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P a r t  of t h i s  work  was  d o n e  whi l e  t h e  s econd  a n d  t h i r d  a u t h o r s  were  p a r t i a l l y  af f i l ia ted  w i t h  I R C O L  

A B S T R A C T  

In  s t a t i c  fu l l - t ex t  r e t r i eva l  sy s t ems ,  w h i c h  accom-  
m o d a t e  m e t r i c a l  as well as B o o l e a n  o p e r a t o r s ,  t h e  t r a -  
d i t i o n a l  a p p r o a c h  to q u e r y  p r o c e s s i n g  uses  a "concor -  
d a n c e " ,  f r o m  w h i c h  la rge  sets  of c o o r d i n a t e s  a r e  re- 
t r i e v e d  a n d  t h e n  m e r g e d  a n d / o r  co l la ted .  A l t e rna t i ve ly ,  
in  a s y s t e m  w i t h  e d o c u m e n t s ,  t h e  c o n c o r d a n c e  can  b e  
r ep l aced  b y  a se t  of b i t - m a p s  of f ixed l e n g t h  ~e, w h i c h  
a re  c o n s t r u c t e d  for  eve ry  d i f ferent  word  of t h e  d a t a b a s e  
a n d  serve  as o c c u r r e n c e  m a p s .  W e  p r o p o s e  to  c o m b i n e  
t h e  c o n c o r d a n c e  a n d  b i t - m a p  approaches~ a n d  show h o w  
th i s  c a n  speed  u p  t h e  p r o c e s s i n g  of quer ies :  f a s t  A N D i n g  
a n d  O R i n g  of t h e  m a p s  in a p r e p r o c e s s i n g  s tage ,  l ead  to 
l a rge  I / O  sav ings  in co l l a t ing  c o o r d i n a t e s  of keywords  
n e e d e d  to  sa t i s fy  t h e  m e t r i c a l  a n d  B o o l e a n  c o n s t r a i n t s .  
Moreover ,  t h e  b i t - m a p s  give p a r t i a l  i n f o r m a t i o n  on  t h e  
d i s t r i b u t i o n  of t h e  c o o r d i n a t e s  of t h e  keywords ,  w h i c h  
c a n  b e  u sed  w h e n  quer ies  m u s t  b e  p roces sed  b y  s tages ,  
due  to  t h e i r  c o m p l e x i t y  a n d  t h e  sizes of t h e  i nvo lved  
se t s  of coo rd ina t e s .  T h e  new  t e c h n i q u e s  a re  p a r t i a l l y  
i m p l e m e n t e d  a t  t h e  R e s p o n s a  R e t r i e v a l  P r o j e c t .  
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1. Motivation and Introduction 

TraditionMly, processing queries in static 
full-text systems which accommodate metrical 
operators in addition to Boolean operators, has 
been supported by the (now classical) structure 
of a text, dictionary and concordance files. In a 
typical example, to find all the documents that  
contain the keywords A and B in the same sen- 
tence, one has to access the concordance, via 
the dictionary, to retrieve the sets of coordi- 
nates of A and B, and to collate these sets in or- 
der to find all occurrences of A and B with the 
same document, paragraph and sentence num- 
bers. 

Often, however, each keyword stands for a 

family of linguistically different variants, all se- 
mantically equivalent for the given search, and 
each with its own set of coordinates. These 
families can be very large, especially for highly 
inflected languages such as Hebrew, for which 
every noun has a few thousand grammatical 
variants and every verb up to 20,000 (in just 
one of the seven possible modes)! Thus the co- 
ordinates of the variants in each family must 
first be merged before doing the collation. This 
situation, coupled with the fact that  the merged 
sets can contain hundreds of thousands of ele- 
ments, make the search almost impossible to 
conduct with a limited internal memory and a 
reasonable response time. 
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Full-text information retrieval systems may 
be partitioned according to the level of speci- 
ficity supported by their queries. For exam- 
ple, in a system operating at the document- 
level, queries can be formulated as to the pres- 
ence of certain keywords in each document of 
the data base, but not as to their exact loca- 
tions within the documents. Similarly, one can 
define the paragraph-level and sentence-level, 
each of which is a refinement of its predecessor. 
The highest specificity level is the word-level, 
in which the requirement is that the keywords 
appear within specified distances of each other. 
For example, one could retrieve all the occur- 
rences of A and B such that  there are at least 
two but at most five words between them. Also 
the paragraph and sentence-levels permit met- 
rical constraints, e.g., at the sentence-level one 
could ask for all the occurrences of A and B in 
the same or adjacent sentences. 

terns. Moreover, the processing of metrical con- 
straints is hard to implement. 

We present here new techniques in which, 
basically, the concordance and bit-map ap- 
proaches are combined: at the cost of marginally 
expanding the inverted files' structure, com- 

pressed bit-maps are added to the system; these 
maps give partial information on the location of 
the different words in the text and their distri- 
bution. Some parts of the method were recently 
implemented at the Responsa Retrieval Project 
(RRP), a full-text information retrieval system 
of about 48,000 documents, containing some 53 
million words, written mainly in Hebrew and 
Aramaic. More details on RRP can be found in 
[4] and [7]. The new approach solves the above 
mentioned problems in all those cases where the 
number of retrieved documents is not too large, 
as happens for all well-posed queries. 

For systems supporting retrieval only at 
the document level, a different approach to que- 
ry processing might be useful. The idea is to 
replace the concordance of a system with g doc- 
uments by a set of bit-maps of fixed length 2. 
Given some fixed ordering of the documents, a 
bit-map B(W) is constructed for every distinct 
word W of the data base, where the i-th bit of 
B(W) is 1 if W occurs in the i-th document, 
and is 0 otherwise. Processing queries then 
reduces to performing logical OR/AND opera- 
tions on binary sequences, which is easily done 
on most machines, instead of merge/collate op- 
erations on more general sequences. Davis & 
Lin [6] were apparently the first to propose the 
use of bit-maps for secondary key retrieval. It 
would be wasteful to store the bit-maps in their 
original form, since they are usually very sparse 
(the great majority of the words appear in very 
few documents). Various methods for the com- 
pression of such large sparse bit-vectors are sug- 
gested in [5] and [8]. However, the concordance 
can be dropped only if all the information we 
need is kept in the bit-maps. Hence, if we wish 
to extend this approach to systems support- 
ing queries also at the paragraph, sentence or 
word-level, the length of each map must equal 
the number of paragraphs, sentences or words 
respectively, which is infeasible for large sys- 

2. Statement of the Problem 

A query consists of an optional level-indica- 
tor, m keywords and m -  1 metrical constraints, 
as  i n  

level: A1 (l l ,Ul) - "  Am-1 (Im-l,Um-1) Am. 
(1) 

The keyword Ai represents a set of words Ai = 
n l  Uj=i  Aij, all of which are considered synony- 

mous for the given query. Typically, most of 
the Aij are grammatical variants of some noun 
or verb. The li and ui are (positive or negative) 
integers satisfying li < ui for 1 < i < m, with 
the couple (li, ui) imposing a lower and upper 
limit on the distance from Ai to Ai+l.  Negative 
distance means that  Ai+l may appear before Ai 
in the text. The distance is measured in words, 
sentences or paragraphs, as prescribed by the 
level-indicator. In case the latter is omitted, 
word-level is assumed. 

In its simplest form, the  keyword Ai is 
a single word or a (usually very small) set of 
words given explicitly by the user. In more 
complex cases, a variable length don't  care char- 
acter * can be used, which stands for an arbi- 
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trary, possibly empty, string• This allows the 
use of prefix, suffix and infix truncated terms in 
the query. For example, Ai could be comput., 
representing, among others, the words compu- 
t e r ,  computing, computer ize ,  etc.; or it could 
be *mycin, which retrieves a large class of an- 
rSbiotics; infix truncation can be very useful 
for spelling foreign names, such as Ba*tyar ,  
where • could be matched by It, k, kh, ch, sh, 
sch, etc• At the highest level of complexity, all 
the grammatical variants of some word are re- 
quired. A!though these are easily generated in 
some languages like English, sophisticated lin- 
R'lllStlC 
~o,..qs are needed for languages such as Hebrew, 
Ars'?oic and many others. For example, suppose 
tinct the database is in Hebrew and that  Ai is 
the fan~Iy of the variants of the word "daugh- 
ter". A~ element of this family would be the 
phrase "mid when our daughters", because its 
tran~d~tion in Hebrew is a single 10-character 
word, which has retained only one letter from 
the originM stem of "daughter". For all corn- 
ple:: queries, the fami!ies Ai are constructed in a 
prcprcccssing stage. Algorithms for generating 
thc fanS!its identified by t runcated terms can 
be found in [3], and for the families of gram- 
maticai variants in [1]. 

For every word Aij  there is an entry C(Aij)  
in t].m concordance, listing the coordinates of all 

~he occurrences of Aij  in the data base. In the 
sequel, we identify any keyword Ai with the 
merg~,d list of coordinates of Ai = I I n.i ~ Ai~ 

. ,.~3__-- 1 J • 

The most general form of the problem of sat- 
isfying query (1) consists of finding all the m- 
tuples ( a l , . . . ,  am) of coordinates satisfying 

ViE { 1 , . . . , m }  3j e { 1 , . . . , n i }  (2) 
with ai E C(Aij)  

and 

li < d(ai ,a i+l)  <_ ui for 1 < i < m, (3) 

where d(x, y) denotes the distance from x to y 
on the given level• Every m-tuple satisfying (2) 
and (13) is called a solution. 

The general definition of the metrical con- 
straints allows great flexibility in the formula- 
tion of the query. Consecutive words are re- 

trieved with (li, ui) = (1, 1); this can be used 
for compound names (Sovie t  Union), foreign 
expressions ( s t a t u s  quo), etc. The query t r u e  
(-2,2) f a l s e  can be used to retrieve the phrases 
true or false and false or true; since 

these words appear frequently in some math- 
ematical texts, searching for t r u e  and f a l s e  
in the same sentence could generate noise. A 
lower bound greater than 1 is needed for exam- 
ple when one wishes to locate phrases in which 
some words X1, X2,... appear, but  the jux- 
taposition of these words X1X2"'" forms an 
idiomatic expression which we do not wish to 
retrieve. For example, . . .  t h e  s e c u r i t y  of 
the  counc i l  members assembled he re  . . .  
should be retrieved by the query s e c u r i t y  (2,4) 
council. 

A well-known problem in retrieval systems 
is the handling of "negative" keywords, i.e., 
words the absence of which is required in a cer- 
tain context. A negation operator is particu- 
larly useful for excluding known homonyms so 
as to increase precision. For example, search- 
ing for references to the US President, one could 
subnfit the query Reagan (-2,1) --Donald. The 
general form of a query as given in (1) should 
therefore include the possibility of negating 
some - -  but not all - -  of the keywords. In con- 
nection with negative keywords, the constraints 
(l i ,ui)  = (0,0) can be used to restrict some 
large families of keywords. For example corn- 
p u t .  (0,0) - c o m p u t e r ,  would retrieve comput- 
ing ,  computa t ion ,  etc, but not computer or 
computers.  The definition (3) implies that  one 
can impose metrical constraints only on adja- 
cent keywords. In the query A (1,5) B (2,7) C, 
the pair (2,7) refers to the distance from B to C. 
If we wish to impose positive bounds on the dis- 
tances from A to both B and C, this can be done 
by using negative distances: C (-7,-2) A (1,5) 
B, but this procedure cannot be generalized to 
tying more than two keywords to A. 

At the end of the search process, the solu- 
tions are presented to the user in the form of a 
list of the identifying numbers or the titles of 
the documents that contain at least one solu- 
tion, possibly together with the text of the sen- 
tence (or the paragraph), in which this solution 
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occurs. The exact details of the display depend 
on the specific system, on the target population 
and on the human-interface design of the sys- 
tem. One possible presentation is in form of a 

KWIC-index (see e.g. Heaps [9]). One of the 
keywords is chosen by the system as axis, that  
is, its occurrences will appear centered on the 
screen. One line is displayed for every m-tuple. 
Once the axis is fixed, different m-tuples may 
produce the same KWIC-line. For example if 
the query is gaited (1,7) Nations and a part of 

the text is... the United States are part 
of the United Nations and ..., then the set 
of retrieved couples contains two elements. If 
the keyword United is chosen as axis, this 
will result in two KWIC-lines: 

. . .  the U n i t e d  States are part 

are part o f  the U n i t e d  Nations emd . . .  

On the other hand, if Nations is chosen as 
axis, the two solutions produce the same line: 

of the  Uni ted  Nations and . . .  

Thus after having chosen the axis, the search 
problem (1) becomes that  of finding the differ- 
ent KWIC lines which satisfy the constraints 
imposed by the query. Note that  for certain val- 
ues of m, I i and ui,  it is possible that  a given dis- 
played line does not include the occurrences of 
all the elements of the corresponding m-tuple, 
because of the fixed length of the former. 

3. The Power of Bit-Maps 

For every distinct word W of the data base, 
a bit-map B ( W )  is constructed, which acts as 
"occurrence"-map at the document level. The 
length (in bits) of each map is the number of 
documents in the system. Thus, in the RRP 
for example, the length of each map is about 

6K bytes. These maps are stored in compressed 
form on a secondary storage device. At RRP, 
the compression algorithm was taken from [5], 
reducing the size of a map to 350 bytes on the 
average. This compression method was used for 
only about 109~ of the words, those which ap- 
pear at least 70 times; for the remaining words, 
the list of document numbers is kept and trans- 
formed into bit-map form at processing time. 
The space needed for the bit-map file in its en- 

tirety is 33.5 MB, expanding the overall space 
requirement of the entire retrieval system by 
about 5%. 

At the beginning of the search (1), the maps 
B ( A i j )  are retrieved, for i = 1 , . . . ,  m and j = 
1 , . . . , n  i. They are decompressed and a new 
map ANDVEC is constructed: 

ANDVEC = B ( A i j )  • (4) 
i=1  

The bit-map ANDVEC serves as a "filter", for 
only documents corresponding to 1-bits in 
ANDVEC can possibly contain a solution. Note 
that  no more than three full-length maps are si- 
multaneously needed for the operations in (4), 
as e.g. in the following implementation: 

A N D V E C  4-- s t r ing  of l ' s  

d o  i~---1 t o  m 

O R V E C  ~ s t r ing  of O's 

d o  j 4 - - 1  t o  ni  

O R V E C  ~-- O R V E C  V B(Aij) 
e n d  

A N D V E C  ~ A N D V E C  A O R V E C  

e n d  

The logical operators ~/-'ancl-A-'are-applied on 
bits with the same indices. 

For certain queries, in particular when key- 
words with a small number of occurrences in 
the text are used, ANDVEC will consist only 
of zeros, which indicates that  nothing should 
be retrieved. In such cases the user gets the 
correct if somewhat meager results, without a 
single merge or collate action having been exe- 
cuted. But even if ANDVEC is not null, it will 
usually be much sparser than its components. 
In order to see how this map can improve the 
retrieval process, we need first some informa- 
tion on the way the concordance is Stored. 

The concordance contains, for each distinct 
word of the data  base, the ordered list of the 
coordinates of its occurrences. Since the file is 
usually too big to be stored in internal memory, 
it is kept in compressed form on secondary stor- 
age, and parts of it are fetched when needed, 
and decompressed. In the RRP, the length of 
every coordinate is 8 bytes, consisting of codes 
for author, document, paragraph, sentence and 
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word numbers, as well as some flags. The com- 
pression method used is the prefix-omission 
technique, which basically consists of storing a 
common prefix of consecutive entries only once. 
The method is described in [3] and yields on the 
RRP database a compression gain of 35%. 

The compressed concordance file is par- 
titioned into equi-sized blocks such that  one 
block can be read by a single I /O operation. A 
block can contain coordinates of many "small" 
words (i.e., words with low frequency in the 
database), but on the other hand, the coor- 
dinate list of a single "large" (high-frequency) 
word may extend over several consecutive 
blocks. In the RRP, for example, about half of 
the words appear only once, but on the other 
hand there are some words that  occur hundreds 
of thousands of times! The concordance is ac- 
cessed via the dictionary, which contains for 
each word a pointer to the corresponding (first) 
block. It is for the large words that  the bit- 
map ANDVEC may lead to significant savings 
in the number of I /O operations. Rather than 
reading all the blocks to collect the list of coor- 
dinates which will later be merged and/or  col- 
lated, we access only blocks which contain co- 
ordinates in the documents specified by the 1- 
bits of ANDVEC. Hence if the map is sparse 
enough, only a subset of the blocks need to 
be fetched and decompressed. To implement 
this idea, we need, in addition to the bit-map, 
also a small list L(W) for each large word W, 
L(W) = {(fj,~j)}, where fj  and ~j are respec- 
tively the document numbers of the first and 
last coordinate of W in block number j ,  and 
j runs over the indices of blocks which contain 
coordinates of W. The list L(W) is scanned to- 
gether with the bit-map, and if there is no 1-bit 
in ANDVEC in the bit-range [fj,ij], the block 
j is simply skipped. 

There are, however, savings beyond I /O- 
operations. Once a concordance block contain- 
ing some coordinates which might be relevant 
is read, it is scanned in parallel with AND- 
VEC. Coordinates with document numbers cor- 
responding to 0-bits are skipped. For the axis, 
which is the first keyword Ai to be handled, this 
means that  only parts of the lists C(Aij) will be 
transferred to a working area, where they are 

merged. The lists of the keywords Aj (j ~ i) 
are directly collated with the axis. Such colla- 
tions can be involved operations, as the met- 
rical constraints may cause each coordinate of 
the axis to be checked against several coordi- 
nates of every variant of other keywords, and 
conversely every such coordinate might collate 
several coordinates of the axis. Therefore the 
use of ANDVEC may save time by reducing 
the number of collations. Moreover, after all 
the variants of the second keyword have been 
collated with the axis, the coordinates of the 
axis which were not matched can be rejected, 
so that the axis may shrink considerably. Now 
ANDVEC can be updated by deleting some of 
its 1-bits, which again tends to reduce the num- 
ber of read operations and collations when han- 
d.ling the following keywords. The updates of 
the axis and ANDVEC are repeated after the 
processing of each keyword Ai of (1). 

For conventional query processing algo- 
rithms, the consequence of increasing the num- 
ber m of keywords is an increased processing 
time, whereas the set of solutions can only 
shrink. When m is increased with the bit-map 
approach, however, the time needed to retrieve 
the maps and to perform some additional log- 
ical operations is usually largely compensated 
for by the savings in I /O operations caused by 
a sparser ANDVEC. The new approach seems 
thus to be particularly attractive for a large 
mlmber of keywords. Users are therefore en- 

couraged to change their policy and to submit 
more complex queries! 

Another possible application of the bit- 
maps is for getting a selective KWIC-display. 
A user is often not interested in finding all the 
occurrences of a certain phrase in the data  base, 
as specified by the query, but only in a small 
subset corresponding to a certain author or a 
certain period. The usual way to process such 
special requests consists in executing first the 
search ignoring the restrictions, and then fil- 
tering out the solutions which are not needed. 
This can be very wasteful and time-consuming, 
particularly if the required sub-range (period 
or author(s)) is small. The bit-maps allow the 
problem to be dealt with in a natural  way, re- 
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quiring only minor changes to adapt  the  search 
program to this application. All we need is to 
prepare a small repertoire 7~ of fixed bit-maps,  
say one for each author ,  where the 1-bits in- 
dicate the documents  wr i t ten  by this author ,  
and a map  for the documents  of each year or 
period, etc. The  restrictions can now be formu- 
lated at the same t ime the  query is submit ted.  
In the first line of the above algorithm, AND- 
VEC will not  be initialized by a string contain- 
ing only l 's, but  by a logical combinat ion of 
elements of T~, as induced by the addit ional  re- 
strictions. Thus user-imposed restrictions on 
required ranges to which solutions should be- 
long on one hand,  and query-imposed restric- 
tions on the co-occurrence of keywords on the 
other, are processed in exact ly the same way, 
resulting in a bit-vector, the  sparsity of which 
depends directly on the severity of the restric- 
tions. As was pointed out earlier, this may  lead 
to savings in processing t ime and I / O  opera- 
tions. 

If a query including some negative key- 
words Di is submi t ted  at the document-level,  
one can use the b inary  complements  B(Di) of 
the maps,  since only documents  wi th  no occur- 
rence of Di (indicated by the 0-bits) can be rel- 
evant. However, for other  levels, the process- 
ing is not  so simple. In fact, if the query  is 
not  on the document  level, the bi t-maps of the 
negative keywords are useless, and ANDVEC 
is formed only by the maps of the  positive key- 
words. Nevertheless, ANDVEC will be useful 
for the negative words to the  same extent  as to 
the positive, since only coordinates in the rele- 
vant documents  have to be checked not to fall 
in the vicinity of the axis, as imposed by  the 

. More Details on the Search 

Process 

As ment ioned earlier, the  sys tem has to 
choose the axis for the  collations. More gener- 
ally, the  order of handling the  keywords needs 
to be fixed. Not all the m! orderings are pos- 
sible, as varying metrical  constrmnts  m a y  force 
a linear search, once the  axis is fixed. For ex- 

ample, if in the query "A (2,3) B (1,3) C" th,; 
keyword A is chosen as axis, then the next  one 
to be collated should be B. If we deal first with 
C, assuming tha t  it must  appear  between 3 to 
6 words after A, and then only tu rn  to look 

for B, 1 to 3 words before C, then  the  follow- 
ing string would be retrieved: " . . .  x A x x 
x B x C x . . . " ;  however, it does not  satisfy 
the query because the  distance from A to B is 
4. Hence the order of processing the keywords 
is more  restricted. In fact, at any stage, one 
of the  keywords can be chosen which is adja- 
cent to one of those a l ready handled.  Let c = 
( a ( 1 ) , . . .  ,a(m)) be a pe rmuta t ion  of (1 , . . .  ,rn) 
giving the order of processing of the  keywords. 
If Ai is the axis, i.e., a(1)  = i, then  a is deter-  
mined by choosing the  subset of size i - 1 f rom 
the set { a ( 2 ) , . . .  , a ( m ) }  for the elements j of 
which a(j) < i. Thus  the  number  of possible 
orderings is E~n=l (7_-11) = 2 m-1  . 

Intuitively, the keyword with the smallest 
number  of coordinates seems to be a good choice 
for the axis. This,  however, is not  always opti- 
mal  as can be seen f rom the  following example.  
Suppose A, B, C and D have 90, 10000, 100 and 
100 coordinates respectively and the query  is 
"A (1,3) B (2,4) C (3,5) D'. If the  axis is A, but  
then the large list of B is the next  to be collated 
with 90 coordinates.  If on the  o ther  hand  we 
collate first C with D, then the  list to be collated 
with 13 will probably  be much smaller. In addi- 
tion, the corresponding ANDVEC,  which was 
upda ted  after  the collation of C with D, will be 
sparser, so tha t  chances are good tha t  not  all 
the coordinates of 13 need to be considered. 

We propose the  following heuristic for de- 
ciding the  collate order (not yet  implemented) .  
Every  keyword is assigned a normalized weight 
Wi, which is the number  of coordinates  of key- 
word Ai, divided by--t-S-number o fcoord ina te s  
of the  largest keyword list, so tha t  0 < Wi _< 
1. Among  the  2 m - 1  possible permuta t ions  or, 
choose one which minimizes 

= 

"= j = l  

Note tha t  information on the  number  of coor- 
dinates of each keyword is usually s tored in the 
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dictionary, so tha t  this heuristic can be  applied 
wi thout  accessing the concordance.  

The  formula P(a) is based  on the assump- 
t ion tha t  the size of the  collation of two lists is 
proport ional  to the sizes of these two lists. It is 
of course easy to construct  artificial exa.mples in 
which very large lists of adjacent  keywords have 
an empty  collation, whereas the  much smaller 
lists of other  adjacent  keywords p roduce  many  
relevant couples of coordinates.  Nevertheless,  
the above heuristic can be  justif ied when no 
other  a priori knowledge of the  dis t r ibut ion of 
coordinates  is available. As to the  t ime needed 
to evaluate  P(a), it should be  noted  tha t  the  
number  of keywords m is usually small. There-  
fore even the  s t raightforward O(m2 m) algo- 
r i thm could be  used, bu t  there  is a dynamic  
programming algorithm, the  t ime complexi ty  
of which is only O(m2) .  

Consider the query  "A (1,9) B (5,9) C" and 
suppose A is chosen as axis. Only the coordi- 
nates  of A will be  s tored in the working area. 
However,  for the  correct processing of the  key- 
word C, we need to store, for every coordinate  of 
A, the  distances to several matching coordinates  

of B. More precisely, given the ordered set S of 
coordinates  of B which "intersect" a f ixed coor- 
dinate  x of A, we keep the distance from x to  the  
first and last elements of S. If the  axis is not  at  
one of the ends A1 or Am, addit ional  space is 
needed for the possible matchings in both direc- 
tions. In order to reduce the  needed space, one 
can restrict  the  processing to only one direction: 
after  having fixed the axis Ai, possible process- 
ing orders are either Ai+l "'" AmAi-1 "'" A1 or 
A i - l " "  A1Ai+I"'" Am. For i = 1 and i = m, 
only one order is possible, thus  there are only 
2(m - 1) collate orders which have to be  con- 
sidered. 

As ment ioned in the introduct ion,  the num- 
ber  of coordinates  of every keyword may  be  
very large for certain queries. This  may  be  t rue 
even after the filtering process by  ANDVE C ,  in 
case each keyword includes some very frequent  
words as variants. Since the available space 
in internal memory  is restricted,  it will some- 
t imes not  be  possible to store all the coordi- 
nates  of the axis simultaneously. Note  tha t  not  

only space for the coordinates is required, bu t  
for each of them addit ional information needs 
to be  kept  as to the  locations of other  coordi- 
nates  with which they  collate. In such cases, 
we par t i t ion the  da t a  base into sub-ranges cor- 
responding to disjoint sets of documents ,  and 
the query will be  processed by  stages, dealing 
at each stage only with coordinates  of one sub- 
range. The  size of each sub-range is l imited on 
one hand by  the available space. On the other  
hand,  choosing t h e  range too small would un- 
necessarily increase the number  of stages and 

thus the overall processing time, because  there 
is a certain overhead when passing from one 
s t a g e t o  the  following. This overhead is caused 
by  the fact tha t  when reading a concordance 
block, t he"coord ina te s  which belong to subse- 
quent  sub-ranges should either be  s tored sep- 
arate iy  (which is only possible for small sets, 
since the reason for processing by  stages was a 

. ,  . . . .  . . . .  

problem of too small memory  space),  or else in 
one o f t h e n e x t  stages, the same block will have 
to be  read again. 

Let  M denote  the maximal  number  of co- 
ordinates which can be  stored at each stage (as 
ment ioned above, only coordinates  of the  axis 
a r e  stored, toge ther  with some addit ional  fields 
needed to •process the  metrical  constraints) .  
Here and below, let i be  the index of the axis. 
W h e n  Ai consists of a single word (ni = 1), 
then the blocks C(Ail)  can be  read sequentially, 
until  M coordinates  are collected. However for 
ni > 1, the  coordinates  of all the variants of Ai 
in the  •given • sub-range will be  merged,  there- 
fore the size of the  sub-range has to be  fixed in 
advance. The  bi t-maps,  giving part ial  informa- 
t ion on the dis tr ibut ion of the coordinates,  are 
used to es t imate  the  number  K of documents  
which should be  included in each sub-range. 

Define a r andom variable X~  as the  num- 

ber  of coordinates  of the word Aij (the j - t h  
variant  of the axis) in document  number  k. For 
our probabihst ic  analysis we assume: 

(a) for fixed j ,  the r andom variables X ]  are 
equally distr ibuted;  let # j  denote  the  ex- 

2 the  variance pecta t ion  E(X~), and aj 

v(x]); 
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rl (b) the random variables X~ and X j ,  with 
k # l, are non-correlated; 

(c) the random variables X ]  and Xt k, with 
j # t, are non-correlated. 

Let YK denote the number  of coordinates 
of the axis Ai in a certain set of K documents.  
From assumption (a) follows tha t  YK does not  
depend on the specific set of documents  chosen, 
but  only on its size K.  We are interested in 
finding the maximal possible K such that  the 
probability P satisfies 

P(YK > M) < e, 

where e is some small predetermined probabil- 
ity. Then the size of each sub-range is chosen 
to be K.  In case the number  of coordinates in a 
certain sub-range actually exceeds the permit-  
ted maximum M (which happens  with proba- 
bility < e), some of the coordinates are rejected, 
using a rather complex and t ime-consuming 

rti procedure. Let # = ( ~ j = l p j ) / n i  and 
o.2 1x-,n, a~)/ni; denote by N(x) the hum- -- k L ,  j = l  
ber of 1-bits in the bi t -map x, and define 

~]Y~I N(B(Ao)  A ANDVEC) 
CE ~ rt  i N ( V j =  1 B(Aij) A ANDVEC) (5) 

T h e o r e m .  Given the assumptions (a), (b) and 
(c) and the constants M and e, we get P(YK > 
M) < e by choosing 

K < 2e#M + a 2 - V/¢2(4E#M + a 2) (6) 
- 2ep2a 

P r o o f :  We first evaluate the expectation 
E(YK). Let H(K)  be any set of indices of K 

nl documents.  Then  YK = ~keH(K) ~ j = l  X].  
We now parti t ion the set H(K)  into ni mu- 
tually disjoint subsets Hs(K), 1 < s < ni: 
Hs(K) is the set of the indices of the docu- 
ments  in which exactly s of the ni variants of 
the axis appear. Since we shall restrict our- 
selves to documents  corresponding to 1-bits in 
ANDVEC, for every document  k in H(K),  at 
least one of the variants Aij has coordinates in 
k. Thus to each document  k E Hs(K) corre- 
sponds a set Psk C { 1 , . . . , n i }  of size s, such 
that  the word Air has coordinates in k, for each 

g E Psk. Therefore 

rti 

s = l  k e H , ( t ( )  g e P ,  k 

Denote by Ask the random v a r i a b l e  ~ t e P  k X~ k" 
We evaluate the expectation of Ask by ~ondi- 
t ioning on the possible choices of the set Psk for 
a given k. Let Ps be the set of the (~i) subsets 
of size s of { 1 , . . . , n i } .  Then  

E(Ask) = E E(Ask [ Psk = p) P(Psk = P). 
pEP, 

All the choices are equally likely, thus 

1 
= Z 

pEPs ~Ep 

Now each of the indices g E { 1 , . . . ,  hi} appears 

in exactly (n221 subsets p e Ps, hence 

so that  

g = l  
nl 

rti /.t~ ---- s# ,  
E=I 

ni 

E(YK) = # E s IHs(K)[. (7) 
s = l  

Let R = N ( V ; ~  1B(Ai j )  A ANDVEC) be the 
number  of 1-bits-in the vector corresponding to 
the merged axis, after intersection with AND- 
VEC, i.e., R is the number  of documents  in- 
cluding all the possibly relevant coordinates of 
the axis. For a given set of K documents ,  con- 
sider the corresponding bit-positions in the map  
B(Aij), and denote by Nj(K)  the number  of 1- 
bits in these positions. Due to assumption (a), 
Nj(K)  does in fact only depend on the size K 
and not  on the specific set, and 

Nj(K)  = -~Nj(R) 
(s) TC 

= ~-N(B(Ai j )  A ANDVEC).  
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However, by the definition of Hs(K) ,  we have 

n i  n i  

X :  s IH (K)I = lx (/0, (9) 
s = l  j : l  

so that  we get from (7)-(9) E(YK) = K t~c~. 
Using a similar proof and the assumptions (b) 

and (c), we evaluate the variance of YK and get 
V(YK) = Ka2c~. By Chebychev's inequality 

P ( Y  K > M )  = P(YK -- E(YK) > M -  E(YK)) 

< V(YK)) 
- (M - E(YK)) 2" 

This will be bounded by e if V(YK) < e (M - 
E(YK)) 2. Substituting the formulm for expec- 
tation and variance, we get the quadratic equa- 
tion 

(eo~2D 2) g 2 - (2eMc~ + c~a 2) K + eM 2 > 0, 

which yields the bound in (6). | 

Intuitively, it is not surprising that  E(YK)) 
is proportional to both K mad/~. The problem 
is that  a 1-bit in ni Vj=l  B(Ai j )  A ANDVEC can 
be caused by one or more of the components, 
so that  we need some measure, to which extent 
the 1-bits of the maps B(Ai j )  A ANDVEC are 
overlapping. This measure is c~. Indeed, if the 
ni maps have no overlapping 1-bits (in particu- 
lar, if n i = 1), then c~ = 1. On the other hand, 
if the ni maps are all logically equivalent, then 
o~ = ni. 

To evaluate the  bound for K given in (6), 
we need the quantities #, a 2 and c~. We pro- 
pose to include in the dictionary for each word 
Aij also estimates for #j and a~. In fact, the 
estimate for ~j is the number of coordinates 
of Aij divided by the number of documents in 
which they appear, but the dictionary does gen- 
erally not provide the necessary information to 
estimate a.  2. . The above algorithm for the eval- 

3 
uation of ANDVEC can easily be adapted to 

calculate also c~. The order of execution of the 
main loop should be chosen so that  the last iter- 
ation corresponds to the axis. If ANDVECj de- 
notes the value of ANDVEC at the end of the j -  
th iteration, note that  we evaluate N ( B ( A i j )  A 
ANDVECm-1) in the last iteration, whereas 
the vector ANDVEC mentioned in (5) refers 

to the final form ANDVECm. However, the 
result will be correct, because ANDVECm ¢=~ 
ANDVECm-1 A ( V ~ i  B(Ai j ) ) ,  so that  the 

maps B ( A i j ) A  ANDVECm_I and B(Ai j )A  
ANDVECm are logically equivalent. Therefore 
the space of only one additional map is needed 
to adapt the algorithm to this application. Ef- 
ficient algorithms for the function N(x)  are in 
[10, Section 1.1]. 

For certain full-text retrieval systems, the 
ideal probabilistic model assumed in the The- 
orem is not always appropriate. For systems 
with great variability in the lengths of its docu- 
ments, it would be more realistic to assume that  
for fixed j ,  X ]  is proportional to the length of 
document k. Assumption (b) seems to hold, 
but sometimes the documents are ordered by 
topics, and then adjacent documents often treat  
the same subject, so that  X ]  and X~ may be 

positively correlated if Ik - gl is small. As to 
assumption (c), the co-occurrences in a given 
document of variants of a keyword are certainly 
correlated, if for example these variants are dif- 
ferent grammatical forms of the same word. 
Therefore the size of each sub-range should for 
certain retrieval systems be chosen smaller than 
suggested in (6). 

The t reatment  of queries by stages can also 
be used in the following way: the user of an on- 
line retrieval system is usually not willing to 
wait more than a few minutes to get a response 
from the computer, but complex queries, as the 
ones discussed here, might need more time. Us- 
ing the approach by stages, the size of the sub- 
ranges can be kept small enough to permit a 
reasonable processing time (say, one minute) for 
each stage, and the KWIC-list of the first stage 
will be displayed immediately when available. 
The user can then browse through this list while 
the computer prepares the subsequent ones. 

Certain special cases deserve particular 
treatment.  When all the metrical constraints 
are constant (li = ui for all i in (1)), the pro- 
cessing of the query is not restricted to progress 
by adjacent keywords, and in this case the key- 
words are dealt with by increasing order of the 
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number of their coordinates. Another feature 
on constant distances is that  no coordinate can 
appear in more than one solution. Therefore we 
can reduce the additional space needed to store 
information on possible collations for each co- 
ordinate, or put otherwise, the fixed available 
space in memory can accommodate more coor- 
dinates of the axis in each stage. 

5. C o n c l u s i o n s  

By adjoining a set of compressed bit-maps 
to large full-text information retrieval systems, 
their overall space requirements are only mod- 
erately increased, but the search process may 
be significantly speeded up for most queries. 

This approach would be particularly attractive 
in an optical storage context, where both the 
texts and the inverted files are stored on a CD- 
ROM or a Write-Once medium. Indeed, these 
technologies are characterized by the availabil- 
ity of huge amounts of disk-memory (at almost 
no cost), while on the other hand, input /output  
processes are typically slow, and, when driven 
by micro-computers (which is usually the case), 
computing power is also limited. Hence, any 
method that can minimize input /output  oper- 
ations and CPU cycles at the expense of ad- 
ditional disk-memory is obviously appropriate. 
At the other end of the spectrum, for smaller 
systems, where disk-memory is rather scarce, 
the bit-map approach can perhaps be pushed 
further by dropping the concordance; the miss- 
ing information can then be retrieved by stan- 
dard pattern matching, using for example the 
algorithm of Boyer & Moore [2]. We leave this 
approach for further research. 
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