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ABSTRACT

A new notion, that of semi-lossless text compression, is introduced, and its applica-
bility in various settings is investigated. First results suggest that it might be hard to
exploit the additional redundancy of English texts, but the new methods could be useful
in applications where the correct spelling is not important, such as in short emails, and
the new notion raises some interesting research problems in several different areas of
Computer Science.
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1. Introduction

One widespread partition when coming to classify data compression methods
is into lossless and lossy methods. Lossless methods include usually those applied
on text files or other data for which no loss of information can be tolerated, lossy
techniques are generally applied to image files as well as to video and audio data,
for which the overall knowledge a user might extract does not seem significantly
reduced even if a part of the data is omitted.

Even though most lossy compression methods include some lossless techniques
as one of their components, the research methods and goals of the corresponding
communities are in fact quite different. While researchers in text compression are
primarily concerned with good compression performance (in terms of speed and of
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space, both of the file to be compressed and of the RAM required by the method
at hand), a major topic in image compression is finding a good tradeoff between
the size of the compressed file and the ability of a human observer to find the
differences between the original picture and its partially reconstructed copy. Many
articles about image compression include side by side two pictures looking almost
identical, the one labeled “original” and the other labeled “compressed”. Obviously,
the latter is rather the decompressed, reconstructed, image, the real compressed one
consisting of a close to random sequence of zeros and ones, which would not yield
any visual information when displayed as a raster file.

The basic idea behind lossy compression is thus the fact that even if not all of
the available data is presented, the human brain can often make up for the missing
parts and guess, at least partially, whatever has been omitted, so that overall one
has the feeling that nothing has been lost. We try, in this paper, to transfer this
paradigm also into the framework of text compression, to which usually only lossless
techniques have been applied.

A hint to the fact that strict losslessness might be relaxed can be found by
anybody who tries to read a newspaper, and mostly succeeds in understanding all
the required information in spite of occasional typing errors and other mistakes. It
turns out that we are able to understand English text even if there are many more
errors, as suggested by the following paragraph, which circulated recently on the
Internet®

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in
waht oredr the Itteers in a wrod are in; the olny iprmoetnt tihng is taht frist
and Isat Itteer be at the rghit pclae. The rset can be a toatl mses and you
can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.

If indeed it is true that under certain constraints the exact letter order can be
altered without impairing our understanding of the information contained in English
text, it follows that the order of the characters induced by English grammar and
syntax may contain more redundancy than one thought so far, and eliminating this
redundancy might yield improved compression. Being a hybrid of the two classes of
compression methods mentioned above, we call the type of compression suggested
by these ideas semi-lossless: the original text will not be fully reconstructed, just
as a decompressed JPEG image is not identical to the original, and thereby the
method will be lossy; on the other hand, again similarly to the decompressed image
for which our eyes and brain fill in the omitted parts, here it is the knowledge of
English that will enable the extraction of the full information of the original text,
so that at least from the information point of view, if not from the physically stored
file, the method can be considered as lossless.

A priori, the expected gain from playing with the order of the characters within
a word is not very large, as the average word in English is rather short (about

%See, e.g., http://csunx4.bsc.edu/bmyers/language.htm, but there are dozens of pointers to this
or similar phrases.



5 characters). The applicability of semi-lossless text compression might thus be
restricted, most users preferring to get a clean text, even at the price of marginally
lower compression. The new methods could therefore be useful in applications
where the correct spelling is not important, such as in short emails or SMS notes
sent between cellular phones, which already use some widely known shortcuts (that
R acceptd by any 1). Moreover, the new notion raises many interesting research
problems, some of which mentioned in the sequel, which may find applications in
several different areas of Computer Science.

In the next section we suggest some approaches to semi-lossless text compression
and discuss their usefulness as general data compressors. Section 3 then brings some
preliminary experimental results, and we conclude in Section 4 with some possible
extensions of this work.

2. Semi-lossless text compression techniques

Lossy text compression has already been suggested by Witten at al. in [9], which
includes several quite amusing examples. We shall, however, concentrate on meth-
ods in which there is, at least a priori, no loss of information, and take the rule
cited in the quotation in the introduction as a premise, namely, that if the first and
last letters of the printed words are left in place, the remaining letters within each
word can appear in any order.

This “law” is clearly not universal and relies on the assumption that the reader
has a good knowledge of English. We are not concerned with checking the validity
of this assumption, nor with suggesting alternative rules. This would rather fall
into a domain investigated by psychologists, and the interested reader is referred to
the vast literature dealing with several aspects of this subject, see, e.g., [2, 7] and
the pointers appearing in their references. For our discussion it does not even really
matter whether the given rule is true, or whether it should be reinforced (leaving
the first, last and one or more additional letters in place) or could be relaxed (fixing
only the first letter, or even none, allowing any permutation of any word). All we
assume is that some rule exists according to which not all the characters of a text
have to be restored to their original position for the text to be understandable. Such
a rule will obviously depend on and vary according to language, potential readers
and genre and type of the given text.

Taking therefore the quoted law (first and last letters fixed, the rest in any other
position) as working assumption, it suggests the following generic compression and
decompression algorithm:

Since the order of the characters (except the first and last of each word) is not
restricted, it might be useful to choose a special order referred to in Step 2 of the
compression, that will subsequently improve the encoding mentioned in Step 3.
The reason for Step 2 of the decompression process is avoiding a constant bias
introduced by the suggested partial order. It might be that seeing always the same
permutations according to the special order chosen may interfere with our ability
to recover the original word. Introducing the randomization restores for the reader
the feeling of arbitrariness which, possibly, is necessary for correct decoding.



Compression: 1. Process the words sequentially and if the current word is not
special (number, proper name, etc.), do

2. keep first and last letters in place, but rearrange the others
into “special” order;

3. apply some encoder on the rearranged text.

Decompression: 1. Decode the compressed words sequentially, and if the current
word is not special, do

2. keep first and last letters in place; choose a random permu-
tation of the other letters and send them to output.

In the following sub-section, we explore some of the possibilities for choosing
such a special order.

2.1. Choosing a special order of the characters

One possibility that comes to mind is arranging these letters in alphabetic order.
The reason such a strategy is expected to improve compression is similar to the
argument showing why the Burrows-Wheeler Transform (BWT) [1] actually works
so well.

The BWT works on a string of length n and applies all the n cyclic rotations
on it, yielding an n x n matrix which is then lexicographically sorted by rows. The
first column of the sorted matrix is thus sorted, but BWT stores the last column of
the matrix, which together with a pointer to the index of the original string in the
matrix lets the file to be recovered. The last column is usually not sorted, but it
corresponds to sorted contexts, and is therefore often very close to be sorted, which
is why it is more compressible than the original string. The compression scheme
based on BWT uses a move-to-front strategy to exploit this nearly sorted nature
of the string to be compressed. Returning to our problem, if the characters in each
word can be arranged alphabetically, this may similarly yield improved compression
using move-to-front and/or run-length coding if the strings are long enough.

Another possibility would be to arrange the characters by frequency. The dis-
tribution of characters in English text is well-known, (see, e.g., [3]), and sorting the
letters following the order E, T, A, O, N, I, S, etc., increases the probability of short
displacements in move-to-front schemes. However, frequency of occurrence alone
does not take the tight connections between certain characters into consideration.

A more precise rule would therefore be trying to group the characters based on
the probabilities of a given letter to appear after another one. A strict approach
gets quickly into loops, for example, E is most likely followed by R, which in turn
has E as its most probable successor. A simple greedy algorithm would thus be:



1. Start with an arbitrary character, z;

2. While not all characters are processed

e Choose, among remaining characters, the successor s of x with highest probability;

e < S

Following the probabilities in [3], one possible sequence this may yield is:
ANDEROUTHISPLYMBIJ-XCK-F-G-Q-V-W-2.

While the beginning of this sequence seems reasonable, there are some evident
shortcomings: P as successor of S is only the 9th choice, because the eight preceding
ones (in order: T, E, I, S, 0, A, U and H) all appeared earlier. Towards the end, all
the remaining potential successors have probability practically zero, indicated by
the dashes, so the choice is arbitrary. Note also that choosing the successor with
highest probability might push the second best choice too far away. The second
most frequent successor of A is T, which appears only in seventh position after A.

These speculations lead to the following formulation of the problem: we seek an
ordering of the letters maximizing the overall probability of the letter successions.
More formally, let ¥ = {xy,...,2,} be the alphabet, and let P[z,y] denote the
probability of character y appearing as successor of x; we look for a permutation
o : Y — ¥ of the n characters, such that

IT Zlo). o+ 1) 1)

is maximized. The following transformation shows that this is in fact an instance of
the Minimum Traveling Salesperson Problem. Consider a full graph G = (V,V x V),
with V' = 3, and define the weight w(z, y) of an edge (x,y) as

w(x,y) = —log Pla, y].

Finding a permutation maximizing (1) is then equivalent to finding a Hamiltonian
path of minimum weight in G. Unfortunately, this is an NP-complete problem, and
since in our case, there is no reason to assume that the triangle inequality holds for
the weights, it might even be hard to find a good approximation.

We now turn to the more technical details of choosing a specific compression
scheme.

2.2. Choosing the compression technique

A simple statistical encoder, such as Huffman or arithmetic coding, applied
independently to the individual characters will, of course, not yield any additional
compression at all. The set of encoded characters remains the same, only their
order is altered. To be able to take advantage of the partial reordering, a method
is needed that takes previous characters into account.

A simple example would be run-length encoding, which is not likely to be useful.
Run-length coding is widely used for images or fax-transmission, but in natural



language text there are hardly any repeated strings of length longer than 2 (in
German, there are some rare examples of runs of length 3, such as in Schifffracht).
In our case, where the internal characters appear in sorted order, the lengths of runs
are still limited by the number of times a given letter appears within a word. But
the average word length, in English, is only about 5, so that no significant runs
may be expected (German provides here again an extreme case: there is a street in
Vienna named Abrahamasantaclaragasse, which would give a run of 9 a’s).

We may expect better performance when using Huffman or arithmetic coding
in connection with a Markov model of order £ > 1, meaning that each character is
encoded as a function of the k characters preceding it. Though even natural text is
well compressed by such a model as it captures many of its characteristic features (q
followed by u, high probability for e following th, etc.), having identical characters
grouped together may even cause better compression. However, the additional space
requirements of higher order Markov models may be prohibitive.

Adaptive methods like Lempel-Ziv variants seem at first sight not applicable.
In an adaptive encoding, the current item to be encoded relies on previously seen
text, and if the item is not reliably restored, a subsequent pointer to it may give
wrong results. Counsider, for example, the string

rabcxyzcbadefwtwcedfav: -

to be encoded by LZSS [4], and suppose that the whole string consists of internal
characters (not the first or last in a word). The string cba can then be replaced by
a pointer to the preceding abc, and edfa could point to adef, so that the modified
LZSS encoding would be

cabcxyz (63)defwtwc (8,4 v ---.

But while the first pointer (6,3) would be decoded to abc, as expected, the second
pointer (8,4) would now refer to the substring cdef, which is not a permutation of
the original edfa. Note that the problem here is caused by the overlap between a
substring, cba, that is replaced by an (offset, length) pointer, and a substring, adef,
which is the target of such a pointer. In the absence of such overlaps, the encoding
scheme works correctly.

One strategy to avoid the problem would thus be to forbid such overlaps, but
this would affect compression efficiency. Another possibility is to adapt LZSS to
work in this case, by keeping a copy of the currently decoded text, and search in
it, rather than in the original text processed so far, for earlier occurrences of the
current string to be encoded or its permutations. Returning to the example above,
after having encoded cba, the processed string would look as

-abcxyzabc|defwtwcedfav---

where the vertical bar indicates the current position, and to its left appears the
reconstructed, rather than the original, text. While the bar now moves further to



the right, the string edfa cannot be encoded as before. However, in this example,
even a better substitution is possible, replacing wcedf by a pointer to cdefw, so
that the encoded string finally looks as

-abcxyz (63 defwt (65 av -

In fact, a correct algorithm based on LZSS is even more involved. Fast im-
plementations of LZSS, like LZRW1 [8] or Microsoft’s DoubleSpace [6] find the
recurring strings by locating, using hashing, a previous occurrence of the character
pair following the current position, and then extending the strings as far as possi-
ble by checking if the subsequent characters coincide. In our case, such a greedy
approach may fail, e.g., for the string

-xyzt abcdefg - ---x2zyt abedchk ---

The second occurrence of ab would point to the first one, but trying to extend the
strings would fail in the first two attempts, abe and abed not matching abc and
abcd, respectively, and only the third attempt would succeed, with abedc matching
abcde modulo the reordering. Moreover, word boundaries have to be taken into
account because of the constraint that first and last letters have to remain in place.
The processing must therefore be by a combination of trying to extend partial
matches by entire words and, once this fails, trying to match prefixes of the last
word dealt with, proceeding backwards from the longest to the shorter ones. In
the above example the word xzyt is first matched to xyzt, trying then to match
abedchk to abcdefg fails, so we try to backtrack. abedch does not match abcdef,
but abedc does match abcde, which gives the string xzyt abedc as required match.

Similar problems to those of LZSS would arise in LZ78 variants like LZW [5].
Instead of pointing to earlier strings in the already processed text, the compressed
file consists of a series of pointers to an external dictionary, which is built on the fly.
Here again, relaxing the rules and letting a pointer refer not necessarily to the string
to be replaced, but possibly to any of its permutations, may yield some savings:
the overall number of strings is reduced, implying that more good strings can be
stored, or that the necessary pointers can be shorter. But as above, decoding may
be erroneous, because the strings stored by LZW are overlapping, specifically, the
last character of the nth stored string is also the first of the n + 1st.

The problem may be more severe in this case, because eliminating one of the
strings stored in an LZW dictionary will affect all the subsequent entries and there-
fore change all subsequent pointers, whereas for LZSS, all the changes are locally
restricted.



2.8. Combining character ordering and compression technique

A different approach than trying to adapt Lempel-Ziv type methods would be to
restrict ourselves to dealing with bigrams, trigrams, or generally, any k-grams with
k > 1. Each word is considered on its own, and decomposed into a sequence of such
consecutive k-grams, leaving, as before, the first and last letters in place. Special
care is needed to deal with the last k-gram in this sequence within a word, which
might require a smaller k. Then each k-gram is mapped to a representative, in a
predetermined order (alphabetic, ETAONI, ANDERQ, etc.). Finally, the items obtained
by this decomposition are Huffman coded. Since the number of different k-grams is
reduced from |Z|* to (lil), a savings of about 50% for k = 2, and more for higher
k, the average Huffman codeword lengths are expected to be lower. Moreover, the
overhead of storing the different k-grams is also reduced.

An alternative would be to process the k-grams sequentially, without taking
word boundaries into account. Each k-gram would again be mapped to a reordered
one, but flag-bits would be used to indicate if there has been a reordering and which
one. For bigrams, a single bit suffices to indicate whether to switch a pair, and the
bit is needed only for those pairs following or preceding a space.

As example, consider the first words of the title of this sub-section, combining
character ordering, which are partitioned into a sequence of character pairs in
the first line of Figure 1. Blanks are replaced by dashes for visualization. In the
second line of the figure, the pairs appear reordered, where alphabetical order is
used in this example, with Blank preceding the characters. In order to take care
of the word boundaries, a flag-bit is added for the first and last pair of each word,
as displayed in the third line. A zero indicates that the corresponding pair stays
unchanged, whereas a one means that the corresponding pair has to be switched.
The last line of Figure 1 displays the sequence of pairs obtained by this decoding
algorithm: one would get cobmining characetr ordeirng, all the words of which
are wrong, but certainly recognizable.

Figure 1: Example of bigram encoding

Block sorting using the BWT could also be adapted to our case. As mentioned
earlier, the last column of the n x n matrix, which is the one stored by the algorithm,
is almost sorted. Suppose we have a sequence of the form A, A, A, B, A --- in this



column. If we can change the order of the characters, we might want to remove the
B from within the sequence of As. Such a reordering could make the string more
compressible.

3. Experimental results

The first text chosen as test bed for the above semi-lossless algorithms consists
of about 3MB of the AP newswire files from the TREC collection. In addition,
the methods were applied to Mark Twain’s Tom Sawyer taken from the Guten-
berg Project. To avoid a bias introduced by punctuation and other signs, all non-
alphabetic characters, except the space, have been removed, and all the others have
been changed to upper case, giving an alphabet of size 27.

Table 1 summarizes some of the results. The first column gives the size of the
raw files, the second after having applied simple Huffman coding on the individual
letters. All compression figures are given in bits per character (bpc). The next
columns deal with bigrams and trigrams, first in a standard fragmentation of the
text into bi- or trigrams, then using the reordering for those k-grams that can be
changed. For the bigrams the variant with the flag-bit has been applied, for the
trigrams, triples including the first or last letter of a word have not been reordered.
The figures include the overhead of storing the bi- or trigrams.

Table 1: Sample compression results

size Huffman bigrams trigrams
standard | ordered | standard | ordered

AP 2.57 Mb 4.148 3.791 3.707 3.529 3.437
Tom Sawyer | 361 Kb 4.111 3.707 3.687 3.549 3.485

As can be seen, there is a slight improvement, though not a significant one. In
fact, even with better parsing strategies than the simple one we used, one should
not expect large savings for English text: the average word length being less than 5,
and the two corner letters being fixed, the reordering will affect on the average less
than 3 letters. However, with schemes going beyond word boundaries, like LZSS,
or for other languages and other reordering rules, better results might be expected.

Note that there are far better compression schemes: applying Huffman coding
on the basis of words, rather than characters, yields, for AP, 2.136 bpc, and if the
internal letters of the words are reordered, 2.135 bpc, saving less than 0.05 percent.
But such a scheme requires a large overhead for the storage of the Huffman tree,
and can only be justified if the set of different words is stored anyway, e.g., as the
dictionary in an Information Retrieval system.



4. Conclusions and future work

The main contribution of this paper is thus not the presentation of some novel
compression technique, but rather the introduction of the notion of semi-lossless text
compression and the ensuing research problems it raises in compression, pattern
matching, computational linguistics and possibly other related areas. We have
briefly explored how some of the known compression methods could be adapted to
take advantage of the relaxed constraints.

Here is a partial list of topics one might want to deal with:

e One could try to devise new methods that do not rely on adapting existing
ones, but may possibly be totally different and specially adapted to our case.

o Different languages may suggest other rules. In French, grammatical suffixes
are more abundant and often one or more of the last letters of a word are not
even pronounced. Perhaps the rule of keeping specifically the last letter in
place is then not adequate? German has the ability of concatenating several
words into a single one; should the rule then be extended to fix also letters
at sub-word boundaries, and how could these boundaries be detected? The
average length of a word in Finnish is much longer than in English and double
letters are more frequent.

e One could adapt ideas from other languages to English. For instance, Hebrew
is generally written without vowels. This gives a large number of possible
interpretations for each word, most of which are grammatically incorrect, but
on the average, every word has four possible correct readings. Nevertheless, a
native speaker has generally no trouble to pick the right choice quickly enough
to read fluently, partly because certain consonants may act as vowels. It would
not be reasonable to strip all the vowels from English texts (thgh ths wld gv
gd cmprssn!), but perhaps one can devise rules to get rid of most of them,
as we do anyway in speed-writing or when sending short electronic notes by
computer or on cellular phones. On the other hand, in Czech the elimination
of vowels would have a lower impact, as there are even entire sentences that
are completely vowel-free, e.g., stré prst skrz krk.

e Semi-lossless compression is not necessarily restricted to keeping a permuta-
tion of the original characters. When typing on cellular or regular phones,
each key is assigned to several characters and the requested one is reached by
repeatedly pressing the same key. It may be that the sets assigned to each key
can be chosen in such a way that pressing only once, and thereby sending a
representative of a small set, can still result in a text that is understandable.
The size of ¥ would be reduced, so one may save space, but also the time
necessary to type a message will be greatly shortened.

Another short note many web-user got lately in their mail claimed that English
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spelling will shortly be simplified’. While this was meant as a joke, the idea is
another nice example of how semi-lossless techniques could be implemented. The
text suggested a five year plan during which many old spelling rules would be
gradually abolished or modified, until

after zis fifz yer, ve vil hav a reli sensibl riten styl. zer vil be no mor trubls
or difikultis and evrivun vil find it ezi tu understand ech ozer.

While most of us will easily decipher the quote, note that its length (148 characters)
is 14% shorter than its correctly spelled equivalent (172 characters), and the same
14% gain is also obtained if each of the messages is Huffman encoded (600 instead
of 694 bits).
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