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Abstract: New algorithms for searching simultaneously for a set of patterns in a

text are suggested, for the special case where these patterns are correlated and

have a common substring. This is then extended to the case where it could be

more profitable to look for more than a single overlap, and a problem related to

the generalization of this idea is shown to be NP-complete. Experimental results

suggest that for this particular application, the suggested algorithm yields significant

improvements over previous methods.
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1. Introduction

We concentrate in this paper on multiple pattern matching, in which a set of pat-

terns S = {P1, . . . , Pk}, rather than a single one, is to be located in a given text

T . This problem has been treated in several works, including Aho and Corasick [?],

Commentz-Walter [?], Uratani and Takeda [?] and Crochemore et al. [?]. None of

these algorithms assumes any relationships between the individual patterns. Nev-
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ertheless, there are many situations where the given strings are not necessarily

independent.

Consider, for example, a large full text information retrieval system, to which

queries consisting of terms to be located are submitted. If one wishes to retrieve

information about computers, one might not want to restrict the query to this

term alone, but include also grammatical variants and other related terms, such as

under-computerized, recomputation, precompute, computability, etc. Using

wild-cards, one could formulate this as *comput*, so that all the patterns to be

searched for share some common substring.

In molecular Biology, multiple patterns sharing an overlap between them can

be found in several situations. For example, in order to produce a certain protein,

one needs to cut the gene coding it from the DNA and to transform it into bacteria

that will manufacture that protein in a large amount. Cutting a certain gene from

the DNA is done using restriction enzymes which cut the DNA sequence in certain

nucleotide acid subsequences. As one does not know which sequences are situated

upstream and downstream of the requested gene, one searches there for sequences

of many restriction enzymes in order to detect the one that fits the needs. The

sequences of the enzymes are often very similar and sometimes differ only in a

single or a couple of nucleotide acids [?].

In the next section, we suggest new algorithms and relate them to previous

work. Several alternatives are investigated, all based on finding one or more overlaps

shared by all or a part of the patterns. Extending this idea further could possibly

improve performance even more, but a related problem is shown to be NP-complete,

suggesting that it might be hard to find the requested overlaps in the general case.

Section 3 then brings some empirical experimental results.
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2. Correlated Patterns

Navarro and Raffinot [?] classify the various algorithms for multiple pattern match-

ing into three broad classes. In prefix based searches, the patterns are left aligned,

as depicted in Figure 1a for the example strings mentioned above. This class in-

cludes the Aho Corasick (AC) algorithm [?], which is an extension of the Knuth,

Morris and Pratt (KMP) algorithm [?] for a single pattern. In suffix based searches,

the patterns are right aligned, as in Figure 1b. The Commentz-Walter (CW) [?]

and the Wu Manber [?] algorithms belong to this class, both extending the basic

Boyer-Moore (BM) method [?]. The third class is factor based , that is, treating

arbitrary substrings of the patterns, and includes, e.g., DAWG matches [?]. We

also consider general factors, but try to align the patterns so as to get the longest

possible overlap, as can be seen in Figure 1c.

A known method for pattern matching is using a filter of the pattern that elimi-

nates false occurrences in the text, leaving only potential occurrence locations that

need to be verified. The algorithm of Amir, Benson and Farach [?], for example,

uses a witness table and duels to rule out obvious mismatch locations, checking then

the remaining locations using a so-called wave.

We suggest adapting the filtering concept to a set of correlated patterns, the

basic idea being the following: if we can find a substantial overlap s, shared by all

the patterns in the set, it is for s that we start searching in the text, using any single

pattern matching algorithm, for example BM. If no occurrence of s is found, none

of the patterns appears and we are done. If s does occur t > 0 times, it is only at

its t locations that we have to check for the appearance of the set of prefixes of s in

the set of patterns and of the corresponding set of suffixes. This can be done locally

at the t positions where s has been found, e.g., with the AC algorithm, but with no
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(a) Left-aligned patterns for prefix based search
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(b) Right-aligned patterns for suffix based search
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(c) Overlap alignment

Figure 1: Possible alignments of a set of patterns

need to use its fail function.

More formally, let the set S consist of patterns Pi, where Pi = li s ri, and li and

ri are the (possibly empty) prefixes and suffixes of Pi which are left after removing

the substring s. For our example, s =comput,{li} = {under-, re, pre, Λ}, where

Λ denotes the empty string, and {ri} = {erized, ation, e, ability}. Denote also

the length of Pi by mi and the total length
∑k

i=1 mi by M . The algorithm starts

by identifying s, the longest common substring shared by P1, . . . , Pk. The search

algorithm is then given by:
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Overlap Matching(s, S)

search for s in text T using KMP or BM

for each i such that s is found starting at position i

check at position i + |s| − 1 for an occurrence of an element of {rj}

using an AC automaton

for each matching rj found

check if lj matches T at position i− |lj |

if yes, declare match at i− |lj |

The dominant part of the time complexity will generally be for the search of

s, which can be done in time O(|T |). Applying the AC automaton is not really a

search, since it is done at well-known positions. Its time complexity is therefore

bounded O(t · max{mi}), where t is the number of occurrences of the overlap s.

Only in case the occurrences of s are so frequent that the potential positions of

the patterns cover a large part of the string T may O(t ·max{mi}) be larger than

O(|T |), but this will rarely occur for a natural language input string.

There are also other cases for which our approach is not necessarily superior to

previously suggested ones. Generally it will be true that the longer the overlap, the

smaller the probability of its occurrence, and thus the faster will it be to search

for the entire set, but there can obviously be exceptions to this rule. Moreover,

the main parameter influencing the processing time of our algorithm is the length

of the overlap, whereas the lengths of the strings themselves play only a secondary

role. On the other hand, algorithms based on backward searches, like CW, generally

increase their efficiency with the lengths of the patterns. In the special case of a set

of very long strings having only a relatively small common overlap, CW could thus
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be preferable.

One should thus add some rule of thumb before applying the algorithm we sug-

gest. For example, consider the ratio between the length of the overlap s and the

average length of the patterns in the given set S: only if this ratio is larger than

some predetermined threshold should our algorithm be applied, otherwise prefer

CW or one of the other alternatives.

2.1 Single overlap giving full coverage

Our main concern is with the matching algorithm for multiple patterns. The longest

overlap is used as a filter of the dictionary, thus it must be found without increasing

the overall time complexity of the search.

An efficient way to achieve this is to use an elegant linear time algorithm due

to Hui [?]. It suggests building a generalized suffix tree [?] for the patterns of

the dictionary (in such a compacted tree, every internal node actually stands for

an overlap of two or more patterns). In the next steps, the tree is traversed in

postorder and some constant time computations are performed for every internal

node, including applying a Lowest Common Ancestor [?] procedure. At the end of

the process, each internal node v includes information about its frequency f(v) in

the dictionary, i.e., the number of distinct patterns of which the string represented

by the node is a subpattern. In order to find the longest overlap giving full coverage,

one simply traverses the tree once again and selects a string of maximal length among

those with frequency f(v) = k. The total time for finding the required overlap is

thus O(M).

Consider now as example the dictionary S = {P1 = dxyz, P2 = wdxyza, P3 =

bcdxyzw, P4 = bcdzw}, showing a major deficiency of the suggested algorithm.
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The corresponding list of overlapping substrings is given in Table 1. Note that the

longest substring shared by all the patterns in this set is just a single character. One

can of course circumvent the case, which is even worse from our point of view, when

the longest common substring is empty, by invoking then the standard AC routine.

However, if there is a non-empty string s, but it is too short as in this example, it

might occur so often that the benefit of our procedure could be lost.

overlap # patterns length

d 4 1

z 4 1

dxyz 3 4

xyz 3 3

yz 3 2

w 3 1

bcd 2 3

cd 2 2

zw 2 2

Table 1: List of overlaps

In the above example, the string dxyz is shared by only three of the four ele-

ments of the dictionary S, but its length is much longer than the string shared by

all the elements. This suggests that it might be worthwhile not to insist on having

the overlap cover the entire dictionary, but maybe to settle for one shared not by

all, but at least by a high percentage of the patterns, which may allow us to choose

a longer overlap. An alternative approach could be to look for two or more sub-

strings s1, s2, . . ., each longer than s and each being shared by the patterns of some

proper subset of S, but which together cover the entire dictionary. For our exam-

ple we could, e.g., use the pair of substrings {dxyz, bcd}. In Information Retrieval
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applications, such an approach could be profitable in case the query consists of the

grammatical variants of two or more terms, or in case of irregularities, as in the set

{go, goes, undergoing, went}. In the next subsection we explore the details of the

first alternative. The case of choosing an overlap pair is considered in Section 2.3

and partition into more than two subsets is discussed in Section 2.4.

2.2 Single overlap giving partial coverage

We have seen that a single overlap is not always efficient. There is a tradeoff,

for each potential overlap s, between its length |s| and the number of patterns

it covers f(s). We shall choose an overlap that maximizes the product of these

two factors. The products can be easily evaluated by adapting Hui’s algorithm,

without changing its complexity, to store |s| · f(s) at the node corresponding to

string s. The overlap s0 maximizing the product will be used as the chosen overlap

in the Overlap Matching algorithm, but the induced dictionary includes only

the patterns covered by s0. For the rest, the algorithm can be applied recursively.

This yields the Greedy Overlap Matching defined by:

Greedy Overlap Matching(S)

build a generalized suffix tree for S

for every potential overlap s compute |s| · f(s)

select s0 maximizing the above product

define S′ to be the subset of S covered by s0

apply Overlap Matching(s0, S
′)

recursively call Greedy Overlap Matching(S − S′)
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2.3 Overlap pair giving full coverage

The greedy algorithm above tried to increase the lengths of the overlaps that will be

searched for, reducing thereby the expected overall search time. While improving

over the strict approach seeking for an overlap covering the entire dictionary, its

recursive nature may turn out to be wasteful: it may find a pattern covering a good

part of the dictionary, but splitting the remaining patterns into many small subsets,

so that the number of recursive calls might be Ω(k). Since for each call the text is

scanned, this may yield an Ω(k|T |) algorithm, which is prohibitive.

This leads to the idea of changing again the target: instead of looking for a single

overlap covering as much of the dictionary as possible, seek a pair of overlaps s1, s2

such that each pattern in S has at least one of the two si as substring; among all

such pairs, choose the one with maximal |s1|+ |s2|. We further demand that each of

these two be longer than a single overlap shared by all patterns, if it exists. If such a

pair can be found, let S1 and S2 be the subsets of S covered by s1 and s2 respectively,

and apply Overlap Matching(s1, S1) and Overlap Matching(s2, S2−S1) (the

S2 − S1 comes to avoid unnecessary comparisons in case S1 ∩ S2 is not empty).

To find the pair of overlaps, a list of all the overlaps in the dictionary is created,

using as before the suffix tree built by [?]. The overlaps are then sorted by decreasing

length. If there exists an overlap of length ℓ shared by all patterns of the dictionary,

we do not consider overlaps shorter than ℓ in our search for a covering pair, so

overlaps shorter than ℓ can be deleted from the list. A special case to be dealt

with is when there is an overlap s1 with frequency k− 1 in the list, i.e., a substring

shared by all but one of the patterns. In that case the only remaining pattern can

be considered itself as the complementing overlap s2. For the other cases we proceed

as follows.
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Define a binary matrix C whose rows C[x, ∗] represent the overlaps of frequency

k − 2 and lower, sorted by decreasing length, and whose k columns stand for the

patterns of the dictionary. C[i, j] will be set to 1 if and only if the ith overlap

is a substring of Pj. The matrix can be used to check whether the two overlaps

corresponding to rows x and y cover the entire dictionary: this will be the case if

and only if C[x, ∗] ∨ C[y, ∗] = 1k, where 1k stands for the bit-string consisting of k

1s, and ∨ is the bitwise OR operation.

Let R be the number of rows in C. The algorithm processes then the rows of the

matrix in a double loop, ORing pairs of rows. Among the pairs giving 1k, the pair

with maximum combined length of the corresponding overlaps is chosen. Formally,

denote by s(i) the overlap of row i, 1 ≤ i ≤ R, and use an array of flags flag[i] to

indicate whether s(i) has already been part of a pair yielding 1k; if so, row i can

be skipped, because the rows are ordered by non-increasing lengths of the overlaps.

The formal algorithm, returning the pair (m1, m2) of the indices of the requested

overlaps, is given below.

The number R of possible overlaps is bounded by the number of possible different

substrings, which is the number of internal nodes in the generalized suffix tree, so

R = O(M) in the worst case, but will often be much less. Finding all the overlaps

can be done in O(M) time, and their sorting in O(M log M).

The size of the matrix is O(Mk), so this bounds its construction time, but the

nested loops may take θ(kM2) in the worst case. This might possibly be improved

using bit-parallelism for small k: on 8-byte machines, 64 bitwise OR operations can

be done in a single machine instruction, but we are still left with at least θ(M2).

This might seem expensive if M is large, but recall that M will generally be small

relative to T , so θ(M2) in the pre-processing stage might be tolerated.

If bit-parallelism can be used and k is small, an alternative way for finding the
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Find Overlap Pair

m1 ←− m2 ←− s(0) ←− 0

for x ←− 1 to R flag[x] ←− False

for x ←− 1 to R

if not flag[x] then

for y ←− x + 1 to R

if not flag[y] AND C[x] ∨ C[y] = 1k AND |s(x)|+ |s(y)| > |s(m1)|+ |s(m2)| then

(m1,m2) ←− (x, y)

flag[x] ←− flag[y] ←− True

exit inner loop

end for y

end for x

matching pairs is as follows: consider the k columns C[∗, j] of the matrix C, each

corresponding to one of the patterns Pj for j = 1, . . . , k. To find the index y of the

overlap forming the requested matching pair with the overlap indexed x, consider

the binary complement of the x-th row of the matrix, C[x, ∗], and denote the set of

the indices of its 1-bits by I. Now perform

V =
∧

j∈I

C[∗, j],

that is, all the columns of the matrix C corresponding to indices in I are ANDed

together, and the result is the column vector V; the indices of the 1-bits of V are

those forming with x a covering pair, so we get that y is the smallest such index of a

bit position in V containing a 1-bit, since the overlaps are ordered by non-increasing

lengths. The length of the columns is θ(M) so the ANDing to get V takes up to

θ(kM). Since this is done for each row x, we again get θ(kM2). As the columns
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might be much longer than the rows, bit-parallelism can yield more savings with

this approach.

2.4 The Overlap Partition problem

A natural extension of the above ideas, in case there is no single or pair of overlaps,

would be to look for a set of strings s1, s2, . . . sm and a corresponding partition of

the set of patterns S into disjoint subsets S1, . . . , Sm, such that the patterns in Si

have si as longest common substring. This is reminiscent of the Partition problem,

which is NP-complete. We show below that a problem similar, though for technical

reasons not exactly identical, to ours is also NP-complete, which suggests that it is

probably very hard to find an optimal solution and thereby justifies heuristics as

those suggested above. Consider the following decision problem.

The Overlap Partition Problem (OPP): Let S be a set of strings over an

unbounded alphabet Σ, and let m, w1, w2, w3 be some integer constants, with m ≥ 2.

Find a partition of S into at least m subsets {S1, S2, ..., Sm, ...}, such that |Si| ≥ 2

and the strings in Si share some overlap vi of length at least w1 for S1, at least w2 for

S2, and at least w3 for the other Sj, j > 2. Moreover, the overlap strings vi should

themselves be non-overlapping.

The rationale behind this non-overlapping condition is that if vi and vj overlap,

we could have merged the sets Si and Sj and still get an non-empty overlap, though

a shorter one. The non-overlapping requirement of the vi should be understood

in the following sense. The selection of an overlap vi in fact induces a certain

alignment of the elements of Si, which then permits a sequential numbering of the

character positions in the set. The leftmost position of the set will be defined as

corresponding to the longest prefix of vi in the strings belonging to Si. For example,
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if Si = {abcαβγde, fgαβγhijk}, the overlap is vi = αβγ, the leftmost position

corresponds to a, there are 10 positions in the set, and the overlap vi starts at

position 4. When comparing vi with vj , we first align the two sets Si and Sj according

to their leftmost positions, and then check whether the corresponding positions of

the overlaps vi and vj have a non-empty intersection. If so, we require that vi and

vj should differ on their overlapping part. To continue the above example, suppose

Sj = {lmnopδǫqr, stδǫuvwx}, the alignments are then depicted in Figure 2.

position 1 2 3 4 5 6 7 8 9 10 11

a b c α β γ d e

Si
f g α β γ h i j k

l m n o p δ ǫ q r

Sj
s t δ ǫ u v w x

Figure 2: Alignment of overlaps

In this case, vi and vj overlap in position 6, but since γ 6= δ, such an overlap is

permitted. If vj were γǫ instead of δǫ, vi and vj would violate the non-overlap

requirement. Note also that the definition of OPP does not require the overlaps to

be consecutive substrings.

In Computational Biology, multiple alignment of strings is often considered with

a score called Sum of Pairs [?, ?] and related problems are shown to be NP-complete,

however, due to the different definition of the scoring, our problem is quite different

and its complexity does not follow from that of the Sum of Pairs based problems.

Theorem. The Overlap Partition Problem is NP-Complete.

Proof: After guessing the partition S1, S2, . . ., one can check in polynomial time that

all elements of S are members of some subset Si, that each Si contains an overlap

– 13 –



of the proper length and that these overlaps are themselves non-overlapping, thus

OPP ∈ NP. For the reduction, we show that CLIQUE ∝ OPP, where we use the

standard notation X ∝ Y to denote that X is reducible to Y .

Construction: Consider a general instance of the Clique problem: a graph G =

(V, E), with V = {1, 2, . . . , n}, and a constant K, K > 2. The alphabet Σ over

which the strings in S will be defined consists of the characters a, b, 1 and 2n

different symbols 0i. The set of strings S will consist of 2n strings Xi and Yi,

1 ≤ i ≤ n, and each of the different zero-symbols will only appear in a unique string

Xi or Yi. We shall therefore, for the ease of description, drop the subscripts of the

zeros, refer only to a quaternary alphabet Σ = {a, b, 1, 0}, but remember that 0s

belonging to different strings never match.

Each pair of strings Xi and Yi corresponds to one of the vertices of V and is

divided into four fields, A, B, C and D, defined as follows.

Field A: This field will serve to enforce alignment between the elements of S1. Its

length is 2n2 and it is defined as

A =











(an0n)n for Xi

02n2

for Yi

Field B: This is the main field relating to the graph and it is of length n charac-

ters, B= bi,1 · · · bi,n, defined by:

for Xi:

bi,j =











1 if j = i ∨ (i, j) ∈ E

0 otherwise,
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for Yi:

bi,j =











1 if j = i

0 otherwise.

Field C: This field contains n subfields Ci1, Ci2, ..., Cin. Subfield Cij is of length

4n2 + n(j + 1) + 1 defined as:

for Xi:

Cij =











04n2+n(j+1)+1 if j 6= i

1(1n+10n+i)n02n2

if j = i

for Yi the definition looks identical, but recall that the 0 symbol in Yi is

different from (does not match) that of Xi.

Field D: This field will serve to enforce alignment between the elements of S2. Its

length is 2n2 + n + 1 and it is defined as

D =











0(2n+1)n+1 for Xi

b(bn+10n)n for Yi.

To complete the construction, the constants are set as: m = n−K + 2, requiring a

partition into at least two subsets, and m = 2 only if the size of the clique is K = n,

i.e., a full graph is required; w1 = n2 + K, w2 = n2 + n + 1 and w3 = n2 + n + 2.

1 4

3

2

Figure 3: Example graph G

The construction is polynomial in the size of the graph, as for vertex i we build

two strings of length O(n3), so altogether, time and space are bounded by O(n4).
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The following example should clarify these definitions: for an instance of Clique

with K = 3 and the graph G in Figure 3, the construction is given in Figure 4.

A B C D

X1 = (a404)4 1100 1(1505)4032, 077, 081, 085 037

Y1 = 032 1000 1(1505)4032, 077, 081, 085 b(b504)4

X2 = (a404)4 0111 073, 1(1506)4032, 081, 085 037

Y2 = 032 0100 073, 1(1506)4032, 081, 085 b(b504)4

X3 = (a404)4 0111 073, 077, 1(1507)4032, 085 037

Y3 = 032 0010 073, 077, 1(1507)4032, 085 b(b504)4

X4 = (a404)4 0111 073, 077, 081, 1(1508)4032 037

Y4 = 032 0001 073, 077, 081, 1(1508)4032 b(b504)4

m = 3 w1 = 19 w2 = 21 w3 = 22

Figure 4: Construction corresponding to graph G and K = 3

We now turn to the proofs showing that we have a valid reduction.

Claim (⇒): If there is a clique of size K in G, then there is a valid partition.

Proof: Suppose we have a clique of size K in G, let I = {i1, . . . , iK} denote the

set of its vertices. Let J = V \I = {j1, . . . , jn−K} denote the complementary set.

The partition will be S1 = {Xi | i ∈ I}, S2 = {Yi | i ∈ I} and St = {Xjt+2
, Yjt+2

},

for 2 < t ≤ m, that is, S1 contains K Xi’s and S2 contains K Yi’s and their

indices correspond to the vertices of the clique; each of the other St, if there are any,

contains exactly two elements, one Xj and one Yj, both with the same index, and

these indices correspond to vertices not in the clique.

To check the validity of this partition, note that S1 and S2 have at least two

elements as we require K > 2. All strings in S1, when left aligned, share an overlap

– 16 –



in field A of length n2 (all the a characters). They also have K 1’s in field B that

overlap too, yielding a total overlap of size n2 + K = w1, as required. Fields C and

D do not match for these strings.

All strings of S2 cannot overlap in field A due to the definition of the different

0s. Moreover, they cannot have anything in common in field B (or C), as there are

1s only in the position (or subfields) corresponding to the index of the string. But

all elements of S2 have the same field D, overlapping in their b’s. Therefore, the

overlap of S2 is of size n2 + n + 1 = w2.

In each St, for t > 2, if it exists at all (in the special case K = n, S1 and S2 are

the only sets in the partition), we have Xi and its corresponding Yi so there is a

common 1 at the ith position of field B. In addition, field C as a whole is identical

for (the non-zero positions of) both of them, so they share an n2 + n + 2 overlap,

which is equal to w3.

There is no overlap between the overlaps: S1 and St both have field B as part

of their overlap, but not at the same positions due to the fact that the strings in St

correspond to vertices that are not in the clique and the strings in S1 correspond to

vertices that are. The overlap in S2 is exclusively from field D thereby avoiding any

overlap with S1 and St, t > 2. There can be no overlap between the overlaps vt of

different St, for t > 2, since vt is based on field C, and these fields have nothing in

common for different t.

For the above example, the partition we get is:

S1 = {X2, X3, X4} → the overlap is (a4)4111 with length 19 = w1.

S2 = {Y2, Y3, Y4} → the overlap is b(b5)4 with length 21 = w2.

S3 = {X1, Y1} → the overlap is 11(15)4 with length 22 = w3.
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Claim (⇐): If there is a valid partition, then there is a clique of size K in G.

Observation 1 All Xi and Yi are aligned.

Proof: Our definition of an overlap between two strings allowed the strings to be

shifted to maximize the overlap length as in the examples in Figure 2. For the

current construction, however, we show that all the strings ought to be aligned.

Consider all possible subsets in the partition, subsets consisting only of Xi strings

(type 1), similar subsets of Yi strings (type 2), and mixed subsets, including both

X and Y strings (type 3). If we shift some strings in a subset of Xi strings, their

C field overlap can consist of at most 1 +
∑n+1

r=2 r = 1
2
(n2 + 3n + 2) characters,

and even that only for strings Xi and Xi+1; the A field overlap gets smaller by, at

least, n characters for any shift, so the length of the overlap cannot be more than

1
2
(n2 + n + 2). But m ≥ 2 and |Si| ≥ 2 so that we consider only instances of Clique

for which n ≥ 4; for such n, the bound on the length of the overlap 1
2
(n2 + n + 2) is

always smaller than n2, which is smaller than each of w1, w2 and w3.

Similarly, in a set of Yi strings, any shift will reduce the overlap by at least

n characters in field D, the C field, again, can contribute at most 1
2
(n2 + 3n + 2)

overlapping characters, so again, no shift can increase the overlap length, on the

contrary it will decrease it.

For the mixed sets of type 3, if a set includes Xi and Yj for i 6= j, there is at

most an overlap of 1 character in the B field of Xi and Yj, and if we try to maximize

the overlap by shifting to align the 1s is the C field, the maximal match is again

1
2
(n2 + 3n + 2), which is less than any wj . If the set includes Xi and Yi, any shift

will decrease the match in the C field.

Observation 2 No subset includes both Xi and Yj, for i 6= j.
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Proof: If such a pair is included in one of the subsets, their A, B and D fields are

totaly distinct and the C field can contribute at most 1
2
(n2 + 3n+2) overlapping

characters, which is smaller than any wi, thus such a subset could be not a valid

one in our partition.

As a consequence, the only possible subsets of the partition including both Xis

and Yjs are of size two and consist of Xi and its corresponding Yi.

Observation 3 A set of the partition including two or more Xi strings, has an

overlap of at most n2 + n characters (in fields A and B).

Proof: The possible overlap between different Xi strings is due to fields A and B,

since field C is unique for each pair Xi, Yi and the D field consists only of 0s for X

strings. Field A yields an overlap (an)n of length n2 between any two Xi strings,

and field B is of length n.

Observation 4 A set of the partition including two or more Yi strings, has an

overlap of size at most n2 + n + 1 (in field D).

Proof: Different Yi strings cannot overlap in field A. They cannot match in field B

since it has 1’s only in the position of the index i, and field C is unique for each pair

of strings Xi, Yi. Therefore the only overlap possible is in field D which is identical

for all Yi, yielding an overlap of length n2 + n + 1.

As a consequence of Observations 3 and 4, every set St, for t > 2, consists of

exactly one Xi and one Yj. From Observation 2 follows that i = j, i.e, they are

strings with the same index.

S2 cannot include only X strings due to Observation 3 and the request of overlap

size at least n2 + n + 1. Note that 2(n −K) strings are already included in St for
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t > 2, leaving 2K ≥ 6 strings to be partitioned into S1 and S2. If S2 includes only

one Xi and its corresponding Yi, then there are at least two Xs and two Y s in S1,

but any set including at least two Xs and a Y can have an overlap of at most n2 +1

(field A and one character in B), which is less than w1. If S2 includes a single X and

two or more Y s, the overlap can be of length at most n2 (field A only), less than w2.

It follows that S2 cannot include Xs at all, and is thus of the form S2 = {Yj}j∈I for

some subset I ⊆ {1, . . . , n} of indices.

It follows that the remaining strings, which are {Xj}j∈I , form the set S1. By

assumption, the overlap v1 in this set is of size at least n2 + K. Since different Xs

have no overlap in fields C and D, and exactly an n2 overlap in field A, there must

be an overlap of at least K in the B fields.

Observation 5 Let b1 · · · bn be the B field of the overlap v1. If bi = 1, then Xi ∈ S1.

Proof: Assume Xi /∈ S1, then Xi ∈ St, for some t > 2, and position i of field B is

part of that overlap of St. However, this fact implies that position i of field B in

St is identical to that of S1, which contradicts the non-overlap requirement of the

overlaps of different subsets.

Consider now any two indices i, j ∈ I. From Observation 5 we know that both

Xi and Xj are in S1. Since positions i and j of field B of the overlap contain 1s, this

is true in particular also for string Xi, which means, by the construction of field B,

that the edge (i, j) ∈ E. Since this is true for any pair of indices in I, the vertices

corresponding to these indices form a clique of size ≥ K.
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3. Experimental Results

The complexity of the suggested search algorithm is first O(|T |) for finding the

occurrences of the overlap(s), and then O(tM) to check for possible occurrences

of the prefixes and suffixes next to the t positions at which the overlap has been

found. There is thus no improvement of order of magnitude relative to all the

algorithms that do not assume any correlation within the set of patterns. But in

the AC algorithm, for instance, every character of the text is inspected, whereas

when searching for a common overlap, the search can be performed sub-linearly, for

example using BM. The remaining O(tM) will often be much smaller than O(|T |),

so that the overall performance is improved. To get a general feeling of how the

algorithms behave in some real-life applications, we ran a set of tests on several

text and DNA files. The tests are not necessarily representative, as the number

of occurrences of the chosen overlap in a given application may be much lower,

improving the overall search time.

The chosen texts were several plays by Shakespeare, as well as three DNA strings

(human hemoglobin, Caenorhabditis elegans and human chromosome CDKN1C) to

check the influence of the size of the underlying alphabet. A random choice of the

patterns to be searched for does not yield interesting results, since the common

overlap of randomly chosen terms will often be empty or very short. We thus

proceeded as follows: a random term (the seed) of length ℓ was chosen from each

text. This terms was then extended by prefixes and suffixes of varying lengths to

form a dictionary S. The tests were repeated with strings of seed length ℓ = 1, . . . , 7,

yielding different dictionaries, each containing between 8 and 10 keywords for the

text files. For the DNA files, 2 dictionaries of 10 keywords for each seed length

ℓ = 2, . . . , 7 were built.

– 21 –



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9

Aho Corasick
Commentz-Walter

Pair of overlaps
Single overlap - Full coverage

(a) Text files

0

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8

Aho Corasick
Commentz-Walter

Pair of overlaps
Single overlap - Full coverage

(b) DNA strings
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As a measure for the efficiency, we defined a rate as the number of symbol com-

parisons divided by the length of the text. The Aho Corasick algorithm served

as benchmark, yielding always a rate of 1. The searches were performed with the

Commentz-Walter algorithm, the Overlap Matching, denoted SO (Single Over-

lap) in the sequel, and with the algorithm using a Pair of Overlaps (PO), and the

averaged values are displayed in Figure 5. The graphs give the rate, for each of the

algorithms, as a function of the overlap size (for PO, the weighted lengths of the

overlaps was taken as basis). In addition, empirical timing results were recorded,

and these are displayed in Figure 6. Results for the Greedy Overlap Matching

are not displayed, as they were mostly inferior to the others, especially for the real

timing results.

The rate of AC is always one as the algorithm actually goes over the text exactly

once. The rate of CW is also quite close to a constant, for real words between 1.14

and 1.3, and for DNA files between 2.45 to 2.62. The difference between the file

types is due to the fact that CW is based on the Boyer-Moore algorithm, which is

faster for larger alphabets. Interestingly, we got faster execution of CW than AC,

while the number of comparisons was lower for AC than for CW.

As can be seen, for both text and DNA files, the algorithms we proposed have a

better rate than CW, and outperform also AC for large enough overlaps. Moreover,

the rate seems to be decreasing with the overlap size, and rates as low as 0.5 on the

average can be reached already for relatively short overlaps of size 2–4.

As to execution time, all the algorithms require about the same time for DNA

files, with the new overlap algorithms consuming slightly less time than the AC

and CW algorithms. The differences are more evident for regular text files. The

performance of AC is the worst, whereas SO and PO improve even over the CW

algorithm (PO only for overlaps of size at least 4).
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The SO algorithm seems mostly superior to the others, both according to the

number of character comparisons and for real timing measurements, but in fact

such a comparison is meaningless because the algorithms will be applied in different

situations: if there is a single overlap of length ℓ, it makes obviously no sense to use

a pair or more overlaps with the same weighted length.

4. Conclusion

A new algorithm for the efficient search of a set of patterns has been presented,

for the special case in which these patterns are correlated in the sense of sharing

some common substring. This may be useful for certain applications in Information

Retrieval and Molecular Biology. We have dealt with finding the overlaps and how

to use them for improved search. The analysis and experimental results suggest

that for the special case under consideration, the new algorithms may significantly

improve performance over previous methods.

For future work, we consider transferring the ideas into the compressed domain,

searching for a set of compressed patterns in a compressed text. The underlying

alphabet is then binary, so that longer common substrings might be expected, which

increases the attractivity of the suggested method.
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