
Compression of Concordances
in Full-Text Retrieval Systems

Yaacov Chouekal, Aviezri S . F’raenk& , Shmuel T. Klein3

I Dept. of Math. and Computer Science, Bar-Ilan University, Ramat Gan, Israel

’ Dept. of Appl. Math. and Comp. SC., Weizmann Institute of Science, Rehovot, Israel

3 Graduate Library School and Comp. SC. Dept., University of Chicago, IL 60637

The third author was partially supported by a fellowship of the Ameritcch Foundation

ABSTR.ACT: The concordance of a full-text information retrieval system contains

for every different word W of the data base, a list L(W) of “coordinates”, each of
which describes the exact location of an occurrence of w in the text. The concordance

should be compressed, not only for the savings in storage space, but also in order to
reduce the number of I/O operations, since the file is usually kept in secondary memory.
Several methods are presented, which efficiently compress concordances of large full-
text retrieval systems. The methods were tested on the concordance of the Responsa
Retrieval Project and yield savings of up to 49% relative to the non-compressed file;
this is a relative improvement of about 27% over the currently used prefix-omission
compression technique.

1. Motivation and Introduction

Most large information retrieval systems are based on inverted files.
In this a;pproach, processing of queries does not involve directly the origi-
nal text files (in which key words are located using some pattern matching
technique), but rather the auxiliary dictionary and concordance files. The
dictionary is the list of al1 the different words appearing in the text and
is usually ordered alphabetically. Every occurrence of every word in the
data base can be uniquely characterized by a sequence of numbers that
give its exact position in the text. Typically, such a sequence would
consist of the document number d, the paragraph number p (in the doc-
ument), the sentence number s (in the paragraph) and the word number

Permission to copy without fee all part of this material is granted provided that the copies are not made or distri-
buted for direct commercial advantage, the ACM copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission,

c 1988 ACM O-89791 -274-8 88 0600 0597 $ 130

-597-

w (in the sentcncc). The quadru~plc (rl, 11, s. w) is the coo&in&: of the
occurrence, and the corresponding fields will bc called for sh.ort d-field, p-
field:, s-field and w-field. In the sequel, we assume for the ease of discussion
that coordinstcs of every retrieval system are of this form; however, all
the :methods can also be applied to systems with IdifI’ercnt coordinate
structure. The concordance contains, for every word ‘W’ of the dictionary,
the l.exicographically ordered list of all its coordinates in the text; it is
accessed via the dictionary that contains for every word a pointer to the
corresponding list in the concordance.

The concordance is usually too big to be stored in internal memory.
Thus it is kept in compressed form on secondary storage and parts of
it are fetched when needed and decompressed. The compressed file is
par ti tioncd into equi-sized bloc1 ci such that. one block can bc read by
a single I/O operation. Hence c:ompression not only yields savings in
storage space, but often also a gain in processing speed, as the additional
time spent on decompression is usually largely compensated for by the
savings in the number of read operations. Compression of concordances is
particularly important in the context of optical storage whcrc disk access
is rather slow; also concordance f&s are usually huge - typically a few
hundred MB, so that an additional savings of 20% can be indeed very
significant. A CD-ROM has a specific amount of storage and if the whole
files of the system do not fit on one disk (550 MB), then the data base
would have to be split bctwccn two disks (even if the surplus is very small),
which is very incovcnient for optical storage (thcrc is a need to physically
change disks).

In the next section wc review the well-known prefix-omission method

(POM), which is often used for the compression of dictionaries, but can
easily be adapted also to concordances. In Section 3 we prcscnt some new
tcchniqucs, some of which include and extend POM. In Section 4, all the
methods are tested on the concordance of the Responsa Retrieval Project
(RRP), a large full-text information retrieval system, which, in 1981 when
the statistics for the work reported herein were collected, consisted of
abou.t 37,500 documents, contain.ing some 35 million words of running
text, written mainly in Hebrew and Aramaic. For details on RRP, the
rcadcr is referred to [Z] and [4].

2. The Prefix-Omission. Technique

The method is based on the 08bservation that consccutivc entries in a
dictionary mostly share some lead.ing letters. Let x and y be consecutive
dictionary entries and let ?n be the length (number of letters) of their
longest common prefix. Then it suffices to store this common prefix only

-59%

once (with 5) and to omit it from the following entry, where instead
the length m will be kept. This is easily generalized to a longer list of

dictionary entries, as in the following example:

dictionary en try prefix length stored suffix

FORM

FORMALLY
FORMAT
FORMATION
FORMULATE
FORMULATING
FORTY
FORTHWITH

FORM
ALLY
T
ION
ULATE
ING
TY
HWITH

Note that the value given for the prefix length does not refer to the string
which was actually stored, but rather to the corresponding full-length

dictionary entry. The compression and dccomprcssion algorithms are im-
mediate.

If the dictionary entries are coded in standard format, with one byte
per character, one could use the first byte of each entry in the comprcsscd
dictionary to store the value of m. There will mostly be a considerable
gain, since the average length of common prefixes of consecutive entries in
large dictionaries is generally much larger than 1. Even when the entries
are already compressed, for example by a character by character Huffman
code, one would still achieve some savings. For convenience, one could
choose a fixed integer parameter k and reserve the first I; bits of every
entry to represent values of m for 0 5 m < 2k, where k is not necessarily
large enough to accommodate the longest omitted prefix. In the above
example, k could for example be chosen as 3, and the entry corresponding
to FORMULATING would then be (7,TING). A formal definition of POM can
be found in [I], where it is called front-end compression. An application
of the method to the compression of sparse bit-strings is described in 131.

Since the list of coordinates of any given word is ordered, adjacent
coordinates will often have the same d-field, or even the same d- and p-
fields, and sometimes, especially for high frequency words, identical d-,
p- and s-fields. Thus POM can be adapted to the compression of concor-
dances, where to each coordinate a header is adjoined, giving the number
of fieEds which can be copied from the preceding coordinate; these fields
are then omitted. For instance in our model with coordinates (d,~, s, zu),
it would suffice to keep a header of 2 bits. The four possibilities are: don’t
copy any field from the previous coordinate, copy the d-field, copy d- and
p-field and copy d-, p- and s-field. Obviously, different coordinates cannot

-599-

have all four fields identical.

I?or convenient computer manipulation, one generally chooses a fixed
length for each field, which therefore has to be large enough to represent
the maximal possible values. However, most stored values arc small, thus
there is usually much wasted space in each coordinate. In siome situations,
some space can be saved at the expense of a Ionger processing time, as in
the following example.

At RRP, the maximal length of a sentence is 676 words! Such long
sentences can be explained by th.e fact that in the Responsa literature
pun&ration marks are often omit-ted or used very scarcely. Since on the
other hand most sentences are short and it was preferred to USC only
field-sizes which are multiples of half-bytes, the following method is used:
the size of the w-field is chosen to be one byte (8 bits); any sentence of
length e > 256 words, such that r? = 80X: + 1% (0 5 r < SO), is split into
JC units of SO words, followed (if r > 0) by a sentence of ?- words. These
sentences form much less than 1?4 of the data base. ‘While resolving the
storage problem, the insertion of such “virtual points” in the middle of a
sentence creates some problems for the rctricval process. \Vhen in a query
one asks to retrieve occurrences of keywords -4 and I3 such that A and I3
arc adjacent or that no more tha:n some small number of words appear
between them, one usually does not allow A and I3 to appear in cliffercnt
scn tences. This is justified, since “adjacency” and “near vicinity” opcr-

ators are generally used to retrieve expressions, and not the coincidental
juxtaOposition of A at the end of a sentence with B at the beginning of
the following one. However in the presence of virtual points, the search
should be extented also into neighbouring “sentences”, if necessary, since
the hrirtual points are only artificial boundaries which might have split
some interesting expression. Hence this solution further complica,tcs the
retrieval algorithms.

The methods presented in the next section not only yield improved
compression, but also get rid of the virtual points.

:3 l Using Variable-Length Fields

The basic idea of all the new methods is to allow the p-, s- and w-
fields to have variable length. As in POM, each compressed coordinate
will be prefixed by a header which will encode tbc information necessary
to decompress the coordinate. The methods differ in their interpreta-
tion of the header. The choice of the length of every field is bcascd on
statistics gathered from the entire data hast: on the distribution of the
valuc:s in each field. Thus for dynamically changing data bCascs, the com-
prcssion method would need frequent updates, so that the methods are

---600 -

more suitable for retrieval systems with static data bases. However, if the
text changes only slowly, say it is a large corpus to which from time to
time some documents are adjoined which have characteristics similar to
the documents already in the corpus, then the methods will still perform
well, though not optimally.

The codes in the header can have various interpretations: they can
stand for a length 4!, indicating that the corresponding field is encoded
in e bits; they can stand for a certain value v, indicating that the corre-
sponding field contains that value; they can finally indicate that no value
for the corresponding field is stored and that the value of the preceding
coordinate should be used. This is more general than the prefix-omission
technique, since one can decide for every field individually whether or not
to omit it, while in POM, the p-field is only omitted if the d-field is, etc.

The d-field is treated somewhat differently. Since this is the highest
level of the hierarchy in our model, this field may contain also very large
numbers (there are rarely 500 words in a sentence or 500 sentences in a
paragraph, but a corpus may contain tens of thousands of documents).
Moreover, the d-fields of most coordinates will contain values, in the rep-
resentation of which one can save at most one or two bits, if at all. On the
other hand, the d-field is the one where the greatest savings are achieved
by POM. Thus we shall assume in the sequel that for the d-field, we just
keep one bit in the header, indicating whether the value of the preceding
coordinate should be copied or not; if not, the d-field will appear in its
entire length.

We now describe the specific methods in d&ail.

A. The simple method. The header contains codes for the size (in bits)
of every field.

(i) Allocate two bits for each of the p-, s- and w-fields, giving four
possible choices for each.

We consider the following variations:

a. One of the possible codes indicates the omission of the field,
thus we are left with only 3 possible choices for the length
of each field.

b. The four choices are used to encode field-lengths, thus not
allowing the use of the preceding coordinate.

C. Use a for the p- and s-fields, and b for the w-field.

-601-

Method A() i c is justified by the fact that consecutive coordinates
having the same value in their w-field are rare (3.5% of the concordance
(at RRP). The re,ason is that this corresponds to a certain word appearing
in the same relative location in different sentences, which is mostly a pure
coincidence; on the other hand consecuti\rc coordinates having the same
value in one of their other fields correspond to a certain word appearing
more than once in the same sentence, paragraph or document, and this
occurs frequently. For instance, at RRI?, 23.4% of th.c coordinates have
lthe same s-field as their predecessors, 41.7% have the same p-field and
51.6% have the same d-field.

Note that the header does not contain the binary encoding of the
lengths, since this would require a larger number of bits. By storing a
co&z for the lengths the header is kept smaller, but at the expense of
increasing decompression time, since a table is needed which translates
the codes into actual lengths. This remark applies also to the subsequent
methods.

(ii) Allocate three bits in the h:cadcr for each of the p-, s- and w-fields,
giving 8 possible choices for each.

The idea of (ii) is that by increasing the number of possibilities (and
hence the overhead for each coordinate), the range of possible values can
be partitioned more efficiently, which should lead to savings in the re-
mainkrg part of the coordinate. Again three methods corresponding to a,
b andl c of (i) were checked.

B. Using some fields to encode frequent values.

For some very frequent values, the code in the header will be inter-
preted directly as one of the values, and not as the length of the field
in which they are stored. Thus the corresponding field can be omitted
in all these cases. However, the savings for the frequent values come at
the expense of reducing the number of possible choices for the lengths of
the fields for the less frequent values. For instance, at RRP, the value 1
appears in the s-field of more than 9 million coordinates (about 24% of
the concordance), thus all these coordinates will have no s-field in their
compressed form, and the code in the part of the hcadcr corresponding
to the s-field will be interpreted <as “value 1 in the s-field”.

(i) Allocate 2 bits in the header for each of the p-, s- and w-fields;
one of the codes points to the most frequent value.

-602-

(ii) Allocate 3 bits in the header for each of the p-, s- and w-fields;
three of the codes point to the 3 most frequent values.

There is no subdivision into methods a, b and c as in A (in fact
the method used corresponds to a), because we concluded from our ex-
periments that it is worth to keep the possibility of using the previous
coordinate in case of equal values in some field. Hence one code was allo-
cated for this purpose, which left only 2 codes to encode the field-lengths
in (i) and 4 codes in (ii). For (ii) we experimented also with allowing 2
or 4 of the 8 possible choices to encode the 2 or 4 most frequent values;
however, on our data, the optimum was always obtained for 3. There
is some redundancy in the case of consecutive coordinates having both
the same value in some field, and this value being the most frequent one.
There are then two possibilities to encode the second coordinate using
the same number of bits. In such a case, the code for the frequent value
should be preferred over the one pointing to the previous coordinate, as
decoding of the former is usually faster.

C. Combining methods A and B.

Choose individually for each of the p-, s- and w-fields, the best of
the previous methods.

D. Encoding length-combinations.

If we want to push the idea of A further, we should have a code for
every possible length of a field, but the maxima of the values can be large.
For example, at RRP, one needs 10 bits for the maximal value of the w-
field, 9 bits for the s-field and 10 bits for the p-field. This would imply a
header length of 4 bits for each of these fields, which cannot be justified
by the negligible improvement over method A(ii).

The size of the header can be reduced by replacing the three codes
for the sizes of the p-, s- and w-fields by a single code in the following
way. Denote by E,, I, and 1, the lengths of the p-, s- and w-fields respec-
tively, i.e., the sizes (in bits) of the binary representations without leading
zeros of the values stored in them. In our model 1 2 E,, I,, I, < 10, so
there are up to lo3 possible triplets (Z,, I,, I,). However, most of these
length-combinations occur only rarely, if at all. At RRP, the 255 most fre-
quent (Z,, I,, I,,,)-triplets account already for 98.05% of the concordance.
Therefore

(i) Allocate 9 bits as header, of which 1 bit is used for the d-field;
255 of the possible codes in the remaining 8 bits point to the 255

-603-

most frequent (Zpr I,, E,),-tiriplets; the last code is used to indicate
that the coordinate corresponds to a “rare” triplet, in which cast
the p-, s- and w-fields appear already in their ‘decompressed form.

.4lthough the “compressed” form of the rare coord.inatcs, including
a g-bit header, may in fact’ need more space than the original coordinate,
we still save on the average.

Two refinements are now superimposed. We first note that one. does
not need to represent the integer 0 in any field. Therefore one can use a
representation of the integer n - 1 in order to encode the value TL, so that
only Llogz (n - 1)j + 1 bits are needed instead of Llogz nj + I. This may
seem negligible, because only one bit is saved and only when rt is a power
of 2, thus for very few values of n. However, the first few of these values,
1, 2 and 4, appear very frequently, so that in fact this yields a significant
improvement. At RRP, the total size of the compressed p-, s- and w-fields
(using method D) was further reduced by 7.496, just by shifting the stored
value;s from n to n - 1.

The second refinement is based on the observation that since we
know from the header the exact length of each field, we know the position
of the left-most 1 in it, so that tjhis 1 is also redundant. The possible
values in the fields are partitioned into classes Ci defined by Co = (0},
Ci = .[f : 2i- 1 ,< t < 2’), and the header gives for the values in each of the
p-, s- and w-fields, the indices i of the corresponding classes. Therefore if
i 5 1, there is no need to store any additional information because Co and
Cl are singletons, and for e E Ci for i > 1, only the i - 1 bits representing
the number e - 2’- 1 are kept. For example, suppose the values in the p-,
s- and w-fields are 3, 1 and 28. Then the encoded values are 2, 0 and 27
which. belong to C2, Co and C5 respectively. The header thus points to the
triplet (2,0,5) (assuming that this is one of the 255 frequent ones) and
the rest of the coordinate consists of the five bits 01011, which are parsed
from left to right as 1 bit for the p-field, 0 bits for the s-field and 4 bits
for the w-field. A similar idea was used in [5] for encoding run-lengths in
the compression of sparse bit-vectors.

(ii) Allocate 8 bits as header of which 1 bit is used for the d-field;
the remaining 7 bits are used to encode the 127 most frequent
(I,, I,, I,)-triplets.

The 127 most frequent triplets still correspond to 85.19% of the con-
cordance at RRP. This is therefore an attempt to save one bit in the
header of each coordinate at the expense of having more non-compressed
coordinates.

--ti04-

Another possibility is to extend method D also to the d-field. Let b be
a I3oolean variable corresponding to the two possibilities for the d-field,
namely T = the value is identical to that of the preceding coordinate,
thus omit it, or F = different value, keep it. We therefore have up to 2000
quadruples (4 I,, L , L) , which are again sorted by decreasing frequency.

(iii) Allocate 8 bits as header; 255 of the codes point to the 255 most
frequent quadruples.

At RRP, these 255 most frequent quadruples cover 87.08% of the
concordance. For the last two methods, one could try to get better results
by compressing also some of the coordinates with the non-frequent length
combinations, instead of storing them in their decompressed form. We
did not, however, pursue this possibility.

Encoding

After choosing the appropriate compression method, the concordance
is scanned sequentially and each coordinate is compressed with or without
using the preceding one. For each of the above methods, the length of the
header is constant, thus the set of compressed coordinates forms a prefix-
code. Therefore the compressed coordinates, which have variable lengths,
can simply be concatenated. The compressed concordance consists of
the resulting very long bit-string. This string is partitioned into blocks
of equal size, the size corresponding to the buffer-size of a read/write
operation. If the last coordinate in a block does not fit there in its entirety,
it is moved to the beginning of the next block. The first coordinate of
each block is considered as having no predecessor, so that if in the original
encoding process a coordinate which is the first in a block referred to the
previous coordinate, this needs to be corrected. This allows now to access
each block individually, while adding only a negligible number of bits to
each block.

Decoding

Note that for a static information retrieval system, encoding is done
only once (when building the data base), whereas decoding directly affects
the response-time for on-line queries. In order to increase the decoding
speed, we use a small precomputed table 7 which is stored in internal
memory. For a method with header length k bits, this table has 2” entries.
In entry i of 7, 0 5 i < 2”, we store the relevant information for the
header consisting of the k-bit binary representation of the integer i.

-605 -

:For the methods in A, the relevant, information simply consists of the
lengths, P, S and W, of the p-? s- and w-fields (recall that WC assume
that only one bit is kept in the header for the d-field, so either the d-field
appears in its entire length D, which is constant, or it is omitted), and
of the sum of all these lengths (including 0) , which is the length of the
remaining part of the coordinate. We shall USC the following notations:
for a given internal structure of a decomprcsscd coordinate, let l~,~, IQ,,
h, and h, be the indices of the leftmost bit of the d-, p-, s- and w--fields
respectively, the index of the rightmost bit of a coordina,tc being 0. For
example with a 4 byte coordinate and one byte for each field WC would
have hd = 31, h, = 23, h, = 15 and h, = 7; these values arc constant for
the entire data base. COOR and LAST are both addrcsscs of a contiguous
space in memory in which a single decompressed coordinate can fit (hence
of length It, + 1 bits). The procedure SHIFT(X, y, Z) shifts the substring
of X which is obtained by ignoring its 7~ rightmost bits, by z bits to
the left. Then the following loop could be used for the decooding of a
coordinate:

1. 1.00~ while there is more input or until a certain coordinate is found
2. N c next k bits I[read header 1
3. (TOT, P, S, W) + 7(H) I[decode header using table J
4. COOR * next TOT bita [right justified sufIix of coordinate]
5. SHIFT(COOR, W, h, - W) [move d-, p- and s-field 1
6. SHIFT(COOR, h, + S, h, - S) [move d- and p-field]
7. SHIFT(COOR, h, + P, h,, - P) [move d-field]
3. if TOT = P + S + VV then copy d-field from LAST
9. ifP= 0 then copy p-field from LAST
10. if S = 0 then copy s-field from LAST
11. ifW = 0 then copy w-field from LAST
12. LAST +- COOR
13. end of loop

There is no need to initialize LAST, since the first coordinate of a
block never refers to the prcccding coordinate.

F’or the methods in B and C., we store sometimes actual values, and
not .just the lengths of the fields. This can be implemcntcd by using
negative values in the table 7. ;For cxamplc, if P = -2, this could be
interpreted as “value 2 in the p-field”. Note that when the value stored
in a field is given by the header, this field has length 0 in the remaining
part of the coordinate. Thus we need the following updates to the above
algorithm: line 3 is replaced by

(TOT, PI, Sl, Wl) t- 7(H)
ifP1<OthenP+OelseP+--Pl

---GO6 -

and statements similar to the latter for the s- and w-fields. After statc-
ment 11 we should insert

if Pl < 0 then put --Pl in p-field of COOR

and similar statements for the s- and w-fields.

The decoding of the methods in D is equivalent to that of A. The
only difference is in the preparation of the table 7 (which is done only
once). While for A to each field correspond certain fixed bits of the header
which determine the length of that field, for D the header is non-divisible
and represents the lengths of all the fields togcthcr. This does not affect
the decoding process, since in both methods a table-lookup is used to
interpret the header. An example of the encoding and decoding processes
appears in the next section.

4. Experiment al results

All the methods of the previous section wcrc compared on the con-
cordance of RRP. Each coordinate had a (cl,]?, s, w)-structure and was of
length 6 bytes (45 bits). Using POM, the average length of a compressed
coordinate was 4.196 bytes, i.e., a compression gain of 30%.

In order to apply the new methods, the following statistics were col-
lected in a sequential sccan of the concordance.

1. For integers i, 1 5 i < 2 I*, how often does i app car in each of the
p-, s- and w-fields (for A(i)b, A(ii)b, B and C).

2. Same as in 1, but where an appearance of i in a ceratin field was
not counted when the previous coordinate had the same value i in
the same field (for A(and A(ii

3. The frequencies of the possible combinations of field-lengths (for
D(i) and D(ii)), and the frequencies of the possible quadruplets
(b, Z,, I,, Zw) (for D(iii)).

Table 1 gives the frequencies of the first few values in each of the p-,
s- and w-fields, both with and without taking into account the previous
coordinate. The frequencies are given in cummulative percentages, e.g.,
the row entitled s-field contains in the column hcadcd i the percentage of
coordinates having a value < i in their s-field. We have also added the
values for which the cummulative percentage first exceeds 9970.

-607-

Table 1: Distribution of values stored in p-, s- and w-fields

--P

Value 1 2 3 4 5 79 83 87 !33 119 120

ignoring p-field 14.1 -35.2 46.5 54.2 60.2 99

preceding s-field 24.2 40.2 51.1 58.8 64.5 99

coordinate w-field 3.0 5.8 8.6 11.4 14.0 99
- --- --

using p-field 9.6 25.2 36.5 45.0 51.7 99

preceding s-field 17.9 33.0 44.3 52.6 58.9 99

coordinate w-field 1.9 4.4 7.l 9.7 12.4 99

As one can see, the first four values in the p- and s-fields account
already for half of the concordance. This means that most of the para-
graphs consist of only a few sentences and most of the documents consist
of only a few paragraphs. The figures for the w-field are different, because
short sentences are not preponderant. While the (non-cummulative) fre-
quency of the values i in the s-field is a clearly decreasing function of i,
it is interesting to note the peel< at value 2 for the p-field. This can be
explained by the specific nature of the Rcsponsa litcraturc, in which most
of the documents have a question-answer structure. Therefore the first
paragraph of a document usually contains just a short question, whereas
the answer, starting from the second paragraph, may be much longer.

When all the coordin.ates are considered (upper half of Table l), the
percentages are higher than the corresponding percentages for the case
where identical fields in adjacent coordinates are omitted (lower half of
Table 1). Th is means that the idea of copying certain fields from the
preceding coordinate yields to savings which are, for the small values,
larger than could have been expected from knowing their distribution in
the non-compressed concordance.

Using the information we collected from the concordance, we have
checked all the possible variants for each of the methods in A and B.
Since the maximal field-length (10 for the p- and w-fields) had to be
included for every variant, the number of variants to be checked for the
p- and w-fi Id e s was only ($ for A(i ($ for A(i)b, (i) for A(i (“,)

for A(ii)b, (7) for B(i) and (i) for B(ii); the maximum for the s-field
is 9, so the corresponding numbers for the s-field are obtained from the
above, by substituting 8 for 9 in the binomial coefficients. Table 2 lists
for each of the methods the variant for which maximal compresion was
achieved. The numbers in boldfac:e are the frequent values which are used
in methods B and C, the other numbers refer to the lengths of the fields.

--608-

The value 0 indicates that the field of the preceding coordinate should be
copied.

Table 2: Optimal variants of the methods

Method p-field s-field w-field

A(02510 0259 04610

A(i)b 13510 1359 35610

A(012345610 01234569 013456710

A(ii) b 123456710 12345679 123456710

B(i) 02410 0149 04610

B(ii) 012334510 01233459 034535610

c 02510 01233459 35610

The optimal variants for the methods A(G) are not surprising: since
most of the stored values are small, one could expect the optimal partition
to give priority to small field-lengths. For method C, each field is com-
pressed by the best of the other methods, which are A(for the p-field,
B (ii) for the s-field and A(i) b for the w-field, thus requiring a header of
1+2+3+2 = 8 bits (including one bit for the d-field).

The entries of Table 2 were computed using the first refinement men-
tioned in the description of method D, namely storing n - 1 instead of
n. The second refinement (dropping the leftmost 1) could not be applied,
because it is not true that the leftmost bit in every field is a 1. Thus for
all the calculations with methods A and B, an integer n was supposed to
require Lloga (n - l)] + 1 bits for n > 1 and one bit for n = 1.

As an example for the encoding and decoding processes, consider
method C, and a coordinate structure with (1~) h, , h, , h,) = (8,8,8, S),
i.e., one byte for each field. The coordinate we wish to process is (159,2,2,
35). Suppose further that only the value in the d-field is the same as in
the previous coordinate. Then the length D of the d-field is 0; in the p-
field the value 1 is stored, using two bits; nothing is stored in the s-field,
because 2 is one of the frequent values and directly referenced by the
header; in the w-field the value 34 is stored, using 6 bits. The possibble
options for the header are numbered from left to right as they appear in
Table 2, hence the header of this coordinate is O-10-011-11, where dashes
separating the parts corresponding to different fields have been added for
clarity; the remaining part of the coordinate is 01-100010. The table 7 has
2’ = 256 entries; at entry 79 (= 01001111 in binary) the values stored

-609-

dare (TOT, Pl, Sl, Wl) = (3,2, -2, 6). When decoding the: cornprcsscd
coordinate 0100111101 lOOC~10, the leftmost 8 bits are considered as header
and converted to the integer 79. Table 7 is then accessed with that index,
retrieving the 4-tuple (8,2, -2,6) which yields the values (P, S, IV) =
(2,0,16). The next TOT = 8 bits are therefore I.osdcd into CO0.R o:f size
4 bytes, and after the three shifts ‘we get

COOR = 00000000 - OOO~.)OUlO - OOC~OOOOO - 00100010.

Since TOT = P + S + Tiv the value of the d-field is copied from the Iast
coordinate. Since Pl < 0, the value -Sl --= 2 is put into the s-field.

In Table 3, the most frequent length combinations for the methods
in D are given, together with their relative weights (in %I). For D(i)
the triplets (I,, 1, , 1,) are listed and for D(ii) the quadruples (b, E,, I,, I,),
b being the Boolean variable corresponding to the d-field. In order to
evaluate the influence of the first refinement, statistics were also collected
using a Llogz nJ bit representation for an integer 71 (thus again omitting
the leftmost 1).

Table 3; Most frequent length combinations

using 1 log, nJ bits

I, L Ll

1 1 5
1 2 5
2 1 5
205
10 5
12 4

%

2.31
2.16
1.92
1.90
1.84
1.82

Dl(i) D(ii)
b I, I, I, %

TOO5 2.33
TOO 4 1.99
TOO3 1.46
E-205 1.33
T105 1.30
IF305 1.28

Shifting the stored values from n to 72 - 1 completely changed the
order of the list of length-combinations, which was ordered by decreasing
frequency. For example the two most frequent triplets for D(i), (O,O, 5)

XuJ (0,0,4), aPP ear in the list of tlhe method without the first refinement
(leftmost column of Table 3) only in positions 42 and 50 respectively.

Table 4 summarizes the results. For each method the average length
in bytes of the compressed coordinate (using the best variant) is given.
Compression is in percent and defined as

average siz,e of compressed coordinate

size of non-compressed coordinate > x 100.

The improvement over POM is defined as the relative additional savings
(in percent) when substituting the new methods for POM.

On our data, the best method was O(i), followed by C which clearly
improves both A and B. Nevertheless, the results depend heavily on the
statistics of the specific system at hand, so that for another data base,
other methods could be preferable.

Table 4: Compression results

Method

POM

length average improvement
of the coordinate compression over
header length % POM
in bit (in byte) %

2 4.196 30.1 -

(i) tt
7 3.166 47.2 24.6
7 3.259 45.7 22.3

C 7 3.151 47.5 24.9
A

“b
10 3.281 45.3 21.8

(ii) 10 3.444 42.6 17.9
C 10 3.292 45.1 21.5

B 6) 7 3.327 44.6 20.7
(ii) 10 3.279 45.4 21.9

C 8 3.144 47.6 25.1

6) 9 3.082 48.6 26.6
D (ii) 8 3.591 40.2 14.4

(iii) 8 3.497 41.7 16.7

5. Conclusion

The new methods efficiently compress the concordance, which is the
largest and most frequently accessed file of a full-text retrieval system.
They achieve a significant improvement over the known prefix omission
technique, while still being easy to implement and allowing for fast de-
compression. The main target of the efforts was to try to eliminate or
at least reduce the unused space in the coordinates. Note that this can
easily be achieved by considering the entire data base as a single long
run of words, which we could index sequentially from 1 to N, N being

-61L

the tcbtal number of words in the text. Thus Llogz NJ + 1 bits would bc
necessary per coordinate. However, the hierarchical structure is lost, so
that, for example, queries asking for the co-occurrence of scvcral words
in the same sentence or paragraph are much harder to process. More-
over, .when a coordinate is represen.ted by a single, usually large, :number,
we lose also the possibility t,o omit certain fields which could be colpicd
from preceding coordinates. A hierarchical structure of a coordinate is
therefbre preferable for the retrieval algorithxns. As can be seen from Ta-
ble 4, some of the new com.pression methods even outperform the simple
method of sequentially numbering the words, since the latter would imply
at the RRP data base a coordinate: length of 26 bits = 3.25 bytes.

References

PI

PI

PI

PI

PI

Bratley f., Choueka Y., Processing truncated terms in docu-
ment retrieval systems, Inf. Processing & Management 18 (1982)
257-266.

Choueka Y., Full text systems and research in the humanities,
Computers and the Humanities XIV (19SO) 153-169.

Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved
hierarchical bit-vector compression in document retrieval systems,
Proc. 9-th ACM-SIGIR COT$, Pisa; ACM, Baltimore, MD (1986)
88-97.

F’raenkel A-S., All about the Responsa Retrieval Project you
always wanted to know but were afraid to ask, Expanded Summary,
Jurimetrics J. 16 (1976) 149-156.

F’raenkel A.S., Klein S .‘I’. , Novel compression of sparse bit-
strings - preliminary report, Comhatorial Algorithms on Words,
NATO ASI Series Vol. F12, Springer Vcrlag, Berlin (1985) 16!I-
183.

-612-

