
International Journal of Foundations of Computer Sciencec
 World Scienti�c Publishing Company
SEMI-LOSSLESS TEXT COMPRESSIONYAIR KAUFMAN�Department of Computer ScienceBar Ilan University, Ramat-Gan 52900, IsraelTel: (972{3) 531 8052 Fax: (972{3) 736 0498andSHMUEL T. KLEINyDepartment of Computer ScienceBar Ilan University, Ramat-Gan 52900, IsraelTel: (972{3) 531 8865 Fax: (972{3) 736 0498Received (received date)Revised (revised date)Communicated by Editor's nameABSTRACTA new notion, that of semi-lossless text compression, is introduced, and its applica-bility in various settings is investigated. First results suggest that it might be hard toexploit the additional redundancy of English texts, but the new methods could be usefulin applications where the correct spelling is not important, such as in short emails, andthe new notion raises some interesting research problems in several di�erent areas ofComputer Science.Keywords: text compression, lossy compression1. IntroductionOne widespread partition when coming to classify data compression methodsis into lossless and lossy methods. Lossless methods include usually those appliedon text �les or other data for which no loss of information can be tolerated, lossytechniques are generally applied to image �les as well as to video and audio data,for which the overall knowledge a user might extract does not seem signi�cantlyreduced even if a part of the data is omitted.Even though most lossy compression methods include some lossless techniquesas one of their components, the research methods and goals of the correspondingcommunities are in fact quite di�erent. While researchers in text compression areprimarily concerned with good compression performance (in terms of speed and of�kaufmay@cs.biu.ac.ilytomi@cs.biu.ac.il 1



space, both of the �le to be compressed and of the RAM required by the methodat hand), a major topic in image compression is �nding a good tradeo� betweenthe size of the compressed �le and the ability of a human observer to �nd thedi�erences between the original picture and its partially reconstructed copy. Manyarticles about image compression include side by side two pictures looking almostidentical, the one labeled \original" and the other labeled \compressed". Obviously,the latter is rather the decompressed, reconstructed, image, the real compressed oneconsisting of a close to random sequence of zeros and ones, which would not yieldany visual information when displayed as a raster �le.The basic idea behind lossy compression is thus the fact that even if not all ofthe available data is presented, the human brain can often make up for the missingparts and guess, at least partially, whatever has been omitted, so that overall onehas the feeling that nothing has been lost. We try, in this paper, to transfer thisparadigm also into the framework of text compression, to which usually only losslesstechniques have been applied.A hint to the fact that strict losslessness might be relaxed can be found byanybody who tries to read a newspaper, and mostly succeeds in understanding allthe required information in spite of occasional typing errors and other mistakes. Itturns out that we are able to understand English text even if there are many moreerrors, as suggested by the following paragraph, which circulated recently on theInternetaAoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer inwaht oredr the ltteers in a wrod are in; the olny iprmoetnt tihng is taht fristand lsat ltteer be at the rghit pclae. The rset can be a toatl mses and youcan sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos notraed ervey lteter by istlef, but the wrod as a wlohe.If indeed it is true that under certain constraints the exact letter order can bealtered without impairing our understanding of the information contained in Englishtext, it follows that the order of the characters induced by English grammar andsyntax may contain more redundancy than one thought so far, and eliminating thisredundancy might yield improved compression. Being a hybrid of the two classes ofcompression methods mentioned above, we call the type of compression suggestedby these ideas semi-lossless: the original text will not be fully reconstructed, justas a decompressed JPEG image is not identical to the original, and thereby themethod will be lossy; on the other hand, again similarly to the decompressed imagefor which our eyes and brain �ll in the omitted parts, here it is the knowledge ofEnglish that will enable the extraction of the full information of the original text,so that at least from the information point of view, if not from the physically stored�le, the method can be considered as lossless.A priori, the expected gain from playing with the order of the characters withina word is not very large, as the average word in English is rather short (aboutaSee, e.g., http://csunx4.bsc.edu/bmyers/language.htm, but there are dozens of pointers to thisor similar phrases. 2



5 characters). The applicability of semi-lossless text compression might thus berestricted, most users preferring to get a clean text, even at the price of marginallylower compression. The new methods could therefore be useful in applicationswhere the correct spelling is not important, such as in short emails or SMS notessent between cellular phones, which already use some widely known shortcuts (thatR acceptd by any 1). Moreover, the new notion raises many interesting researchproblems, some of which mentioned in the sequel, which may �nd applications inseveral di�erent areas of Computer Science.In the next section we suggest some approaches to semi-lossless text compressionand discuss their usefulness as general data compressors. Section 3 then brings somepreliminary experimental results, and we conclude in Section 4 with some possibleextensions of this work.2. Semi-lossless text compression techniquesLossy text compression has already been suggested by Witten at al. in [9], whichincludes several quite amusing examples. We shall, however, concentrate on meth-ods in which there is, at least a priori, no loss of information, and take the rulecited in the quotation in the introduction as a premise, namely, that if the �rst andlast letters of the printed words are left in place, the remaining letters within eachword can appear in any order.This \law" is clearly not universal and relies on the assumption that the readerhas a good knowledge of English. We are not concerned with checking the validityof this assumption, nor with suggesting alternative rules. This would rather fallinto a domain investigated by psychologists, and the interested reader is referred tothe vast literature dealing with several aspects of this subject, see, e.g., [2, 7] andthe pointers appearing in their references. For our discussion it does not even reallymatter whether the given rule is true, or whether it should be reinforced (leavingthe �rst, last and one or more additional letters in place) or could be relaxed (�xingonly the �rst letter, or even none, allowing any permutation of any word). All weassume is that some rule exists according to which not all the characters of a texthave to be restored to their original position for the text to be understandable. Sucha rule will obviously depend on and vary according to language, potential readersand genre and type of the given text.Taking therefore the quoted law (�rst and last letters �xed, the rest in any otherposition) as working assumption, it suggests the following generic compression anddecompression algorithm:Since the order of the characters (except the �rst and last of each word) is notrestricted, it might be useful to choose a special order referred to in Step 2 of thecompression, that will subsequently improve the encoding mentioned in Step 3.The reason for Step 2 of the decompression process is avoiding a constant biasintroduced by the suggested partial order. It might be that seeing always the samepermutations according to the special order chosen may interfere with our abilityto recover the original word. Introducing the randomization restores for the readerthe feeling of arbitrariness which, possibly, is necessary for correct decoding.3



Compression: 1. Process the words sequentially and if the current word is notspecial (number, proper name, etc.), do2. keep �rst and last letters in place, but rearrange the othersinto \special" order;3. apply some encoder on the rearranged text.Decompression: 1. Decode the compressed words sequentially, and if the currentword is not special, do2. keep �rst and last letters in place; choose a random permu-tation of the other letters and send them to output.In the following sub-section, we explore some of the possibilities for choosingsuch a special order.2.1. Choosing a special order of the charactersOne possibility that comes to mind is arranging these letters in alphabetic order.The reason such a strategy is expected to improve compression is similar to theargument showing why the Burrows-Wheeler Transform (BWT) [1] actually worksso well.The BWT works on a string of length n and applies all the n cyclic rotationson it, yielding an n� n matrix which is then lexicographically sorted by rows. The�rst column of the sorted matrix is thus sorted, but BWT stores the last column ofthe matrix, which together with a pointer to the index of the original string in thematrix lets the �le to be recovered. The last column is usually not sorted, but itcorresponds to sorted contexts, and is therefore often very close to be sorted, whichis why it is more compressible than the original string. The compression schemebased on BWT uses a move-to-front strategy to exploit this nearly sorted natureof the string to be compressed. Returning to our problem, if the characters in eachword can be arranged alphabetically, this may similarly yield improved compressionusing move-to-front and/or run-length coding if the strings are long enough.Another possibility would be to arrange the characters by frequency. The dis-tribution of characters in English text is well-known, (see, e.g., [3]), and sorting theletters following the order E, T, A, O, N, I, S, etc., increases the probability of shortdisplacements in move-to-front schemes. However, frequency of occurrence alonedoes not take the tight connections between certain characters into consideration.A more precise rule would therefore be trying to group the characters based onthe probabilities of a given letter to appear after another one. A strict approachgets quickly into loops, for example, E is most likely followed by R, which in turnhas E as its most probable successor. A simple greedy algorithm would thus be:4



1. Start with an arbitrary character, x;2. While not all characters are processed� Choose, among remaining characters, the successor s of x with highest probability;� x � sFollowing the probabilities in [3], one possible sequence this may yield is:A N D E R O U T H I S P L Y M B J - X C K - F - G - Q - V - W - Z:While the beginning of this sequence seems reasonable, there are some evidentshortcomings: P as successor of S is only the 9th choice, because the eight precedingones (in order: T, E, I, S, O, A, U and H) all appeared earlier. Towards the end, allthe remaining potential successors have probability practically zero, indicated bythe dashes, so the choice is arbitrary. Note also that choosing the successor withhighest probability might push the second best choice too far away. The secondmost frequent successor of A is T, which appears only in seventh position after A.These speculations lead to the following formulation of the problem: we seek anordering of the letters maximizing the overall probability of the letter successions.More formally, let � = fx1; : : : ; xng be the alphabet, and let P [x; y] denote theprobability of character y appearing as successor of x; we look for a permutation� : � �! � of the n characters, such thatn�1Yi=1 P [�(i); �(i+ 1)] (1)is maximized. The following transformation shows that this is in fact an instance ofthe Minimum Traveling Salesperson Problem. Consider a full graph G = (V; V �V ),with V = �, and de�ne the weight w(x; y) of an edge (x; y) asw(x; y) = � logP [x; y]:Finding a permutation maximizing (1) is then equivalent to �nding a Hamiltonianpath of minimum weight in G. Unfortunately, this is an NP-complete problem, andsince in our case, there is no reason to assume that the triangle inequality holds forthe weights, it might even be hard to �nd a good approximation.We now turn to the more technical details of choosing a speci�c compressionscheme.2.2. Choosing the compression techniqueA simple statistical encoder, such as Hu�man or arithmetic coding, appliedindependently to the individual characters will, of course, not yield any additionalcompression at all. The set of encoded characters remains the same, only theirorder is altered. To be able to take advantage of the partial reordering, a methodis needed that takes previous characters into account.A simple example would be run-length encoding, which is not likely to be useful.Run-length coding is widely used for images or fax-transmission, but in natural5



language text there are hardly any repeated strings of length longer than 2 (inGerman, there are some rare examples of runs of length 3, such as in Schifffracht).In our case, where the internal characters appear in sorted order, the lengths of runsare still limited by the number of times a given letter appears within a word. Butthe average word length, in English, is only about 5, so that no signi�cant runsmay be expected (German provides here again an extreme case: there is a street inVienna named Abrahamasantaclaragasse, which would give a run of 9 a's).We may expect better performance when using Hu�man or arithmetic codingin connection with a Markov model of order k � 1, meaning that each character isencoded as a function of the k characters preceding it. Though even natural text iswell compressed by such a model as it captures many of its characteristic features (qfollowed by u, high probability for e following th, etc.), having identical charactersgrouped together may even cause better compression. However, the additional spacerequirements of higher order Markov models may be prohibitive.Adaptive methods like Lempel-Ziv variants seem at �rst sight not applicable.In an adaptive encoding, the current item to be encoded relies on previously seentext, and if the item is not reliably restored, a subsequent pointer to it may givewrong results. Consider, for example, the string� � � a b c x y z c b a d e f w t w c e d f a v � � �to be encoded by LZSS [4], and suppose that the whole string consists of internalcharacters (not the �rst or last in a word). The string cba can then be replaced bya pointer to the preceding abc, and edfa could point to adef, so that the modi�edLZSS encoding would be� � � a b c x y z (6; 3) d e f w t w c (8; 4) v � � � :But while the �rst pointer (6,3) would be decoded to abc, as expected, the secondpointer (8,4) would now refer to the substring cdef, which is not a permutation ofthe original edfa. Note that the problem here is caused by the overlap between asubstring, cba, that is replaced by an (o�set, length) pointer, and a substring, adef,which is the target of such a pointer. In the absence of such overlaps, the encodingscheme works correctly.One strategy to avoid the problem would thus be to forbid such overlaps, butthis would a�ect compression e�ciency. Another possibility is to adapt LZSS towork in this case, by keeping a copy of the currently decoded text, and search init, rather than in the original text processed so far, for earlier occurrences of thecurrent string to be encoded or its permutations. Returning to the example above,after having encoded cba, the processed string would look as� � � a b c x y z a b c d e f w t w c e d f a v � � �where the vertical bar indicates the current position, and to its left appears thereconstructed, rather than the original, text. While the bar now moves further to6



the right, the string edfa cannot be encoded as before. However, in this example,even a better substitution is possible, replacing wcedf by a pointer to cdefw, sothat the encoded string �nally looks as� � � a b c x y z (6; 3) d e f w t (6; 5) a v � � � :In fact, a correct algorithm based on LZSS is even more involved. Fast im-plementations of LZSS, like LZRW1 [8] or Microsoft's DoubleSpace [6] �nd therecurring strings by locating, using hashing, a previous occurrence of the characterpair following the current position, and then extending the strings as far as possi-ble by checking if the subsequent characters coincide. In our case, such a greedyapproach may fail, e.g., for the string� � � x y z t a b c d e f g � � � x z y t a b e d c h k � � � :The second occurrence of ab would point to the �rst one, but trying to extend thestrings would fail in the �rst two attempts, abe and abed not matching abc andabcd, respectively, and only the third attempt would succeed, with abedc matchingabcde modulo the reordering. Moreover, word boundaries have to be taken intoaccount because of the constraint that �rst and last letters have to remain in place.The processing must therefore be by a combination of trying to extend partialmatches by entire words and, once this fails, trying to match pre�xes of the lastword dealt with, proceeding backwards from the longest to the shorter ones. Inthe above example the word xzyt is �rst matched to xyzt, trying then to matchabedchk to abcdefg fails, so we try to backtrack. abedch does not match abcdef,but abedc does match abcde, which gives the string xzyt abedc as required match.Similar problems to those of LZSS would arise in LZ78 variants like LZW [5].Instead of pointing to earlier strings in the already processed text, the compressed�le consists of a series of pointers to an external dictionary, which is built on the 
y.Here again, relaxing the rules and letting a pointer refer not necessarily to the stringto be replaced, but possibly to any of its permutations, may yield some savings:the overall number of strings is reduced, implying that more good strings can bestored, or that the necessary pointers can be shorter. But as above, decoding maybe erroneous, because the strings stored by LZW are overlapping, speci�cally, thelast character of the nth stored string is also the �rst of the n+ 1st.The problem may be more severe in this case, because eliminating one of thestrings stored in an LZW dictionary will a�ect all the subsequent entries and there-fore change all subsequent pointers, whereas for LZSS, all the changes are locallyrestricted.
7



2.3. Combining character ordering and compression techniqueA di�erent approach than trying to adapt Lempel-Ziv type methods would be torestrict ourselves to dealing with bigrams, trigrams, or generally, any k-grams withk > 1. Each word is considered on its own, and decomposed into a sequence of suchconsecutive k-grams, leaving, as before, the �rst and last letters in place. Specialcare is needed to deal with the last k-gram in this sequence within a word, whichmight require a smaller k. Then each k-gram is mapped to a representative, in apredetermined order (alphabetic, ETAONI, ANDERO, etc.). Finally, the items obtainedby this decomposition are Hu�man coded. Since the number of di�erent k-grams isreduced from j�jk to �j�jk �, a savings of about 50% for k = 2, and more for higherk, the average Hu�man codeword lengths are expected to be lower. Moreover, theoverhead of storing the di�erent k-grams is also reduced.An alternative would be to process the k-grams sequentially, without takingword boundaries into account. Each k-gram would again be mapped to a reorderedone, but 
ag-bits would be used to indicate if there has been a reordering and whichone. For bigrams, a single bit su�ces to indicate whether to switch a pair, and thebit is needed only for those pairs following or preceding a space.As example, consider the �rst words of the title of this sub-section, combiningcharacter ordering, which are partitioned into a sequence of character pairs inthe �rst line of Figure 1. Blanks are replaced by dashes for visualization. In thesecond line of the �gure, the pairs appear reordered, where alphabetical order isused in this example, with Blank preceding the characters. In order to take careof the word boundaries, a 
ag-bit is added for the �rst and last pair of each word,as displayed in the third line. A zero indicates that the corresponding pair staysunchanged, whereas a one means that the corresponding pair has to be switched.The last line of Figure 1 displays the sequence of pairs obtained by this decodingalgorithm: one would get cobmining characetr ordeirng, all the words of whichare wrong, but certainly recognizable.: : : c o m b i n i n g - c h a r a c t e r - o r d e r i n g : : :: : : c o b m i n i n - g c h a r a c e t - r o r d e i r g n : : :0 1 0 1 0 1: : : c o b m i n i n g - c h a r a c e t r - o r d e i r n g : : :Figure 1: Example of bigram encodingBlock sorting using the BWT could also be adapted to our case. As mentionedearlier, the last column of the n�nmatrix, which is the one stored by the algorithm,is almost sorted. Suppose we have a sequence of the form A, A, A, B, A � � � in this8



column. If we can change the order of the characters, we might want to remove theB from within the sequence of As. Such a reordering could make the string morecompressible.3. Experimental resultsThe �rst text chosen as test bed for the above semi-lossless algorithms consistsof about 3MB of the AP newswire �les from the TREC collection. In addition,the methods were applied to Mark Twain's Tom Sawyer taken from the Guten-berg Project. To avoid a bias introduced by punctuation and other signs, all non-alphabetic characters, except the space, have been removed, and all the others havebeen changed to upper case, giving an alphabet of size 27.Table 1 summarizes some of the results. The �rst column gives the size of theraw �les, the second after having applied simple Hu�man coding on the individualletters. All compression �gures are given in bits per character (bpc). The nextcolumns deal with bigrams and trigrams, �rst in a standard fragmentation of thetext into bi- or trigrams, then using the reordering for those k-grams that can bechanged. For the bigrams the variant with the 
ag-bit has been applied, for thetrigrams, triples including the �rst or last letter of a word have not been reordered.The �gures include the overhead of storing the bi- or trigrams.Table 1: Sample compression resultssize Hu�man bigrams trigramsstandard ordered standard orderedAP 2.57 Mb 4.148 3.791 3.707 3.529 3.437Tom Sawyer 361 Kb 4.111 3.707 3.687 3.549 3.485As can be seen, there is a slight improvement, though not a signi�cant one. Infact, even with better parsing strategies than the simple one we used, one shouldnot expect large savings for English text: the average word length being less than 5,and the two corner letters being �xed, the reordering will a�ect on the average lessthan 3 letters. However, with schemes going beyond word boundaries, like LZSS,or for other languages and other reordering rules, better results might be expected.Note that there are far better compression schemes: applying Hu�man codingon the basis of words, rather than characters, yields, for AP, 2.136 bpc, and if theinternal letters of the words are reordered, 2.135 bpc, saving less than 0.05 percent.But such a scheme requires a large overhead for the storage of the Hu�man tree,and can only be justi�ed if the set of di�erent words is stored anyway, e.g., as thedictionary in an Information Retrieval system.9



4. Conclusions and future workThe main contribution of this paper is thus not the presentation of some novelcompression technique, but rather the introduction of the notion of semi-lossless textcompression and the ensuing research problems it raises in compression, patternmatching, computational linguistics and possibly other related areas. We havebrie
y explored how some of the known compression methods could be adapted totake advantage of the relaxed constraints.Here is a partial list of topics one might want to deal with:� One could try to devise new methods that do not rely on adapting existingones, but may possibly be totally di�erent and specially adapted to our case.� Di�erent languages may suggest other rules. In French, grammatical su�xesare more abundant and often one or more of the last letters of a word are noteven pronounced. Perhaps the rule of keeping speci�cally the last letter inplace is then not adequate? German has the ability of concatenating severalwords into a single one; should the rule then be extended to �x also lettersat sub-word boundaries, and how could these boundaries be detected? Theaverage length of a word in Finnish is much longer than in English and doubleletters are more frequent.� One could adapt ideas from other languages to English. For instance, Hebrewis generally written without vowels. This gives a large number of possibleinterpretations for each word, most of which are grammatically incorrect, buton the average, every word has four possible correct readings. Nevertheless, anative speaker has generally no trouble to pick the right choice quickly enoughto read 
uently, partly because certain consonants may act as vowels. It wouldnot be reasonable to strip all the vowels from English texts (thgh ths wld gvgd cmprssn!), but perhaps one can devise rules to get rid of most of them,as we do anyway in speed-writing or when sending short electronic notes bycomputer or on cellular phones. On the other hand, in Czech the eliminationof vowels would have a lower impact, as there are even entire sentences thatare completely vowel-free, e.g., str�c prst skrz krk.� Semi-lossless compression is not necessarily restricted to keeping a permuta-tion of the original characters. When typing on cellular or regular phones,each key is assigned to several characters and the requested one is reached byrepeatedly pressing the same key. It may be that the sets assigned to each keycan be chosen in such a way that pressing only once, and thereby sending arepresentative of a small set, can still result in a text that is understandable.The size of � would be reduced, so one may save space, but also the timenecessary to type a message will be greatly shortened.Another short note many web-user got lately in their mail claimed that English10



spelling will shortly be simpli�edb. While this was meant as a joke, the idea isanother nice example of how semi-lossless techniques could be implemented. Thetext suggested a �ve year plan during which many old spelling rules would begradually abolished or modi�ed, untilafter zis �fz yer, ve vil hav a reli sensibl riten styl. zer vil be no mor trublsor di�kultis and evrivun vil �nd it ezi tu understand ech ozer.While most of us will easily decipher the quote, note that its length (148 characters)is 14% shorter than its correctly spelled equivalent (172 characters), and the same14% gain is also obtained if each of the messages is Hu�man encoded (600 insteadof 694 bits).References1. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.Technical Report 124, SRC (digital, Palo Alto), May 1994.2. N. Friedmann and A. Gvion. Letter position dyslexia. Cognitive Neuropsychology,18(13):673{696, Dec. 2001.3. A. G. Konheim. Cryptography, a primer. John Wiley and Sons, Inc., New York,NY, USA, 1981.4. J. A. Storer and T. G. Szymanski. Data compression via textual substitution. Jour-nal of the ACM, 29(4):928{951, Oct. 1982.5. T. A. Welch. A technique for high-performance data compression. IEEE Computer,17(6):8{19, June 1984.6. D. L. Whiting, G. A. George, and G. E. Ivey. Data compression apparatus andmethod. U. S. Patent No. 5,126,739, 1992.7. C. Whitney. How the brain encodes the order of letters in a printed word: TheSERIOL model and selective literature review. Psychonomic Bulletin & Review,8(2):221{243, June 2001.8. R. N. Williams. An extremely fast ZIV-Lempel data compression algorithm. InProc. IEEE Data Compression Conference DCC-91, pages 362{371, Snowbird,Utah, Apr. 1991. IEEE Computer Society Press, Los Alamitos, California.9. I. H. Witten, T. C. Bell, A. Mo�at, N.-M. Nevill-Manning, T. C. Smith, andH. Thimbleby. Semantic and generative models for lossy text compression. TheComputer Journal, 37(2):83{87, Apr. 1994.

bhttp://www.bluegum.com/Humour/Assorted/easier-english.html11


