) < i � k. This yields as bound for the number of nodes in the sk-tree:2k + 20@k�2�blog2(k�1)cXi=1 i1A = 2k + (k � 2� blog2(k � 1)c)(k � 1� blog2(k � 1)c:There are no savings in the worst case, e.g., when there is only one codeword of eachlength (except for the longest, for which there are always at least two). More generally, ifthe depth of the Hu�man tree is
(n), the savings might not be signi�cant. But such treesare optimal only for some very skewed distributions. In many applications, like for mostdistributions of characters or character pairs or words in most natural languages, the depthof the Hu�man tree is O(log n), and for large n, even the constant c, if the depth is c log2 n,must be quite small. For suppose the Hu�man tree has a leaf on depth d. Then by [16,Theorem 1], the probability of the element corresponding to this leaf is p < 1=Fd+1, whereFj is the j-th Fibonacci number, and we get from [18, Exercise 1.2.1{4], that p < (1=�)d�1,where � = (1 +p5)=2 is the golden ratio. Thus if d > c log2 n, we havep < 1�!c log2 n = n�c log2(1=�) = n�0:693c:To give a numeric example, in Section 4 below one of the Hu�man trees corresponds to thedi�erent words in English, with n = 289; 101 leaves. The probability for a tree of this sizeto have a leaf at level 3 log2 n is less than 4:4 � 10�12, meaning that such a word occurs onlyonce every 4400 billion words; the existence of such a rare word then puts a lower limit on thesize of the text, which in our case must be large enough to �ll about 35,000 CD-Roms! Forall the distributions given in Table 2 in the experiments below, the ratio of the depth of theHu�man tree to log2 n is between 1.31 and 2.61. But even if the original Hu�man tree wouldbe deeper, it is sometimes convenient to impose an upper limit of B = O(log n) on the depth,{ 8 {

which often implies only a negligible loss in compression e�ciency [10]. In any case, given alogarithmic bound on the depth, the size of the sk-tree is aboutlog n (log n� log log n):3.4 Time complexityWhen decoding is based on a standard Hu�man tree, the average number of comparisonsper codeword is the sum, taken over all the leaves i, of the depth of i in the tree times theprobability to get to i. A similar sum holds for sk-trees, with the di�erence that a leaf doesnot correspond to a single element, but to several consecutive codewords of the same length.Let w be the pre�x of a codeword corresponding to a leaf of the sk-tree labeled `, ` � jwj,and denote t = ` � jwj. Then the 2t codewords corresponding to this leaf of the sk-tree arew0t; : : : ; w1t, and correspond, using the notations of Section 2, to indices in the range fromI(w0t)� diff(`) to I(w1t)� diff(`). The average number of comparisons per codeword usingthe sk-tree can thus be evaluated as:Xi2fleaves in sk-treeg 0@ di I(wi1`i�di)�diff(`i)Xj=I(wi0`i�di)�diff(`i)Prob(j) 1A ; (2)where wi is the binary string corresponding to the leaf i, di = jwij is the depth of i in the tree,`i is a shortcut for label(i), and Prob(j) is the probability of the element with index j.As an approximation, we assume that the probability of an element on level i in the treeis 2�i. This corresponds to a dyadic probability distribution, where all the probabilities areintegral powers of 12 . There cannot be too great a di�erence between the actual probabilitydistribution and this dyadic one, since they both yield the same Hu�man tree (see [20] forbounds on the \distance" between such distributions). Given this model, eqn. (2) becomesXi2fleaves in sk-treeg � di 2�di� :A similar sum, but taken over all the leaves of the original Hu�man tree gives the averagecodeword length for a dyadic distribution. There are therefore large savings whenever thenumber of nodes in the sk-tree is much smaller than in the underlying full Hu�man tree.3.5 Experimental ResultsTo test the e�ectiveness of the use of sk-trees, the following real-life distributions were used.The data for French was collected from the Tr�esor de la Langue Fran�caise, a database of680 MB of French language texts (115 million words) of the 17th{20th centuries [4]; for English,the source are 500 MB (87 million words) of the Wall Street Journal [24]; and for Hebrew,a part of the Responsa Retrieval Project , 100 MB of Hebrew and Aramaic texts (15 millionwords) written over the past ten centuries [7]. The �rst set of alphabets consists of the bigramsin the three languages (the source for English for this distribution was [13]); for the next set,the elements to be encoded are the di�erent words, which yields very large \alphabets"; andthe �nal set contains the distribution of trigrams in French. For completeness, the Zipf-200distribution used in the above examples was also added.{ 9 {

total average number of average relativeSource k number of codeword nodes in number of savings in #elements length sk-tree comparisons comparisonsZipf{200 10 200 6.024 49 3.990 33.7%English 13 371 7.445 67 4.200 43.6%bigrams French 29 2192 7.784 285 4.620 40.6%Hebrew 24 743 8.037 127 4.183 48.0%English 26 289101 11.202 425 5.726 48.9%words French 27 439191 10.473 443 5.581 46.7%Hebrew 24 296933 13.033 345 5.694 56.3%trigrams French 28 25781 10.546 381 5.026 52.3%Table 2: Time and Space requirements for real-life distributionsTable 2 displays the results. The �rst three columns give some statistics about the variousdistributions: the depth k of the Hu�man tree, the size n of the encoded alphabet, and theweighted average length of a codeword, measured in bits, which equals the average number ofcomparisons if the standard Hu�man tree is used. The next two columns bring the numberof nodes in the sk-tree, as given in eqn. (1), and the average number of comparisons percodeword when decoding is based on the sk-tree, as given in eqn. (2). The �nal column showsthe relative savings in the number of comparisons, measured in percent. We see that for largedistributions, roughly half of the comparisons may be saved. Note that these savings are inspite of the fact that the high-probability symbols with short codewords have relatively fewbits in common. The weighted average takes this into account: few bits are saved for theshorter codewords, and the savings are multiplied by higher probabilities; more bits are savedfor the longer codewords, but even if their probabilities are very small, their large numberhave a cumulative e�ect. Note also that the cost of storing the sk-tree is only several percentof the cost for the full Hu�man tree.4. Reduced sk-treesWe now wish to explore what might be gained by pruning the sk-tree at some internal node:one would thus get to leaves at which it is not yet possible to deduce the length of thecurrent codeword, but at which some partial information is already available. For example,in Figure 3, if the bits already processed were 111 (corresponding to the internal node in therightmost upper corner), we know already that the length of the current codeword is either 9or 10. We therefore need only one more comparison to know the exact length: concatenatethe following seven bits with the three already processed to get a 10-bit string w; if the binaryvalue of w is smaller than base(10), the next codeword must be of length 9, otherwise it is oflength 10. If we had used the original sk-tree as explained in the previous section, we wouldhave had at least one more comparison, possibly even more, e.g., if the bits after 111 were0110, we would have performed four more comparisons and still not know if the length is 9 or10. { 10 {

This re
ection leads to the idea of a reduced sk-tree, which is obtained from the sk-tree bypruning some of its branches. On the one hand, this reduced tree is obviously smaller, on theother, as we saw, it may also decrease the number of comparisons. More formally, de�ne foreach node v of the sk-tree two values lower(v) and upper(v) by:if v is a leaf lower(v) = upper(v) = value(v)if v is an internal node lower(v) = lower(left(v))upper(v) = upper(right(v)),that is, for each node v, the codewords corresponding to leaves of the sub-tree rooted by vhave their lengths in the interval [lower(v); upper(v)]. In terms of our earlier notation we havelower(root) = m and upper(root) = k. We de�ne the reduced sk-tree as the smallest sub-treeof the sk-tree for which all the leaves w correspond to a range of at most two consecutivecodeword lengths, i.e., upper(w) � lower(w) + 1: (3)t tt -?tttttt tt t t -?? --?? --?3-4 4-5 5-6 6-7 7-8 8-9 9-10
Figure 4: Reduced sk-tree for Zipf-200 distributionFigure 4 is the reduced sk-tree obtained from the sk-tree of Figure 3. Leaves are nowalso indicated as bullets, with the corresponding range underneath. Recall that the originalHu�man tree had 399 nodes, and the sk-tree 49; in the reduced sk-tree we are left with only13. Note that all the leaves of the original sk-tree are deleted, but also entire sub-trees. Thenodes corresponding to the part of P (L�i) which is not overlapping with P (L�i�1) do all satisfyeqn. (3), but since we seek the minimal tree, for each such path, only the node highest up inthe tree need be kept, so the rest of this branch and its o�springs are pruned.A generalized view of both regular and reduced sk-trees would be as follows: consider afull canonical Hu�man tree and assign to each node the values lower and upper. Delete nowsome of the nodes, starting at any leaf and proceeding to the parent nodes, until you get to thesmallest tree for which every leaf w satis�es lower(w) = upper(w), i.e., all the correspondingcodewords have the same length; this is the sk-tree. If the process is continued and morenodes are deleted until the codewords corresponding to the new leaves have lengths i or i+ 1for some i, we get the reduced sk-tree. We henceforth adopt the notation sk1-tree and sk2-treefor the original and the reduced sk-trees, respectively, the subscript referring to the maximalsize of the set of codeword-lengths associated with each of the leaves of the tree.We cannot use equality in eqn. (3), which would impose a range of exactly two codewordlengths for each leaf of the sk2-tree. In the example of Figure 4 all the leaves do have equality{ 11 {

5 0 0 0 0 06 0 1 0 0 0 17 0 1 0 1 1 1 18 1 0 0 1 1 1 019 1 1 0 0 1 0 01 110 1 1 1 0 1 0 01 0 111 1 1 1 1 0 1 11 1 1 112 1 1 1 1 1 1 01 0 1 0 113 1 1 1 1 1 1 10 1 1 1 1 1� � �Last elementsof codeword blocks
tttttttt t t t t tt t t?? ? ?? ? ---? -- -? - -? ?-5-6 6-7 8-9 9-10 10-11 12-13 � � � 13-2411 128 Corresponding sk2-treeFigure 5: Example of sk2-tree with special leavesin eqn. (3), but for other examples, leaves may exist, the parent nodes of which correspondalready to ranges of 3 or more codeword lengths. In this case, the original leaf of the sk1-tree must be kept. Let us call such leaves in the sk2-tree special leaves. For the exampledistributions above, special leaves exist only for the distribution of the Hebrew bigrams, the�rst few elements of the source being h0; 0; 0; 0; 1; 16; 12; 62; 88; 126; 116; 86; : : :i. In the leftpart of Figure 5, the last codewords Li for the codeword lengths up to 13 are listed, and theright part of Figure 5 is the corresponding section of the sk2-tree. The special leaves w areindicated as rectangles, containing the value lower(w) (which is equal to upper(w)), the otherleaves are depicted as bullets as above.For example, we see that only codewords of length 8 can have the pre�x 011, but theparent node of the corresponding leaf is associated with the pre�x 01, which may be extendedto codewords of lengths 6, 7 or 8. Similarly, a pre�x 11110 implies the codeword length 11,but 1111 is the pre�x of codewords of lengths 11 to 24.The decoding procedure for sk2-trees is similar to that of the sk1-trees given in Figure 2,and only the if-block has to be replaced by the one in Figure 6. We now use a flag �eld foreach leaf w, with flag(w) = 0 if w is a special leaf, and flag(w) = 1 otherwise. The value�eld of w stores lower(w) if w is a leaf, and 0 if w is an internal node.� � � if value (tree pointer) > 0f len � value (tree pointer)codeword � string [start � � � (start + len� 1)]if flag (tree pointer) = 1 AND 2 I(codeword) � base(len+ 1)f codeword � string [start � � � (start + len)]len � len+ 1goutput � table [I(codeword)� diff [len]]tree pointer � rootstart � start + leni � startg� � � Figure 6: Decoding using sk2-tree{ 12 {

When a leaf w is reached, the current codeword is initialized as having length lower(w).This is the correct setting if w is a special leaf or if the next codeword has indeed lengthlower(w). When w is not a special leaf (flag(w) = 1), we check if by appending a zero at theright end of the codeword, we get an integer value larger or equal to that of the �rst codewordof length lower(w) + 1. If so, we update the current codeword to include also the followingbit.The construction of sk2-trees is similar to that of the underlying sk1-tree. We again considerthe paths of nodes Sk�1i=m P (L�i), but keep only those nodes that appear in at least two di�erentpaths; these are the internal nodes of the sk2-tree. The leaves are then added by �lling in themissing left and right children, some of which may be special leaves.As to the space complexity of sk2-trees, note that in principle, several special leaves mayemanate from a single branch P (L�i), which leaves the upper bound for the number of nodesat O(min(n; k2)) as for sk1-trees. But in practice, special leaves are rare, because they appearonly in the very particular case when P (L�i) is entirely contained in either P (L�i�1) or P (L�i+1).In the former case, the special leaves are right children of nodes in P (L�i), in the latter they areleft children. For example, referring to the tree in Figure 5, L�7 = 01 is a pre�x of L�6 = 0100and generates a special leaf as a right child, whereas L�12 = 1111110101 contains L�11 = 1111as a pre�x and generates special leaves as left children. If for a given Hu�man tree, there areno special leaves in its associated sk2-tree, as was the case in all our examples beside the oneof Figure 5, then the number of nodes is clearly 2(k �m) � 1, because there is exactly oneleaf for each range [i; i+ 1], m � i < k and the sk2-tree is a complete tree, i.e., each internalnode has exactly two children.The sizes of the sk2-trees for our earlier example distributions are listed in Table 3. As canbe seen, even for huge Hu�man trees with hundreds of thousands of nodes, this size is reducedto several tens, and there is a 70{90% reduction even relative to the sizes of the sk1-trees.number of Savings average SavingsSource nodes in rel. to number of rel. tosk2-tree sk1-tree comparisons sk1-treeZipf{200 13 73% 3.688 7.6%English 15 78% 3.444 18.0%bigrams French 47 84% 3.757 18.7%Hebrew 45 65% 3.537 15.4%English 41 90% 4.842 15.4%words French 41 91% 4.725 15.3%Hebrew 33 90% 4.715 17.2%trigrams French 43 89% 4.157 17.3%Table 3: Time and Space requirements for sk2-treesTo evaluate the average number of comparisons, we take a sum similar to eqn. (2) overall the leaves of the sk2-tree. For the special leaves, the formula of eqn. (2) applies. Forthe others, let w be the pre�x of the corresponding codeword, assume the leaf is labeled `,` > jwj, and denote t = ` � jwj. Then the codewords corresponding to this leaf of the sk2-tree are w0t; : : : ; w1t+1. The �rst few of them are of length ` and the following ones of length{ 13 {

`+1. The exact cuto� point is not important, as the codewords correspond to the consecutiveindices in the range from I(w0t) � diff(`) to I(w1t+1)� diff(`+ 1). The probability of eachof these codewords should be multiplied by the number of necessary comparisons to detectthem, which is jwj+ 1, since we need an additional comparison to decide if the length is ` or`+ 1. This yields, using the same notations as for eqn. (2), the following formula:Xi2fleaves in sk-treeg 0@ di (1� flag(i)) I(wi1`i�di)�diff(`i)Xj=I(wi0`i�di)�diff(`i)Prob(j)+ (di + 1)flag(i) I(wi1`i�di+1)�diff(`i+1)Xj=I(wi0`i�di)�diff(`i) Prob(j) 1A :Table 3 gives the resulting averages for our examples. For the real-life examples, they givea reduction of 50{64% relative to the regular Hu�man decoding algorithm, and of 15{19%relative to the algorithm using sk1-trees.5. Final remarksIf pruning the skeleton tree turned out to be pro�table in terms of both time and space,shouldn't we climb up even higher and de�ne skd-trees accordingly, for d > 2?We can associate a value range-size with each node v of the sk1-tree, giving the size ofthe set of the corresponding codeword lengths. The leaves of the sk1-tree have all range-size= 1, those of the sk2-tree have range-size � 2. Consider a path that starts at any leaf of thesk1-tree and moves through parent pointers towards the root. The range-size values of thenodes in this path form a non-decreasing sequence, the �rst value being 1, followed possiblyby several 2's, etc. Fixing, for all such paths, the last node with value 2 (if it exists) as a newleaf yields the sk2-tree. Similarly, proceeding even further up to the last node with value 3would yield an sk3-tree, etc.However, the savings incurred by passing from the sk1-tree to the sk2-tree were causedby the fact that several consecutive nodes on these paths had the range-size value 2, so thatthe new leaves were several levels higher, and accordingly several comparisons could be saved.But if the parent node of a node with range-size value 3 has also range-size value 3, the otherchild of this parent node must have range-size value 1, which means that it is a special leaf.We argued earlier that such cases are rare. Therefore, whenever no special leaf is involved,passing from the lowest node with range-size value 2 to the lowest node with range-size value3 would just let us climb one level and save one comparison. On the other hand, we need nowan additional comparison within the range of 3 values, so that in all these cases, nothing isgained.Of course, for the price of two additional comparisons, we could process, using binarysearch, ranges of size 4 and not just 3. More generally, we need only r additional comparisonsafter reaching a leaf of an sk2r-tree. Pushing this idea to its extreme with r = dlog2 ke, therewould be no skeleton-tree at all, and we would �nd the correct length of a codeword usinga sequence of binary search steps in the list of �rst (or last) codewords for every codeword{ 14 {

length, as suggested in [22]. But with standard binary search, the search in a code withmaximal codeword length k takes exactly dlog2 ke comparisons, which would be 4 or 5 forour example distributions. Note that while the average number of comparisons with sk1-treesis above that threshold for all the examples (Table 2), all the corresponding values for thesk2-trees are below it (Table 3). It does therefore not seem necessarily worthwhile to pass toskd-trees, for d > 2.Mo�at and Turpin [22] further suggest to use a biased binary search, since the probabilitydistribution of the codeword lengths is itself very skewed. For the �rst few bits of any code-word, this approaches then a linear search. The skeleton-trees introduced in this paper are aconvenient data structure to perform a similar search e�ciently.References[1] Bell T.C., Moffat A., Nevill-Manning C.G., Witten I.H., Zobel J., Data compressionin full-text retrieval systems, Journal ASIS 44 (1993) 508{531.[2] Bookstein A., Klein S.T., Compression, Information Theory and Grammars: A Uni�edApproach, ACM Trans. on Information Systems 8 (1990) 27{49.[3] Bookstein A., Klein S.T., Is Hu�man coding dead?, Computing 50 (1993) 279{296.[4] Bookstein A., Klein S.T., Ziff D.A., A systematic approach to compressing a full textretrieval system, Information Processing & Management 28 (1992) 795{806.[5] Choueka Y., Klein S.T., Perl Y., E�cient Variants of Hu�man Codes in High LevelLanguages, Proc. 8-th ACM-SIGIR Conf., Montreal (1985) 122{130.[6] de Moura E.S., Navarro G., Ziviani N., Baeza-Yates R., Fast searching on compressedtext allowing errors, Proc. 21-st ACM-SIGIR Conf., Melbourne, Australia (1998) 295{306.[7] Fraenkel A.S., All about the Responsa Retrieval Project you always wanted to know butwere afraid to ask, Expanded Summary, Jurimetrics J. 16 (1976) 149{156.[8] Fraenkel A.S., Klein S.T., Novel Compression of Sparse Bit-Strings, in CombinatorialAlgorithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin (1985) 169{183.[9] Fraenkel A.S., Klein S.T., Bidirectional Hu�man Coding, The Computer Journal 33 (1990)296{307.[10] Fraenkel A.S., Klein S.T., Bounding the Depth of Search Trees, The Computer Journal36 (1993) 668{678.[11] Ferguson T.J., Rabinowitz J.H., Self-synchronizing Hu�man codes, IEEE Trans. on In-formation Theory, IT-30 (1984) 687{693.[12] Gilbert E.N., Moore E.F., Variable-length binary encodings, The Bell System TechnicalJournal 38 (1959) 933{968.[13] Heaps H.S., Information Retrieval, Computational and Theoretical Aspects, Academic Press,New York (1978). { 15 {

[14] Huffman D., A method for the construction of minimum redundancy codes, Proc. of the IRE40 (1952) 1098{1101.[15] Hirschberg D.S., Lelewer D.A., E�cient decoding of pre�x codes, Comm. of the ACM 33(1990) 449{459.[16] Katona G.H.O., Nemetz T.O.H., Hu�man codes and self-information, IEEE Trans. on Inf.Th. IT{11 (1965) 284{292.[17] Klein S.T., Bookstein A., Deerwester S., Storing Text Retrieval Systems on CD-ROM:Compression and Encryption Considerations, ACM Trans. on Information Systems 7 (1989)230{245.[18] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental Algorithms, Addison-Wesley, Reading, MA (1973).[19] Lelewer D.A., Hirschberg D.S., Data compression, ACM Computing Surveys 19 (1987)261{296.[20] Longo G., Galasso G., An application of informational divergence to Hu�man codes, IEEETrans. on Inf. Th. IT{28 (1982) 36{43.[21] Moffat A., Bell T., In-situ generation of compressed inverted �les, J. ASIS 46 (1995)537{550.[22] Moffat A., Turpin A., On the implementation of minimum redundancy pre�x codes, IEEETrans. on Communications 45 (1997) 1200{1207.[23] Moffat A., Turpin A., Katajainen J., Space-e�cient construction of optimal pre�x codes,Proc. Data Compression Conference DCC{95, Snowbird, Utah (1995) 192{201.[24] Moffat A., Zobel J., Sharman N., Text compression for dynamic document databases,IEEE Transactions on Knowledge and Data Engineering 9 (1997) 302{313.[25] Schwartz E.S., Kallick B., Generating a canonical pre�x encoding, Comm. of the ACM 7(1964) 166{169.[26] Sieminski, A., Fast decoding of the Hu�man codes, Information Processing Letters 26 (1988)237{241.[27] Witten I.H., Moffat A., Bell T.C., Managing Gigabytes: Compressing and Indexing Doc-uments and Images, Van Nostrand Reinhold, New York (1994).[28] Zipf G.K., The Psycho-Biology of Language, Boston, Houghton (1935).[29] Ziv J., Lempel A., A universal algorithm for sequential data compression, IEEE Trans. onInf. Th. IT{23 (1977) 337{343.[30] Ziv J., Lempel A., Compression of individual sequences via variable-rate coding, IEEE Trans.on Inf. Th. IT{24 (1978) 530{536.[31] Zobel J., Moffat A., Adding compression to a full-text retrieval system, Software | Practice& Experience, 26 (1995) 891{903. { 16 {

