
·Im-
proved

Hierarchical
Bit-Vector Ca:np.eBn

in Document Retrieval Systems

Y. Choueka1 •2 , A.S. Fraenkel3 , S.T. Klein3 , E. Segal1

1 Inst. fqr Information Retrieval and Computational Linguistics (m<;_;OL)- The Responsa Project
2 Department of Mathematics and Computer Science, Bar-Ilan University, Ra.mat Gan, Israel

3 Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, IsrB:el

Part of this -work was done while the second and third authors were partially affiliated with IRCOL

ABSTRACT

The "concordance" of an information retrieval sys­
tem can often be stored in form of bit-maps, which are
usually very sparse and should be compressed. Hierar­
chical bit-vector compression consists of partitioning a
vector Vi into equi-sized blocks, constructing a new bit­
vector "&+l which points to the non-zero blocks in "'•
dropping the .zero-blocks of "i• and repeating the process

· for "Hl· We refine the method by pruning some of the
tree branches if they ultimately point to very few doc­
uments; these document numbers are then added to an
appended list which is compressed by the prefix-omission
technique. The new method was thoroughly tested on the
bit-maps of the Responsa Retrieval Project, and gave a
relative improvement of about 40% over the conventional
hierarchical compression method.

1. Motivation and Introduction

In some full-text retrieval systems, a.n in­
verted file, also called "concordance", i:;~ construc­
ted that contains, for every different word W in
the data. base, a. list L(W) of all the documents
in which W occurs. In order to find all the docu­
ments that contain the words A and B, one has
to intersect L(A) with L(B). Usually, A and

Permission to copy without ~ee all or
part o~ this material is granted pro­
vided that the copyright ~otice o~ the
''Oro;~anization of the 198b-ACM Conference
on Res•arch And Dev•lopment in ln~orma­
tion Retrieval" and the title o~ the
publication and 1t5 date appear.

® 198b Oro;~an1zation
Can~erence
Development
Rottr ieval

of the 1986-ACM
on Research and

in , Information

88

B stand for families of words Ai and Bj, each
family consisting of terms which are considered
synonymous for the given query. In this case one
has to perform

(UL(Ai)) n (UL(Bj))
i i

which can seriously affect the response time in
a.n online retrieval system when the number of
involved sets and their sizes are large.

A different approach might be to replace
the concordance of a system with l documents
by a. set of bit-maps of equal length l. For ev­
ery different word W in the data base a. bit-map
B(W) is constructed, the i-th bit of which is 1
·if .and only if W occurs in the i-th document,
in some fixed ordering of the documents. Pro-

. cessing queries reduces here to performing log­
ical operations with bit-strings, which is easily
done on most machines. Davis & Lin [2J were
apparently the first to propose the use of bit­
maps for secondary key retrieval.

It would be wasteful to store the bit-maps
in their original form, since they are usually very
sparse (the great majority of the words occur in
very few documents). In addition to the sav­
ings in secondary storage space, the processing
time can be improved by compressing the maps,
as more information can be read in a. single in­
put operation, thus reducing the total number of
1/0 accesses. We a.re interested in a coding pr~

cedure which reduces the space needed to store
long sparse binary strings without losing any in­
formation; in fact, there should be a simple al­
gorithm which, given the compressed string, can
reconstruct the original one. Schuegraf [9] pro­
poses to use run-length coding for the compres­
sion of sparse bit-vectors, in which a string of
consecut.ive zeros terminated by a one (called a
run) is replaced by the length of the run. A so­
phisticated run-length coding technique can be
found in Teuhola (10], and various other variants
are discussed in Nevalainen, Jakobsson & Berg
(8). Jakobsson (5} suggests to partition each vec­
tor into k-bit blocks, and to apply Huffman cod­
ing on the 2k possible bit-patterns. In Fraenkel
& Klein [4}, the latter method is extended, .incor­
porating run-length coding of blocks consisting
only of zeros.

In this paper we concentrate on hierarchical
bit-vector compreasion: let us partition the orig­
inal bit-vector vo of length lo bits into ko equal
blocks of r0 bits, ro · ko = lo, and drop the blocks
consisting only of zeros. The resulting sequ~nce
of non-zero blocks does not allow the reconstruc­
tion of v0 , unless we add a list of the indices of
these blocks in the original vector. This list of
up to ko indices is kept as a binary vector v1 of
lt = ko bits, where there is a 1 in position i if
and only if the i-th block of vo is not all zero.
Now v1 can further be compressed by the same
method.

In other words, a sequence of bit-vectors v;
. is constructed, each bit in v; being the result
of ORing the bits in the corresponding block in
Vj-l• The procedure is repeated recursively un­
til a level t is reached where the vector length
reduces to a few bytes, which will form a single
block. The compressed form of vo is then ob­
tained by concatenating all the nonzero blocks
of the various Vi, while retaining the block-level
information. Decompression is obtained simply
by reversing these operations and their order.
We start at level t, and pass from one level to
the next by inserting blocks of zeros into level
j- 1 for every Q-bit in level j.

89

(•) Orisinal wctor ud two deriftd levela

ltotllnoltotllootltotluolotol

(b) Compreued vec:~r

Flpre 1: Hieran:bical Bit-wctor Comprelaioa

Figure 1 depicts an example of a small vec­
tor v0 of 27 bits and its derived levels v1 and
v2 , with r1 = 3 fori = 0, 1,2 and t = 2. The
sizes r; of the blocks are parameters and can
change from level to level for a given vector,
and even from one word of the database to an­
other, although the latter is not practiCal for
our applications. Because of the stn1cture of
the compressed vector, we call this the TREE­
method, and shall use in our discussion the usual
tree-vocabulary: the root of the tree is the sin­
gle block on the top level, and for a block 2:

in "i+l which is obtained by ORing the blocks
111, ••• , 1/rs of v;, we say that 2: is the father of
the non-zero blocks among the 1/i.

The TREE-method was proposed by Wede­
kind & Birder [12}. It appears also in Vallar­
ino [11}, who used it for two-dimensional bit­
mapa, · but only with one level of compression.
In Jakobsson (6], the parameters (block aiH and
height of the tree) are chosen assuming that the
bit-vectors are generated by a memoryless in­
formation source, i.e., each bit in vo has a con­
stant probability Po for being 1, independently
from each other. However, for bit-maps in infor­
mation retrieval systems, this assumption is not
very realistic a priori, as adjacent bits often rep­
resent documents written by the same author;
there is a positive correlation for a word to ap­
pear in consecutive documents, beca.uae of the
specific style of the author or simply because
such documents often treat the same or related
subjects. In our approach, the parameters are
first restricted so as to simplify the computer

processing of r;-bit blocks. From among this
restricted set P of parameters, we select those
which yield maximal compression.

The experiments were run on the bit-maps
which were constructed at the Responsa
Retrieval Project (see for example Choueka [1]
or Fraenkel [3]) of about 40 million Hebrew and
Aramaic words. They sh9wed, a posteriori, that
the compression does not vary much with the dif­
ferent elements of P. Thus any choice of param­
eters from P will do, so the method is efficient
also for dynamically changing data bases.

In the next section we suggest some im­
provements to the TREE-method. We then re­
port in Section 3 on the experiments which led
to the parameter setting. Comparison of the re­
sults with those obtained on randomly generated
bit-vectors shows that the technique is specially
well adapted to bit-maps of document retrieval
systems. The new algorithm is compared with
other methods in the final Section 4.

2. Improvements to method TREE

We first remark that the hierarchical me­
thod does not always yield real compression.
Consider for example a vector vo for which the
indices of the 1-bits are of the form ir0 for i ~
lo/ro. Then there are no zero-blocks (of size ro)
in vo, moreover all the hits of Vi fori> 0 will be
1, so that the whole tree must be kept. There­
fore the method should be used only for sparse
vectors.

In the other extreme case, when vo is very
sparse, the TREE-method may again be waste­
ful: let d = flog2 Zo l, so that a d-b it number
suffices to identify any bit-position in va. H the
vector is extremely sparse, we could simply list
the positions of all the 1-bits, using d bits for
each. This is in fact the inverse of the transfor­
mation performed by the bit-vectors: basically,
for every different word W of the database, there
is one entry in the inverted file containing the list
of references of W, and this list is transformed
into a bit-map; here we change the bit-map back
into its original form of a list.

90

A. small example will illustrate how the bi­
jection of the previous paragraph between lists
and bit-maps can be used to improve method
TREE. Suppose that among the ro · r 1 · r2 first
bits of Vo only position j contains a one. The
first bit in level3, which corresponds to the OR­
ing of these bits, will thus be set to 1 and will
point to a sub-tree consisting of three blocks,
one on each of the lower levels. Hence in this
case a single 1-bit caused the addition of at l~ast
ro + r1 + r2 bits to the compressed map, since if
it were zero, the whole sub-t~;:ee would have been
omitted. We conclude that if ro + r1 + r2 2:: d,
it is preferable to consider position j as contain­
ing zero, thus omitting the bits of the sub-tree,
and to add the number j_ to an appended list
L, using only d bits. This example is readily
generalized so as to obtain an optimal partition
between tree and list for every given vector, as
will now be shown.

We define l; and k; respectively as the num­
ber of bits and the number of blocks in v;, for
0 ~ i ~ t. Note that r; · k; = l;. Denote by
T(i,j) the sub-tree rooted at the i-th block of
Vj, with 0 ~ j ~ t and 1 ~ i ~ k;. Let S(i,j)
be the size in bits of the compressed form of the
sub-tree T(i,j), i.e., the total number of bits in
all the non-zero blocks in T(i,j), and let N(i,:i)
be the number of 1-bits in the part of the original
vector vo which belongs to T(i,:j).

During the bottom-up construction of the
tree these quantities are recursively evaluated for
0 ~ i ~ t and 1 ~ i ~ k; by:

N(" ") - If 3 - 0,
{

num~er ?~ 1-bits in block i of v0

1
'
3 - :E;:=l N((i- t)r; + h.,j- 1)

if i > 0;

0 if i = 0 and
T(i,O) contains only O's,

ro if j = 0 and
S(i,j) = () T i, 0 contains a 1-bit,

:E;:=l S((i- l)r; + h.,j- 1)
if j > 0.

At each step, we check the condition

d · N(i,j) ~ S(i,j). (1)

If it holds, we prune the tree at the root of
T(i,j), adding the indices of the N(i,j) 1-bits
to the list L, and setting then N(i, j) and S(i, j)
to zero. Hence the algorithm partitions the set
of 1-bits into two disjoint subsets: those which
are compressed by the TRE~method and those
kept as a list. In particular, if the pruning ac­
tion takes place at the only block of the top level,
there will be no tree at all.

Note that in case of equality in (1), we exe­
cute a pruning action although a priori there is
no gain. However, since the number of 1-bits in
v; is thereby reduced, this may enable further
prunings in higher levels, which otherwise might
not have been done.

We now further compress the list L (of in­
dices of 1-bits which were "pruned" from the
tree) using the prefix-omiaBion technique. It con­
sists of storing a common prefix of several con­
secutive words only once, and is usually applied
to the compression of dictionaries. This can be
adapted to the compression of a list of d-bit num­
bers: we choose an integer c < d - 1 as param­
eter, and form a bit-map 'V of k = rlo/2cl bits,
where bit i, for 0 ~ i < k, is set to 1 if and only
if the integer i occurs in the d - c leftmost bits
of at least one number in L. Thus a 1-bit in po­
sition i of v indicates that there are one or more
numbers in L in the range [i2c, (i + 1)2c -1]. For
each 1-bit in v, the numbers of the correspond­
ing range can now be stored as relative indices
in that range, using only c bits for each, and an
additional bit per index serving as flag, which
identifies the last index of each range. Further
compression of the list Lis thus worthwhile only
if

d·ILI > k+(c+1)ILI. (2)

The left hand side of (2) corresponds to the num­
ber of bits needed to keep the list L uncom­
pressed. Therefore this secondary compression
is justified only when the number of elements in
L exceeds k/(d- c- 1).

91

For example, for lo = 128 and c = 5, there
are 4 blocks of 25 bits each; suppose the numbers
in L are 36, 50, 62, 105 and 116 (at least five
elements are necessary to justify further com­
pression). Then there are three elements in the
second block, with relative indices 4, 18 and 30,
and there are two elements in the fourth block,
with relative indices 9 and 20, the two other
blocks being empty. Thus the following infor­
mation would be kept:

"lo1o1l
.1.-------'1~ ,_ ----.,1

'!•- oouJO II•- 1001~ 1- uno('1•- o1oo1lj1 \o1oo(

indicates the end of the sequence

Finally we get even better compression by
adapting the cut-Qff condition (1) dynamically
to the number of elements in L. During the con­
struction of the tree, we keep track of this num­
ber and as soon as it exceeds k/(d- c -1), i.e.,
it is worthwhile to further compress the list, we
can relax the condition in (1) to

(c + 1) · N(i,j) S S(i,j), (3)

since any index which will be added to L, will
use only c + 1 bits for its encoding.

In fact, after recognizing that L will be com­
pressed, we should check again the blocks al­
ready handled, since a sub-tree T(i,j) may sat­
isfy (3) without satisfying (1). Nevertheless, we
have preferred to keep the simplicity of the al­
gorithm and not to check again previously han­
dled blocks, even at the price of losing some of
the compression efficiency. Often, there will be
no such loss, since if we are at the top level
when ILl becomes large enough to satisfy (2),
this means that the vector v0 will be kept in its
entirety as a list. H we are not at the top level,
say at the root of T(i,:i} for :i < t, then all the
previously handled trees will be reconsidered as
part of larger trees, which are rooted on the next
higher level. Hence it is possible that the sub­
tree T(i,j), which satisfies (3) but not (1) (and
thus was not pruned at level j}, will be removed
as part of a larger sub-tree rooted at level j + 1.

The method of dynamically pruning the tree,
forming a list L and compressing the latter us­
ing prefix omission, will henceforth be called the
PRUNE-method.

3. Experimental Results .
3.1 Setting the parameten

The above method was tested on the bit­
maps of the Responsa data base of l 0 = 42272
documents; accordingly, d = 16. To allow for
easy computer manipulation, we decided to use
only blocks of one, two or four bytes, so that the
possible variants had to verify

t

log2 rs E {3,4,5} and Llog2 r, = 16.
t=O

There are 24 such variants, which are listed be­
low in Table 1. Each variant is characterized by
a (t + 1)-tuple (ao, ... ,Gc), with t = 3 or t = 4,
such that as = ri/8 is the number of bytes in the
blocks on level i, for 0 S i S t.

Table 1: Bloc:lc .U.. eorreapondiq to
variou po88ibllities of hierarc:hieal compression

11112
11121
11211
12111
21111

1144
1224
1242
1414
1422

1441
2124
2142
2214
2241

2222
2~21
2421
4114
4122

4141
~212
4221
4411

For secondary compression of the list, the
parameter c was set to 7, so that one byte was
used for any number added into list L, instead
of two bytes before L had been compressed. The
length k of the bit-vector v used to compress L
was therefore r42272/128l = 331, but we chose
a 50-byte block (k = 400) as was done at the
Responsa Project to facilitate updating in case of
growth of the data base in the future. Therefore
the condition for further compressing the list L
was ILl > 50, and the number of bytes needed
to store the list L was min(2ILI,50 +ILl).

92

In order to compare the 24 block-size pat­
terns, a test was run on a sample of 1040 bit­
maps with different frequencies of 1-bits. The
following statistics were collected for each map:

1. the compreaaionfactor (CF) for each me­
thod, which is defined as the ratio of the
size of the original map to the size of the
compressed map;

2. the block-size pattern giving maximal
compression;

3. the difference in compression efficiency
between the best and the worst pattern.

The test showed that:

(a) For most vectol'S with up to 300 1-bits
there was no tree, only a list of indices.

(b} The best parameter pattern changed
very slightly with the different maps and was
almost constant for maps with the same 1-bit
frequency. In 91% of the sample the optimum
was achieved with 5 levels (t = 4), and among
the optimal 5-level trees, 54% used the pattern
11112.

(c) The compression factor was a non-in­
creasing function of the number of 1-bits in the
bit-map. For 18000 1-bits or more there was
practically no compression, on the contrary, there
were a few examples for which the optimal tree
used more storage than the original bit-string.

(d) Using the best pattern for each of the
1040 maps of the sample, the average CF was ·
about 16.7. This is an estimation based on the
sample of 1040 bit-maps and taking into account
the appropriate weight for each range of frequen­
cies, e.g., the maps with up to 300 1-bits form
about 80% of the file to be compressed.

(e) The total difference in compression be­
tween choosing the best or worst block-size pat­
terns was very small,. about 2.6% on the average.

As a consequence of (a), we decided to re­
strict ourselves to the 56588 different words
which appear more than 70 times in the cur­
rent Responsa data base. From (e) we con­
cluded that it is not worthwhile to search for
the optimal method, and that we could choose
a constant pattern for all the maps, which sim-

plifi.es both the compression and decompression
process. The best variant was that correspond­
ing to the pattern 11112, but we preferred the
variant with pattern 2222, since the additional
amount of storage needed was only about half
a percent, on the other side the uniformity of
the latter variant and the fact that it used only
three levels of compression permitted savings in
the time complexity of the decompression rou­
tine.

3.2 Comparison with randomly generated
bit-vectors

H we assume that each bit in vo has a con­
stant probability for being 1, independently from
each other, the expected size of the compressed
vector obtained by the TREF.rmethod can be
evaluated as follows. Let Pi be the probability
of a bit in level i to be 1, th~n for 0 5 i 5 t

Pi = 1 - (1 - Pi-1)r'_ 1

n·-1
= 1 - (1 -Po) i==O ri'

where we define n;~o r; = 1 for convenience.
Since for each block which will be kept at level
i, there is a 1-bit in level i + 1, the expected
number of (non-zero) blocks at level i is ~Pi+t
for i < t. Thus the expected number of bits we
keep in level i is kiPi+tri = liPi+t. which holds
also for i = t if we define Pt+t = 1. Since

li-1 lo
li = ~-1 = -- = . 1

ra-t fij:00 r;
for 0 5 i 5 t,

we can express the expected size of the com­
pressed tree (in bits) as:

Now the parameters in (4) are set as lo = 42272,
t = 3, r; = 16 for 0 5 i 5 3, and Po, the av­
erage frequency of the 1-bits in our sample of
Responsa maps, is 0.00817. This yields a the­
oretical CF of 5.5 for the independent model,
whereas the test on the Responsa maps showed
a CF of 10.5. The difference should be credited
to the inter-dependence of adjacent bits, which
tends to produce more "compact" initial vectors,
and thereby enhance compressibility.

93

In order to compare the random model with
the Responsa maps also for the PRUNF.rmethod, .
we decided to use computer simulation of ran­
dom vectors. To permit fair comparison, the
random maps were constructed with the same
length (5284 bytes) and with a density-distri­
bution similar to that of the Responsa maps.
Toward this end the 56588 Responsa maps were
partitioned into 101 classes corresponding to dif­
ferent ranges of the number of 1-bits in the maps.
The number of generated maps was taken to be
10% of the number of the Responsa maps for
each class. For each map a number K was cho­
sen uniformly from the range, then K "random"
bits were set to 1. In fact, the correct method
of constructing the maps consists of deciding for
every bit with probability p0 if it should be set to
1, yielding an expected number of 1-bits equal to
polo. We preferred the first mentioned method
which is more economical to implement and in­
troduced only a slight error, the probability of a
given bit to be set to 1 being 1 - (1 - 1/lo)K ~
K/lo =Po, since lo is large and K is relatively
small (there are very few maps with large K).
The random numbers· were generated following
Knuth [7].

The algorithm was applied to the complete
file of 56588 Responsa maps, yielding an aver­
age CF of 17.5, which is better than expected
from the test on the small sample. For the file of
5664 randomly generated maps, the CF was only
15.9. Thus, using the PRUNF.rmethod, com­
pression is still better for the Responsa maps
than for the random maps, but the difference.
in compression is not as striking as for method
TREE. As was pointed out earlier, the better
results on information retrieval maps are due to
the fact that the 1-bits appear in a more clus­
tered form than expected by a :inodel of indepen­
dent bit-positions; hence for the randomly gen­
erated maps, the number of blocks at the lowest
level which contain at least one 1-bit, will be
larger. However, prec~ely these isolated bits are
the main target of ·the pruning action. There­
fore the improvement should be larger for ran­
dom than for clustered maps, when both have
the same 1-bit density.

3.3 Other Variants

The first variant we have experimented
with, was to try to complement the bit-vector
before its compression for bit-vectors with more
than 10 /2 1-bits. However the test showed that
this was almost never worthwhile, even not for
the most frequent words. An explanation of this
fact could be that although the occurrence of
a word W in a document may be strongly re­
lated to its occurrence in adjacent documents,
this seems not always to be true as to the ab­
sence of W from consecutive documents. Thus
complementing the vectors probably destroyed
their clustered appearance.

· Another variant was to try to reorganize
the vectors into an even more clustered form.
This obviously cannot be done simultaneously
for all the vectors in an optimal, yet still efficient
manner. Therefore the documents were simply
arranged by decreasing size, so that reorganiz­
ing was in fact applying a fixed permutation on
the original bit-vectors. The idea was that the
probability of a word to appear is greater for a
large document than for a small one. By concen­
trating the bit-positions corresponding to large
documents in the same area of the vector, we
expected a migration of the 1-bits towards this
area. An indication that such a migration in­
deed happened was obtained by inspecting ro,
the block-size on the lowest level of the tree,
which was constructed according to the optimal
pattern among those of Table 1, for each map of
the sample: the larger the clusters of 1-bits in
the vector, the larger r 0 will be in the optimal
pattern. Only for 12.7% of the sample of origi­
nal maps, r 0 for the optimal pattern was larger
than one byte, whereas for the permuted maps,
this number increased to 57.4%.

The compression results however were ra­
ther disappointing: not a single example in our
sample gave an improvement after the rearrange­
ment; on the average, the CF decreased by
10.4%. We conclude that compression is en­
hanced not as much by the existence of a. few
large clusters, but more by the existence of many
small ones. For the original vector, the docu­
ments are grouped by author, and for ~ach au­
thor, ordered by topic, which yields many small
clusters. This order is completely destroyed by

94

the permutation, as there is almost no correla­
tion between the size of a document and its con­
tent. The reorganization splits the clusters into
single bits which are scattered throughout the
vector more or less randomly. Although clus­
ters will eventually form (in particular at the
beginning of the vector, which corresponds to
the larger documents), there will be also a. large
number of single bits and the overall compres­
sion efficiency decreases.

4. Comparison with other
methods

One of the best known methods for bit-map
compression is the run-length coding technique,
which is borrowed from image compression. One
often uses a fixed number b of bits to encode the
length of a run. This is practically equivalent to
the method which keeps a bit-map in form of a
list of the indices of its 1-bits; instead of these
indices, we store the incrementa between them.
In our experiments on the Responsa maps, the
average distance between 1-bits {which is the av­
erage length of runs of zeros) was 287.2 bits, but
there were also very long runs, so we chose b = 16
to encode the run-lengths.

As to Jakobsson's [5] method of using Huff­
man codes for the 2k possible k-bit blocks, any
codeword has at least one bit, so we can never
expect a better CF than k. On the other hand,
k cannot be chosen too large since the number
of different codewords to be generated, and the
size of the encode and decode tables grow expo­
nentially with k. We chose k = 8 to facilitate
computer manipulation.

The best method in [4] combines Huffman
coding and run-length coding. As in [5], the vec­
tor is partitioned into k-bit blocks, then the pos­
sible lengths of runs of 0-blocks are partitioned
into classes C,, containing run-lengths h which
satisfy 2i-l ~ h < 2i, for 1 ~ i ~ Llog2 (lo/k)J.
The 2k-1 non-zero block-patterns together with
the classes Ci are then assigned Huffman codes;
a run of length h belonging to class Ci is en­
coded by the codeword for Ci, followed by the
i - 1 rightmost bits of the binary representation
of h- .2i-l. Again, k = 8 was chosen and we
had classes C 1 to C 13.

The compression results are summarized in
Table 2. There is one line for each technique; the
methods from [5] and [4] are respectively entitled
"Huffman coding" and "Huffman+ Run-length".
The middle column gives the compression fac­
tor as computed on the file of Responsa maps,
the right hand column shows for each method
how much relative additional savings (in per­
centage) can be obtained when it is replaced by
the PRUNE-method. Note that this can be neg­
ative, since the method in (4] yields a higher CF.
But the difference is small, and on the other
hand, the latter method is more complicated;
therefore decoding will be time-consuming, so
that the new algorithm may be preferable in
some applications even to the methods of[4].

Table :1: Comparison of various
methods of bit-vector compression

Relative
CF Improvement of

method ·PRUNE

TREE 10.53 39.7%
Run-length 7.65 56.2%

Huffman coding 6.57 62.3%
Huffman+Run-length 18.77 -7.6%

PRUNE 17.45 -

Another criterion for the comparison of the
compression methods is their sensitivity to er­
rors. For run-length coding and Huffman cod­
ing, a single incorrectly transmitted bit usually
renders the ta.il of the encoded string following
the error useless. The combined Huffman+Run­
length method is slightly more robust than ei­
ther of its two components. For the hierarchical
methods, if a single parity change error occurs on
the lowest level of the tree (and this is usually
the major part of the compressed map), there
is no damage other than the affected bit itself.
H the error occurs in v1 (the first level of com­
pression), its effect will be like for Huffman or
run-length codes: a suffix of the decompressed
map will be garbled. Only errors in higher lev-

95

els may produce completely false vectors, but
these levels form only a small part of the com­
pressed· file. Using a few additional bytes per
map, we can introduce partial error-detection:
all we have to add are the lengths of each level
in the compressed map. Since the length of level
i is determined by the number of 1-bits in level
i + 1, a single error in the higher levels can be
detected.

REFERENCES

(1] Choueka Y., Full text systems and Re­
search in the Humanities, Oomputera and
the Humo.nitiea XIV {1980) 153-169.

[2] Davis D.R., Lin A.D., Secondary key
retrieval using an IDM 709o-1301 system,
Oomm. of the ACM 8 {1965) 243-246.

(3) Fraenkel A.S., All about the Responsa
Retrieval Project you always wanted to
know but were afraid to ask, Expanded
Summary, Jurimetrica J. 16 {1976) 149-
156.

(4] Fraenkel A.S., Klein S.T., Novel Com­
pression of sparse Bit-Strings - Prelimi­
nary Report, Combinatorial Algorithrru~ on
Word.!, NATO ASI Series Vol F12, Sprin­
ger Verlag, Berlin (1985) 169-183.

[5] Jakobsson M., Huffman coding in Bit­
Vector Compression, lnf. Proc. Lettera 7
(1978) 304-307.

[6] Jakobsson M., Evaluation of a Hierar­
chical Bit-Vector Compression Technique,
In/. Proc. Lettera 14 (1982) 147-149.

96

[7] Knuth D.E., The Art of Computer Pro­
gramming, Vol. II, Semi-numerical Algo­
rithms, Addison-Wesley, Reading, Mass.
(1973).

[8] Nevalainen 0., Jakobsson M., Berg
R., Compression of clustered inverted files,
in Proc. of the 7-th Symp. on Math. Foun­
dations of Comp. Sc., Zakopane, Poland
{1978) 393-402.

[9) Schuegraf E.J., Compression of large in­
verted files with hyperbolic term distribu­
tion, lnf. Proc. and Management 12 (1976)
377-384.

[10] Teuhola J ., A Compression method for
Clustered Bit-Vectors, Inf. Proc. Letters 7
(1978) 308-311.

[11] Vallarino 0., On the use of bit-maps for
multiple key retrieval, SIGPLAN Notices,
Special Issue Vol. II (1976) 108-114.

[12) Wedekind H., Harder T., Datenbank­
SJisteme II, B.-I. Wissenschaftsverlag,
Mannheim {1976).

