
The String-to-Dictionary
Matching Problem∗

Shmuel T. Klein1 and Dana Shapira2

1Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
2Dept. of Computer Science, Ashkelon Academic College, Ashkelon 78211, Israel

Email: shapird@ash-college.ac.il

The String-to-Dictionary Matching Problem is defined, in which a string is
searched for in all the possible concatenations of the elements of a given dictionary,
with applications to compressed matching in variable to fixed length encodings,
such as Tunstall’s. Two algorithms based on suffix trees are suggested, the
one focusing on the dictionary, the other on the pattern to be searched for.
The problem is then extended to deal also with patterns that include gaps.
Experiments on natural language text suggest that compressed search might use
less comparisons for long enough patterns, in spite of a potentially large number

of encodings.

Keywords: Compressed Matching, Tunstall, Suffix Trees

Received ; revised

1. INTRODUCTION AND BACKGROUND

Traditional research in Pattern Matching algorithms
originally started from the simple question of how
to locate a string P = p1p2 · · · pm within a text
T = t1t2 · · · tn, but then extended to various variants
including locating sets of patterns, dealing with
dictionaries and indexes, and many others. The
techniques used to solve these problems sometimes rely
on preprocessing the pattern(s), or the text, or both. In
this sense, the String-to-Dictionary Matching Problem
(SDMP), to be defined below, is yet another pattern
matching scenario that, given its useful applications,
should be considered.
A different line of thought gets to the SDMP by

studying tradeoffs between several Data compression
techniques. Classical Huffman coding [14] is optimal,
but only if the set of elements to be encoded is fixed
and codeword lengths are constrained to be integers.
However, the compression ratio obtained by applying
Huffman coding to a simplistic model of encoding the
individual characters of a text independently is rather
poor. Much better compression can be achieved by
encoding the different words rather than the characters,
at the price of dealing with a huge Huffman tree [20],
but this might be a reasonable overhead worth paying,
as the set of different words might be useful anyway, for
example in large Information Retrieval systems.
The compression ratio is, however, not the only

criterion by which data compression techniques should

∗This is an extended version of a paper that has been presented
at the Data Compression Conference (DCC 2011), and appeared
in its Proceedings, 143–152

be judged. For instance, encoding and decoding speed
are important parameters in many applications, and the
variable length nature of Huffman codewords, which are
not necessarily byte-aligned, can put a serious burden
on the processing procedures. One way to alleviate the
problem is to replace the binary Huffman codes by a 2d-
ary variant, in which the lengths of all the codewords
are multiples of d, so choosing d = 8 results in all the
codewords consisting of an integral number of bytes [21].
While the loss in compression might be significant for
small alphabets, it is only of the order of a few percent
when the basic elements to be encoded are words rather
than characters.

Yet another feature of variable length codes which
should be taken into account is to support searches
directly within the compressed text, without having to
decompress first. Denote the encoding and decoding
functions by E and D, respectively. Then supposing
that one is given a compressed text E(T), instead
of looking for a string P in the decompressed text
D(E(T)), one may encode the pattern P and thus search
for E(P) directly in E(T). This paradigm of compressed
matching has become a research topic for its own
sake in recent years. Searching directly in a Huffman
encoded text might be tricky, because the occurrence
of the binary string E(P) is not necessarily aligned
on codeword boundaries in the compressed binary text
E(T) [17]. A solution based on finite transducers has
been suggested in [19]. In another approach, [21]
propose to reserve the first bit of each byte as tag ,
which is used to identify the last byte of each codeword,
thereby reducing the order of the Huffman tree from

The Computer Journal, Vol. ??, No. ??, ????

2 Shmuel T. Klein and Dana Shapira S.T. Klein, D. Shapira

256-ary to 128-ary. These Tagged Huffman codes
have then been replaced by End-Tagged Dense codes
(ETDC) in [6] and by (s, c)-Dense codes (SCDC) in [4].
An alternative code based on higher order Fibonacci
numeration systems and yielding similar features is
studied in [16].
The last three codes consist of fixed codewords which

do not depend on the probabilities of the items to be
encoded. Thus their construction is simpler than that
of Huffman codes: all one has to do is to sort the
items to be encoded by non-increasing frequency and
the fixed set of codewords by non-increasing length, and
then match the two lists. Pushing the idea of the use
of a fixed codeword set even further, one can revert
back to fixed-length codes, but to avoid the total loss of
any compression advantage, the elements to be encoded
should remain of variable length. Such a method has
been suggested by Tunstall [25] and some improvements
are studied in [18].
Such variable-to-fixed length encodings are advanta-

geous for fast decoding, but performing a compressed
search is much more involved. The problem stems from
the fact that the encoding of the pattern E(P) might
on the one hand not be defined at all, and even if it is,
this definition is not necessarily unique.
To illustrate this point on a small artificial running

example, suppose the given set of variable length
elements to be encoded, which we shall call the
dictionary , consists of D = {A=aab, B=aba, C=abc,
D=bcca, E=bc, F=bab}. The pattern to be sought for
is P = abab. If P itself were also an element of D,
one might have looked for the (fixed-length) codeword
E(P) in the compressed text. But this would not have
been the only solution. The pattern P appears also
as substring of several concatenations of codewords,
in our case in AB, AC, BD, BE, BF, DF, FB, and FC. In
BF the pattern appears even twice. Finding all the
occurrences of P would thus involve generating first all
the relevant concatenations, and subsequently searching
for the encoded form of each of them in the compressed
text.
This problem is reminiscent of the one treated in [9]

in which a pattern is sought in a text generated by
Straight-Line Programs (SLP). Their solution processes
the production rules of the SLP, whereas the solution
we suggest below deals directly with the elements of the
given dictionary.
The brute force approach of generating all the

potential concatenations is obviously not always feasible
as their number might be exponential in the number
of dictionary elements. Special cases of the SDMP,
restricting the problem to searches for single words or
phrases, are treated in [5, 3]. We suggest here solutions
to the more general problem. In the next section, we
formally define the SDMP and then suggest ways to
solve it in Sections 3 and 4. In the first approach,
the dictionary is stored in an extended trie which is
traversed as guided by the pattern; in the second, it is

the pattern that is pre-processed into a suffix tree, and
the dictionary elements are used to traverse the tree.

One of the generalizations of the standard pattern
matching problem is to patterns that might only be
partially defined, for example, patterns with gaps, or
equivalently, wildcards or don’t care symbols [11, 12].
This has applications to music Information Retrieval
[8], Molecular Biology [22, 23] and data compression
[1]. A similar problem in an Information Retrieval (IR)
context is known as dealing with truncated terms [2].
The extension of SDMP to pattern matching with gaps
is studied in Section 5.

Finally, in Section 6 we consider an application of
SDMP to the compressed matching problem on variable
to fixed length encodings, such as Tunstall’s.

2. DEFINITION OF THE STRING-TO-
DICTIONARY MATCHING PROBLEM

Given is a dictionary of k variable length strings D =
{d1, . . . , dk}, where di = xi,1xi,2 · · ·xi,si , and all the
characters xi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ si belong to
some fixed alphabet Σ. Further given is a pattern
P = p1p2 · · · pm, which is also a character string over the
same alphabet Σ. The String-to-Dictionary Matching
Problem looks for occurrences of P in any string which
can be obtained by concatenating, in any order and
possibly with repetitions, elements of D.

More formally, a solution to the SDMP consists of a
pair of elements

⟨j1, j2, . . . , jr ; q⟩, (1)

the first of which is a sequence of r not necessarily
different indices j1, j2, . . . , jr ∈ {1, 2, . . . , k}, and the
second being a starting position q ≤ sj1 , such that
either:

1. r = 1 and the pattern P is entirely contained
within one of the dictionary strings, starting from
position q; or,

2. r > 1, and P can be parsed as the suffix starting
at position q of dj1 , followed by occurrences of the
r − 2 elements dj2 , . . . , djr−1 , followed by a prefix
of djr , as schematically represented in Figure 1.

Pattern

Text

FIGURE 1. Schematic representation of a solution to the
SDMP

The problem is to find all the solutions, and its
complexity depends on the relationships betweenm, the

The Computer Journal, Vol. ??, No. ??, ????

The String-to-Dictionary Matching Problem 3

a

(4,1)

b

c

c

a

ba

b

a

c

a c

(4,4)
(2,3)

(2,2)

a

ca

(4,3)

(3,3)
(5,2)

(5,1)
(3,2)

(4,2)(2,1) (3,1)(1,1) (6,1)

b

(1,2)
(6,2)

(1,3)
(6,3)

FIGURE 2. Extended trie for D = {aab, aba, abc, bcca, bc, bab}

size of the pattern, and the lengths si of the elements
of the dictionary. If m is relatively small and the si
are large, in particular, if min1≤i≤k si ≥ m, then P
can only appear in its entirety within a single element
(case 1 above), or as a substring of the concatenation of
exactly two elements (case 2 above, with r = 2), having
a non-empty overlap with each of them. There are thus
at most k elements and k2 pairs of elements to scan, and
a straightforward approach might then be successful.
For larger m, however, the number r of potential

elements which have to be concatenated increases,
and the number of possible options might grow
exponentially as kr. Rather than exhaustively
generating all the possible combinations, we shall
propose an approach based on the idea of suffix trees.

3. GENERATING ALL THE SOLUTIONS
OF THE SDMP

Start by generating all the suffixes of all the elements
in D, that is, consider the set S of strings

S = {di,j = xi,jxi,j+1 · · ·xi,si , 1 ≤ j ≤ si, 1 ≤ i ≤ k}.

These O(
∑k

i=1 s
2
i) strings are then stored in a trie,

which is a labeled tree structure, as follows: every
internal node of the trie has one or more children, and
all edges are directed from a node to one of its children;
the edges emanating from a node are labeled by different
characters of Σ, ordered left to right. Every node v
of the trie is associated with a string s(v), which is

obtained by concatenating, top down, the labels on the
edges forming the path from the root to node v. The
suffix tree of a string T would be the trie for which the
set of strings associated to its leaves is the set of the
suffixes of T . In our case we define an extended trie,
and the strings used to build it are the elements of S,
but departing from the convention for standard suffix
trees, the elements will not correspond to the labels of
the leaves only.

In fact, the same string may appear as suffix of more
than one element of the dictionary, and a suffix of one
element can be the prefix of another. We shall thus
retain from the suffix tree procedures only the way of
traversing the trie, but devise another labeling scheme,
which is adapted to our SDMP.

If a node v of the trie is associated with one of the
strings di,j of S, a pointer of the form (i, j) will be
stored as (a part of the) label of v. A given string
may appear more than once in S, so that the label
of v may consist of several pairs. Returning to our
running example and renaming the elements U, V, . . . , Z
by d1, . . . , d6, respectively, Figure 2 shows the resulting
extended trie. Note that there are three kinds of nodes:
those that are non-labeled, those labeled only by proper
suffixes of elements of D, and those labeled (possibly
among others) by entire elements of D. The latter are
indicated by double circles in Figure 2.

To find all the solutions to the problem, the pattern P
will be used to traverse the trie, possibly several times.
An advancing step from a current node v in the trie

The Computer Journal, Vol. ??, No. ??, ????

4 Shmuel T. Klein and Dana Shapira S.T. Klein, D. Shapira

according to x is defined as selecting the edge (v, w)
emanating from v and labeled x, if there is such an edge,
and setting the new current node to be w. The proposed
procedure starts with the current node set as the root
of the trie and repeatedly performs advancing steps
according to the characters of the pattern. Reaching
a labeled node means that the end of an element has
been detected. If this happens for the first time, that
is, during the first traversal of the trie, then we are
looking also for proper suffixes of the elements in D,
so any labeled node should be handled. For subsequent
traversals of the trie, we are only interested in detecting
entire elements (those which appear in grey in Figure 1),
or, if this is the last iteration, a prefix of an element.
The way to distinguish these cases is by looking at the
second parameter of the label (i, j): if j = 1, the string
associated with the current node is an entire element of
D.
The formal algorithm appears in Figure 3. It uses

the global variables in p and in trie, the first giving
the index of the current character in the pattern P ,
the second pointing to the current node in the trie.
The fact that multiple overlapping solutions are possible
is handled by means of a queue Q, in which partial
solutions are temporarily stored. Inserting an element
x into Q and extracting the next element from Q into
x are denoted, respectively, by Q ⇐= x and x ⇐=
Q. The elements in the queue Q are triples of the
form (Seq, q, ind), where Seq is a sequence of indices
representing the beginning of a potential solution as
defined in equation (1), q is the starting position of this
partial solution, and ind is the index of the character
within the pattern P from which the extension of the
partial solution has to be checked.
The algorithm distinguishes between the first time

the iteration is processed and the following iterations.
This is done by a global variable named first which is
initialized to TRUE but set to FALSE at the end of the
first iteration. The first element, dj1 , of which possibly
only a proper suffix is matched, is dealt with in the
first iteration. Subsequent iterations handle the other
elements dji , for i > 1. In the first iteration, whenever a
node having any label is encountered, this means that
(the suffix of) an element has been detected, so it is
inserted into the queue for later processing (lines 14–15).
In the following iterations, only if the label corresponds
to an entire element, it will be concatenated at the end
of the sequence detected so far and reinserted into the
queue if the pattern is not yet exhausted (lines 16–17).
Concatenation of strings A and B is denoted by A || B.
Lines 18–24 correspond to the case that the end of P

has been reached. If at that moment the current node
in the trie is a leaf, this is the special case in which djr ,
the last element in the matching sequence, is entirely
contained in P (in Figure 1, the grey elements extend to
the right edge of P). If the current node v is an internal
node, this is the case in which only a proper prefix of djr
is a suffix of P . One has then to consider all the nodes in

1. in p ←− 1
2. Q ⇐= ∅
3. first ←− TRUE

4. repeat
{

5. in trie ←− root
6. if Q ̸= ∅ then
7. (Seq, q0, in p) ⇐= Q

8. while in p ≤ m and there is an edge (in trie, w)
emanating from in trie labeled pin p

{
9. in trie ←− w
10. in p ←− in p+ 1

// reached end of element of D or of a prefix

11. if in trie is labeled then
{

// not all of P yet processed

12. if in p ≤ m then
13. for all labels (ℓ, q) of in trie
14. if first is TRUE then
15. Q ⇐= (ℓ, q, in p)

// reached end of element of D

16. else if q = 1 then
17. Q ⇐= (Seq || ℓ, q0, in p)

}
}

// reached end of P

18. if in p > m then
19. scan sub-trie rooted at in trie and
20. for all labels (ℓ, q) of all nodes in the sub-trie

21. if first is TRUE then
22. print ⟨ℓ ; q⟩
23. else if q = 1 then
24. print ⟨Seq || ℓ ; q0⟩
25. first ←− FALSE

26. } until Q = ∅

FIGURE 3. Formal algorithm for SDMP

the subtree rooted at v, and refer to their labels: in the
first iteration, all labeled nodes are relevant, and this is
the special case in which P is fully contained within a
single element; in the following iterations, only doubly
circled nodes should be considered — they correspond
to all the possible extensions of the matching pattern.

The algorithm prints all the generated solutions, if
there are any. At the end of the while loop starting
at line 8, the pattern might not have been scanned
completely yet, that is, in p ≤ m. This is the case
in which P does not appear in the current sequence
of concatenated elements, and accordingly, nothing is
printed.

As to the complexity of the algorithm, one could have
thought that the number of times the pattern is scanned
is bounded by the number of solutions, that is, the

The Computer Journal, Vol. ??, No. ??, ????

The String-to-Dictionary Matching Problem 5

number of occurrences of P in different concatenations
of elements of D. But this does not take all the work
into account that is invested for finding partial solutions
that ultimately do not lead to a full match. A correct
bound on the complexity would rather be

max
1≤j≤m

[
j ×

(
number of occurrences of p1 · · · pj in

∪
i1,...,ir∈{1,...,k}
si1

+···+sir
≥m

di1di2 · · · dir
)]

,

which is linear in the number of characters in all the
occurrences of the patterns or their prefixes. This is
in contrast with generating all possible concatenations,
which can be exponential even if the number of
occurrences of the patterns is small.
We now consider a few examples of possible patterns:

1. P = bccb – there is no path in the suffix trie
corresponding to P . In the first part, the triples
(1,3,2), (6,3,2), (3,2,3) and (5,1,3) have been loaded
into the queue, but all the matching attempts will
fail and nothing is printed.

2. P = cacc – there are paths in the suffix trie
corresponding to P , but no path ends at the root of
a subtree including nodes that are doubly circled.
Thus again, there is no output.

3. P = caaba – traversing the trie with P goes
through the node corresponding to c, where (3,3,2)
and (5,2,2) are inserted into Q, and through the
node corresponding to ca, for which Q⇐= (4, 3, 3).
The algorithm then moves to the second phase,
rescanning the trie starting from the root. (3,3,2)
and then (5,2,2) are retrieved from Q, so the
suffix aaba is used, and only complete words are
considered. Thus, only the node labeled (1,1) is
relevant, and the triples inserted into Q are ((3
|| 1),3,5) and ((5 || 1),2,5). The next step is to
retrieve (4,3,3) from Q; the suffix aba is used, and
since only complete words are considered, the leaf
labeled (2,1) is reached. Since all of P has been
scanned, nothing is added to the queue, but at
lines 23–25 the first solution ⟨4, 2 ; 3⟩ is output.
Finally, ((3 || 1),3,5) and then ((5 || 1),2,5) are
retrieved from Q, indicating that the suffix to be
used to guide the traversal of the trie is a. The
subtree rooted at the node associated with a has
three doubly circled nodes, causing the printing of
⟨3, 1, 1 ; 3⟩, ⟨3, 1, 2 ; 3⟩ and ⟨3, 1, 3 ; 3⟩, and then
of ⟨5, 1, 1 ; 2⟩, ⟨5, 1, 2 ; 2⟩ and ⟨5, 1, 3 ; 2⟩.

4. ALTERNATIVE SOLUTION OF THE
SDMP — INVERSE APPROACH

The approach of the previous section was to consider
the dictionary D as fixed and thus to construct an
extended trie based on its elements in a preprocessing

stage. The trie is then accessed repeatedly as guided
by the characters of the given pattern P . In certain
applications it could be useful to inverse the approach
and construct a suffix tree for P that will be accessed
via the elements of the dictionary D. This will be true,
e.g., if the pattern is short, or if a fixed pattern P is
searched for in a large number of different dictionaries.

We start by constructing the suffix tree of P =
p1 · · · pm, which is the trie for which the set of associated
strings is {Pi = pipi+1 · · · pm | 1 ≤ i ≤ m}, the set
of suffixes of P . Note that since we do not extend
the pattern with an appended $, there is no one-to-
one correspondence between suffixes of the pattern and
leaves in the trie, and a suffix might be associated with
an internal node. A node in the trie that is associated
with a substring pi · · · pj of P , with 1 ≤ i ≤ j ≤ m,
will be labeled by [i− 1, j]. Since a given substring can
appear more than once in P , certain nodes may have
more than one label. As a running example, consider
the last example pattern given earlier, P = caaba.
Figure 4 shows the corresponding suffix tree and its
labels.

[1,2]
[2,3]
[4,5]

[1,5]

[3,5]

[0,1]

[0,3]

[0,4]

[0,5]

a
b

c

a b

[2,5][1,4]

[1,3] [0,2]

[3,4]

[2,4]

a

b

a

aa

ab

a

FIGURE 4. Suffix tree for pattern P = caaba

The idea behind the labeling scheme stems from
reducing a parsing of the pattern P to a path in a
corresponding graph GP = (V,E), as done, for example,
in [15]. For a pattern of length m, there are m+1 nodes
V = {0, 1, 2, . . . ,m}. We are then given a set of text
fragments, in our case, the dictionary D. If one of its
elements, d, is a substring pi · · · pj of P , then there will
be an edge [i−1, j] in E and the edge will be labeled by
the name of the element, namely d. The nodes and solid
arcs in Figure 5 show the graph corresponding to P =

The Computer Journal, Vol. ??, No. ??, ????

6 Shmuel T. Klein and Dana Shapira S.T. Klein, D. Shapira

caaba and the dictionary D = {A,B,C,D,E,F} = {aab,
aba, abc, bcca, bc, bab} used above. If there were
a parsing of P into a sequence of dictionary elements
dj1 , . . . , djs , then there would be a path in GP from 0 to
m consisting of s edges and labeled, respectively, dj1 to
djs . Our case is more complicated as we do not require
the first and last elements of the parsing sequence to be
entire dictionary elements. Rather, the first one can be
the proper suffix and the last one a proper prefix of some
of the di, as shown by the broken edges in Figure 5.

0
c a a b a

A

F

A,B,C

B

C,E

D

1 2 3 4 5

FIGURE 5. Graph for pattern P = caaba and dictionary
{A,B,C,D,E,F} = {aab, aba, abc, bcca, bc, bab}

The algorithm for SDMP is then the following.
Build the suffix tree of P and start with a graph GP

without edges. Process all the dictionary elements d
by traversing the trie from its root according to the
characters in d. If this traversal succeeds and ends
at some node labeled [i − 1, j], this means that d is
a substring of P so the edge [i− 1, j] is adjoined to the
graph. This is the case for aab and aba in our example.
If the traversal does not succeed, as for abc, bcca, bc
or bab, no action is taken.
So far, the construction has dealt only with dictionary

elements that appear in their entirety in the pattern. It
remains to deal with the prefixes and suffixes. Generate
all the proper suffixes of all the dictionary elements
and compare such a suffix of length i with the prefix
of length i of P , p1p2 · · · pi. In case of equality,
add the edge [0, i] and label it with the name of the
corresponding element. Then generate all the proper
prefixes and compare a prefix of length j with the suffix
of length j of P , pm−j+1 · · · pm. If this succeeds, add the
edge [m − j,m] and label it accordingly. Note that an
edge in GP can get more than one label, as can be seen
in the example for edges [0, 1] and [4, 5]; in addition, the
same dictionary word can label more than one edge in
GP , as can be seen in the example for words A, B, and
C. What remains to do is generating all the paths from
0 to m in the graph GP : the sequence of labels on these
paths are the solutions of the SDMP.
An advantage of generating the solutions in this form

is that overlapping solutions are compactly described.
On our example, one of the paths gives the sequence
C,E - A - A,B,C, which in fact is a shortcut for the
set C-A-A, C-A-B, C-A-C, E-A-A, E-A-B, E-A-C.
The complexity of this variant is O(m) for the

construction of the suffix tree, plus O(
∑k

i=1 si) for using

all the dictionary elements to traverse the tree, plus
O(

∑k
i=1 s

2
i) for dealing with all prefixes and suffixes of

the di. If the last term is dominant, it can be reduced
by the following strategy. Consider, in the example
above, the element bab. Using it for a traversal of
the suffix tree is not successful, but one of the nodes
visited during the traversal is labeled [3, 5], indicating
that a prefix of the dictionary term bab is a suffix of the
pattern. The same is true for the element abc, during
the traversal of which the algorithm passes through a
node labeled [4, 5]. These examples may be generalized
to amend the above algorithm to consider not only full
traversals of the suffix tree, but also partial matches
of prefixes of dictionary elements with suffixes of the
pattern, indicated by nodes labeled [i,m] for some i.
This takes thus care of all the prefixes in a single scan
of all the elements, using only O(

∑k
i=1 si), and not

O(
∑k

i=1 s
2
i) steps. To deal also with all the suffixes, it

suffices to construct a suffix tree of the reversed pattern,
PR =abaac on our example, and apply the above
traversal algorithm with the set of reversed dictionary
elements, {baa, aba, cba, accb, cb, bab} in our case.
There are of course parts in this approach that overlap
and could be omitted, but the overall complexity is
bounded by O(m+

∑k
i=1 si). In practice and for certain

values of si, the approach without the reversed suffix
tree might still be preferable, in spite of the larger upper
bound on the complexity. This will be the case, e.g., if
m is large or if many of the si are small. In particular, if
even

∑k
i=1 s

2
i) is dominated by m, it might be wasteful

to construct also a suffix tree for the reversed pattern.

5. MATCHING PATTERNS WITH GAPS

In this section we consider the extension of the SDMP
to the problem of pattern matching with gaps. Let *

stand for a variable length don’t care sequence, one
is interested in retrieving all the terms of a given
dictionary of the form X*, *X, *X* or X*Y, where X and Y

are some given strings. The problem in IR is to generate
search terms which have to be extracted from some
dictionary; if it is lexicographically sorted, the access
to the set of strings matching a prefix truncated term
like *X is not trivial. In pattern matching applications,
however, prefix or suffix truncation is not an issue,
since anyway only the pattern P itself is located, and
not some element of a dictionary that contains P as a
substring. The only relevant problem in this context is
therefore what has been called infix truncation, of the
form X*Y.

In practical applications, the length of the string
matched by the don’t care is often limited, otherwise
the requested set of solutions of X*Y is just the set
of non-overlapping pairs of the Cartesian product of
the solution sets of X and Y, and between them
the concatenation of dictionary words with lengths
summing up to the number of don’t cares. We shall
denote by *n the don’t care sequence of length at most

The Computer Journal, Vol. ??, No. ??, ????

The String-to-Dictionary Matching Problem 7

n. Alternatively, one might as well be interested in
fixed length don’t cares. Borrowing the notation used
for motifs in [1], we define X Y (X nY) to stand for a
string in which X and Y are separated by exactly one
(exactly n) character(s).
We are interested in an algorithm that reports all

concatenations of words of a given dictionary in which
X nY occurs, using the solutions for SDMP for X and
Y independently, possibly by applying the algorithm
given in Figure 3. First, the algorithm should generate
the solution sequences Seqx and Seqy for X and Y,
respectively. Three cases have to be dealt with,
according to the length, remx, of the remaining (suffix)
characters of Seqx, plus the length iny − 1 of the
remaining (prefix) characters of Seqy. Let us denote
this sum of lengths by cov, which is the number of
characters between X and Y not belonging to X or
Y themselves but already covered by the dictionary
elements which include X and Y in their concatenations.
The cases are schematically illustrated in Figure 6.

1. Q ⇐= set of solutions of SDMP for X

2. while Q ̸= ∅
3. ⟨Seqx ; inx⟩ ⇐= Q
4. ℓ ←− last(Seqx)

// number of remaining chars in dℓ
5. remx ←−

∑
t∈Seqx

|dt| − inx + 1− |X|
6. for each solution ⟨Seqy ; iny⟩ of SDMP for Y
7. f ←− first(Seqy)

// iny − 1: number of non-matching chars in df
8. cov ←− remx + iny − 1
9. if cov = n
10. print ⟨Seqx || Seqy ; inx⟩

11. else if cov = |dℓ|+ n and ℓ = f
12. NSeqy ←− Seqy

without first element f
13. print ⟨Seqx || NSeqy ; inx⟩

14. else if cov < n
15. L ⇐= ∅

// Λ is the empty string

16. generate concat(Λ, n− cov)
17. for all elements ℓ of L
18. print ⟨Seqx || ℓ || Seqy ; inx⟩

19. generate concat(s, h)
20. for all elements di of D for which |di| ≤ h
21. if |di| = h
22. add s || i to list L
23. else
24. generate concat(s || i , h− |di|)

FIGURE 7. SDMP with exactly n don’t cares

• If cov is exactly n, the solution for X nY is just
the concatenation of the partial solutions for X and
Y (Case 1 in Figure 6).

• If cov is more than n, and the last word, dℓ, of
Seqx is identical to the first word of Seqy, that is,
the sequences of lengths remx and iny−1 partially
overlap, then if there are exactly n characters left
in the matching word, the last element of Seqx
and the first of Seqy can be merged into a single
occurrence in the sequence containing X nY. This
is verified by checking whether (|dℓ| − remx) +
(|dℓ| − iny +1)+n = |dℓ|, where the expressions in
parentheses refer to the number of used characters
in X and Y, respectively. This formula can be
simplified to cov = |dℓ|+ n (Case 2).

• If cov is less than n, it should be checked which
words of the dictionary can be concatenated in
between X and Y so that their lengths together with
the remaining characters sum up to n (Case 3).

The formal algorithm is given in Figure 7. The
generation, in Case 3, of the concatenations of all
elements di1 , . . . , dir ∈ D such that i1, . . . , ir ∈
{1, . . . , k} and |di1 | + · · · + |dir | = n − cov is done
by means of the recursive procedure generate concat
which gets two parameters: a string s containing the
partial sequence of the indices of already concatenated
elements, and a number h, representing the length of
characters still to be covered. When all the n − cov
characters are exhausted, the corresponding sequence of
indices ℓ is adjoined to a list L. At the end, all possible
concatenations of Seqx and Seqy with all elements ℓ of
L between them are printed.

Note that the second argument of generate concat is
always strictly positive when it is invoked (n − cov in
line 16., and h − |di| in line 24.), so there is no need to
check for h > 0 within the procedure.

We now consider three examples which illustrate the
above cases. Returning to our previous example, we use
the same dictionary of Figure 2, and assume that for all
cases X is caaba with output ⟨3, 1, 1 ; 3⟩, ⟨3, 1, 2 ; 3⟩,
⟨3, 1, 3 ; 3⟩, ⟨4, 2 ; 3⟩, ⟨5, 1, 1 ; 2⟩, ⟨5, 1, 2 ; 2⟩ and
⟨5, 1, 3 ; 2⟩. For our examples we also consider Y to be
bba with output ⟨1, 6 ; 3⟩ and ⟨6, 6 ; 3⟩.

1. Case 1: Assume that n = 4, and let us refer
to the triplets ⟨3, 1, 1 ; 3⟩ and ⟨1, 6 ; 3⟩, which
contain occurrences of X and Y, respectively. In
this case cov = 2 + 3 − 1 = 4 which is equal to n,
and therefore the sequences are concatenated and
⟨3, 1, 1, 1, 6 ; 3⟩ is output, referring to the sequence
abc-aab-aab-aab-bab, (X and Y are given in bold).

2. Case 2: Now let us assume that n = 1 and refer
to the same triplets as in Case 1. In this case
cov = 2+3−1 = 4 is more than n and the sequence
for X ends with the word d1 =aab which is the
same word that opens the sequence for Y. Since

The Computer Journal, Vol. ??, No. ??, ????

8 Shmuel T. Klein and Dana Shapira S.T. Klein, D. Shapira

-�...

-�...iny − 1

remxX Y

-�... -�...remx iny − 1

X Y

-�.. -�..
iny − 1remx

X Y

Case 1

Case 2

Case 3

FIGURE 6. Illustration of the different cases for SDMP with fixed length gaps

cov = 2 + 3 − 1 = 3 + 1 = |aab| + n the sequence
⟨3, 1, 1, 6 ; 3⟩ is output, referring to the sequence
abc-aab-aab-bab.

3. Case 3: For the case where n is equal to 6 which is
greater than the number of remaining characters,
the only word with length less or equal to 6− 4 =
2 is d5 =bc. This will cause the printing of
⟨3, 1, 1, 5, 1, 6 ; 3⟩, referring to the sequence abc-
aab-aab-bc-aab-bab.

6. APPLICATION TO COMPRESSED
MATCHING IN TUNSTALL ENCODED
TEXTS

One of the motivations of this work mentioned above
is to enable a search directly in a text that has been
compressed by some variable-to-fixed length encoding
scheme, such as Tunstall’s. Given a dictionary D and a
pattern P to be searched for, one has first to generate all
the minimal superstrings of P that can be obtained by
concatenating elements of D; in terms of sections 3 and
4 above, these are all the solutions to the SDMP with
D and P as parameters. The problem is that the search
has then to be performed for each of the solutions, but
their number might be much too large. If the purpose
of the compressed search was to save the decompression
time, the savings should obviously not be wasted by
performing too many search iterations.
Empirical tests on natural language texts showed

that, nevertheless, it is possible to search for all the
solutions, because they are largely overlapping. The
following example illustrates this point. The sample
text used was the King James version of the English
Bible, which has been stripped of all punctuation signs,
leaving only blank, visualized as a dash -, and upper
and lower case letters. The variable to fixed length
codes were generated according to Tunstall’s algorithm
with 12-bit codewords, which produced a dictionary

D of 4081 elements. For the pattern o-the-sum-,
the number of combinations of codewords in which it
appeared was 58220, but most of them were formed
by the same elements: -th, e-s and um. The missing
prefix, o, is the suffix of 76 elements of D, and the
missing suffix, -, is the prefix of 766 elements of D,
which already accounts for 58216 combinations, all of
which have the same three elements (which correspond
to the grey elements in Figure 1) in their middle part.

For longer patterns, this suggests the following
strategy, based on an idea mentioned in [24] to
improve the Boyer-Moore (BM) [7] algorithm: if there
are significant fluctuations in the probabilities of the
characters of the underlying alphabet, do not scan the
pattern necessarily from its end towards its beginning
(right to left), but let the scan order depend on the
probability of occurrence, trying to match the rare
characters first. The likeliness of an earlier mismatch
is thereby increased, and so is the expected number
of characters the pattern might be shifted in each
iteration. For example, in a long enough pattern, if
the last character has high probability but the next to
last is rare, it may be advantageous to just ignore the
last character and start the matching process from the
penultimate position.

In our case, we have to look for a large set of patterns,
almost all consisting of the same sequence of characters,
except the first and the last. The idea is thus to
eliminate these extreme elements in all the solutions
and to search, in terms of the notation of Section 2,
for dj2 , . . . , djr−1 for each solution. In practice, this will
reduce the potentially very large number of patterns
to just a few, and even these may have extensively
overlapping suffixes, suggesting to use the Commentz-
Walter (CW) algorithm [10] to search for all of them at
once.

Figure 8 shows the results of the following test.
The test patterns have been chosen originating at

The Computer Journal, Vol. ??, No. ??, ????

The String-to-Dictionary Matching Problem 9

regular intervals in the Bible, more precisely at positions
500000i, for i = 1, . . . , 6, and for each starting
position, the patterns were the substrings of lengths
10, 20, . . . , 100. The text has then been encoded using
12-bit and 16-bit Tunstall codes, the most frequent
elements of which were: {er, ho, oh, -u, u-, --e,
-e-,. . .}, and {rae, rea, aho, aoh, hao, hoa,. . .},
respectively. Searching for the patterns using any of the
above algorithms gave tens of thousand solutions for 12-
bit, and hundreds of thousand for 16-bit Tunstall, but
in all cases, stripping the first and last elements reduced
the size of the solution sets to only 1 to 4.

 0

 1

 2

 3

 4

 5

 20 40 60 80 100

BM on original
CW w/o last symbol on 12 bit Tunstall
CW w/o last symbol on 16 bit Tunstall

FIGURE 8. Expected number of comparisons as a
function of pattern length

Horspool’s variant [13], using only the ∆1 function of
the BM algorithm was used for a CW search of the set
of solutions corresponding to each pattern. Since the
patterns belonging to the same set of solutions are not
necessarily of the same length and CW aligns them by
their right end, it is convenient to change the notation
so that the index of the last character in each pattern
is m. The set of t patterns to be searched for will thus

be {P (1), . . . , P (t)}, where P (i) = p
(i)
ℓi
p
(i)
ℓi+1 · · · p

(i)
m .

The expected number of positions the text pointer
can be shifted after each mismatch is

sh =
∑
x∈Σ

Pr(x) min
1≤j≤t

∆1(P
(j), x),

where Σ is the alphabet (in our case, a 12-bit or 16-bit
Tunstall code), Pr(x) is the probability of occurrence of
x in the text and ∆1(P

(j), x) is the number of positions
the pattern can be shifted if the last character of P (j)

is mismatched with character x. The expected number
of comparisons between shifts is

cmp =
m∑

i=max{ℓ1,...,ℓt}

[
(m−i+1)(1−Prob(i))

m∏
j=i+1

Prob(j)
]
,

where
Prob(i) =

∑
x∈{p(1)

i , p
(2)
i , ... , p

(t)
i }

Pr(x)

is the sum of the probabilities of the different elements
in the ith position of the t patterns. In particular, if
the element in a given position i is the same for all t

patterns, Prob(i) will just be Pr(p
(1)
i).

The overall expected number is approximated by
(n/sh) × cmp, where n is the size of the text. This
is an approximation for several reasons: (i) it assumes
independence of the characters, (ii) it truncates the
patterns to be all of the same length, (iii) it does not use
the ∆2 function of the BM algorithm. For long enough
patterns and for sets of patterns with extended overlaps
at their suffixes, as in our application, the loss incurred
by the approximations may be insignificant.

Figure 8 plots this expected number of comparisons
(divided by 100000) for a full scan detecting all the
occurrences in the text, as a function of the lengths
of the original patterns. For example, the patterns of
length 100 characters produced patterns of length 42
elements for 12 bit and 32 for 16 bit Tunstall codes.
The values obtained for each length were averaged,
which produced the dotted line curves in Figure 8.
As a comparison, we also ran a regular search on the
uncompressed text, producing the bold solid line. We
see that for the longer patterns, the compressed search
outperforms a decompress-then-search approach, by a
factor of 5 for 12 bit, and of 5.3 for 16 bit Tunstall. The
performance of the two Tunstall codes is very close, with
a slight advantage of 16 bit for patterns longer than 50
characters.

7. CONCLUSION

We have introduced a new pattern matching problem,
the SDMP, and suggested efficient ways to solve it.
Both are based on suffix trees, but the first pre-
processes the elements of the dictionary, whereas
the second builds the trie for the given pattern.
Which of the two should be preferred depends on the
intended application and the given parameters. For
an application to compressed matching, the generated
solutions, in spite of their large number, are shown to
perform much better than the original search in certain
cases.

REFERENCES

[1] Apostolico A., Fast gapped variants for Lempel-Ziv-
Welch compression, Information and Computation 205
(2007) 1012–1026.

[2] Bratley P., Choueka Y., Processing truncated
terms in document retrieval systems, Information
Processing & Management 18(5) (1982) 257–266.

[3] Brisaboa N.R., Fariña A., López J.R., Navarro
G., López E.R., A new searchable variable-to-variable
compressor, Proc. Data Compression Conference DCC–
2010, Snowbird, Utah (2010) 199–208.

[4] Brisaboa N.R., Fariña A., Navarro G., Esteller
M.F., (s,c)-dense coding: an optimized compression
code for natural language text databases, Proc.

The Computer Journal, Vol. ??, No. ??, ????

10 Shmuel T. Klein and Dana Shapira S.T. Klein, D. Shapira

Symposium on String Processing and Information
Retrieval SPIRE’03 , LNCS 2857, Springer Verlag
(2003) 122–136.

[5] Brisaboa N.R., Fariña A., Navarro G., Paramá
J.R., Improving semistatic compression via phrase-
based modeling, Information Processing & Manage-
ment 47(4), (2011) 545–559.

[6] Brisaboa N.R., Iglesias E.L., Navarro G.,
Paramá J.R., An efficient compression code for text
databases, Proc. European Conference on Information
Retrieval ECIR’03 , Pisa, Italy, LNCS 2633, Springer
Verlag (2003) 468–481.

[7] Boyer R.S., Moore J.S., A fast string searching
algorithm, Communications of the ACM 20 (1977) 762–
772.

[8] Cantone D., Cristofaro S., Faro S.,, New
Efficient Bit-Parallel Algorithms for the δ-Matching
Problem with α-Bounded Gaps in Musical Sequences,
Proc. Prague Stringology Conference, PSC’08, Prague,
(2008) 170–184.

[9] Claude F., Navarro G., Self-Indexed Text Compres-
sion using Straight-Line Programs, Proc. of the Sympo-
sium on Mathematical Foundations of Computer Sci-
ence, MFCS (2009) 235–246.

[10] Commentz-Walter B., A string matching algorithm
fast on the average, Proc. 6th International Coll. on
Automata, Languages, and Programming ICALP’79 ,
Graz, Austria, LNCS 71, Springer Verlag (1979) 118–
132.

[11] Crochemore M., Iliopoulos C., Makris C., Ryt-
ter W., Tsakalidis A., Tsichlas K., Approximate
string matching with gaps, Nordic Journal of Comput-
ing 9(1) (2002) 54–65.

[12] Fredriksson K., Grabowski S., Efficient algorithms
for pattern matching with general gaps, character
classes and transposition invariance, Information
Retrieval 11(4) (2008) 335–357.

[13] Horspool R.N., Practical fast searching in strings,
Software – Practice & Experience 10(6) (1980) 501–
506.

[14] Huffman D., A method for the construction of
minimum redundancy codes, Proc. of the IRE 40
(1952) 1098–1101.

[15] Klein S.T., Efficient optimal recompression, The
Computer Journal 40 (1997) 117–126.

[16] Klein S.T., Kopel Ben-Nissan M., On the
Usefulness of Fibonacci Compression Codes, The
Computer Journal 53(6) (2010) 701–716.

[17] Klein S.T., Shapira D., Pattern matching in
Huffman encoded texts, Information Processing &
Management 41(4) (2005) 829–841.

[18] Klein S.T., Shapira D., On improving Tunstall
codes, Information Processing & Management 47
(2011) in press, doi:10.1016/j.ipm.2011.01.005

[19] Lahoda J., Melichar B., Pattern matching in
Huffman coded text, Proc. Conference Information
Society , Vol B, Ljubljana, (2003) 274–279.

[20] Moffat A., Word-based text compression Software –
Practice & Experience 19 (1989) 185–198.

[21] de Moura E.S., Navarro G., Ziviani N., Baeza-
Yates R., Fast and flexible word searching on

compressed text, ACM Trans. on Information Systems
18 (2000) 113–139.

[22] Navarro G., Raffinot M., Fast and Simple Charac-
ter Classes and Bounded Gaps Pattern Matching, with
Applications to Protein Searching, Journal of Compu-
tational Biology 10(6) (2003) 903–923.

[23] Pinzon Y.J., Wang S., Simple algorithms for pattern
matching with bounded gaps in genomic sequences,
Proc. Intern. Conf. on Numerical Analysis and Applied
Math., (2005) 827–831.

[24] Sunday D.M., A Very Fast Substring Search
Algorithm, Communications of the ACM 33(8) (1990)
132–142.

[25] Tunstall B.P., Synthesis of noiseless compression
codes, PhD dissertation, Georgia Institute of Technol-
ogy, Atlanta, GA (1967).

The Computer Journal, Vol. ??, No. ??, ????

