
Compressed Pattern Matchingin JPEG ImagesShmuel T. KleinDept. of Computer ScienceBar Ilan UniversityRamat-Gan 52900, IsraelTel: (972{3) 531 8865Fax: (972{3) 736 0498tomi@cs.biu.ac.il Dana ShapiraDept. of Computer ScienceAshkelon Academic CollegeAshkelon, IsraelTel: (972-8) 678 9205Fax: (972-8) 678 9169shapird@ash-college.ac.ilAbstract: The possibility of applying compressed matching in JPEG encoded imagesis investigated and the problems raised by the scheme are discussed. A part ofthe problems can be solved by the use of some auxiliary data which yields varioustime/space tradeo�s. Finally, approaches to deal with extensions such as allowingscaling or rotations are suggested.1. IntroductionThe paradigm of compressed pattern matching has recently gotten a lot of attention.The idea of the compressed matching was �rst introduced in the work of Amir andBenson [1] as the task of performing pattern matching in a compressed text withoutdecompressing it. For a given text T and pattern P and complementary encodingand decoding functions, E and D respectively, our aim is to search for E(P ) in E(T ),rather than the usual approach which searches for the pattern P in the decompressedtext D(E(T )). Amir and Benson deal with a run-length encoded two-dimensionalpattern, but most works address the problem of �nding one-dimensional patterns in�les compressed by various methods, such as Hu�man coding [9], Lempel-Ziv [13], orspecially adapted methods [11, 8].We concentrate here on two-dimensional compressed matching in which the giventext is an image encoded by the standard JPEG baseline scheme [6] and the patternconsists of a given image fragment we are looking for. In a more general setting, acollection of images could be given, and the subset of those including at least one copyof the pattern is sought. An example for the former could be an aerial photograph ofa city in which a certain building is to be located, an example for the more generalcase could be a set of pictures of faces of potential suspects, which have to be matchedagainst some known identifying feature like a nose or an eyebrow.Baseline JPEG uses a static Hu�man code, without which compressed matchingwould not always be possible, since our underlying assumption is that all occurrencesof the pattern are encoded by the same binary sequence. This is not the case fordynamic Hu�man coding or for arithmetic coding. Lempel-Ziv methods are alsoadaptive, but for them compressed matching is possible because all the fragments of{ 1 {



the pattern appear in the text, though not necessarily in the same order as in thepattern.In a �rst approach, we accept as simplifying assumption that only exact copies ofthe pattern are to be found. Returning to the example of the aerial picture, it wouldof course also be interesting to locate the given building if the pattern presents it ina di�erent angle than it appears in the larger image, or at another scale, or even onlypartially, because it could have been occluded by a cloud when the picture has beentaken. The corresponding pattern matching problems, allowing rotations, scaling andocclusions, are more di�cult and have been treated in [2, 3].In the next section, we review the basic ingredients of the JPEG algorithm, thenturn in Section 3 to the method we suggest for compressed matching in JPEG �les.The main problem to be dealt with is one of synchronization and alignment, so weexplore in Section 4 the possibility of using auxiliary �les to solve such alignmentproblems. The last section deals with extensions to rotations and scaling.2. The JPEG standardJPEG [6] is a lossy image compression method. In a �rst step, the picture is splitinto a sequence of blocks of size 8 � 8 pixels. Each block is then compressed by thefollowing sequence of transformations:1. Applying a Discrete Cosine Transform (DCT) [14] to the set of 64 values of thepixels in the block;2. Applying Quantization to the DCT coe�cients, thereby producing a set of 64smaller integers. This step causes a loss of information but makes the data morecompressible;3. Applying an entropy encoder to the quantized DCT coe�cients. Baseline JPEGuses Hu�man coding in this step, but the JPEG standard speci�es also arith-metic coding as possible alternative.The decompression process just reverses the actions and their order. It �rst appliesHu�man decoding, then dequantizes the coe�cients, and �nally uses an inverse DCTto obtain a set of values. Because of the quantization step, the reconstructed setincludes only approximated values.The coe�cient in position (0,0) (left upper corner) is called the DC coe�cient andthe 63 remaining values are called the AC coe�cients. In principle, the DC coe�cientshould store a measure of the average of the 64 pixel values of the given block, butsince there is usually a strong correlation between the DC coe�cients of adjacentblocks, what is actually stored is the di�erence between the average in this block andthe average in the previous one. { 2 {



Baseline JPEG uses two di�erent Hu�man trees to encode the data. The �rstencodes the lengths in bits (1 to 11) of the binary representations of the values in theDC �elds. The second tree encodes information about the sequence of AC coe�cients.As many of them are zero, and most of the non-zero values are often concentrated inthe upper left part of the 8�8 block, the AC coe�cients are scanned in a �xed zig-zagorder, processing elements on a diagonal close to the upper left corner before thoseon such diagonals further away from that corner; that is, the order is given by (0,1),(1,0), (2,0), (1,1), (0,2), (0,3), (1,2), etc. The second Hu�man tree encodes pairs ofthe form (n; `), where n (limited to the range 0 to 15) is the number of elements thatare 0, preceding a non-zero element in the given order, and ` is the length in bits (1to 10) of the binary representation of the non-zero quantized AC value. The secondtree includes also codewords for End of Block (EOB), which is used when no non-zeroelements are left in the scanning order, and for a sequence of 16 consecutive 0s in theAC sequence (ZRL). The Hu�man trees used in baseline JPEG are static, and canbe found in [15].Each 8�8 block is then encoded by an alternating sequence of Hu�man codewordsand binary integers (except that the codewords for EOB and ZRL are not followedby any integer), the �rst codeword belonging to the �rst tree and relating to the DCvalue, the other codewords encoding the (n; `) pairs for the AC values, with the lastcodeword in each block representing EOB. Figure 1(a) brings an example block ofquantized values, with the DC value in boldface in the upper left corner. The upperpart of Figure 1(b) shows the encoding of this block, with elements to be Hu�manencoded appearing in parentheses, and the elements corresponding to DC (the valueof which we assume to be 5) bold faced; the binary translation of the encoding, withframed Hu�man codewords, is shown underneath.20 1 0 0 0 0 0 00 3 0 0 0 0 0 00 0 0 0 0 0 0 0-2 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0(a) Typical JPEG block (3) 5 (0,1) 1 (2,2) 3 (4,2) -2 (EOB)100 101 00 1 11111001 11 1111111000 01 1010(b) Encoding of JPEG blockFigure 1: Example of JPEG block and its encodingJPEG encodes the blocks row by row, from left to right, and concatenates theencoded blocks. A small header encodes the number of rows and columns, so thereis no need to encode an end-of-row indicator speci�cally. Actually, to simplify thediscussion and the examples, our description refers to only one component, the lumi-nance, of JPEG encoding, which corresponds to black and white images. JPEG alsosupports color images, where each color pixel is split into several components (RGBor YUV). { 3 {



3. Pure compressed matchingWe are given an image T of n � k pixels, in which a two-dimensional pattern P ofsize m � ` pixels should be found. Since JPEG works with 8 � 8 pixel blocks, weassume that n and k are multiples of 8. The compressed matching starts by encodingthe pattern using the same JPEG algorithm as the one used for the original image.Even then we cannot assure that a pattern can be located, as the 8 � 8 blocks ofthe pattern are not necessarily aligned with those of the image. The search processhas therefore to be repeated 64 times, positioning, for each matching attempt, theleftmost uppermost pixel of the �rst 8� 8 block in the pattern at the ith pixel in thejth row, 1 � i; j � 8. Figure 2 is an example of how the pattern could be partitioned:there will usually be a frame at the border of the pattern (the darker area in Figure 2)corresponding to 8� 8 blocks that �t only partially. The pixels in this frame will notparticipate in the matching process, so the pattern is actually restricted to an area offull contiguous 8� 8 blocks (the white area in Figure 2). For the rest of this paper,let m and ` then represent the dimensions of the restricted pattern, that is, m and `are also multiples of 8.
Figure 2: Example of partition of the pattern into 8� 8 blocksThe �rst block is JPEG encoded, yielding one DC value and a sequence of ACvalues. Since DC elements are encoded relative to preceding blocks, the DC valueof this �rst block cannot be located, so the matching starts only from the beginningof the sequence of AC values. These are calculated for each block independently,therefore if the pattern-block does appear as a block in the image T , the encodedsequence of AC values will appear in the encoded image E(T ). The DC values of thesecond and subsequent blocks in the �rst row of 8 � 8 blocks of P can be evaluatedbased on the DC values of the preceding blocks, hence the �rst part of the encodedpattern to be searched for in E(T ) consists of the sequence of AC values followed bythe `=8� 1 encoded 8� 8 blocks of the �rst row.The compressed matching paradigm raises then several problems. First, supposethat the binary sequence encoding the �rst part of the pattern is indeed located. Thisdoes not necessarily mean that an occurrence of the encoded elements is found, asthe beginning of the Hu�man codewords might not be synchronized. Consider, forexample, the block (2) 3 (0,2) �3 (EOB), to be located in a sequence of severalblocks identical to those of the example in Figure 1(b). Figure 3 shows that thepattern (after having stripped the DC values) will be found erroneously crossing theblock boundaries in E(T ).The same problem was noted in [9], and in [10] in an application to parallel{ 4 {



�2 (EOB) (3) 5 (0,1)� � � 0 1 1 0 1 0 1 0 0 1 0 1 0 0 � � �(0,2) �3 (EOB)Figure 3: Example of false alignmentdecoding of a JPEG �le when several processors are available. For long enoughpatterns, the tendency of Hu�man codes to resynchronize after errors may suggestthat false alarms as those in the above example might be rare, but in our application,the rows of the pattern may be short. Moreover, the problem in the JPEG case ismore severe than for plain Hu�man decoding. For the latter, once synchronizationhas been regained, the remainder of the encoded �le is correct. In JPEG �les, onthe other hand, consisting of both Hu�man codewords and integer encodings, thefact that a given bit is the last in a codeword for both the correct and the erroneousdecoding does not imply that both decodings will continue identically. Referring againto Figure 3, the codewords for (3) and �3 end at the same bit, which is neverthelessnot a synchronization point.The second problem is that the encoded pattern does not appear consecutivelyin the encoded image (unless k = `), but with gaps corresponding to the encodingof (k � `)=8 blocks. The pattern is therefore partitioned into m=8 sub-patterns, eachcorresponding to a row of `=8 blocks, and with the �rst DC value of each sub-patterneliminated. If the sub-patterns are located using some pattern matching algorithm,we cannot conclude with certainty that the pattern has been found. In addition tothe above problem of possible false alignments, one cannot know if each of the gapsare indeed the encoding of (k� `)=8 blocks, even if the sub-patterns are found in therequired order and even if all of them are true matches.One of the possible solutions could be, once the �rst row of the pattern has beenfound, to continue decompressing the image, keeping a count of the decoded blocks.In other words, pattern matching would only be used for the �rst row of the pattern,then the image would be decoded sequentially. In fact, one does not really needfull decoding: the Hu�man codewords in the JPEG �le indicate the length in bitsof the integers following the codewords, and for our purpose, these integers can besimply skipped. This solution could, however, not really be considered as compressedmatching, since, depending on the position of the �rst occurrence of the pattern in theencoded �le, large parts of it, possibly almost the whole original �le, are decompressed.The third problem relates to the fact that there are possibly many occurrences ofthe pattern, perhaps even overlapping ones. In images this might be more frequentthan for plain texts, because large areas could represent some uniform background(a blue sky, dark parts in the shadow, etc.), and therefore consist of many identicalblocks. If each of the rows of the pattern is located several times, we need to matchsomehow their occurrences to check whether indeed we have an occurrence of thewhole pattern. This might be a di�cult task even if we ignore the problem of certain{ 5 {



occurrences being false matches.We therefore conclude that compressed pattern matching in JPEG �les is hard toachieve, unless we keep some auxiliary data, as suggested in the following section.4. Compressed matching with auxiliary dataThe task would be much easier if one would know, for a given position in the JPEGencoded �le, the index of the corresponding 8� 8 block in the original �le. A step inthis direction would be using synchronizing codewords (see [7]), for example at theend of each encoded row, but this would require a change in the encoding standard, forexample to JPEG-2000 [12] which has synchronizing codewords built-in. In fact, thecode used in baseline JPEG is not really a Hu�man code, because it is not complete:there is, e.g., no codeword consisting only of 1's. This can be exploited to devise asynchronizing sequence: the longest sequence of 1's that can appear is of length 29,in the encoding of (10,10) 1023 (15,10), which is translated into 11111111110011111111111111 1111111111111110. Therefore a sequence of 30 consecutive 1's is synchro-nizing. This synchronizing sequence could be inserted at the end of each row, whichcould therefore be detected without decoding. Alternatively, instead of wasting 30bits for synchronization, one of the codewords could be replaced by this string of 1's,for example the codeword 1010 for EOB. This would increase each encoded block by26 bits, but false matches are then easily detected. Nevertheless, 26 bits for each 8�8block, which are generally encoded by a few hundred bits or less, might be too higha price to pay.4.1 Building an indexInstead of modifying the JPEG �le, one could construct a table S, acting as an index,that would be stored in addition to the original compressed �le. S(i) would be thebit-position, within the JPEG image, of the beginning of the encoding of the ACsequence in the ith block, that is the index of the bit following the DC value. Thesize of each entry in S would be dlog2 jE(T )je, where jxj refers to the size of x in bits,so that a 3 byte entry could accommodate a compressed image of size up to 2MB.The number of entries is S is nk=64, the number of 8� 8 blocks in T .The construction of such an index has to be done in a preprocessing stage, andit could be argued that this contradicts the main idea of compressed matching, sincewhile building the table S one actually decompresses the whole image. Nevertheless,the preprocessing can be justi�ed in certain applications, for example when one largeimage will be used many times for searches with di�erent patterns. This is similar toregular pattern matching with a �xed large text of size n and possibly many patternsto be looked for. Some of the fastest algorithms are then based on constructing a su�xtree [16, 4], the size of which may often exceed that of the text itself. Constructiontime is linear in n, but once the su�x tree is ready, the time to locate a pattern is{ 6 {



independent of the size of the text.The index S can be used to solve some of the problems mentioned above. Once theencoding of the �rst row of the pattern image has been located in E(T ) at bit o�sety, a binary search for y in S can decide in dlog n + log ke � 6 comparisons whetherthe match is a true one. Similar searches for the following rows of the pattern canlocate all the rows, without decoding.
Lenna Chess RoseFigure 4: Examples of JPEG �lesTo get a feeling about the size of the required indices, we have applied this ideaon the three grayscale sample JPEG �les in Figure 4: the classical Lenna picture,a chessboard with many identical sub-parts, and a rose. Table 1 shows the details,giving the number of rows and columns, r� c, the size in bytes, s, of the compressed�le, and the absolute (in bytes) and relative size (in percent) of the index S. The sizeis given by ((dr=8e � dc=8e)(log2(s) + 3)) =8.File pixels jpeg size index size %Lenna 256 � 256 30,763 2304 7.5Chess board 150 � 150 14,112 768 5.4Rose 227 � 149 12,089 1171 9.7Table 1: Details on sample �lesIf the size of S is too large, a time/space tradeo� can be obtained by �xing aninteger parameter d and storing only every dth entry of S. The storage overhead isreduced by a factor of d, at the cost of increased search time: the binary search forthe bit o�set y now locates the largest value is S that is still smaller or equal to y;from there, up to d blocks have to be decoded. For example, the index for the Lennapicture can be reduced to less than 1% if only every eighth block is indexed, and ifone records only the beginning of every row, the index reduces to 72 bytes.4.2 Dealing with multiple matchesWe now turn to the possibility of having found many matches for each of the rows ofthe pattern. Using the table S, each of the found o�sets is checked to correspond to atrue match and then translated to a block index. Since the dimensions of the image T{ 7 {



are known, each index can be translated into an (r; c) pair, denoting the indices of thecorresponding row and column. Let (Ri; Ci) be the sequence of ni (true) occurrencesof the ith row of the pattern,(Ri; Ci) = f(ri1; ci1); (ri2; ci2); : : : ; (rini ; cini)g; 1 � i � m:The sequences can be kept in lexicographically increasing order. We need to checkwhether consecutive rows of the pattern have appearances in consecutive rows andidentical columns of the image. Formally, we seekm\i=1 (Ri � i+ 1; Ci) ;where we use the notation A�x for a set of integers A = fa1; : : : ; ang and an integerx to stand for the set fa1 � x; : : : ; an � xg.The following algorithm uses m pointers, one for each of the sequences, to �nd allthe occurrences:Repeat until one of the sequences is exhausted�nd the smallest element (r; c) in (R1; C1) \ (R2 � 1; C2) by sequential searchfor i 3 to msearch for an occurrence of (r; c) in (Ri � i+ 1; Ci)if (r; c) is common to all m sequences, increase all m pointers by 1The search in the iterative step can be done by binary search, since the sequencesare ordered, but this is not necessarily the best solution. Consider the specialcase in which all ni are equal to n1, and h elements are found in the intersection(R1; C1) \ (R2 � 1; C2). Assume also that h > n1= log n1 and that all h elements ofthe intersection belong to the �rst halves of both (R1; C1) and (R2 � 1; C2). Thenperforming the intersection takes 2n1 comparisons, and each of the h searches in eachof the m�2 remaining sequences requires log n1 comparisons. To reduce this numbereven by 1, the length of the sequence has to be cut at least to half, so even reducingthe search to the remaining sequence after each located element wouldn't help in ourcase. The total search time would thus be 2n1 + h (m � 2) log n1 > n1m. On theother hand, scanning the m lists sequentially can be done in time n1m.Note that it would pay to start the process by intersecting the two shortest lists,rather than the two �rst, which would tend to reduce h. Moreover, the intersectioncould be done by binary merge [5] rather than linearly.In an experiment run on each of the images of Figure 4, a random 15 byte longfragment of the encoded �le was taken as pattern, corresponding to a part of a rowof the image, and occurrences of this pattern were sought. In each case, only a singleoccurrence was found, corresponding to the true match. This suggests that in manyreal life JPEG �les, multiple matches will not cause a problem. On the other hand,we repeated the test with a pure black bitmap �le, and found there many matches,as expected. { 8 {



5. Matching with scaling and rotationsConsider the problem of locating the pattern P after having scaled it by a factor �and/or rotated it by an angle 
. The one to one correspondence between 8� 8 blocksof pattern and image might be lost, but since the DCT transforms the full block asone indivisible entity, there is no way to detect the encoding of parts of the blockin the JPEG �le. So instead of trying to transform the encoded pattern, one has totransform the pattern �rst, and then apply the encoding.For � < 1, both height and width of the occurrence of pattern P in the image Tshould be � times smaller than in P . Since it is the pattern that is encoded, we getthe requested e�ect by enlarging the pattern by a factor of � = 1=� before applyingJPEG. If � is an integer, one could duplicate each pixel in each row, as well as thesuch enlarged rows � times. The resulting pattern is of lower quality than a possibleoccurrence in the given image, so some smoothing, taking neighboring pixels intoaccount, could improve the search, but the DCT will take care, at least partially, ofthe smoothing anyway. If � is not an integer, certain rational factors can be obtainedby a process similar to the one depicted in Figure 5(a). For � = 1:5, transform each2� 2 block into a 3� 3 block, inserting the missing values (in grey) by interpolation.
(a) (b) (c)Figure 5: Examples of possible rotationsIf � > 1, the pattern has to be reduced by a factor of � = 1=�. If � is aninteger, the simplest way to proceed is taking every �th pixel in both dimensions. Amore precise way would be to consider some or all translations of such subsets of thepattern having their pixels � positions apart, and averaging among them the valuefor each pixel. For certain non-integer values of �, one could proceed similarly to theabove non-integer case for �.As to rotations, if 
 is a multiple of a right angle, say 90�, 180� or 270�, each8 � 8 matrix can be transposed or reversed accordingly, thereby rede�ning the rowsand columns of the pattern. If 
 = 45� after a scaling of � = p2, as in Figure 5(b),each pattern block would have to match four halves of image blocks, but even ifthere is no such regularity and the pattern blocks might intersect a varying numberof image blocks in various layouts, as for example in Figure 5(c), one can deal withit by rotating �rst the pattern by �
, then partitioning into blocks and encoding.{ 9 {



6. ConclusionSearching directly in JPEG encoded images seems to be a di�cult task because theblocking used, as well as the DCT applied to the blocks, does not allow any interactionbetween adjacent blocks. Using an index, the size of which can be controlled in atime/space tradeo�, may alleviate some of the problems.
References[1] Amir A., Benson G., E�cient two-dimensional compressed matching, Proc.Data Compression Conference DCC{92 , Snowbird, Utah (1992) 279{288.[2] Amir A., Butman A., Crochemore M., Landau G.M., Schaps M., Twodimensional pattern matching with rotations, Theoretical Computer Science,314(1{2) (2004) 173{187.[3] Amir A., Butman A., Lewenstein M., Porat E., Real two dimensionalscaled matching, Proc. WADS (2003) 353{364.[4] Apostolico A., The myriad virtues of subword trees, Combinatorial Algo-rithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin (1985)85{96.[5] Hwang F.K., Lin S., A simple algorithm for merging two disjoint linearly-ordered sets, SIAM Journal of Computing 1 (1972) 31{39.[6] ISO/IEC 10918-1 Information Technology - Digital Compression and Codingof Continuous{Tone Still Images Requirements and Guidelines, InternationalStandard ISO/IEC, Geneva, Switzerland (1993).[7] Ferguson T.J., Rabinowitz J.H., Self-synchronizing Hu�man codes, IEEETrans. on Inf. Th. IT{30 (1984) 687{693.[8] Klein S.T., Shapira D., A new compression method for compressed match-ing, Proc. Data Compression Conference DCC{2000, Snowbird, Utah (2000)400{409.[9] Klein S.T., Shapira D., Pattern Matching in Hu�man Encoded Texts, In-formation Processing and Management 41 (2005) 829{841.[10] Klein S.T., Wiseman Y., Parallel Hu�man Decoding with Applications toJPEG Files, The Computer Journal 46(5) (2003) 487{497.{ 10 {



[11] Manber U., A Text Compression Scheme That allows Fast Searching Directlyin the compressed File, ACM Trans. on Inf. Sys. 15 (1997) 124{136.[12] Marcellin M.W., Gormish M.J., Bilgin A., Boliek M.P., An Overviewof JPEG-2000, Proc. Data Compression Conference DCC-2000, Snowbird, Utah(2000) 523{541.[13] Navarro G., Raffinot M., A general practical approach to pattern match-ing over Ziv-Lempel compressed text, Proc. 10th Symp. on Combinatorial Pat-tern Matching, Warwick, UK, July 22{24 1999, LNCS 1645, Springer Verlag,Berlin(1999) 14{36.[14] Rao K.R., Yip P., Discrete Cosine Transform Algorithms, Advatages, Ap-plications , Academic Press Inc., London (1990).[15] Wallace G.K., The JPEG Still Picture Compression Standard, Communi-cation of the ACM 34 (1991) 30{44.[16] Weiner P., Linear pattern matching algorithms, Proc. 14th Annual IEEESymposium on Switching and Automata Theory, Washington, DC, (1973) (1{11).

{ 11 {


