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Abstract: The problem of compressed pattern matching, which has recently been treated in

many papers dealing with free text, is extended to structured files, specifically to dictionaries,

which appear in any full-text retrieval system. The prefix-omission method is combined with

Huffman coding and a new variant based on Fibonacci codes is presented. Experimental

results suggest that the new methods are often preferable to earlier ones, in particular for

small files which are typical for dictionaries, since these are usually kept in small chunks.
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codes, Fibonacci codes.

1. Introduction

The problem ofCompressed Pattern Matching, introduced by Amir and Benson [1], is of performing

pattern matching directly in a compressed text without any decompressing. More formally, for a given

text T , patternP and complementing encoding and decoding functionsE andD, respectively, our aim

is to search forE(P ) in E(T ), rather than the usual approach which searches for the patternP in the

decompressed textD(E(T )).

Most research efforts in compressed matching were invested in what could be called “classical” texts.

These are texts written generally in some natural language, and which have been compressed by one of a

∗This is an extended version of a paper that has been presented at theData Compression Conference DCC’02, Snowbird,

Utah (2002) and appeared in its Proceedings, pp. 142–151.
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variety of known compression techniques, such as Huffman coding [13] or various variants of the Lempel

and Ziv (LZ) methods, including LZW [2, 8, 18], gzip, DoubleSpace and many others [12, 16, 17].

We suggest to extend the problem to the search of patterns in the compressed form ofstructured

files. The idea is that the raw texts form only a (sometimes, small) part of what needs to be stored in an

Information Retrieval system to allow also efficient access to the data. Since the search on large scale

systems is not performed by a linear scan, auxiliary files are adjoined, which are generally built in a

preprocessing stage, but then permit very fast access during the production stage. These files include

dictionaries, concordances, thesauri, bitmaps, signature files, grammatical files and many others, and

their combined sizes are of the order of magnitude of the text they are based on. Obviously, these

auxiliary files create a storage problem on their own, and thus are kept in compressed form. However, due

to their special internal structure, which is known in advance, custom tailored compression techniques

may be more effective than general purpose compressors.

Compression of structured data has been suggested in the past, though not in the context of com-

pressed matching. For example, database compression techniques require the ability to retrieve arbitrary

records even when compression is used. Ng and Ravishankar [19] explore the compression of large sta-

tistical databases and propose techniques for organizing the compressed data so that standard database

operations such as retrievals, inserts, deletes and modifications are supported.

Another example is compressing XML files, as suggested in Levene and Wood [14], by separating

the document structure from its data. Various XML compression methods exist, such as the offline

compressorXMill [15], so called container-based compression, that is, the data is partitioned into

containers depending on the element names, and the containers are then compressed usingGzip . The

structure is encoded as a sequence of numeric tokens that represent both the XML markup (start-tags,

end-tags, etc.) and the references to data containers.XMill achieves better compression thanGzip and

runs at about the same speed. Another known online compressor isXMLPPM[7], based on a modification

of the PPM2 compression scheme. It compresses better thanXMill , but runs considerably slower, in

part because of the use of arithmetic coding.XGrind [21] is another XML compressor which makes it

possible to query compressed data by using Huffman coding.XMLZip [22] breaks the structural tree of

the document at a specified depth, and compresses the resulting components using traditional dictionary

compression techniques.

A further example of structured files compression istable compression, i.e., collections of fixed length

records (unlike databases that might contain intermixed fixed and variable length fields). Table compres-

sion was introduced in the work of Buchsbaum et al. [5], where it was empirically shown that partitioning

the table into contiguous intervals of columns, compressing each interval separately and grouping de-

pendent columns, can achieve significant compression improvements. Buchsbaum et al. [6] provide

theoretical evidence to a generalized partitioning approach of [5], and design new algorithms for con-

tinuous partitioning. Experimental results suggest that these algorithms yield better compression than

optimal contiguous partitioning without reordering.

The structured files we deal with in this paper aredictionaries, and we assume more specifically that

they were compressed by theprefix omission method(POM); the goal is to enable pattern matching that

could be done directly on these files. Prefix omission is a very simple, yet effective, dictionary compres-

sion technique, and is therefore widely used. For compressed matching, however, it raises problems that
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are reminiscent of the problems for a compressed match in LZ coded files: the pattern we are looking

for, if it appears in the text, does not necessarily appear there contiguously [13].

The following section recalls the details of POM and presents an algorithm for searching in POM

encoded files. Section 3 deals more specifically with Huffman coding and in Section 4, a new variant

based on the use of Fibonacci codes is suggested. In Section 5 we mention an alternative solution to the

problem, based on tries, and the final section brings some experimental results.

2. Pattern matching in POM encoded dictionaries

The prefix omission method was apparently first mentioned by Bratley and Choueka [3]. It is based on

the observation that in a dictionary of a natural language text, two consecutive entries will usually have a

few leading letters in common. Therefore we eliminate these letters from the second entry, while adding

to it the number of letters eliminated and to be copied from the previous entry. Since the entries have

now variable length, their boundaries have to be identified, for example by adding a field representing the

number of characters of the suffix string in the current entry, that is, the number of characters remaining

after eliminating the prefix characters. More formally, we relate to the compressed form of thei-th entry

Xi as an ordered triple (`i,ni,σi), where`i is the number of characters copied from the beginning of the

previous (uncompressed) entryXi−1, σi is the remaining suffix andni is the length of this suffix, i.e.,

ni = |σi|.

Dictionary POM
POM + Huffman coding

with preserving codeword boundaries without. . .

compress (0,8,compress ) (0,35,11001-0101-11011-111100-1001-000-1000-1000) (0,35,· · ·)

compression (8,3,ion ) (35,12,0110-0101-0111) (35,12,· · ·)

comprise (5,3,ise ) (24,11,0110-1000-000) (25,10,110· · ·)

compromise (5,5,omise ) (24,20,0101-11011-0110-1000-000) (26,18,01· · ·)

compulsion (4,6,ulsion ) (20,26,11000-10110-1000-0110-0101-0111) (21,25,1000· · ·)

compulsive (8,2,ve ) (38,9,111110-000) (38,9,· · ·)

compulsory (7,3,ory ) (34,14,0101-1001-111010) (36,12,01· · ·)

compunction (5,6,nction ) (25,24,0111-11001-001-0110-0101-0111) (25,24,· · ·)

computation (5,6,tation ) (25,22,001-0100-001-0110-0101-0111) (26,21,01· · ·)

compute (6,1,e) (28,3,000) (29,2,00)

computer (7,1,r ) (31,4,1001) (31,4,1001)

FIGURE 1: Example of the prefix omission method: the first column is a list of some consecutive words, the

second column gives the compressed form of these words using POM. In the third column`i andni represent the

number of bits in the binary representation of the lengths of the strings to be copied and remaining, resp., while

preserving codeword boundaries, andσi is shown in its compressed form using Huffman coding. The last column

extends̀ i to be the maximal number ofbits copied from the previous entry, regardless of codeword boundaries.

Consider the example given in Figure 1. The first column is a list of some consecutive words which

were taken from the Oxford Dictionary of current English. The following column gives the compressed
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form of these words using the prefix omission method (the last two columns are referred to below, in

Section 3).

Often the POM files are further compressed by some general methodE , such asgzip , in order to

reduce space. Accessing the dictionary itself is then done in two stages: first decompressing the file

T by the corresponding decompression functionD = E−1 and then reversing the POM file, or more

formally, searching for the patternP in POM−1(D(T )). The following algorithm, adapted from (Bratley

and Choueka, 1982), is more direct.

Let P = p1 · · · pm denote the pattern of lengthm to be searched for, andP [i, j] the sub-pattern

pi · · · pj, i.e,P [i, j] is the sub-pattern ofP , starting at positioni and ending at positionj, both included.

Let E andD denote two complementing encoding and decoding functions. Given two stringsS =

s1 · · · sk andT = t1 · · · t` the functionpre(S, T ) returns the length of the longest common prefix of the

two strings (or zero, if this prefix is empty), that is

si = ti for 1 ≤ i ≤ pre(S, T ),

and min(k, `) > pre(S, T ) −→ sj 6= tj for j = pre(S, T ) + 1.

In particular,pre(S, T ) = |S| if S is a prefix ofT . Denote byÂ the lexicographic order relation, i.e.,

S Â T if the stringS follows T in lexicographic order.

1 i ←− 2; j ←− pre(P,D(σ1));

2 while (j < m) // Pattern not found

{
2.1 while D(`i) > j

2.1.1 i ←− i + 1
2.2 if D(`i) < j // The closest lexicographically preceding word

2.2.1 return i− 1
2.3 else // D(`i) = j

{
2.3.1 tmp ←− pre(P [j + 1,m],D(σi))

2.3.2 if tmp = 0 and P [j + 1,m] Â D(σi) return i− 1

2.3.3 j ←− j + tmp

2.3.4 i ←− i + 1
}

}
3 return i− 1

FIGURE 2: Searching forP in D(T )

The algorithm for searching for a patternP in a dictionary compressed by POM, based on decom-

pressing each entry, is given in Figure 2. It assumes as input a POM compressed dictionary that has been
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further encoded by some functionE , hence the use of the decoding functionD for each of the compo-

nents. The algorithm returns the index of the closest lexicographically preceding word to the word we

are searching for. We start withD(σ1), which is the first element, sincè1 is always zero. As long as

the componentD(`i), indicating the number of characters copied from the previous entry, is larger than

the current longest match, we simply move to the following entry (line 2.1) by skipping overD(σi). This

is done by decoding the followingni codewords. The correctness here is based on the fact that in this

case there is at least one character following the characters of the longest match that is not part of an

extended match. If the componentD(`i) is less than the length of the current longest match, we have

already found the closest lexicographically preceding word in the previous entry, and we return its index

(line 2.2). WhenD(`i) is exactly equal to the current length of the longest match, we try to extend the match

to the following characters (line 2.3).

Line 2.3.2 deals with the special case when several consecutive words share a common prefix. Relying

here only onD(`i) without lexicographically comparing the suffixes could yield errors, as can be seen

in the following example. If the sequence of dictionary entries is{aba , abb , abd , abe , aca } and we

are looking forabc , the algorithm without line2.3.2 would returnabe instead ofabb .

Note that it might be that the three fields of each POM entry are encoded in different ways. This

would then imply that instead of using one decoding functionD, we use several different ones, e.g.,D1

in lines2.1, 2.2 and2.3,D2 in lines1 and2.3.1 andD3 for ni.

3. Combining POM with Huffman coding

To perform the pattern matching directly in the Huffman compressed dictionary, we need to identify

the codeword boundaries in order to skip to the beginning of the following dictionary entry by counting

the number of characters left in the current entry. If the fieldni represents the number ofcodewordsto

the following entry, we have to decode each one to know where the next one starts. By using Skeleton

trees [10], we could skip over a part of the bits, to the beginning of the following codeword, but still each

codeword has to be processed on its own. However, definingni as the number ofbits to the following

entry, provides a way to jump directly to the beginning of the following entry, without any processing of

the bits. But this way we increase the storage requirements, since larger numbers need be stored.

The third column of Figure 1 is an example of the dictionary obtained by using a Huffman code

based on empirical statistics. Note that`i andni are now given in bits, but their values still refer to the

lengths of one or more whole codewords. In the last column of Figure 1, the definition of`i is extended

to be the maximal number ofbits copied from the previous entry, regardless of codeword boundaries.

Though the number of copied bits is only occasionally increased and only by a small number of bits, the

extension frees the functionpre(S, T ) of the need of checking for codewords. One can thus applypre()

on bitstrings regardless of their interpretation as codewords, which can be done efficiently with a few

assembly commands.

There is, however, a drawback when moving to perform the pattern matching directly on Huffman en-

coded dictionaries. In the algorithm of Figure 2, when the pattern word does not appear in the dictionary,

we are able to locate the closest lexicographically preceding word, basing ourselves on the lexicographic

order of the dictionary entries. The problem here stems from the fact that Huffman coding does not

necessarily preserve the lexicographic order. Even canonical codes, for which the codewords are lexi-
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cographically ordered, induce the order from the frequencies of the encoded items, not from their own

lexicographic order. For example, refer to the alphabet{t , c , b, a, q} encoded by the canonical code

{00, 01, 10, 110, 111}. The stringqt precedestq , but considering their encodings, 11100 follows

00111. We can therefore only either locate the pattern, or announce a mismatch.

1.1 i ←− 2; j ←− pre(E(P ), σ1);
1.2 security ←− maxc∈P {|E(c)|}
2 while (j < |E(P )|) // Pattern not found

{
2.1 while D(`i) > j

2.1.1 skip ni bits to the following entry

2.1.2 i ←− i + 1
2.2 if D(`i) + security < j return FALSE

2.3 else // j − security ≤ D(`i) ≤ j

{
2.3.1 tmp ←− pre(E(P )[D(`i) + 1, |E(P )|], σi)
2.3.2 j ←− D(`i) + tmp

2.3.3 skip ni − tmp bits to the following entry

2.3.4 i ←− i + 1
}

}
3 return i− 1

FIGURE 3: Searching forE(P ) in T for Huffman coding

The compressed matching algorithm in POM files which were compressed by using Huffman coding

is given in Figure 3, withpre() now working on bit strings. Note that instead of decompressing theσi

components, as done in the previous approach, we compress the patternP and refer to bits instead of

characters.

i dictionary POM POM & Huffman

entry (̀ i, ni, σi) `i, ni refer to bits

1 abc (0, 3,abc ) (0, 7, 110-10-01)

2 abqt (2, 2,qt ) (5, 5, 111-00)

3 abtq (2, 2,tq ) (5, 5, 00-111)

FIGURE 4: Example for the need of a security number

An additional complication for this variant is the need for asecuritynumber to assure correctness.

In the algorithm of Figure 2, the closest lexicographically preceding word is found once`i is smaller

than the longest common prefix we have already detected. Here, to guarantee that the word does really

not appear, the condition has to be reinforced and we check thatD(`i) + security is still less thanj.

To illustrate the need for that change, refer to the above mentioned canonical Huffman code and the
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dictionary of Figure 4. Suppose we are searching for the patternabtq , the encoded form of which is

110-10-00-111. Performing line 1.1 of the algorithm in Figure 3 we get thatj = 6. As j < |E(P )| = 10,

we perform line 2.1. But asD(`2) = 5 < j, we would returnFALSE, which is wrong. The security

number gives us a security margin, forcing a closer analysis in theelse clause.

If we detect an entry thèi component of which is less than the current longest match, we can be sure

the word we are looking for is missing only if the difference is more than the length of the encoding of

one character. Therefore, thesecuritynumber could be chosen as the maximum number of bits which

are used to encode the characters of the alphabet, i.e,security= max
c∈Σ

{|E(c)|}. As we deal only with the

characters of the pattern, we can choose the security number to be the maximum number of bits needed

to encode one of the characters ofP , i.e,security= max
c∈P

{|E(c)|}.

4. Combining POM with Fibonacci coding

In the previous section we used Huffman codes in order to perform compressed pattern matching on

POM files. This way we could skip to the following entry by counting the bits with no need of decom-

pressing theσi coordinates. We still had to decompress the`i components for arithmetic comparison.

A part of the processing time might be saved by using alternatives to Huffman codes which have re-

cently been suggested, such as(s, c)-dense codes [4] or Fibonacci codes [11], trading the optimality of

Huffman’s compression performance against improved decoding and search capabilities.

In this section we present a pattern matching algorithm working on a POM file which has been com-

pressed using a binaryFibonacci code. This is a universal variable length encoding of the integers based

on the Fibonacci sequence rather than on powers of 2, and a subset of these encodings can be used as a

fixed alternative to Huffman codes, giving obviously less compression, but adding simplicity (there is no

need to generate a new code every time), robustness and speed [9, 11].

The particular property of the Fibonacci encoding is that there are no adjacent 1’s, so that the string 11

can act like acommabetween codewords, yielding the following sequence:{11, 011, 0011, 1011,00011,

10011, 01011, 000011, 100011, 010011, 001011, 101011, 0000011,. . .}. More precisely, the codeword

set consists of all the binary strings for which the substring 11 appears exactly once, at the right end of the

string. The specific order of the sequence above, which is used in the coding algorithms, is obtained as

follows: just as any integerk has a standard binary representation, that is, it can be uniquely represented

as a sum of powers of 2,k =
∑

i≥0 bi2
i, with bi ∈ {0, 1}, there is another possible binary representation

based on Fibonacci numbers,k =
∑

i≥0 fiF (i), with fi ∈ {0, 1}, where it is convenient to define the

Fibonacci sequence here byF (0) = 1, F (1) = 2 andF (i) = F (i − 1) + F (i − 2) for i ≥ 2. This

Fibonacci representation will be unique if, when encoding an integer, one repeatedly tries to fit in the

largest possible Fibonacci number.

For example, the largest Fibonacci number fitting into 19 is 13, for the remainder 6 one can use the

Fibonacci number 5, and the remainder 1 is a Fibonacci number itself. So one would represent 19 as

19 = 13 + 5 + 1, yielding the binary string 101001. Note that the bit positions correspond toF (i)

for increasing values ofi from right to left, just as for the standard binary representation, in which

19 = 16 + 2 + 1 would be represented by 10011. Each such Fibonacci representation starts with a 1,

so by preceding it with an additional 1, one gets a set of uniquely decipherable codewords. Decoding,

however, would not be instantaneous, because the set lacks the prefix property, but this can be overcome
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by simply reversing each of the codewords, which yields the sequence above. The adjacent 1s are then

at the right instead of at the left end of each codeword, e.g., the codeword corresponding to 19 would be

1001011.

In our case, we wish to encode dictionary entries, each consisting of several codewords. We know

already how to parse an encoded string into its constituting codewords, what still is needed is a separator

between adjacent dictionary entries. At first sight it seems that just an additional 1-bit would be enough,

since the pattern 111 never appears within a codeword. However, a sequence of 3 consecutive ones can

appearbetweenadjacent codewords, as in 011-1011. Therefore we must addtwo 1-bits as separators

between dictionary entries. The additional expense is alleviated by the fact that theni component be-

comes redundant and can be omitted, so that the compressed dictionary will contain only the Fibonacci

compressed forms of thèi andσi fields.

There is, however, a problem with the first codeword 11, which is exceptional, being the only one

which does not have the suffix 011. Our goal is to be able to jump to the beginning of the following

dictionary entry without having to decode the current one completely. If the first codeword 11 were to be

omitted, one could then simply search for the next occurrence of the string 01111, but if 11 is permitted,

a sequence of 1’s of any length could appear, so no separator would be possible. Our first solution is

thus simply omitting 11 from the Fibonacci code, which comes at the price of adding one bit to each

codeword which is the last one of a block of codewords of the same length.

Another solution is using the first codeword 11, but making sure that two such codewords cannot

appear adjacently. This can be achieved by adding a new codeword for encoding the sequence of two

occurrences of the most popular character. For Example, ife is the most frequent character in a given

text file, we use the codeword11 to encode a single occurrence ofe. But if the sequenceee occurs in

the text, it will be encoded by a special codeword (taking the probability occurrence ofee into account).

In other words, ifΣ denotes the alphabet, the new alphabet to be encoded by the Fibonacci code is

Σ ∪ {ee}. If, e.g., the stringeeeee occurs, we can use the special codeword twice and follow it by

11, the codeword fore. The longest sequence of 1-bits would thus consist of 5 1’s, as in 1011-11-

1011. Therefore, to identify a new entry in the POM file, a sequence ofsix 1-bits is needed, that is, our

separator consists of four 1-bits, rather than just two in the previous solution. Comparisons between the

compression performance of these two solutions are given in the following section, showing, at least on

our data, that the first solution (omission of 11) is preferable to the second. The rest of our discussion

therefore assumes this setting.

As mentioned, the reason for defining the codewords with the string 11 at their end is to obtain a prefix

code, which is instantaneously decodable. If we add the 11 separator between dictionary entries at the

end of thè i field, the appearance of the sequence 01111 can tell us that we have just read the`i part of

the following entry. It turns out that for our current application, it is convenient to reverse the codewords

back to their original form: by doing so, the string 11110 will physically separate two consecutive

entries. Moreover, the codewords are then in numerical order, i.e., ifi > j, then the Fibonacci encoding

of i, when regarded as a number represented in the standard binary encoding, will be larger than the

corresponding encoding ofj. The compressed search in a dictionary using both POM and Fibonacci

coding is given in Figure 5, whereFib(i) stands for the above Fibonacci representation of the integeri.

There is no need for decompressing the Fibonacci encoded field`i, so that the comparisons in lines2.1



Version November 23, 2009 submitted toAlgorithms 9 of 13

1 i ←− 2; j ←− fib-pre(E(P ), σ1);
2 while (j < m) // Pattern not found

{
2.1 while `i > Fib(j)
2.1.1 skip to the following occurrence of the string ’11110’

2.1.2 i ←− i + 1
2.2 if `i < Fib(j) return FALSE

2.3 else // `i = Fib(j)
{

2.3.1 tmp ←− fib-pre(E(P [j + 1,m]), σi)
2.3.2 j ←− j + tmp

2.3.3 skip to the following occurrence of the string ’11110’

2.3.4 i ←− i + 1
}

}
3 return i− 1

FIGURE 5: Searching forE(P ) in T for Fibonacci coding

and2.2 can be done directly with the encoded binary strings. For example, the Fibonacci codewords for

19 and 12 are, respectively, 1101001 and 110101; when being compared without decoding, they would

be considered as the (standard) binary representations of 105 and 53, but for the algorithm to be correct,

it is only their relative order that matters, not their exact values.

Given the pattern to be searched for, we can compute, as before, the longest common prefix ofσi and

E(P ). However, it might be that this common prefix isnot the encoding of the longest common prefix

of D(σi) andP . For example, ifE(P ) = 1100-1101 andσ1 = 1100-110101, then the longest common

prefix in characters is of length 1, (i.e. the decoding of 1100), but the longest common prefix in bits is the

binary string 1100-1101, which could be wrongly interpreted astwo codewords. This can be corrected

by checking whether the string which follows the longest common binary prefix in bothE(P ) andσi is at

the beginning of a codeword, i.e., starts with 11. The functionfib-pre in Figure 5 refers to this corrected

version: it calculates the number of codewords, rather than the number of bits, in the common prefix,

and returns the number of bits in these codewords. For the example above,fib-pre(E(P ), σ1) = 4.

5. Alternative method

Ristov and Laporte [20] introduce a data structure called an LZ-trie for compressing static dictionaries

which is a generic Lempel-Ziv compression of a linked list trie. This compressed trie reduces the size of

the dictionary beyond that of a minimal finite automaton and allows the incorporation of the additional

data in the trie itself. They perform it by sharing not only common prefixes or suffixes, but also internal

patterns. In order to speed up the quadratic time compressing procedure, they use suffix arrays for

looking for repeated substrings in the trie.

LZ linked list tries perform best for dictionaries of inflected languages (e.g. Romanic, Slavic) and are



Version November 23, 2009 submitted toAlgorithms 10 of13

less efficient for English. The compression performance of the LZ-trie improves over larger dictionaries.

Since the strings are represented by a compressed trie structure, the look up is not performed sequen-

tially but by following the trie links. The search done by the LZ linked list trie is therefore significantly

faster than that of other methods, that use sequential searching.

6. Experimental results

The experiments were performed on small POM files of severalK bytes because of the following

particular application: POM is often used to store dictionaries in B-trees; since the B-tree structure

supports an efficient access to memory pages, each node is limited to a page size, and each page has to

be compressed on its own, that is, for the first entry of each page,`1 = 0.

File size Huffman Fibonacci Huffman POM LZ trie

(bit encoding) (char encoding)

bib1 2044 775 716 616 1171 1000

bib2 4095 1709 1666 1413 2754 2369

bib3 8067 2769 2749 2253 4663 3496

bib4 16199 5242 5379 4276 9217 6002

xml1 2047 1097 999 905 1481 1614

xml2 4093 1640 1527 1327 2457 2138

xml3 8190 2427 2350 1957 4079 2696

xml4 16383 3898 4001 3156 7336 3785

Hebbib 253230 72514 80079 55149 148890 74363

TABLE 1: Comparative chart of compression performance

For our experiments, we have chosen files of different nature: the English Biblebib, and a large XML

file xml. Their dictionaries were built from all the words that occur in these files. We then considered

different prefixes of these dictionaries, so that we get sub-dictionaries of approximate sizes2K, 4K, 8K

and16K. To see how the methods scale up, we have also included as last line the dictionary of all the

words in the Hebrew Bible. Table 1 gives the compression performance: the second column gives the

sizes of the original sub-dictionaries, the third column gives the size of the POM file after using Huffman

coding, when the values forni and`i are expressed in bits, the fourth column contains the corresponding

values for the Fibonacci variant,`i being expressed in characters. The fifth column corresponds to a

Huffman encoded POM file, for whichni and`i represent character counts (as in the third column of the

table in Figure 1), rather than the number of bits (as in the fourth column): the encoded numbers are thus

smaller, yielding a reduced size of the file. The sixth column is the performance of POM alone. The last

column gives the sizes of the LZ tries of [20]. All the sizes are given in bytes and include the overhead

caused by storing the Huffman trees. The POM-Huffman methods use three Huffman trees, one for each

of the componentsσi, `i andni. The POM-Fibonacci method uses only two componentsσi and`i. As

can be seen, the Fibonacci variant performs better for small files. This advantage could be explained by

the use of two fields instead of three, and the fact that Huffman coding requires more additional space for



Version November 23, 2009 submitted toAlgorithms 11 of13

the alphabet and its distribution. The LZ trie improves on POM, but is inferior to the Huffman encoded

POM files, and on the small files also to the Fibonacci encoded ones.

size Fibonacci without 11 Fibonacci with 11

8002 1812 1836

16496 3811 3855

23985 5558 5585

TABLE 2: Memory storage of the two Fibonacci methods

Table 2 compares the storage performance of the two different Fibonacci encodings, discussed in

the previous section, on three sub-dictionaries of different sizes. The first column gives the size, in

bytes, of the uncompressed dictionaries, the second and third columns the sizes of the POM-Fibonacci

compressed dictionaries, without and with the use of the first codeword 11, respectively. As can be seen,

it is worth eliminating the 11 codeword, though the difference is small.

File size Huffman Fibonacci decode+ search LZ trie

bib1 2044 6.7 2.8 7.7 .02

bib2 4095 7.5 3.7 8.8 .01

bib3 8067 8.4 4.9 8.9 .01

bib4 16199 9.9 6.8 10.1 .01

xml1 2047 7.3 3.2 7.0 .01

xml2 4093 7.9 3.8 7.6 .01

xml3 8190 8.5 4.7 8.3 .02

xml4 16383 9.7 6.1 9.7 .02

Hebbib 253230 50 65 64 .02

TABLE 3: Empirical comparison of processing time

To empirically compare the processing times, we considered all of the words which occur in the

dictionary. We thus considered one pattern for each entry in the dictionary, and averaged the search

times. The results in milliseconds are given in Table 3. For comparison, we added also the search

times with the LZ trie and a column headed “decode+ search”, corresponding to the character oriented

Huffman coded POM file which is decoded and then scanned with the algorithm of Fig. 2. The direct

access of the trie approach, in comparison with the sequential access of the other methods, makes the

LZ trie several orders of magnitude faster. Among the other methods, for the smaller files, there is a

clear advantage of the Fibonacci approach since a part of the encoded file is not scanned. For the largest

file the Huffman variant is better, which could be explained by the smaller file to be processed. Both

compressed matching techniques are generally better than decompressing and searching afterwards.

7. Conclusion

We introduced two new methods to represent a POM file so that direct search could be done in these

compressed dictionaries. The processing time is typically twice as fast for the Fibonacci variant than
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for the Huffman based algorithm, and also compared to decoding a Huffman encoded POM file and

searching on the uncompressed version. We see that in the case of small files, which is the important

application since dictionaries are usually kept in small chunks, the Fibonacci variant is much faster than

decoding and searching or than the POM–Huffman method. Even though the compression performance

might be slightly inferior to the character version of Huffman (but is still generally better than the bit

version), this might well be a price worth to pay for getting the faster processing. On the other hand,

one can get much faster processing using tries, rather than sequential search, but for small dictionaries,

compression will then be inferior.
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