Working with Compressed Concordances

Miri Ben-Nissan and Shmuel T. Klein

Department of Computer Science
Bar Ilan University
52 900 Ramat-Gan
Israel
Tel: (972-3) 531 8865
Fax: (972-3) 736 0498
miribn@gmail.com, tomi@cs.biu.ac.il

Abstract. A combination of new compression methods is suggested in order to com-
press the concordance of a large Information Retrieval system. The methods are aimed
at allowing most of the processing directly on the compressed file, requesting decom-
pression, if at all, only for small parts of the accessed data, saving 1/O operations and
CPU time.

Keywords: compression, concordance, full-text retrieval

1 Introduction

Research in Data Compression has recently dealt with the compressed matching
paradigm, in which a compressed text T is searched directly for the occurrence of
a given pattern P, rather than the usual approach of first decompressing the text
and then searching for P in the original text. This has several advantages, such as
enabling the search for some pattern on remote computers, saving time and space for
the decoding, etc. Not every compression method is suitable for compressed match-
ing, but many are, e.g. static Huffman coding [13]|, LZW [1] and many others [16, 15,
5].

But there are also other file types for which compressed matching could be ad-
vantageous. In a large full-text Information Retrieval System (IRS), a text is not
searched directly, but by means of auxiliary files, such as a dictionary and a con-
cordance. Searching in compressed dictionaries [12] means that the dictionary, which
is the list of all the different terms in the database, is searched in its compressed
form, by compressing the term to be looked up. The present work now extends the
paradigm to the other large file of the IRS, namely the concordance.

The concordance gives for each word W in the database a list £(W) of indices
to all its locations. We shall refer to such indices as the coordinates of W. In order
to find all the places in which the words A and B occur, one has to intersect £(A)
with £(B). Often, each keyword represents a family of linguistically different variants,
which are all semantically equivalent to the given keyword. In this case, we first need
to merge the coordinates of each variant in this list, before processing the query itself
4].

In fact, our approach is slightly different from the classical compressed matching
framework. A simple search as in a compressed text does not make any sense, since
one usually does not try to locate a single coordinate in the file. What is rather needed
is a way to process entire lists of coordinates, which leads to our topic of working
with compressed concordances.

Proceedings of the Prague Stringology Conference 06

There are several ways to build the concordance. Each depends on the needs
of the system and the accuracy level that the system wants to support. Typically, a
coordinate of a word W is a quintuple (b, r, p, s, w), where b is the index of the book in
which the word W appears, considering the book as the highest level in the hierarchy
describing the locations of the words in the database. The other elements of the
coordinate are: r, the index of the part within the book; p, the index of the paragraph
(within the part); s, the sentence number (in the paragraph), and w, which is the
word number (in the sentence). However, there are Information Retrieval systems
that do not support such an accuracy level, and the concordance keeps then only a
document number and maybe also the paragraph number. In this work, we assume
that the concordance consists of quadruples of the form (d, p, s, w), where we have
merged the pair (b,7) to a single document field.

In order to achieve convenient computer manipulations, one may choose to keep a
fixed length for each field of a coordinate. In this case, each field must be long enough
to hold the representation of the maximal possible value. This, however, is extremely
wasteful, since most of the values are small. On the other hand, if we decide to keep a
variable length encoding for each field, some extra information is needed, to be able
to read the concordance and identify the boundaries of each coordinate.

The problem with concordances is that their initial size may be 50-300 % of the
size of the plain text itself. In addition, using the original concordance when processing
a query often leads to a very large set of coordinates which need to be checked. It is
therefore necessary to compress the concordance. However, if the database is queried
frequently, there is a large time and space overhead for decompressing the necessary
parts of the concordance. For a query of the form A AND B, we need to extract all
the coordinates of term A, and intersect them with all the coordinates of term B,
all at runtime. In large textual databases this may require a huge amount of data to
decompress, and technically, large parts of the concordance will be in uncompressed
form most of the time [5].

The present work is an extension of the compressed pattern matching problem,
as it presents a new compression method for compressing the concordance, which
is aimed to allow working directly with the compressed concordances, and accessing
the extracted data only for final decision, while most of the work is done on the
compressed part. All logical operations will be applied on the encoded concordance
itself. The method to be presented is suitable for static databases, since it relies on
statistical information, collected off line before the compression phase is done.

The paper is organized as follows: in the next section, we review previous and
related work in the area of concordance compression methods, and discuss its ap-
plicability to compressed matching. Section 3 then presents the details of the new
algorithm.

2 Previous and Related Work

2.1 The Prefix Omission Method

The most basic compression method that can be applied on concordances is the Prefix
Omission Method (POM)[4]. This method is based on the observation that since the
coordinates are ordered, consecutive coordinates may share the same b, r, p or even s
fields (obviously, different coordinates cannot share all 5 fields). In that case, we can
omit the repeated fields from the second coordinate. In order to maintain the ability

172

Working with Compressed Concordances

of reconstructing the file, we need to adjoin a header to that coordinate, holding
information on which fields are to be copied from the preceding coordinate. For a
coordinate of the form (d,p, s, w), it is sufficient to keep a 2-bit header for the four
possibilities: don’t copy any field from the previous coordinate, copy the d-field, copy
d and p fields, and copy fields d, p and s. For example, if the d field is the same as
in the preceding coordinate, we shall save as coordinate only the triple (p, s, w), with
header 01. Although POM yields quite good compression, it is not possible to work
directly with the compressed file.

2.2 Variable Length Fields

As mentioned before, one may choose, for the ease of implementation, to represent
each field in the coordinates by a fixed length code, at the cost of keeping a much
larger file; turning to variable length codes may reduce its size considerably. But in
this case, we need to save extra information to be able to read the file and identify
the field boundaries. The idea is to add a fixed-length header to each field, which
contains a codeword that represents either the length (in bits) of the stored value, or
the value itself, which is useful for specially frequent values in a given field. A small
table is kept translating those codewords to the corresponding values.

2.3 Numerical Compression

Most of the data stored in the concordance is numerical and traditional compression
algorithms cannot provide sufficient compression for such data. In the concordances,
all the values are sorted in non-descending order. For some of the fields, we would
like to find a method that allows to compare the values of two compressed elements
directly, without decoding first. For other fields we just need a good compression
method, that will allow us to identify the element’s boundaries fast. Studying the
distribution of each of the concordance components can help us to choose the proper
compression technique to encode it [3].

A well known technique for compressing lists of non-decreasing values is Delta
Encoding, where each element, except the first, is replaced by difference from its
predecessor [2,7], resulting in smaller values to be stored. This can be done either
directly, or, e.g., devising a Huffman code for the differences. Witten et al. [17] review
some compression techniques that can be applied on those delta values and compare
their performances. Linoff et al. [14] also presented some techniques for compressing
numerical data, such as n—s Coding.

There are more techniques that use variable blocks with escape codes, such as the
Elias codes, Fibonacci codes, etc. The idea is to set aside one bit per block as a flag-
bit, indicating the lengths of the blocks. The v Elias Codes [6] maps an integer x onto
the binary value of x prefaced by |log(x)| zeros. The binary value of x is expressed
in as few bits as possible and therefore begins with a 1, which serves to delimit the
prefix. Using this code, each integer with N significant bits is represented in 2N + 1
bits [8]. The Fibonacci Code is a universal variable length encoding of integers, based
on the Fibonacci sequence, rather than on powers of 2. The advantage of this scheme
is its simplicity, robustness and speed. In this code, there are no adjacent 1’s, so that
the string 11 represent a delimiter between two codewords [9].

173

Proceedings of the Prague Stringology Conference 06

3 An algorithm enabling work on the compressed
concordance

3.1 General layout of the compressed file

In the suggested algorithm, the concordance will be compressed along the lines de-
scribed in [4], with a few adaptations intended to facilitate the work directly within
the compressed file. For the ease of description, we shall use the statistics of a real
life concordance, that of a subset of the Responsa Retrieval Project [10], the relevant
parameters of which appear below in Table 1. It should, however, be emphasized that
the methods to be described are general in nature, and could straightforwardly be
adapted to concordances of other natural language full text Information Retrieval
Systems, of different sizes, for different languages and even with different hierarchical
structure of the coordinates.

number of unique words 725,966
total number of words (coordinates) 80,928,240
number of documents 67,937
average number of coordinates per word 111.48
average number of documents per word 52.33
average number of coord. per word in each doc. 2.13
average size of coordinate 7.33 bits
average size of delta field 3.30 bits
maximum size of document field 17 bits
average size of document delta values 3.55 bits

Table 1. Statistics of the Responsa Retrieval Project concordance

Figure 1 shows the layout of a full coordinate, as it is handled by the retrieval
procedures of the Responsa Project. The numbers under each field design their sizes,
in bytes, for a total of 8 bytes per coordinate. The main idea of the compression is to
represent the values in the different fields using a variable number of bits. This reduces
the average number of bits needed, since most values stored in the coordinate are quite
small, while the size of the fields in the full coordinate are chosen to accommodate
the highest possible values, which occur only extremely rarely. The meta-information
necessary for the decompression is kept, for each coordinate, in a fixed length header,
which is itself partitioned into fields, each encoding the number of bits needed in the
corresponding field of the compressed coordinate, as represented in Figure 2.

document
book part paragr sentence word
1 2 1 2 2

Figure 1. Layout of a non-compressed coordinate

In the original algorithm of [4], headers and coordinates were stored in an alter-
nating sequence. This did not cause any problem, since for the processing of a query
A AND B, the entire lists £(A) and L£(B) were first fetched from the disk, then de-
compressed and finally intersected. To avoid the decompression of many coordinates,

174

Working with Compressed Concordances

Header —-H Coordinate — ¢
p s | w p s w
fixed variable

Figure 2. Layout of a compressed coordinate

it is convenient to partition the compressed file into two parts: the variable length
compressed coordinates in one file, which we call the Coordinates file, and the fixed
length headers in a Headers file. A high level schematic representation of the layout
of the compressed files is given in Figure 3.

Dictionary Headers Coordinates
—
w ¢ h||dsIIHIIHIIHI[HI[H] c /[¢ Jlelle]lc |

(3 B [H [H][H] el J[ele]
(@ 2] Bl W] [H]

: o [e] -

(7| Bl (A][H [(A

» TelCelle] -+ e

[| |[47) TR -
e ¢ |[clc][c]
af Bl H A (A

Figure 3. Layout of the compressed concordance

The concordance is accessed via the Dictionary, including all the different words
of the text. The dictionary may be stored in a variety of ways, e.g., in lexicographic
order of the terms, or sorted first by length and only internally in alphabetic order,
or in form of a trie or even as a hash table. The main purpose is fast and direct access
to the information stored for each word. The size of the dictionary is usually of a
lower order of magnitude than that of the concordance, and by Heaps’s Law [11, p.
206-208], its size is & NP, where o and 3 are suitable constants, 0.4 < 3 < 0.6, and
N is the number of words in the text.

Each word w; in the dictionary is stored along with two pointers ¢; and h;, to
the corresponding entries in the Coordinates and Headers files, respectively. In the
Headers file, the items are grouped by document number: let n; be the number of
documents the i-th word, w;, appears in, and let d;,d;2,...,d;,, be the indices of
these documents; let f; ;, 1 < j < n,; be the number of times w; appears in document
d; ;. The entry in the Headers file corresponding to w; then starts with the pair
(di1, fir), followed by f;; fixed length headers, followed then by (d; 2, fi2), etc.

Note that by grouping the coordinates by documents, the document fields can be
omitted, but this comes at the cost of having to add the corresponding number f; ; at
the beginning of each group. This is very often a reasonable overhead, especially in
Information Retrieval systems supporting, as many do, also a ranking of the passages

175

Proceedings of the Prague Stringology Conference 06

to be retrieved. The ranking is performed by means of some scores that are usually
based, among others, on the local frequencies f; j, so that these are needed anyway.

The Coordinates file consists of the sequence of the variable length (p, s, w) fields.
There is no need to separate the elements belonging to different words, since the
pointers ¢; provide direct access to the elements belonging to w;. In fact, if for a given
word w; one would always process the full list £(w;), the data mentioned so far would
be enough to restore the full list. However, since we wish to move as much of the
processing as possible to the compressed domain, we would like to perform much of
the work on the Headers file and access the Coordinates file only occasionally. We
thus need, in addition to the pointer ¢;, a sequence of pointers D ;, for 2 < j < n,
(the darker elements in Figure 3), pointing to the first element in the Coordinates file
belonging to document d; ;.

3.2 Compression of Coordinates

p, s and w fields To compress the coordinates, one has first to collect statistics
about the exact distribution on the values that appear in the different fields. These
lengths are then partitioned into classes, e.g., according to the number of bits needed
to represent each of the values. That is, the 1-bit class corresponds to the single value
1, the 2-bit class corresponds to 2 and 3, etc. On the basis of the frequencies of each
of the classes, a Huffman code could be devised, for optimal compression. We prefer,
however, to use a fixed length encoding of the classes, to facilitate the work directly
on the compressed file. Table 2 gives the distribution of the values in the various fields
for our test database. The columns correspond to the number of bits needed (up to
and including the leading 1-bit) to represent the given numbers, and the values in
the table are percents.

Bits |1]2]|3] 4 5 6 7 8 9 10 11-15
Range| 1 |2-3|4-7|8-15|16-31|32-63|64-127|128-511|512-1023|1024-2043|2048-65535

p-field| 6 (212523 | 15 | 7 3 1
s-field |25(30(|20| 12 | 7 | 4.5 1 0.5 0.01
w-field|1.4] 4 {9.2] 14 | 20 | 21 | 18 12 0.4

delta (0.5(1.2/13(55.8/17.8| 7.6 | 2.9 | 0.9 0.3 0.1 < 0.01

Table 2. Distribution of values grouped by lengths (in bits) of the numbers

As can be seen in Figure 2, the fixed length header allocated to each coordinate
consists of 8 bits: 3 bits for each of the p and s fields, and 2 bits for the w field. This
allows eight options for p and s and four options for w, which are depicted in Table 2.
Option 0 for the p and s fields represent the fact that one copies the corresponding
values from the previous coordinate, extending thereby the POM technique. The last
line of Table 3 shows the number of times (in percent) a value is equal to that of
the preceding coordinate. Since for the w field, this happens only rarely, the copy
option is not used for w. To understand the values in Table 3, consider for example
the w-field: if the code in the corresponding 2-bit header is 10, the w-field in the
coordinate itself will be encoded by 7 bits.

The following amendment should be mentioned, which saves actually quite a few
bits: when one considers the number of bits needed to encode an integer, one usually
refers to the number of significant bits, up to and including the leftmost 1-bit. So

176

Working with Compressed Concordances

p-field (3 bits) | s-field (3 bits) |w-field (2 bits)

lengths of coord. fields|01234568/01234569 5679

possible omissions 36% 42% 3%

Table 3. Interpretation of the codes in the header

for the number 12, in binary 1100, one needs 4 bits. However, if one knows the ezact
number of bits needed, then the leftmost bit is in fact superfluous, since it must be
a 1. That is, if the number to be encoded is 12, and we store the information that
4 bits are needed, then one needs only 3 additional bits, giving the relative index
in the range [23,2* — 1]. Returning to Table 3, one can save a bit in the coordinate
fields in all cases where the header field gives the exact number of bits. Only for the
others, indicated in bold-face in Table 3, one really needs all the bits as indicated
by the value in the header. For example, the code 111 in the p-field header stands
for a length of 8 bits, but since there is no code for a 7-bit integer, one cannot be
sure that the highest bit is a 1, thus all 8 bits are needed; but if the code were 110,
the corresponding length would be 6 and here we see that there is also a code for a
length of 5, thus the encoded integer must be in the range [32,63], for which 5 bits
are enough.

document, frequency and delta The 3-byte document index is first translated into
a running index. Since the number of documents is only about 68000, one can encode
an element of the index in 17 bits. The first element d;; for each word w; will indeed
be encoded that way, but the subsequent elements d; ; for j > 1 will be delta encoded,
that is, we store actually d; ; — d; ;—1. These differences have a skew distribution, and
need, on the average, only 3.55 bits for their encoding. The classes corresponding to
the different lengths are Huffman encoded, yielding an average codeword length of
3.45 bits.

The best encoding for the the frequencies f;; is a unary one. Table 4 lists for
the first few values, the percentage of (d, f) pairs having that value in their f; ; field,
indicating that there is a rapid exponential decrease. The value 1 can thus be encoded
by a single bit 1, the value 2 by 01, 3 by 001, etc. This yields an average of 2.13 bits
for each f;; value.

fws| T2 [34[5[6[7 8 T9 -
% |67[15/6/3[2[1[1]0.7]0.5] -

Table 4. Distribution of fy;

The location pointers D; ;, for j > 1, pointing into the Coordinates file, can also
be encoded by their differences, similarly to the d;; values. Partitioned into classes
by their lengths in bits (refer to the last line of Table 3), one needs 3.3 bits on the
average for each value, plus 1.96 bits for an average Huffman codeword indicating to
which class it belongs.

Table 5 summarizes the average lengths for one word. The first column is the
parameter we compute, the second column holds the average number of times the

177

Proceedings of the Prague Stringology Conference 06

corresponding parameter appears for a single word in the concordance, and the third
column holds the average number of bits needed to represent that parameter.

parameter |mult factor| number of bits
di,l 1 17 bits

d;j for j > 1 51.33 |3.55+3.45 = 7.0 bits
fw,j 52.33 2.13 bits

D, for j > 1| 51.33 |3.3+1.96 = 5.26 bits
header block 111.48 8 bits
coordinate 111.48 7.33 bits

Table 5. Components of the compressed coordinate

To calculate the total number of bits needed for each coordinate in the suggested
compressed concordance, we multiply the second and third columns, and then divide
the total sum by the average number of coordinates per a word. Following the above
statistics, we get an average of 22.12 bits = 2.77 bytes for each coordinate. Recall that
the original, uncompressed coordinate was of length 8 bytes, so we get a compression
ratio of 2.9, in spite of the fact that we have added also information on the local
frequencies f; ;.

3.3 The Algorithm

The algorithm below shows how to work with the compressed concordance. Given a

query
Q=aq (l1,u1) g2 (I2,u2) -+~ -1 (ln—1, Um—1) Gm,

where ¢; (1 < i < m) is a term. The couple (l;,u;) imposes a lower an upper limit
on the distance from ¢; to ¢;41, that is, an m-tuple of coordinates (cy,...,¢p) is
considered relevant if ¢; belongs to the list of coordinates of ¢; and

ll' S d’iSt(Ci, C/L'Jrl) S U; for 1 S 1< m.

Negative distance means that ¢;;; may appear before ¢; in the text. The distance is
measured in words. Note that this is a conjunctive query, and in real life applications,
each terms ¢; would in fact stand for a disjunction of several terms, all considered
equivalent for the given query.

In the algorithm below, we use the following notations: HVal(w) and CVal(w)
return the pointers h and ¢, respectively, of the word w from the dictionary. fp holds
the position (in bits) in the Headers file. index(w) returns the index of the word w in
the dictionary. The constant HS denotes the size of each header block (8 bits in our
implementation).

178

Working with Compressed Concordances

© 00 N O o b~ W N =

[T S S e S O L
© 00 N o o A~ W N = O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

AND PROCESSING(q1, q2)

i—1, el
a «— index(q1), b — index(q2)

fpl — HVal(q1), fp2 < HVal(g)
Queuel — empty, Queue2 «— empty

limitl «— HVal(a + 1), limit2 «— HVal(b+ 1)
posl « 0, pos2 «— 0

mask «— 11111100

read (dg,i, fa,i) from H(q1)

read (dy;, fv,;) from H(q2)

WHILE fpl <limitl AND fp2 < limit2 DO:

IF d,; <dp; THEN:
IF i>1 THEN:
read deltaCode from H(q1)
Push deltaCode into Queuel
fpl — fpl+HS " fa
t—1i+1
read (dg.;, fa,;) from H(q1)
ELSE IF d,; >dy,; THEN:
IF j>1 THEN:

read deltaCode from H(q2)
Push deltaCode into Queue2
fp2 — fp2+ HS - fi
je—j+1
read (dy ;, fv,j) from H(qs)
ELSE: //the same document number
11— 1
jje—1
WHILE i < fo; AND jj < fi; DO:

IF hli Amask < h2j; Amask THEN: //compare first 6 bits of the header

1 — 1+ 1

ELSE IF hly Amask > h2;; Amask THEN:
Jj—ji+1

ELSE: // p and s fields in the header are equal

//compute the position of two corresponding coordinates

posl < CVal(qy) + sum of elements in Queuel
pos2 «— CVal(gz) + sum of elements in Queue2
//compare the extracted coordinates
WHILE hl;; A mask = h2;; Amask DO:
read Coordl.p, s from posl
read C'oord2.p, s from pos2
IF Coordl.p,s < Coord2.p,s THEN:
10— 11+ 1
ELSE IF Coordl.p,s > Coord2.p,s THEN:
Jj—=Jj+1

179

Proceedings of the Prague Stringology Conference 06

45 ELSE: // Coordl.p,s = Coord2.p,s

46 //make sure that the w fields are in the right range
47 read Coordl.w and Coord2.w

48 IF [< Coordl.w— Coord2.w <u THEN:

49 return Coordl and Coord2

50 ELSE IF Coordl.w < Coord2.w THEN:

51 111+ 1

52 ELSE:

53 Jj—Jgj+1

54 //we compared all the headers that has the same p and s codes
55 //and didn't find a match

56 return false

57 //we finished to compare all H(q:1) and H(q2) and found no match

58 return false

Note that up to line 38, the processing deals only with the Headers file, which is
used in its compressed form, the main idea of the suggested compression being that
compressed headers can be compared directly as if they were numbers, that is, the
compression methods preserve order.

4 Experimental design

It obviously makes no sense to try to compare empirically the retrieval time by the
compressed algorithm to that of decompression and afterwards retrieval, using a set
of “random” queries. A query consisting of random terms will most probably retrieve
an empty set of locations. An empirical study should thus involve what could be
called a “typical query”, though this is hard to define. We therefore leave the present
proposal on the theoretical level.

5 Conclusions

Although the compression methods presented do not necessarily give the most effec-
tive compression, they give a quite good compression ratio after all on the one hand,
and on the other hand allow working directly with the compressed concordance, thus
saving expensive I/O and CPU operations.

ACKNOWLEDGEMENT: This work has been supported in part by Grant 25915 of the Israeli Ministry
of Industry and Commerce (Magnet Consortium KITE).

References

[1] AMIR, A., BENSON, G., AND FARACH, M.: Let sleeping files lie: Pattern matching in z-
compressed files. Journal of Computer and System Sciences, 52 1996, pp. 299-307.

[2] ANH, V. AND MOFFAT, A.: Compressed inverted files with reduced decoding overheads, in
Proceedings of the 21st Annual SIGIR Conference on Research and Development in Information
Retrieval, ACM Press, 1998, pp. 290-297.

[3] BOOKSTEIN, A., KLEIN, S.T., AND RAITA, T.: Model based concordance compression, in
Proceedings of the Data Compression Conference DCC-92, IEEE Computer Soc. Press, 1992,
pp. 82-91.

180

Working with Compressed Concordances

[4] CHOUEKA, Y., FRAENKEL, A.S., AND KLEIN, S.T.: Compression of concordances in full-
text retrieval systems, in Proceedings of the 11st Annual SIGIR Conference on Research and
Development in Information Retrieval, ACM Press, 1988, pp. 597-612.

[5] E. S. bDE MOURA, G. NAVARRO, N. ZIVIANI, AND R. BAEZA-YATES: Fust and flexible word
searching on compressed text. ACM Trans. Inf. Syst., 18(2) 2000, pp. 113-139.

[6] Evrias, P.: Universal codeword set and representations of the integers. IEEE Trans. Information
Theory, IT-21(2) 1975, pp. 194-203.

[7] ENGELSON, V., FRITZSON, D., AND FRITZSON, P.: Lossless compression of high-volume nu-
merical sata from simulations, in Proceedings of the Data Compression Conference DCC-00,
IEEE Computer Soc. Press, 2000, p. 547.

[8] P. FENWICK: Punctured elias codes for variable-length coding of the integers.

[9] FRAENKEL AND KLEIN: Robust universal complete codes for transmission and compression.
Discrete Applied Mathematics, 64 1996, pp. 31-55.

[10] FRAENKEL, A.S.: All about the responsa retrieval project you always wanted to know but were
afraid to ask, expanded summary. Jurimetrics Journal, 16 1976, pp. 149-156.

[11] J. HEAPs: Information Retrieval : Computational and Theoretical Aspects, Academic Press,
Inc., New York, NY, 1978.

[12] S. T. KLEIN AND D. SHAPIRA: Searching in compressed dictionaries, in Proceedings of the
Data Compression Conference DCC—-02, Washington, DC, USA, 2002, IEEE Computer Society,
pp. 142-151.

[13] S. T. KLEIN AND D. SHAPIRA: Pattern matching in huffman encoded texts. Inf. Process.
Manage., 41(4) 2005, pp. 829-841.

[14] G. LiNOFF AND C. STANFILL: Compression of indexes with full positional information in very
large text databases, in SIGIR ’93: Proceedings of the 16th annual international ACM SIGIR
conference on Research and development in information retrieval, New York, NY, USA, 1993,
ACM Press, pp. 88-95.

[15] U. MANBER: A text compression scheme that allows fast searching directly in the compressed
file. ACM Trans. Inf. Syst., 15(2) 1997, pp. 124-136.

[16] M. TAKEDA, S. MivamMoTO, T. KIDA, A. SHINOHARA, S. FUKUMACHI, T. SHINOHARA, AND
S. ARIKAWA: Processing text files as is: Pattern matching over compressed tests, in Proceeding of
the 9th International Symposium on String Processing and Information Retrieval (SPIRE’2002),
LNCS 2476, 2002, pp. 170-186.

[17] 1. H. WITTEN, A. MOFFAT, AND T. C. BELL: Managing Gigabytes: Compressing and Indexing
Documents and Images, Morgan Kaufmann Publishers, San Francisco, CA, 1999.

181

