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ABSTRACT 

The "concordance" of an information retrieval sys­
tem can often be stored in form of bit-maps, which are 
usually very sparse and should be compressed. Hierar­
chical bit-vector compression consists of partitioning a 
vector Vi into equi-sized blocks, constructing a new bit­
vector "&+l which points to the non-zero blocks in "'• 
dropping the .zero-blocks of "i• and repeating the process 

· for "Hl· We refine the method by pruning some of the 
tree branches if they ultimately point to very few doc­
uments; these document numbers are then added to an 
appended list which is compressed by the prefix-omission 
technique. The new method was thoroughly tested on the 
bit-maps of the Responsa Retrieval Project, and gave a 
relative improvement of about 40% over the conventional 
hierarchical compression method. 

1. Motivation and Introduction 

In some full-text retrieval systems, a.n in­
verted file, also called "concordance", i:;~ construc­
ted that contains, for every different word W in 
the data. base, a. list L(W) of all the documents 
in which W occurs. In order to find all the docu­
ments that contain the words A and B, one has 
to intersect L(A) with L(B). Usually, A and 
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B stand for families of words Ai and Bj, each 
family consisting of terms which are considered 
synonymous for the given query. In this case one 
has to perform 

(UL(Ai)) n (UL(Bj)) 
i i 

which can seriously affect the response time in 
a.n online retrieval system when the number of 
involved sets and their sizes are large. 

A different approach might be to replace 
the concordance of a system with l documents 
by a. set of bit-maps of equal length l. For ev­
ery different word W in the data base a. bit-map 
B(W) is constructed, the i-th bit of which is 1 
·if .and only if W occurs in the i-th document, 
in some fixed ordering of the documents. Pro-

. cessing queries reduces here to performing log­
ical operations with bit-strings, which is easily 
done on most machines. Davis & Lin [2J were 
apparently the first to propose the use of bit­
maps for secondary key retrieval. 

It would be wasteful to store the bit-maps 
in their original form, since they are usually very 
sparse (the great majority of the words occur in 
very few documents). In addition to the sav­
ings in secondary storage space, the processing 
time can be improved by compressing the maps, 
as more information can be read in a. single in­
put operation, thus reducing the total number of 
1/0 accesses. We a.re interested in a coding pr~ 



cedure which reduces the space needed to store 
long sparse binary strings without losing any in­
formation; in fact, there should be a simple al­
gorithm which, given the compressed string, can 
reconstruct the original one. Schuegraf [9] pro­
poses to use run-length coding for the compres­
sion of sparse bit-vectors, in which a string of 
consecut.ive zeros terminated by a one (called a 
run) is replaced by the length of the run. A so­
phisticated run-length coding technique can be 
found in Teuhola (10], and various other variants 
are discussed in Nevalainen, Jakobsson & Berg 
(8). Jakobsson (5} suggests to partition each vec­
tor into k-bit blocks, and to apply Huffman cod­
ing on the 2k possible bit-patterns. In Fraenkel 
& Klein [4}, the latter method is extended, .incor­
porating run-length coding of blocks consisting 
only of zeros. 

In this paper we concentrate on hierarchical 
bit-vector compreasion: let us partition the orig­
inal bit-vector vo of length lo bits into ko equal 
blocks of r0 bits, ro · ko = lo, and drop the blocks 
consisting only of zeros. The resulting sequ~nce 
of non-zero blocks does not allow the reconstruc­
tion of v0 , unless we add a list of the indices of 
these blocks in the original vector. This list of 
up to ko indices is kept as a binary vector v1 of 
lt = ko bits, where there is a 1 in position i if 
and only if the i-th block of vo is not all zero. 
Now v1 can further be compressed by the same 
method. 

In other words, a sequence of bit-vectors v; 
. is constructed, each bit in v; being the result 
of ORing the bits in the corresponding block in 
Vj-l• The procedure is repeated recursively un­
til a level t is reached where the vector length 
reduces to a few bytes, which will form a single 
block. The compressed form of vo is then ob­
tained by concatenating all the nonzero blocks 
of the various Vi, while retaining the block-level 
information. Decompression is obtained simply 
by reversing these operations and their order. 
We start at level t, and pass from one level to 
the next by inserting blocks of zeros into level 
j- 1 for every Q-bit in level j. 
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(•) Orisinal wctor ud two deriftd levela 
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(b) Compreued vec:~r 

Flpre 1: Hieran:bical Bit-wctor Comprelaioa 

Figure 1 depicts an example of a small vec­
tor v0 of 27 bits and its derived levels v1 and 
v2 , with r1 = 3 fori = 0, 1,2 and t = 2. The 
sizes r; of the blocks are parameters and can 
change from level to level for a given vector, 
and even from one word of the database to an­
other, although the latter is not practiCal for 
our applications. Because of the stn1cture of 
the compressed vector, we call this the TREE­
method, and shall use in our discussion the usual 
tree-vocabulary: the root of the tree is the sin­
gle block on the top level, and for a block 2: 

in "i+l which is obtained by ORing the blocks 
111, ••• , 1/rs of v;, we say that 2: is the father of 
the non-zero blocks among the 1/i. 

The TREE-method was proposed by Wede­
kind & Birder [12}. It appears also in Vallar­
ino [11}, who used it for two-dimensional bit­
mapa, · but only with one level of compression. 
In Jakobsson (6], the parameters (block aiH and 
height of the tree) are chosen assuming that the 
bit-vectors are generated by a memoryless in­
formation source, i.e., each bit in vo has a con­
stant probability Po for being 1, independently 
from each other. However, for bit-maps in infor­
mation retrieval systems, this assumption is not 
very realistic a priori, as adjacent bits often rep­
resent documents written by the same author; 
there is a positive correlation for a word to ap­
pear in consecutive documents, beca.uae of the 
specific style of the author or simply because 
such documents often treat the same or related 
subjects. In our approach, the parameters are 
first restricted so as to simplify the computer 



processing of r;-bit blocks. From among this 
restricted set P of parameters, we select those 
which yield maximal compression. 

The experiments were run on the bit-maps 
which were constructed at the Responsa 
Retrieval Project (see for example Choueka [1] 
or Fraenkel [3]) of about 40 million Hebrew and 
Aramaic words. They sh9wed, a posteriori, that 
the compression does not vary much with the dif­
ferent elements of P. Thus any choice of param­
eters from P will do, so the method is efficient 
also for dynamically changing data bases. 

In the next section we suggest some im­
provements to the TREE-method. We then re­
port in Section 3 on the experiments which led 
to the parameter setting. Comparison of the re­
sults with those obtained on randomly generated 
bit-vectors shows that the technique is specially 
well adapted to bit-maps of document retrieval 
systems. The new algorithm is compared with 
other methods in the final Section 4. 

2. Improvements to method TREE 

We first remark that the hierarchical me­
thod does not always yield real compression. 
Consider for example a vector vo for which the 
indices of the 1-bits are of the form ir0 for i ~ 
lo/ro. Then there are no zero-blocks (of size ro) 
in vo, moreover all the hits of Vi fori> 0 will be 
1, so that the whole tree must be kept. There­
fore the method should be used only for sparse 
vectors. 

In the other extreme case, when vo is very 
sparse, the TREE-method may again be waste­
ful: let d = flog2 Zo l, so that a d-b it number 
suffices to identify any bit-position in va. H the 
vector is extremely sparse, we could simply list 
the positions of all the 1-bits, using d bits for 
each. This is in fact the inverse of the transfor­
mation performed by the bit-vectors: basically, 
for every different word W of the database, there 
is one entry in the inverted file containing the list 
of references of W, and this list is transformed 
into a bit-map; here we change the bit-map back 
into its original form of a list. 
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A. small example will illustrate how the bi­
jection of the previous paragraph between lists 
and bit-maps can be used to improve method 
TREE. Suppose that among the ro · r 1 · r2 first 
bits of Vo only position j contains a one. The 
first bit in level3, which corresponds to the OR­
ing of these bits, will thus be set to 1 and will 
point to a sub-tree consisting of three blocks, 
one on each of the lower levels. Hence in this 
case a single 1-bit caused the addition of at l~ast 
ro + r1 + r2 bits to the compressed map, since if 
it were zero, the whole sub-t~;:ee would have been 
omitted. We conclude that if ro + r1 + r2 2:: d, 
it is preferable to consider position j as contain­
ing zero, thus omitting the bits of the sub-tree, 
and to add the number j_ to an appended list 
L, using only d bits. This example is readily 
generalized so as to obtain an optimal partition 
between tree and list for every given vector, as 
will now be shown. 

We define l; and k; respectively as the num­
ber of bits and the number of blocks in v;, for 
0 ~ i ~ t. Note that r; · k; = l;. Denote by 
T(i,j) the sub-tree rooted at the i-th block of 
Vj, with 0 ~ j ~ t and 1 ~ i ~ k;. Let S(i,j) 
be the size in bits of the compressed form of the 
sub-tree T(i,j), i.e., the total number of bits in 
all the non-zero blocks in T(i,j), and let N(i,:i) 
be the number of 1-bits in the part of the original 
vector vo which belongs to T(i,:j). 

During the bottom-up construction of the 
tree these quantities are recursively evaluated for 
0 ~ i ~ t and 1 ~ i ~ k; by: 

N(" ") - If 3 - 0, 
{ 

num~er ?~ 1-bits in block i of v0 

1
'
3 - :E;:=l N((i- t)r; + h.,j- 1) 

if i > 0; 

0 if i = 0 and 
T(i,O) contains only O's, 

ro if j = 0 and 
S(i,j) = ( ) T i, 0 contains a 1-bit, 

:E;:=l S((i- l)r; + h.,j- 1) 
if j > 0. 



At each step, we check the condition 

d · N(i,j) ~ S(i,j). (1) 

If it holds, we prune the tree at the root of 
T(i,j), adding the indices of the N(i,j) 1-bits 
to the list L, and setting then N( i, j) and S( i, j) 
to zero. Hence the algorithm partitions the set 
of 1-bits into two disjoint subsets: those which 
are compressed by the TRE~method and those 
kept as a list. In particular, if the pruning ac­
tion takes place at the only block of the top level, 
there will be no tree at all. 

Note that in case of equality in (1), we exe­
cute a pruning action although a priori there is 
no gain. However, since the number of 1-bits in 
v; is thereby reduced, this may enable further 
prunings in higher levels, which otherwise might 
not have been done. 

We now further compress the list L (of in­
dices of 1-bits which were "pruned" from the 
tree) using the prefix-omiaBion technique. It con­
sists of storing a common prefix of several con­
secutive words only once, and is usually applied 
to the compression of dictionaries. This can be 
adapted to the compression of a list of d-bit num­
bers: we choose an integer c < d - 1 as param­
eter, and form a bit-map 'V of k = rlo/2cl bits, 
where bit i, for 0 ~ i < k, is set to 1 if and only 
if the integer i occurs in the d - c leftmost bits 
of at least one number in L. Thus a 1-bit in po­
sition i of v indicates that there are one or more 
numbers in L in the range [i2c, ( i + 1 )2c -1]. For 
each 1-bit in v, the numbers of the correspond­
ing range can now be stored as relative indices 
in that range, using only c bits for each, and an 
additional bit per index serving as flag, which 
identifies the last index of each range. Further 
compression of the list Lis thus worthwhile only 
if 

d·ILI > k+(c+1)ILI. (2) 

The left hand side of (2) corresponds to the num­
ber of bits needed to keep the list L uncom­
pressed. Therefore this secondary compression 
is justified only when the number of elements in 
L exceeds k/(d- c- 1). 
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For example, for lo = 128 and c = 5, there 
are 4 blocks of 25 bits each; suppose the numbers 
in L are 36, 50, 62, 105 and 116 (at least five 
elements are necessary to justify further com­
pression). Then there are three elements in the 
second block, with relative indices 4, 18 and 30, 
and there are two elements in the fourth block, 
with relative indices 9 and 20, the two other 
blocks being empty. Thus the following infor­
mation would be kept: 

"lo1o1l 
.1.-------'1~ ,_ ----.,1 

'!•- oouJO II•- 1001~ 1- uno( '1•- o1oo1lj1 \o1oo( 

indicates the end of the sequence 

Finally we get even better compression by 
adapting the cut-Qff condition (1) dynamically 
to the number of elements in L. During the con­
struction of the tree, we keep track of this num­
ber and as soon as it exceeds k/(d- c -1), i.e., 
it is worthwhile to further compress the list, we 
can relax the condition in (1) to 

(c + 1) · N(i,j) S S(i,j), (3) 

since any index which will be added to L, will 
use only c + 1 bits for its encoding. 

In fact, after recognizing that L will be com­
pressed, we should check again the blocks al­
ready handled, since a sub-tree T(i,j) may sat­
isfy (3) without satisfying (1). Nevertheless, we 
have preferred to keep the simplicity of the al­
gorithm and not to check again previously han­
dled blocks, even at the price of losing some of 
the compression efficiency. Often, there will be 
no such loss, since if we are at the top level 
when ILl becomes large enough to satisfy (2), 
this means that the vector v0 will be kept in its 
entirety as a list. H we are not at the top level, 
say at the root of T(i,:i} for :i < t, then all the 
previously handled trees will be reconsidered as 
part of larger trees, which are rooted on the next 
higher level. Hence it is possible that the sub­
tree T(i,j), which satisfies (3) but not (1) (and 
thus was not pruned at level j}, will be removed 
as part of a larger sub-tree rooted at level j + 1. 



The method of dynamically pruning the tree, 
forming a list L and compressing the latter us­
ing prefix omission, will henceforth be called the 
PRUNE-method. 

3. Experimental Results . 
3.1 Setting the parameten 

The above method was tested on the bit­
maps of the Responsa data base of l 0 = 42272 
documents; accordingly, d = 16. To allow for 
easy computer manipulation, we decided to use 
only blocks of one, two or four bytes, so that the 
possible variants had to verify 

t 

log2 rs E {3,4,5} and Llog2 r, = 16. 
t=O 

There are 24 such variants, which are listed be­
low in Table 1. Each variant is characterized by 
a (t + 1)-tuple (ao, ... ,Gc), with t = 3 or t = 4, 
such that as = ri/8 is the number of bytes in the 
blocks on level i, for 0 S i S t. 

Table 1: Bloc:lc .U.. eorreapondiq to 
variou po88ibllities of hierarc:hieal compression 

11112 
11121 
11211 
12111 
21111 

1144 
1224 
1242 
1414 
1422 

1441 
2124 
2142 
2214 
2241 

2222 
2~21 
2421 
4114 
4122 

4141 
~212 
4221 
4411 

For secondary compression of the list, the 
parameter c was set to 7, so that one byte was 
used for any number added into list L, instead 
of two bytes before L had been compressed. The 
length k of the bit-vector v used to compress L 
was therefore r42272/128l = 331, but we chose 
a 50-byte block (k = 400) as was done at the 
Responsa Project to facilitate updating in case of 
growth of the data base in the future. Therefore 
the condition for further compressing the list L 
was ILl > 50, and the number of bytes needed 
to store the list L was min(2ILI,50 +ILl). 
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In order to compare the 24 block-size pat­
terns, a test was run on a sample of 1040 bit­
maps with different frequencies of 1-bits. The 
following statistics were collected for each map: 

1. the compreaaionfactor (CF) for each me­
thod, which is defined as the ratio of the 
size of the original map to the size of the 
compressed map; 

2. the block-size pattern giving maximal 
compression; 

3. the difference in compression efficiency 
between the best and the worst pattern. 

The test showed that: 

(a) For most vectol'S with up to 300 1-bits 
there was no tree, only a list of indices. 

(b} The best parameter pattern changed 
very slightly with the different maps and was 
almost constant for maps with the same 1-bit 
frequency. In 91% of the sample the optimum 
was achieved with 5 levels (t = 4), and among 
the optimal 5-level trees, 54% used the pattern 
11112. 

(c) The compression factor was a non-in­
creasing function of the number of 1-bits in the 
bit-map. For 18000 1-bits or more there was 
practically no compression, on the contrary, there 
were a few examples for which the optimal tree 
used more storage than the original bit-string. 

(d) Using the best pattern for each of the 
1040 maps of the sample, the average CF was · 
about 16.7. This is an estimation based on the 
sample of 1040 bit-maps and taking into account 
the appropriate weight for each range of frequen­
cies, e.g., the maps with up to 300 1-bits form 
about 80% of the file to be compressed. 

(e) The total difference in compression be­
tween choosing the best or worst block-size pat­
terns was very small,. about 2.6% on the average. 

As a consequence of (a), we decided to re­
strict ourselves to the 56588 different words 
which appear more than 70 times in the cur­
rent Responsa data base. From (e) we con­
cluded that it is not worthwhile to search for 
the optimal method, and that we could choose 
a constant pattern for all the maps, which sim-



plifi.es both the compression and decompression 
process. The best variant was that correspond­
ing to the pattern 11112, but we preferred the 
variant with pattern 2222, since the additional 
amount of storage needed was only about half 
a percent, on the other side the uniformity of 
the latter variant and the fact that it used only 
three levels of compression permitted savings in 
the time complexity of the decompression rou­
tine. 

3.2 Comparison with randomly generated 
bit-vectors 

H we assume that each bit in vo has a con­
stant probability for being 1, independently from 
each other, the expected size of the compressed 
vector obtained by the TREF.rmethod can be 
evaluated as follows. Let Pi be the probability 
of a bit in level i to be 1, th~n for 0 5 i 5 t 

Pi = 1 - (1 - Pi-1)r'_ 1 

n·-1 
= 1 - (1 -Po) i==O ri' 

where we define n;~o r; = 1 for convenience. 
Since for each block which will be kept at level 
i, there is a 1-bit in level i + 1, the expected 
number of (non-zero) blocks at level i is ~Pi+t 
for i < t. Thus the expected number of bits we 
keep in level i is kiPi+tri = liPi+t. which holds 
also for i = t if we define Pt+t = 1. Since 

li-1 lo 
li = ~-1 = -- = . 1 

ra-t fij:00 r; 
for 0 5 i 5 t, 

we can express the expected size of the com­
pressed tree (in bits) as: 

Now the parameters in (4) are set as lo = 42272, 
t = 3, r; = 16 for 0 5 i 5 3, and Po, the av­
erage frequency of the 1-bits in our sample of 
Responsa maps, is 0.00817. This yields a the­
oretical CF of 5.5 for the independent model, 
whereas the test on the Responsa maps showed 
a CF of 10.5. The difference should be credited 
to the inter-dependence of adjacent bits, which 
tends to produce more "compact" initial vectors, 
and thereby enhance compressibility. 

93 

In order to compare the random model with 
the Responsa maps also for the PRUNF.rmethod, . 
we decided to use computer simulation of ran­
dom vectors. To permit fair comparison, the 
random maps were constructed with the same 
length (5284 bytes) and with a density-distri­
bution similar to that of the Responsa maps. 
Toward this end the 56588 Responsa maps were 
partitioned into 101 classes corresponding to dif­
ferent ranges of the number of 1-bits in the maps. 
The number of generated maps was taken to be 
10% of the number of the Responsa maps for 
each class. For each map a number K was cho­
sen uniformly from the range, then K "random" 
bits were set to 1. In fact, the correct method 
of constructing the maps consists of deciding for 
every bit with probability p0 if it should be set to 
1, yielding an expected number of 1-bits equal to 
polo. We preferred the first mentioned method 
which is more economical to implement and in­
troduced only a slight error, the probability of a 
given bit to be set to 1 being 1 - (1 - 1/lo)K ~ 
K/lo =Po, since lo is large and K is relatively 
small (there are very few maps with large K). 
The random numbers· were generated following 
Knuth [7]. 

The algorithm was applied to the complete 
file of 56588 Responsa maps, yielding an aver­
age CF of 17.5, which is better than expected 
from the test on the small sample. For the file of 
5664 randomly generated maps, the CF was only 
15.9. Thus, using the PRUNF.rmethod, com­
pression is still better for the Responsa maps 
than for the random maps, but the difference. 
in compression is not as striking as for method 
TREE. As was pointed out earlier, the better 
results on information retrieval maps are due to 
the fact that the 1-bits appear in a more clus­
tered form than expected by a :inodel of indepen­
dent bit-positions; hence for the randomly gen­
erated maps, the number of blocks at the lowest 
level which contain at least one 1-bit, will be 
larger. However, prec~ely these isolated bits are 
the main target of ·the pruning action. There­
fore the improvement should be larger for ran­
dom than for clustered maps, when both have 
the same 1-bit density. 



3.3 Other Variants 

The first variant we have experimented 
with, was to try to complement the bit-vector 
before its compression for bit-vectors with more 
than 10 /2 1-bits. However the test showed that 
this was almost never worthwhile, even not for 
the most frequent words. An explanation of this 
fact could be that although the occurrence of 
a word W in a document may be strongly re­
lated to its occurrence in adjacent documents, 
this seems not always to be true as to the ab­
sence of W from consecutive documents. Thus 
complementing the vectors probably destroyed 
their clustered appearance. 

· Another variant was to try to reorganize 
the vectors into an even more clustered form. 
This obviously cannot be done simultaneously 
for all the vectors in an optimal, yet still efficient 
manner. Therefore the documents were simply 
arranged by decreasing size, so that reorganiz­
ing was in fact applying a fixed permutation on 
the original bit-vectors. The idea was that the 
probability of a word to appear is greater for a 
large document than for a small one. By concen­
trating the bit-positions corresponding to large 
documents in the same area of the vector, we 
expected a migration of the 1-bits towards this 
area. An indication that such a migration in­
deed happened was obtained by inspecting ro, 
the block-size on the lowest level of the tree, 
which was constructed according to the optimal 
pattern among those of Table 1, for each map of 
the sample: the larger the clusters of 1-bits in 
the vector, the larger r 0 will be in the optimal 
pattern. Only for 12.7% of the sample of origi­
nal maps, r 0 for the optimal pattern was larger 
than one byte, whereas for the permuted maps, 
this number increased to 57.4%. 

The compression results however were ra­
ther disappointing: not a single example in our 
sample gave an improvement after the rearrange­
ment; on the average, the CF decreased by 
10.4%. We conclude that compression is en­
hanced not as much by the existence of a. few 
large clusters, but more by the existence of many 
small ones. For the original vector, the docu­
ments are grouped by author, and for ~ach au­
thor, ordered by topic, which yields many small 
clusters. This order is completely destroyed by 
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the permutation, as there is almost no correla­
tion between the size of a document and its con­
tent. The reorganization splits the clusters into 
single bits which are scattered throughout the 
vector more or less randomly. Although clus­
ters will eventually form (in particular at the 
beginning of the vector, which corresponds to 
the larger documents), there will be also a. large 
number of single bits and the overall compres­
sion efficiency decreases. 

4. Comparison with other 
methods 

One of the best known methods for bit-map 
compression is the run-length coding technique, 
which is borrowed from image compression. One 
often uses a fixed number b of bits to encode the 
length of a run. This is practically equivalent to 
the method which keeps a bit-map in form of a 
list of the indices of its 1-bits; instead of these 
indices, we store the incrementa between them. 
In our experiments on the Responsa maps, the 
average distance between 1-bits {which is the av­
erage length of runs of zeros) was 287.2 bits, but 
there were also very long runs, so we chose b = 16 
to encode the run-lengths. 

As to Jakobsson's [5] method of using Huff­
man codes for the 2k possible k-bit blocks, any 
codeword has at least one bit, so we can never 
expect a better CF than k. On the other hand, 
k cannot be chosen too large since the number 
of different codewords to be generated, and the 
size of the encode and decode tables grow expo­
nentially with k. We chose k = 8 to facilitate 
computer manipulation. 

The best method in [4] combines Huffman 
coding and run-length coding. As in [5], the vec­
tor is partitioned into k-bit blocks, then the pos­
sible lengths of runs of 0-blocks are partitioned 
into classes C,, containing run-lengths h which 
satisfy 2i-l ~ h < 2i, for 1 ~ i ~ Llog2 (lo/k)J. 
The 2k-1 non-zero block-patterns together with 
the classes Ci are then assigned Huffman codes; 
a run of length h belonging to class Ci is en­
coded by the codeword for Ci, followed by the 
i - 1 rightmost bits of the binary representation 
of h- .2i-l. Again, k = 8 was chosen and we 
had classes C 1 to C 13. 



The compression results are summarized in 
Table 2. There is one line for each technique; the 
methods from [5] and [4] are respectively entitled 
"Huffman coding" and "Huffman+ Run-length". 
The middle column gives the compression fac­
tor as computed on the file of Responsa maps, 
the right hand column shows for each method 
how much relative additional savings (in per­
centage) can be obtained when it is replaced by 
the PRUNE-method. Note that this can be neg­
ative, since the method in (4] yields a higher CF. 
But the difference is small, and on the other 
hand, the latter method is more complicated; 
therefore decoding will be time-consuming, so 
that the new algorithm may be preferable in 
some applications even to the methods of[4]. 

Table :1: Comparison of various 
methods of bit-vector compression 

Relative 
CF Improvement of 

method ·PRUNE 

TREE 10.53 39.7% 
Run-length 7.65 56.2% 

Huffman coding 6.57 62.3% 
Huffman+Run-length 18.77 -7.6% 

PRUNE 17.45 -

Another criterion for the comparison of the 
compression methods is their sensitivity to er­
rors. For run-length coding and Huffman cod­
ing, a single incorrectly transmitted bit usually 
renders the ta.il of the encoded string following 
the error useless. The combined Huffman+Run­
length method is slightly more robust than ei­
ther of its two components. For the hierarchical 
methods, if a single parity change error occurs on 
the lowest level of the tree (and this is usually 
the major part of the compressed map), there 
is no damage other than the affected bit itself. 
H the error occurs in v1 (the first level of com­
pression), its effect will be like for Huffman or 
run-length codes: a suffix of the decompressed 
map will be garbled. Only errors in higher lev-

95 

els may produce completely false vectors, but 
these levels form only a small part of the com­
pressed· file. Using a few additional bytes per 
map, we can introduce partial error-detection: 
all we have to add are the lengths of each level 
in the compressed map. Since the length of level 
i is determined by the number of 1-bits in level 
i + 1, a single error in the higher levels can be 
detected. 
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