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ABSTRACTSeveral measures are de�ned and investigated, which allow thecomparison of codes as to their robustness against errors. Then newuniversal and complete sequences of variable-length codewords are pro-posed, based on representing the integers in a binary Fibonacci numer-ation system. Each sequence is constant and need not be generated forevery probability distribution. These codes can be used as alternativesto Hu�man codes when the optimal compression of the latter is not re-quired, and simplicity, faster processing and robustness are preferred.The codes are compared on several \real-life" examples.



1. Motivation and IntroductionLet A = fA1; A2; � � � ; Ang be a �nite set of elements, called cleartext elements,to be encoded by a static uniquely decipherable (UD) code. For notational ease,we use the term `code' as abbreviation for `set of codewords'; the correspondingencoding and decoding algorithms are always either given or clear from the context.A code is static if the mapping from the set of cleartext elements to the code is�xed during the encoding of the text [23]. In this paper we restrict attention tostatic codes, thus excluding adaptive methods [26], and in particular the popularLZ techniques [28], [29]. Let pi be the probability of occurrence of the element Ai.The elements can be single characters, pairs, triplets or any m-gram of characters,they can represent words of a natural language, they can �nally form a set of itemsof a completely di�erent nature, provided that there is an unambiguous way todecompose a �le into a sequence of these items, in such a way that the �le canbe reconstructed from this sequence (see for example [12]). We thus think also ofapplications where n, the size of A, can be large relative to the size of a standardalphabet. Several criteria may govern the choice of a code. We shall concentrateon the following: (i) robustness against errors, (ii) simplicity of the encoding anddecoding process, and (iii) compression e�ciency.If li is the length in bits of the binary codeword chosen to represent Ai, it is wellknown that the weighted average length of a codeword, P pili, is minimized usingHu�man's [18] procedure. However, Hu�man codes are extremely error sensitive:a single wrong bit may render the tail of the encoded message following the erroruseless. As to (ii), a new set of codewords must be generated for each probabilitydistribution, and the encoding and decoding algorithms are rather involved.One approach to limit the possible damage of errors is to add some redun-dant bits which can be used for error detection or even correction. This obviouslydiminishes compression e�ciency and complicates further the coding procedures.The simplest possible codes are �xed length codes, which can be considered asrobust, since an error inverting a single bit causes the loss of only one codeword. Butfrom the compression point of view, static �xed length codes (both �xed-to-�xedand variable-to-�xed length codes) are optimal only if the probability distributionof the cleartext elements is uniform or almost uniform, and can be very wastefulfor other probability distributions. Moreover, if a bit is lost or an extraneous bit ispicked up, this causes a shift of the remaining tail, which is thus lost.The compression capabilities of codes are compared by means of their weightedaverage codeword lengths, and the simplicity of the coding and decoding procedurescan be measured by the time and space complexity of their algorithms. In the nextsection, we de�ne a sensitivity factor, which enables a quantitative comparison ofcodes regarding their robustness against errors. We then review some codes appear-ing in the literature and evaluate their sensitivity factor. Some classes of in�nitecodes are considered in Section 3 as to the simplicity of their coding algorithms andto their compression e�ciency. In Section 4, a new family of variable length codes{ 2 {



is introduced, which can be considered as a compromise between Hu�man and �xedlength codes with respect to the three above mentioned criteria. The new family ofcodes depends only on the number of items to be encoded and the ordering of theirfrequencies, not on their exact distribution, and is based on the binary Fibonaccinumeration system (see [27]). The corresponding coding algorithms are very sim-ple. Our paper is related to [1], where various representations of the integers, basedon Fibonacci numbers of order m � 2, are investigated, with an application to thetransmission of unbounded strings. In the present work we assume an underlyingprobability distribution and explore the properties of Fibonacci representations forvariable-length codeword sets, in particular the trade-o� between their robustnessand their compression e�ciency. In Section 5, the codes are compared numericallyon various probability distributions of \real-life" alphabets.The broad area of data compression has been ably reviewed in Storer [25]and in Lelewer and Hirschberg [23], and more recently in Williams [26] and Bell,Cleary & Witten [2]; thus we refrain from giving a review here, and cite only thoseworks connected to the present investigation.Throughout we restrict ourselves to binary codes, though all the ideas canbe generalized to arbitrary base � 2. In particular, the binary codes based onthe binary Fibonacci numeration system may be generalized to codes based onthe sequence of integers fa(m)1 ; a(m)2 ; : : :g, de�ned by a(m)0 = a(m)1 = 1 and therecurrence relation a(m)i = ma(m)i�1 + a(m)i�2 for i > 1, for any �xed positive integerm (m = 1 is the Fibonacci case). The resulting codes are (m + 1)-ary codes, andtheir properties have been investigated by Fraenkel [10], [11].
2. RobustnessWhen reliable transmission of a message is needed, error-correcting codes maybe used. Often, however, we don't care about single (e.g., transmission or typing-)errors, as long as their in
uence remains locally restricted. We need a measurewhich enables us to compare codes according to their error-sensitivity.2.1 The sensitivity factorLet F be a family of errors that may occur in an encoded string, e.g., deletion orcomplementation of a bit, etc. Intuitively, we would consider a code C more robustthan another code D, if, given any error from F in S(C) (the string encoded byC) and any error from F in S(D), the number of misinterpreted codewords for Cis smaller than for D. Henceforth, we restrict F to contain substitution, as well asdeletion and insertion errors. That is, \an error occurring at position x" has to beunderstood as either x changing its value v to 1� v, or x being lost, or that a 0 or1-bit was inserted just to the right of x.{ 3 {



We propose as measure the \expected maximum" number of codewords whichmay be lost when a single error occurs; the expected maximum is obtained by cal-culating the maximum for all the possible locations of the error and then averagingappropriately. More formally, let C be a code with codewords ci of length li whichappear with probability pi, 1 � i � n; let qi be the probability that a bit at arandomly chosen location of a long encoded string belongs to ci. Note that qi isproportional to both pi and li, that is, qi = pili=Pnj=1 pj lj ; in particular, for �xedlength codes, qi = pi. Let M(ci; j) be the maximal number of codewords whichmay be lost if an error occurs in the j-th bit of ci, 1 � j � li. Assuming that anybit in ci has equal chance to be erroneous, let M(ci) = (1=li)Plij=1M(ci; j) be theexpected maximum number of codewords which may be lost if an error occurs inci. The sensitivity factor of C is de�ned asSF(C) def= nXi=1 qiM(ci) = 1L nXi=1 pi liXj=1M(ci; j); (1)where L =Pnj=1 pjlj is the average codeword length.The reason for preferring the \expected maximum" over the \expected aver-age" in the de�nition of SF is a technical one: the average number of codewordslost by an error in a given bit depends on the entire set of codewords and theirdistribution, and is thus often much harder to evaluate than the maximum, which isindependent of the distribution. We now evaluate the sensitivity of several knowncodes, which we consider in order of increasing SF .An absolutely robust code T would be, e.g., a code with a representation ofeach codeword by a triple replication of itself: transmit every bit three times andretain the value which occurred at least twice. Under our assumption of a singleerror, no codeword would be misunderstood, thus SF(T ) = 0. But there are moreeconomical error correcting codes if such low sensitivity is required.In order to get better compression, variable length codes should be used. Theseare on the one hand more vulnerable than �xed length codes, because even asubstitution error can change a codeword into one of di�erent length, and theerror can thus propagate. On the other hand, an insertion or deletion error willcause more damage to a �xed-length code F , for which synchronization will belost \forever", i.e., SF(F ) is unbounded, whereas certain variable length codesmight resynchronize sooner or later. For a �nite set of cleartext elements, optimumcompression is obtained by Hu�man codes, but as was already mentioned, theyhave to be generated for each probability distribution. We �rst consider some �xedin�nite sets of variable length codewords, which yield inferior compression but aremuch easier to use, as any set of n elements is now encoded by the following simpleprocedure:1. Sort the probabilities into non-increasing order: p1 � � � � � pn.2. Assign the i-th codeword (which were sorted by non-decreasing length) tothe element whose probability is pi.{ 4 {



The encoding and decoding algorithms are then simply based on table lookups.The simplest variable length code is a unary code U = f1; 01; 001; 0001; : : :g,i.e., the i-th codeword consists of a 1 preceded by i� 1 zeros, i = 1; 2; : : :. Such acode should be used only for distributions which are close to pi = 2�i. If an errordeletes the 1 at the right end of any codeword or changes it into a zero, then twoadjacent codewords fuse together, so there are two misinterpretations. An insertionof 0 at the last bit only a�ects the following codeword, while an insertion of 1 atthe last bit just adds a new codeword. If an error occurs elsewhere (in one of thezeros), the current codeword will be decoded as if there were two codewords (incase of substitution or insertion of 1), but only one codeword is lost. For Un, the�rst n codewords of U , the average codeword length is L = Pni=1 ipi, thus we getfrom (1) SF(Un) = 1L nXi=1 pi((i� 1) + 2) = 1 + 1L:In Gilbert [13], the following method for generating block-codes of length Nis proposed. These are also called pre�x-synchronized codes [14], which are specialcases of comma free codes (see e.g. [20]): �x any binary pattern � of k < N bitsand consider the set of all strings of the form y = �x, where x is a binary string oflength N �k such that the pattern � occurs in � x� only as pre�x and su�x. Thisallows the receiver of an encoded message to resynchronize (e.g. after a transmissionerror) by looking for the next appearance of the pattern �.Another variant appears in Lakshmanan [22], who studied variable-lengthcodes. As he did not consider the above synchronization problem, but was in-terested mainly in UD codes, he de�ned the set of strings of the form y = x� (now� occurs as su�x in every codeword), where � is as above and x is a binary string oflength at least 1 bit, but the restriction on x being only that � occurs in y exactlyonce and as su�x. Hence one obtains a pre�x-code. The set of all binary stringsof length � k in which � occurs only as su�x is called the set generated by �, andwill be denoted L(�). Note that we have adjoined � itself to the code de�ned byLakshmanan, in order to get better compression. In Berstel & Perrin [3], L(�) iscalled a semaphore code.Various choices of � are investigated in [13]. Gilbert conjectured that thenumber G(N) of possible codewords of length N can be maximized by choosinga pre�x of the form � = 1� � �10 of suitable length k. This conjecture was provedby Guibas & Odlyzko [14] for large N , who showed, more generally, that G(N) ismaximized by the choice of a pre�x � with autocorrelation 10 � � � 0 (k�1 zeros) andwith length k such that jk � log2N j � 1. A binary string x has autocorrelation10 � � �0 if and only if no proper pre�x of x is identical to any su�x of x. For examplex = 1� � �10 has autocorrelation 10 � � � 0.Suppose � has autocorrelation 10 � � �0. If an error occurs in a codeword x oflength ` in one of its ` � k leftmost bits (not in �), then only x is lost. Indeed,{ 5 {



inserting, deleting or changing a bit can either cause the pre�x to be altered, or itcan create a new occurrence of the pattern �. However, in the latter case, the newoccurrence of � cannot have overlapping bits with the su�x � of x, because � hasautocorrelation 10 � � �0. Thus the altered codeword x will possibly be decoded astwo codewords, but the following codewords are not a�ected.If an error occurs in one of the bits of the su�x � of x, then a new occurrenceof � can be created which has overlapping bits with the su�x � of x, even if �has autocorrelation 10 � � �0. An example of such a pattern is � = 1110110; if thecodeword is x = 11110�, it would be decoded after a substitution error in the thirdbit from the left in � as 1�0110; if the codeword following x is y = 01100�, then asubstitution error in the rightmost bit of x would yield the decoding 111101110�0�.If there is no occurrence of � in the concatenation of the altered form of x withthe pre�x of y, then only x and y are lost, and if there is a new occurrence of �,it cannot be partly overlapping with the su�x � of y; hence in any case, only twocodewords are lost. Therefore we get from (1)SF(Ln(�)) = 1L nXi=1 pi((li � k) + 2k) = 1 + kL;where Ln(�) is the set of the n �rst elements of L(�), ordered by non-decreasingcodeword length. The above unary code is the special case � = 1.Suppose now that � has autocorrelation other than 10 � � �0. Then SF is notnecessarily bounded. Consider for example the pattern � = 11100111, and thefollowing encoded message, in which occurrences of � are overlined:� � � 11111100111001110011111001110011110011100111 � � � ;a substitution error in the leftmost bit of the leftmost occurrence of � would yieldthe decoding:� � � 11101100111001110011111001110011110011100111 � � � ;and this example can be extended arbitrarily. Thus SF(Ln(�)) is not bounded,when the number of codewords tends to in�nity.In Elias [6], a code R = fr1; r2; : : :g is proposed which encodes the cleartextelement Ai by a logarithmic ramp representation of the integer i. The �rst elementr1 is 0. Let B(x) denote the standard binary representation (with leading 1) ofthe integer x. Then for i > 1, ri is obtained in the following way: B(i) is pre�xedby B(blog2 ic), and the process of recursively placing the length of a string (minus1) in front of that string is repeated until a string of length 2 is obtained. Sinceall the strings B(x) have a leading 1-bit, the bit 0 is used to mark the end of thelogarithmic ramp. For example, r16 is 10-100-10000-0 and r35 is 10-101-100011-0, where dashes have been added for clarity. A substitution error in one of thedlog2 ie + 1 rightmost bits of ri (except for the appended zero) does not change{ 6 {



its length, so it is the only codeword to be lost. However an insertion or deletionerror, as well as any error in one of the other bits may change the codeword intoone of di�erent length, so that decoding of the following codeword does not startwhere it should, and such an error can propagate inde�nitely, so that SF(R) is notbounded. The same result holds for a similar logarithmic ramp code discussed inEven & Rodeh [7].Finally, for a Hu�man code H, an error may be self-correcting after a fewcodewords, even if it is not a �xed length code (see Bookstein & Klein [4]). Nev-ertheless, it is easy to construct arbitrarily long sequences of codewords which arescrambled by a single error, so that SF(H) is not bounded, when the number ofencoded cleartext elements grows inde�nitely.2.2 Sensitivity of synchronous codesFor the last examples, where SF is not bounded, a more delicate de�nition ofSF might be used to respond to our intuitive notion of robustness, since even amongthose error-sensitive codes, there are some which are more robust than others. Forinstance, in Ferguson & Rabinowitz [8], a method is proposed for certain classes ofprobability distributions, yielding Hu�man codes which are self-synchronizing in aprobabilistic sense: each code contains a so-called synchronizing codeword c, suchthat if c appears in the encoded string, the codewords following it are recognized,regardless of possible errors preceding c. More formally, a codeword s = s1 � � � smis de�ned in [8] to be synchronizing if it satis�es the following conditions:1. for any other codeword x, s does not appear as substring in x, except possi-bly as su�x;2. if a proper pre�x s1 � � � sj of s is a su�x of some codeword, the correspondingsu�x sj+1 � � � sm of s is a string of codewords.Hence the existence of a synchronizing codeword bounds the expected length ofthe propagation of an error without increasing the redundancy of the code, but theauthors show that there are distributions for which no such synchronous Hu�mancode can be constructed. In our de�nition of sensitivity, the existence, for certaincodes, of synchronizing codewords should be taken into account.De�ne for any code C = fc1; : : : ; cng, the sensitivity factor SF 0(C) similarlyto SF , as SF 0(C) def= nXi=1 qi 1li liXj=1S(ci; j):Here S(ci; j) is de�ned as the expected number of codewords between ci and thefollowing synchronizing codeword s (including s, but not ci), in case the errorin the j-th bit changed ci into a codeword of di�erent length; otherwise, if theerror in the j-th bit changed ci into another codeword of the same length, onlyci is lost, so de�ne S(ci; j) = 1. Note that S(ci; j) is not the expected numberof codewords lost, E(ci; j), since there are possibly codewords which recover from{ 7 {



certain errors in some ci, but the de�nition of a synchronizing codeword requires itto resynchronize after every possible error, hence S(ci; j) � E(ci; j). On the otherhand, S(ci; j) � M(ci; j) so that SF 0(C) � SF(C); therefore SF 0(C) > SF(D)shows that D is more robust than C for both de�nitions of the sensitivity factor.The evaluation of SF 0(C) is easy: if q is the sum of the probabilities of the syn-chronizing codewords in C, then S(ci; j) is either 1 or 1=q, so thatPlij=1 S(ci; j) =ti+(li�ti)=q, where ti is the number of possibilities to transform ci into a codewordof the same length by changing a single bit. It should be noted that there are codeswhich have no synchronizing codeword, but still have synchronizing sequences. Wepreferred however not to take this into account for the de�nition of the SF 0.For Ln(�), where � is of length k bits, at least any codeword x = x1 � � �x`with length ` � 2k � 1 is synchronizing. Condition 1. above is obviously satis�edfor every codeword in L(�). As to condition 2., all the su�xes of length � k arethemselves codewords. The su�xes of length < k of x need not to be checked:the corresponding pre�xes of x have length � k, so if any such pre�x is the su�xof a codeword, its rightmost bits are �, but this contradicts the fact that x 2L(�). In particular, every codeword of the unary code U is synchronizing. ThusSF 0(Ln(�)) � 1=Pfj:lj�2k�1g pj , and SF 0(Un) = 1.If we consider Elias' in�nite code R, it is certainly not synchronous. Thecodeword ri, for i > 1, can be regarded as the standard binary representationof some integer j > i, thus ri appears as substring in rj , where it is followedby 0, violating the �rst condition. However, for �nite codes Rn = fr1; : : : ; rng,synchronizing codewords can be found in certain cases. For example, if 16 � n < 32,then r16 is synchronizing: it is of maximal length, so the �rst condition is triviallysatis�ed, and every su�x of r16 is a sequence of codewords.Since it is not always possible to construct a synchronous Hu�man code, thereare certain cases for which even SF 0(H) will not be bounded. For all the examplesin Section 5, synchronous Hu�man codes are chosen, and their sensitivity factorSF 0 is compared with SF of the other codes.2.3 A robustness vs. compression trade-o� for Hu�man codesThe high error-sensitivity of Hu�man codes suggests that for certain appli-cations it may be pro�table to improve SF at the cost of a reduced compressione�ciency. When only substitution errors are possible, this can be achieved bygrouping the codewords in blocks of �xed size m; if the last bit of the block is notthe last bit of a codeword, i.e. there is a codeword w, the tail of which does not �tinto the block, then w in its entirety is moved to the beginning of the next block.In order to avoid incorrect interpretations, the last bits of the �rst block remainunchanged, i.e. they contain a pre�x of w. As a consequence, the average length ofa codeword will increase.A Hu�man coded message is deciphered by repeated traversals of the corre-sponding Hu�man tree. Starting at the root, one passes from one level to the next{ 8 {



lower one following the left (resp. right) pointer, if the next bit of the input stringis 0 (resp. 1), until a leaf is reached; this leaf corresponds to a codeword, which isoutput, and the algorithm proceeds again from the root. Using m-bit blocks, thedecoding procedure has to be modi�ed as follows: every time the pointer P whichpoints to the current place in the Hu�man-tree is updated, i.e. when passing to aleft or right son or | when a leaf was reached | resetting the pointer to the root, acounter CN is incremented. When CN = m, this indicates that we have completedthe processing of an m-bit block, so P is set to point to the root, regardless ofwhether a leaf was reached or not, and the counter is zeroed. Therefore a possiblesubstitution error cannot a�ect neighboring m-bit blocks. Insertion and deletionerrors however have the same devastating e�ect as for �xed length codes.We thus consider in this sub-section only substitution errors, as is done forexample in [15], and de�ne a new sensitivity factor SF 00 similar to SF , but withthis restricted interpretation of the word \error". Clearly, SF 00(C) � SF(C) forany code C.The parameter m can often be chosen so as to obtain a predetermined SF 00or average codeword length, but obviously must not be smaller than the maximalcodeword length. One can always choose the block-size m to be relatively prime tothe greatest common divisor of all the codeword lengths, and then one can assumethat the probability of codeword ci being the last in an m-bit block is proportionalto pili, and that for a given codeword, each bit-position has the same chance tobe the last in the block. Hence R, the average number of \redundant" bits perblock, i.e., the average length of the pre�x of the last codeword in the block if itwas truncated, is given byR = 1LXi pili� 1li li�1Xj=0 j�= 12  P pil2iL � 1! ;where L =P pili is the original average codeword length.The new average number of codewords per block is N 0 = (m� R)=L and thenew average codeword length isL0 = mN 0 = mLm�R;from which a bound for m can be derived, when a desired upper bound for a newaverage codeword length L0 > L is given: the new average codeword length willnot exceed L0 if m � R � L0L0 � L:Once the block-size is �xed, we proceed to calculate SF 00. Given that an errorhas occurred, the probability that this error is in the �rst codeword of an m-bitblock is L=m. In this case, at most the entire block (N 0 codewords) is lost. If the{ 9 {



error is in the second codeword of the block, at most N 0 � 1 codewords are lost,again with probability L=m, etc. Assuming that N 0 is an integer, we getSF 00 = Lm�N 0 + (N 0 � 1) + � � �+ 1�= L (N 0 + 1)N 02m :The resulting formula SF 00 = L(N 0 + 1)N 0=2m is approximately true also fornonintegral N 0.It is not always possible to achieve a predetermined SF 00 because m cannotbe smaller than the maximal codeword-length. For some distributions, one canobtain the same SF 00 as for some constant code Ln(�), but with larger averagecodeword-length. For other distributions a block size can be found which givesboth better SF 00 and better compression than Ln(�); in these cases the advantageof the latter reduces to their simplicity, their faster decoding and their robustnessagainst insertion and deletion errors (see examples in Section 5). Nevertheless itshould be noted that while SF 00 (and even SF) for the Ln(�) codes is bounded,SF 00 for the \robusti�ed" Hu�man codes depends on the ratio of the maximumto the average codeword length, which in turn is a function of the number ofelements of the set and their distribution. This ratio is minimized for the uniformdistribution, but this is the worst case from the compression point of view.An alternative way to protect Hu�man codes against noise is proposed inHamming [15, Section 4.14]: break the Hu�man encoded message into blocks anduse Hamming error-correcting codes to protect each block. If m is the size of theHu�man code blocks, the output blocks are of size m+dlog2me. This can thereforebe an attractive alternative, since for large enough m, compression is only slightlydeteriorated, but SF 00 = 0. On the other hand, the coding algorithms are muchmore complicated and time consuming.3. Universality and CompletenessThe previous section has dealt with criterion (i)mentioned in the introduction.We now turn to the other two criteria. As was pointed out earlier, a simple way toencode an alphabet of n elements is to use the �rst n codewords of a �xed in�nitecode. In [6], Elias has shown that it is possible to construct in�nite codewordsets which he calls universal: an in�nite set of codewords of lengths li, with l1 �l2 � : : : , is universal if for any �nite probability distribution P = (p1; : : : ; pn),with p1 � p2 � : : : , the following inequality holds: Pni=1 pili= max(1; E(P )) � K,where E(P ) = �Pni=1 pi log2 pi is the entropy of the distribution P , and K isa constant independent of P . Thus given any arbitrary probability distributionof an alphabet, a universal code can be used to encode it such that the resultingaverage codeword length is at most a constant times the optimal possible for thatdistribution.The universality of the logarithmic ramp code R has been shown in [6]. Theunary code U is not universal. The codes L(�) are universal if and only if � has atleast 3 bits or � = 11 or � = 00 (see [22]).{ 10 {



Though we consider also codes yielding sub-optimal compression, we shallrestrict ourselves to complete in�nite codes. As de�ned in [6], a code C is completeif adding any binary string c, c =2 C, gives a set C [ fcg which is not UD. Otherauthors call such a code succint [25]. Note that an in�nite code which is notcomplete can be extended by adjoining more codewords, thus forming a sequencewith better compression capabilities.Every UD code C with codeword lengths li satis�es the McMillan [24] in-equality: Pi 2�li � 1. Thus a su�cient condition for the completeness of C isPi 2�li = 1. In [22], recurrence relations are developed, giving for every �xed �the number br(�) of elements of length r in L(�), for r � k. These relations canbe used to show that for all such codes, P1r=k br(�)2�r = 1, which implies thecompleteness of the sets. An algebraic proof for the completeness of L(�) can befound in [3, Chapter II, Section 5]. We give here a direct, \string-theoretic" proof.Theorem 1. The codeword set L(�), generated by any �xed pattern � of k � 1bits, is complete.Proof: Let c = c1� � � cr be any binary string =2 L(�). In order to show thatL(�) is complete, we construct a binary string which has more than one possibledecomposition in the set L0 = L(�) [ fcg.Let � = �1� � ��k and de�ne the string E = c� = e1� � � er+k. De�ne a sequenceof indices t(i) for i � 0 by t(0) = 0 and for i > 0, t(i) is such that E(i) def=et(i�1)+1� � � et(i) 2 L(�). In other words, scanning the string E from left to right,we try to decompose it into elements of L(�), denoting by t(i), for i � 1, theindex of the last bit in E which belongs to the i-th codeword detected in thisway of scanning. Although � occurs as su�x in E, it is not always true that Ecan be decomposed in its entirety in this way. As example, take � = 101 andE = 00101110101, then t(1) = 5 and t(2) = 9 and we are left with a su�x 01 in E.As can be seen in the example, the problem arises when there is an occurrence of� which has overlapping bits with the su�x � of E. Hence in this way, we parse Einto (E(1); : : : ; E(m); R) for some m � 1, where E(i) 2 L(�) for 1 � i � m and Ris a (possibly empty) proper su�x of �.Case 1: R is empty. Then we have two decompositions of E in L0: E = (c; �) =(E(1); : : : ; E(m)).Case 2: R is not empty. Let ��1 denote the binary complement of �1 and letb = b1� � � bk�1 be the string de�ned by bi = ��1 for 1 � i < k. Consider the stringB = E b�, one possible decomposition of which in L0 is (c; �; b�). A proper pre�xof E can be parseed into (E(1); : : : ; E(m)) with E(i) 2 L(�), so it remains to showthat the su�x S = Rb� can be decomposed into elements of L0. If � occurs in Sonly as a su�x then S 2 L(�). If � occurs twice in S, the two occurrences cannotbe overlapping because of the choice of b; this yields a decomposition of S into twoelements of L(�). { 11 {



The proof is completed by showing that the pattern � cannot occur more thantwice in S. Since R is a proper su�x of �, it has less than k bits, hence anyoccurrence of � which starts in R must extend into b. On the other hand, nooccurrence of � can start in one of the bits of b. So if there are h > 2 appearancesof � in S, one of the occurrences is as the su�x of S, and the h � 1 remainingoccurrences of � must start at di�erent positions in R, thus having su�xes ofdi�erent lengths in b. However, this implies that all the bits of � are equal tobi = ��1, a contradiction.We saw already that as far as robustness is concerned, the pattern � for thecode L(�) should be chosen with autocorrelation 10 � � �0. Theorem 1 suggests thatsets based on such patterns are preferable also in another sense. Extend Gilbert'sblock-codes into a variable-length code in the following way (for technical reasons,we shall consider the codewords with �xed su�x rather than �xed pre�x): for a�xed pattern � of length k � 1 bits, G(�) will denote the set of all the codewords ofthe form y = x�, where x is any binary string of length � 0, such that the pattern� occurs in � x� only as pre�x and su�x. Thus G(�) is the union for N � k of allthe block-codes of length N as de�ned by Gilbert, except that we also permit thecase N = k.The code G(�) obtained in this way, which is comma free, is not the same asthe code L(�), which is only UD; an example showing the di�erence, is the string01000101 which is in L(0101) but not in G(0101). As the condition on the elementsof L(�) is less restrictive than the condition on the elements of G(�), it follows thatfor any �, G(�) � L(�).Theorem 2. The following assertions are equivalent:1. The autocorrelation of � is of the form 10 � � � 0.2. G(�) = L(�).3. The code G(�) is complete.Proof: (1 ) 2): We know already that G(�) � L(�) holds for every �; for theopposite inclusion, let y = x� be a codeword in L(�), so that � appears in y onlyas su�x. If no proper pre�x of � is also a su�x of �, then � occurs in �y = � x�only as pre�x and su�x, so that y 2 G(�). Hence G(�) = L(�).(2) 3): This is Theorem 1. (For any � with autocorrelation 10 � � �0, the proofof Theorem 1 is even much simpler, since Case 2 cannot occur.)(3 ) 1): We show that if the autocorrelation of � is not 10 � � �0, then G(�) �L(�) holds with strict inclusion, so that G(�) cannot possibly be complete sinceL(�) is. Thus we look for a codeword B which is generated by �, but does notbelong to G(�). Let � = �1� � ��k and suppose that �1� � ��h = �k�h+1� � ��k forsome h < k. Let ��i denote the binary complement of �i and de�ne the stringsb = b1� � � bk�1 and d = d1� � �dk�1 by bi = ��1 and di = ��k for 1 � i < k. Considerthe string B = �h+1� � ��k d b � which is not in G(�).It remains to show that B is generated by �, or in other words that � occurs{ 12 {



in B only as su�x. Because of the choice of b, � can occur in b � only as su�x,and because of the choice of d, � cannot occur at all in �h+1� � ��k d. As to thestring d b, assume �rst �1 = �k. Then d b is a string of identical bits in which � canneither start nor end. Hence suppose �1 6= �k. Then if � appears in d b, it mustbe of the form � = dj � � �dk�1b1� � � bj for some 1 � j � k� 1, but in all these cases,the autocorrelation of � is 10 � � �0, contradicting our assumption.4. Fibonacci CodesAs was pointed out earlier, the �rst n elements of the code L(�), for certainpatterns �, can be an attractive alternative to Hu�man codes when optimal com-pression is not critical. The encoding process is simpler, since the code need notbe generated for every probability distribution. However, except for the fact that amessage encoded by L(�) is easily parsed by locating the separators �, the actualdecoding algorithms are very similar for Hu�man codes and L(�). For both, thereis generally no simple relation between a codeword and its index, such as, e.g.,for �xed length codes or for the unary code U . Therefore one needs a \transla-tion table", which consists of two columns: one column containing the codewords,and the other containing the corresponding cleartext elements. For decoding, afterhaving detected a codeword c, the algorithm searches for c in the column of code-words and retrieves then the corresponding element from the cleartext column. Theexistence of an easily computable one-to-one mapping between the code and theintegers would make the column of codewords (and the search in it) super
uous.This means that the space requirements of the Hu�man codes could be cut by1/2. It should however be noted that we refer here only to the straightforwardapproach to the decoding of Hu�man codes. In certain cases, more sophisticateddata structures may be used, which yield more e�cient algorithms, as in [17] or [5].In this section, we study the code L(�) for the special case � = 11 and showthat such a mapping exists, because the code is related to the binary Fibonaccinumeration system. This relation has not been noted in [22], but has already beeninvestigated in [1].4.1 The Fibonacci code C1One can use a binary encoding of the integer i as encoding for the element Ai; ifwe are to use a �xed-length code, the length of the codewords will be blog2 nc+1 forthe standard binary numeration system. As we want a uniquely decipherable code,it is not possible to pass to a variable-length code by just omitting the leading zerosin every codeword, because of the resulting ambiguities. We propose to exploit aproperty of the binary Fibonacci numeration system: let Fj be the j-th Fibonaccinumber, F0 = 0; F1 = 1; Fj = Fj�1 + Fj�2 for j > 1:{ 13 {



Then any integer i can be represented by the binary string I = I1I2 � � � Ir, withIj = 0 or 1, where i = Prj=1 IjFj+1. Note that the indexing in the string Iincreases from left to right, contrary to the usual notation; the reason for this willbecome clear in the sequel. One can uniquely express any integer in this form sothat Ij = 1 =) Ij�1 = 0 for j = 2; : : : ; r ;in other words, there are no adjacent 1's in I. Although the number of bitsneeded to represent integers between 1 and n by �xed length codes increases tor = blog�(p5n) + 1c, where � = (1 + p5)=2 is the golden ratio, we are now ableto use a variable-length representation, replacing the trailing zeros in I by an ad-ditional 1 which will act as a \comma", separating consecutive codewords. Wedenote this in�nite sequence of codewords by C1 = fC11 ; C12 ; : : :g = f11, 011, 0011,1011, 00011, 10011, 01011, 000011; : : :g, and the length of C1i by l1i . The sequenceC1 is one of the possible orderings of L(11).The properties of (generalized) Fibonacci numeration systems were used byKautz [21] for synchronization control; some �xed-length codes were devised whichsatisfy the condition that every codeword contains no string of m or more consec-utive 1's, for some �xed m � 2. The code C1 extends this idea to variable-lengthcodes, choosing m = 2 so that only one additional bit per codeword is needed toallow unique decipherability.Remark: For the sake of completeness, we give direct proofs for the followingpropositions, some of which can be derived as special cases of the correspondinggeneral proofs in [1].Proposition 1. There are Fr codewords of length r + 1 in C1, r � 1.Proof: In the proposed representation, an integer j satisfying Fr+1 � j < Fr+2needs r bits for its encoding, r � 1, thus the claim follows if we add the \separating"1 and note that Fr+2 � Fr+1 = Fr.Proposition 2. The code C1 is uniquely decipherable, universal and complete.Proof: After adding the \comma"-bit, every codeword terminates in twoconsecutive 1's, which cannot appear anywhere else in a codeword. Thus C1 is apre�x-code.From Proposition 1 we get that the number of codewords of length up to andincluding r is Pr�1i=1 Fi, which by induction can be shown to equal Fr+1 � 1. Thusif the length li = l1i of C1i is r + 1, the index i is at least Fr+1 = Fli so thati � Fli > (1=p5)�li � 1. Therefore li < log�(p5(i + 1)) < 3 + 2 log2 i. Butsince the pi are arranged as a non-increasing sequence and sum to unity, we haveipi �Pij=1 pj � 1, thus pi � 1=i, so that log2 pi � � log2 i. HenceX pili < 3 + 2X pi log2 i � 3� 2X pi log2 pi = 3 + 2H(P ):{ 14 {



Thus K = 5 can be chosen as constant in the de�nition of universality.As to completeness, let us denoteP1j=1 2�l1i by S. Using the Fibonacci recur-rence relation, we getS =P1i=1 2�(i+1)Fi =P1i=1 2�(i+1)�Fi+1 � Fi�1�= 2P1i=2 2�(i+1)Fi � 12P1i=0 2�(i+1)Fi= 2(S � 14 )� 12S = 32S � 12 ;thus S = 1, in other words, C1 is complete.Note that if the conventional notation I = IrIr�1 � � � I1 is used to represent aninteger in the Fibonacci numeration system, and then the leading zeros are replacedby a 1 in the leftmost position, the resulting code is a su�x-code, but not pre�x.Hence the decoding procedure would be somewhat complicated as for each stringof ones, we must know the parity of its length before we can interpret the codewordpreceding the string.To evaluate SF(C1), we �rst remark that � = 11 does not have autocorrelation10. Nevertheless, SF is bounded. The last three bits of every codeword (exceptC11 ) are `011'. If the error occurs elsewhere, only one codeword is lost (possiblyone codeword will be interpreted as two), hence using the notations of Section 2.1,M(C1i ; j) = 1 for i > 1, 1 � j � li � 3. A problem may arise in case of an errorin one of the three rightmost bits, if the codeword, the error occurs in, is followedby j > 0 consecutive C11 's. Suppose this string of j C11 's is followed by C1h forh > 1, then the parsing of the encoded string up to and including C1h could change.For example, 0011-11-11-011 would become 0011-11-11-1011 in case of insertion of1 after one of the three rightmost bits; or it would become 00011-11-1011 by asubstitution error in the penultimate bit; or it would become 011-11-11-1011 bya substitution error in the third bit from the right. However, our choice � = 11di�ers from the example for � = 11100111 of Section 2.1, in that at least j � 1 ofthe codewords obtained by the incorrect parsing are C11 , so in the worst case, onlythe �rst codeword, at most one of the C11 , and C1h are lost.More precisely, an error in the rightmost bit of a codeword causes at most twocodewords to be lost, hence M(C1i ; li) = 2 for i � 1. An error in the penultimatebit may cause up to three false interpretations, i.e., M(C1i ; li � 1) = 3 for i � 1.In case of an error in the third bit from the right, it may be possible to \decode"j + 1 C11 's instead of j, as for example in 0011-11-1011 which becomes 011-11-11-011 by a substitution error, but only the �rst and last codewords are lost, i.e.,M(C1i ; li � 2) = 2 for i > 1.Denote by L1 =P pil1i the average length of a codeword. Then we get from (1)SF(C1) = 1L1 �p1(2 + 3) + nXi=2 pi(2 + 3 + 2 + (l1i � 3))�= 1L1 �5p1 + 4(1� p1) + (L1 � 2p1)�= 1 + 4� p1L1 :{ 15 {



Numerical examples of SF(C1) for various distributions are given in Section 5.The decoding process of a message encoded by C1 consists of two phases. First,the input string is parsed into codewords just by locating the separator `11'. Theindex of each codeword is then evaluated and a table is accessed to translate theindex to the corresponding cleartext element. The dominant part of the processingtime is taken by this table access, which is much slower than the scanning of the�rst phase. On the other hand, for Hu�man codes, even the �rst phase involvestable or tree accesses for every bit, until a codeword is detected. Although for thesame input S, the string C1(S) encoded by C1 will be longer than the string H(S)encoded by Hu�man's algorithm, the number of codewords in C1(S), which is thenumber of times we have to access a table for the decoding of C1(S), will be muchsmaller than the number of bits in H(S), which is the number of times we have toaccess a table or tree for the decoding of H(S). We thus expect a faster decodingfor C1 than for Hu�man codes. The relative savings will increase with the averagecodeword length for C1 and with n, the size of the set of cleartext elements.In the following algorithm, the encoded message is given in a bit-vector M ,the elements of which are denoted by Mi, i = 1; 2; : : :. The algorithms for bothencoding and decoding use a translation table in which the cleartext element Aj isstored at entry j, 1 � j � n. Given a codeword c, we compute its index in C1 usingthe Fibonacci numeration system, and can then directly access the translation tableat the appropriate entry. The computation can be speeded up by the use of a tableof Fibonacci numbers Fk.
Decoding procedure for C1i 0 [[ pointer in M ]]while i < length(M) dok 2index 0i i+ 1 [[i points to the leftmost bit of a codeword ]]repeat [[ evaluate index of the codeword ]]index index+ (Mi � Fk)k  k + 1i i+ 1until Mi�1Mi = 11 [[ look for pattern `11' ]]access translation table at indexend

{ 16 {



4.2 Higher order Fibonacci codesThe idea of the previous subsection is easily generalized to higher order Fi-bonacci codes. Fibonacci numbers of order m � 2 are de�ned by the recurrenceF (m)j = F (m)j�1 + F (m)j�2 + � � �+ F (m)j�m for j > 1;where F (m)1 = 1 and F (m)j = 0 for j � 0. In particular, Fj � F (2)j are thestandard Fibonacci numbers. As before, any integer i can be represented as abinary string I = I1 � � � Ir such that i = Prj=1 IjF (m)j+1 and there is no run of mor more consecutive 1's in I. This fact is used in [1] to devise variable-lengthcodes in which an m-bit run of 1's is used as a separator. Proofs that these \m-ary Fibonacci codes" are UD, universal and complete are also given in [1].Using higher order Fibonacci codes might at a �rst glance seem ine�cient,particularly for the �rst codewords (corresponding to higher probabilities), becausemore bits are used as delimiters, so less bits carry actual information. On theother hand, with increasing m, the number of possible codewords of any �xedlength increases. Hence for a large enough language to be encoded and for certain(near to uniform) distributions, it is possible to obtain an average codeword length,L(m) =P pili(m), which is smaller for m > 2 than for m = 2. Here li(m) denotesthe length of the i-th codeword of them-ary Fibonacci code. The �rst line of Table 1gives for a few m > 2 the minimal size N(m) of the language for which the m-aryFibonacci code yields an average codeword length not larger than that of code C1,supposing uniform distributions, that is N(m) = minftjPti=1 li(2) �Pti=1 li(m)g.For other distributions, the transition points, if they exist at all, would be higher.By similar arguments as for C1, one gets for the m-ary Fibonacci codesSF = 1L(m)�p1�2 + 3(m� 1)�+ nXi=2 pi�2 + 3(m� 1) + 2 + li(m)� (m+ 1)��= 1L(m)��2 + 3(m� 1)�p1 + 2m(1� p1) + (L(m)�mp1)�= 1 + 2m� p1L(m) :The second line of Table 1 depicts the SF of the standard code C1 for a uniformdistribution on a language of size N(m), whereas the last line gives the SF of them-ary Fibonacci code for the same distributions.Table 1: Comparison of C1 with m-ary Fibonacci codesm 3 4 5 6 7N(m) 158 687 2972 12821 57626SF(C1) for n = N(m) 1.412 1.315 1.254 1.213 1.183SF(m-ary) for n = N(m) 1.618 1.630 1.636 1.639 1.639{ 17 {



The table shows that compression is improved for higher order codes only forfairly large sizes of the language.4.3 Variants based on Fibonacci codes of order 2In C1, a 1-bit playing the role of a comma was added at the end of everycodeword. This additional bit can be avoided if every codeword has a 1 not only inits rightmost position, but also in its leftmost. A new code C2 is generated fromC1 by:1. deleting the rightmost (1-)bit of every codeword;2. dropping the codewords in C1 which start with 0.Another way to obtain the same set from C1 is by:1. deleting the rightmost (1-)bit of every codeword;2. pre�xing every codeword by 10;3. adding 1 as the �rst codeword.The equivalence of these two de�nitions is established by noting that the functionf(a1 � � �ar) = 10a1 � � �ar�1 de�nes for both de�nitions of C2 a one-to-one mappingfrom C1 onto C2 � f1g. Hence C2 is the set of codewords f1, 101, 1001, 10001,10101, 100001, 101001,: : :g. Their respective lengths are denoted l2i . We thereforehave as immediate consequence of Proposition 1:Proposition 3. In C2, there is one codeword of length 1 and there are Fn�2codewords of length n for n � 3.If a substitution error occurs in C21 , which consists of a single bit, the precedingand following codewords join up, in which case three codewords are lost, deletionand insertion a�ect only one codeword, so M(C21 ; 1) = 3. For other codewords, asubstitution or deletion error in the �rst or last bit causes the loss of two codewords,thus M(C2i ; 1) = M(C2i ; l2i ) = 2 for i > 1; in the other cases, a single codeword islost, M(C2i ; j) = 1 for i > 1 and 1 < j < l2i . Denoting now the average codewordlength by L2, we getSF(C2) = 1L2 �3p1 + nXi=2 pi(2 + (l2i � 2) + 2)�= 1L2 �3p1 + 2(1� p1) + (L2 � p1)� = 1 + 2L2 :Thus for distributions for which L1=L2 < 2�p1=2, and in particular when L1 = L2,C2 is more robust. Note that C2 is not a pre�x-code; nevertheless decoding is simplesince the end of any codeword is easily detected.{ 18 {



Proposition 4. The code C2 is uniquely decipherable, universal and complete.Proof: LetM be an ambiguous encoding of a message,M = c1c2 � � � = c01c02 � � � ,where ci; c0j 2 C2, and M1;M2; : : : are the bits the encoded message consists of.Let j be the smallest index for which cj 6= c0j . Then necessarily jcj j 6= jc0j j, supposejcj j < jc0j j. Let a be the index of the rightmost bit in cj . Then Ma+1 = 1 sincethis is the �rst bit of cj+1. But Ma is the last bit of cj , hence Ma = 1 so that c0jcontains adjacent 1's, a contradiction. Hence C2 is UD. The construction of C2implies that the lengths of the elements of C1 and C2 are related by l2i = l1i�1 + 1for i > 1. Therefore,nXi=1 pil2i = p1 + n�1Xi=1 pi+1(l1i + 1) � 1 + nXi=1 pil1iso that the universality of C2 follows from that of C1. As to completeness,1Xi=1 2�jC2i j = 12 + 1Xi=1 2�(i+2)Fi = 12 + 12 1Xi=1 2�(i+1)Fi = 1;the last sum being the quantity S of Proposition 2.The decoding algorithm again searches for the occurrence of the pattern `11',which is formed by juxtaposing any two codewords. A special treatment of the lastcodeword is avoided by su�xing an additional `1' at the end of the input string.The function which maps a codeword (except the �rst) into its index simply ignoresthe �rst two bits (`10') and proceeds then as for C1.Decoding procedure for C2N  length(M)MN+1  1 [[ su�xing 1 at the end of the input string ]]i 1while i � N do [[ i points to the leftmost bit of a codeword ]]if MiMi+1 = 11 then [[ codeword `1' ]]access translation table at �rst entryi i+ 1else index 1i i+ 2 [[ skip 10 ]]k  2repeat [[ evaluate index of the codeword ]]index index+ (Mi � Fk){ 19 {



k  k + 1i i+ 1until Mi�1Mi = 11 [[ look for pattern `11' ]]access translation table at indexendGeneralizations of the code C2 to higher order Fibonacci codes are given in [1].Another attempt to avoid the comma-bit in C1 is to construct a new sequenceC3 of codewords, which is obtained from C1 by:1. deleting the rightmost (1-)bit of every codeword;2. duplicating the set of codewords of length r, for every r � 1; now we havefor each r two identical blocks of codewords;3. pre�xing in the �rst block every codeword by `10' and in the second by `11'.This yields the set of codewords C3 = f101, 111, 1001, 1101, 10001, 10101, 11001,11101, 100001, 101001, 100101, 110001; : : :g, their lengths are denoted l3i . Note thatevery codeword of C3 has a leftmost 1-bit, no codeword has more than 3 consecutive1-bits and these appear as pre�x, and every codeword, except C32 , terminates in`01'. From the construction of C3 and Proposition 1 we getProposition 5. In C3, there are 2Fr�2 codewords of length r for r � 3.A substitution error in the �rst bit of C32 a�ects also the preceding and thefollowing codeword, so there are three codewords lost. Any other error in this bit,as well as any error in the other bits of C32 , causes the loss of up to two codewords.In the other codewords (including C31 ), an error in the �rst, last and penultimatebit causes up to two incorrect interpretations, elsewhere one. Setting L3 =P pil3i ,we get SF(C3) = 1L3�p2 (3 + 2 + 2) + nXi=1i 6=2 pi�2 + (l3i � 3) + 2 + 2��= 1L3�7p2 + �3� 3p2�+�L3 � 3p2��= 1 + 3 + p2L3 :Thus for distributions for which L3 = L1, C3 is more robust than C1, but fordistributions for which L3 = L2, C2 is more robust than C3. The set C3 too is notpre�x, butProposition 6. The code C3 is uniquely decipherable, universal and complete.Proof: We use the same notations as in Proposition 4. The codeword cj cannotbe C32 = 111 since if it is, then there are four consecutive 1's in M (the three of cj{ 20 {



and the �rst of cj+1), thus c0j must also be C32 , but j was chosen such that cj 6= c0j .Any other codeword has a 0 in the penultimate position. Thus c0j contains thepattern `011', which is impossible, hence C3 is UD. Universality follows from thefact that l3i � l1i for i > 1. By Proposition 5, completeness follows from1Xi=1 2�jC3i j = 2 1Xi=1 2�(i+2)Fi = 1Xi=1 2�(i+1)Fi = 1;as was shown in the proof of Proposition 2.For decoding, after having checked that the codeword is not 111, we searchfor the pattern `011'. As before, we add a `1' at the end of the input to allowidentical processing of all the codewords. The index of a codeword of length rof the form y1y2� � �yr (recall that yr = 1) is computed by adding together thefollowing three quantities: (a) The number of codewords of length < r, whichis Pr�1i=3 2Fi�2 = 2Fr�1 � 2; (b) y2Fr�2, since depending on the value ofy2, a codeword belongs to one of the two blocks, each of size Fr�2, which arede�ned in step 2 of the construction of C3; (c) The relative index within theblock. This relative index is obtained by considering the r�2 rightmost bits of thecodeword as the representation of an integer in the Fibonacci numeration system,and subtracting Fr�1 � 1 since the r � 2 rightmost bits represent integers in therange [xFr�1; Fr � 1]. Summarizing,index = 2Fr�1 � 2 + y2Fr�2 + rXi=3 yiFi�1 � Fr�1 + 1= r+1Xi=3 yiFi�1 + (y2 � 1)Fr�2 � 1;where yr+1 = 1 is the �rst bit of the following codeword.Decoding procedure for C3N  length(M)MN+1  1 [[ su�xing `1' at the end of the input string ]]i 2while i < N do [[ i points to the 2nd bit from the left of a codeword ]]if Mi�1MiMi+1 = 111 then [[ codeword 111 ]]access translation table at second entryi i+ 3else index �1y2  Mi [[ second bit ]]k  1repeat [[ evaluate index of the codeword ]]{ 21 {



i i+ 1k  k + 1index index+ (Mi � Fk)until Mi�2Mi�1Mi = 011 [[ look for pattern `011' ]]access translation table at index+ (y2 � 1)Fk�2i i+ 1end5. ExamplesThree \real-life" examples were chosen, each showing the optimality of anothervariant for the given distribution. The �rst example is the distribution of the 26characters in an English text of 100,000 words chosen from many di�erent sources,as given by Heaps [16]. In Table 2, the letters are listed in decreasing probabilityof occurrence, together with their Hu�man code, C1, C2 and C3 codes. For theHu�man code, the codewords for the letters L and K are synchronizing. This isthe example in [8] of the Hu�man code for English which maximizes the sum ofthe probabilities of the synchronizing codewords; �nding the best possible Hu�mancode in this sense is still an open problem.The second example is the distribution of 30 Hebrew letters (including twokinds of apostrophes and blank) as computed from the data base of the ResponsaRetrieval Project [9] of about 40 million Hebrew and Aramaic words. Using themethod presented in [8], we constructed a Hu�man code for this alphabet with onesynchronizing codeword, which appeared with probability 0:0035.The third example is of a di�erent kind. A large sparse bit-vector may becompressed in the following way (see for example [19]): the vector is partitioned intok-bit blocks, then the 2k possible block-patterns are assigned Hu�man (or other)codes according to their probability of occurrence. The statistics were collectedfrom 15378 bit-vectors of 42272 bits each, which were constructed at the ResponsaProject: each vector serves as an \occurrence map" for a di�erent word, the bit-position referring to the number of the document, where the value at position i is1 if and only if the given word appears in the i-th document. We chose k = 8, thusthe alphabet consisted of 256 \characters". As the vectors are extremely sparse| the proportion of 1-bits is only 1.7% | the probability of a block consistingonly of zeros is high (0.925), hence there is much waste in using a code such asC1 or C3, for which the �rst codeword is longer than one bit. By [8, Theorem5], the Hu�man code corresponding to this distribution is synchronous, the onlysynchronizing codeword we found had probability 0:000048. (Actually, using thenotion of generalized numeration systems, one can achieve much better compressionof sparse bit-vectors than the Hu�man compression approach of [19]! See [12].)Table 3 summarizes the results. The lines headed `length' give the expectedlength in bits of a �le of 1000 coded characters. The sensitivity factors were com-puted using the given probability distributions. For the Hu�man codes, the table{ 22 {



Table 2: Distribution of letters in English textLetter Probability Hu�man C1 C2 C3E 0.1265 011 11 1 101T 0.0978 111 011 101 111A 0.0789 0001 0011 1001 1001O 0.0776 0011 1011 10001 1101I 0.0707 0100 00011 10101 10001N 0.0706 0101 10011 100001 10101S 0.0631 1010 01011 101001 11001R 0.0595 1011 000011 100101 11101H 0.0574 1100 100011 1000001 100001L 0.0394 11011 010011 1010001 101001D 0.0389 11010 001011 1001001 100101U 0.0280 10011 101011 1000101 110001C 0.0268 10010 0000011 1010101 111001F 0.0256 00101 1000011 10000001 110101M 0.0244 00100 0100011 10100001 1000001W 0.0214 00001 0010011 10010001 1010001Y 0.0202 000000 1010011 10001001 1001001G 0.0187 000001 0001011 10101001 1000101P 0.0186 100001 1001011 10000101 1010101B 0.0156 100010 0101011 10100101 1100001V 0.0102 100011 00000011 10010101 1110001K 0.0060 1000001 10000011 100000001 1101001X 0.0016 10000001 01000011 101000001 1100101J 0.0010 100000001 00100011 100100001 1110101Q 0.0009 1000000001 10100011 100010001 10000001Z 0.0006 1000000000 00010011 101010001 10100001Weighted Average 4.185 4.895 5.298 4.891gives the sensitivity factor SF 0 and their values are italicized to di�erentiate themfrom the SF -values. If �xed length codes were used, 5000 bits would be necessaryfor the English or Hebrew alphabet and 8000 bits for the bit-vector.Table 4 gives the new values for the length and SF 00 when m-bit blocks areused to improve the robustness of Hu�man codes. These values were computed{ 23 {



Table 3: Average values for 1000 coded charactersEnglish Hebrew Bit-vectors26 letters 30 letters 256 letterslength 4185 4285 1415Hu�man SF 0 14.84 166.5 18259length 4895 4824 2326C1 SF 1.849 1.874 2.436length 5298 5127 1450C2 SF 1.551 1.653 2.876length 4891 4884 3235C3 SF 1.633 1.632 1.929using the formul� of section 2.3. The line for m = 1 corresponds to the originalHu�man algorithm, again with SF 0.Table 4: Average values using m-bit blocksEnglish Hebrew Bit-vectorsm length SF 00 length SF 00 length SF 009 | 5408 1.056 |10 5041 1.238 5270 1.178 |11 4949 1.362 5162 1.300 |12 4875 1.486 5075 1.420 1559 3.94513 4814 1.608 5004 1.540 1547 4.29914 4763 1.731 4945 1.660 1537 4.65315 4720 1.853 4895 1.779 1528 5.00716 4682 1.974 4852 1.898 1520 5.36117 4650 2.095 4814 2.017 1514 5.71518 4621 2.217 4781 2.135 1508 6.06919 4596 2.338 4752 2.253 1503 6.42220 4574 2.458 4727 2.371 1498 6.77650 4332 6.058 4451 5.888 1447 17.383100 4258 12.036 4367 11.727 1431 35.0561 4185 14.843 4285 166.5 1415 18259
As can be seen, for the English alphabet with m 2 f12; 13g, both the SF 00and the average length are better than for C3, which was the best of the Ci codes{ 24 {



for this example. For the Hebrew alphabet the code C1 always gives either bettercompression or better robustness and for m = 16 both values are better. The bit-vectors are an example of a case where a value of SF 00 as good as the SF for theCi codes cannot be reached, since m must not be smaller than 12 which was thelength of the longest codeword. Moreover, for small values of m, both SF 00 andlength are worse than for C2 and only for m � 47 the average length is shorterthan for C2, but with SF 00 as high as 15:34.6. Concluding remarksNew sequences of variable-length codes were proposed, for applications whereHu�man codes cannot be applied, e.g., when the probability distribution is not ex-actly known or changes in time, and for situations where the optimal compressionof Hu�man codes is not critical, and simplicity, faster processing and robustnessagainst errors are preferred. If we restrict ourselves to a model allowing only sub-stitution errors (as in [15] and in section 2.3), then the simplest way to obtain theabove properties is to use �xed-length codes, which however are independent of theprobability distribution and may thus be very ine�cient. The Ci-codes proposedhere, which can be encoded and decoded very e�ciently, both in time and space,should then be regarded as a compromise between �xed-length and Hu�man codes.However, since our de�nition of an error allows also the number of transmittedbits to be changed, a �xed length code F becomes even more vulnerable than someHu�man codes. An additional bit or a lost bit cause a shift of the encoded string,which will therefore be incorrectly interpreted, so that SF(F ) will not be boundedwhen the number of encoded cleartext elements grows inde�nitely. Although asingle bit error may be self-correcting after a few codewords for certain codes, thereare many others (e.g., when all the codewords have even length) for which this isnot possible when the number of transmitted bits changes. On the other hand, theCi codes are immune also to such errors, the number of false interpretations beingstill at most 3.
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