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Abstract: Given a natural language cleartext and a ciphertext obtained by Huff-
man coding, the problem of guessing the code is shown to be NP-complete for various
variants of the encoding process.

One of the best known compression techniques is due to Huffman [3], which
is optimal for any given probability distribution in the sense that it achieves a
minimum redundancy code, provided each codeword consists of an integral number
of bits. The aspect of using Huffman codes also as an encryption method has been
considered in [6] and recently in [4], where it was motivated by an application to
storing a large textual database on a CD-ROM. The text of the database had not
only to be compressed, but also to be encrypted to prevent illegal use of copyrighted
material. In this paper we show that various decoding problems involving variable
length prefix codes, of which Huffman codes are a special case, are NP-complete,
and suggest some methods how this could be exploited to increase the cryptographic
security of using such codes. We do not, however, seek absolute secrecy as might be
required in some military applications. Since we consider mainly literary cleartexts
which are in the public domain, all we need is to make the cryptanalysis difficult
enough so that the cost of the decryption effort exceeds the potential profit of
“breaking the code”.

In the sequel, we refer to the elements o1,...,0, of an alphabet X as letters,

and to the elements of a text as characters, i.e., letters counting their multiplicity.
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Thus the text people consists of 6 characters and 4 letters.

We consider the problem of “breaking a code”. First, we consider it for a model
where every character or run of identical characters is encoded individually. Given
is a cleartext T' = tq---tp, where the t; are the elements to be encoded, and a
ciphertext S, which is a binary sequence of which the opponent knows that it is a
prefix encoding of T'; that is, he knows 7" and S and that there is a partition of S

into codewords ¢(t1), ..., c(ty) which satisfy the following two conditions:

(1) the set of the different codewords in the sequence {c(t1),...,c(tp)} is a prefix
set, i.e., no ¢(t;) is the proper prefix of any other (the {c(¢;)} are not neces-
sarily a complete code, as not all the characters of the alphabet need appear
in T);

(2) the encoding defined by the sequence is consistent, that is, c(t;) = c(t;) if
and only if £; =, for all 1 <, j < h.

The opponent’s objective is to find the code, i.e., the function ¢().

In many applications, the cleartext T is a small subset of a large database 7.
In [4], T is the Trésor de la Langue Francaise, a French database with 112 million
words of running text. Recently, the French government, which owns the database,
has decided to store it on CD-ROM, and to restrict the printout of retrieved locations
to at most 300 characters of cleartext. The small subset of cleartext 7" might be the
short context of some keyword retrieved in response to a query. Then a portion of
ciphertext containing the encryption of this context is typically downloaded from
the CD-ROM into RAM, and we may therefore assume that the opponent has access
to it. In this case, the decryption attempt of the opponent could be based on the
statistics of the letter frequencies in the full text 7, which are well known, rather
than on analyzing only the given cleartext T. These statistics enable one to guess
the codeword lengths within a small error. Each such guess induces a partition of
the ciphertext. This partition is then subjected to the above tests (1) and (2). Any
partition passing these two tests successfully can be accepted by the opponent as

constituting a valid function ¢().

A way to prevent such decryption attempts is by adding some random bits to

the ciphertext, increasing its size by a small constant factor. Suppose we decide to
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encode our text T using some code {c(o;)}, with |c(o;)| = ¢; for i = 1,...,n, where,
here and below, |z| denotes the length (number of characters) of the string z. We
then choose certain indices j and (small) integers f;, and adjoin to each occurrence
of ¢(o;) a suffix of f; random bits, that is, different occurrences of c(o;) may be
followed by different suffixes of length E;; this does not affect the prefix property of
the code, as for decoding, the f; bits following an occurrence of c(o;) are simply
skipped. Tt follows that o; is now encoded by /; + f;. bits, but the above indicated
attack for constructing ¢() would fail, because condition (2) is not true anymore. If
the opponent knows about this strategy, he must now guess which bits to skip. The

following theorem shows that a similar problem is NP-complete.

Define a meta-character to be either a character or a run of adjacent identical

characters. Define SPC, the Subsequence Prefix Code problem, as follows:

SPC (Subsequence Prefix Code). Input: £ € ZT, p € ZT, a sequence T =
{t1,...,tp} of text-characters over the letters {oq, ..., opn}, with fixed n > 1, and a
binary sequence S. Question: Is there a subsequence S’ of S, |S’| = £, such that S’
can be partitioned into codewords, the lengths of which belong to {s,s+1,...,s+p}
for some s € Z%, such that the set of these codewords forms a prefix code and such

that each codeword in S’ encodes a meta-character of T'?
Theorem 1. SPC is NP-complete.

Proof: Given the subsequence S’ and its partition into codewords, a linear scan
of S’ can verify that the lengths of the codewords are indeed in the required range.
Given the partition of T into meta-characters {ry,..., 7}, we have to check that
the partition of S” induces a consistent encoding of T, that is, 7; = 7; if and only if
c(r;) = ¢(7j), for 1 <i < j < h'. This can be checked by a linear scan of T' and S’
using a table of size O(h). Moreover, it can be verified in at most O(h?) steps that
c(7;) is not a prefix of ¢(7;) unless i = j. Thus SPC € NP.

For the reduction, we need the following problem, which is known to be NP-

complete (see Garey & Johnson [2]).

SUS (Subset Sum). Input: (ai,...,am) € (Z7)™, B € ZT with B < > a;.

Question: Is there a binary vector (1, ...,em) such that Y /" e;a; = B?
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We show SUS o SPC. Let (aq,...,am) € (Z7)™ and B € ZT be an instance
of SUS. Let A = > 7" a;. We construct an instance of SPC. We let k = 1 +
[logy(m + 1)] and create the m + 1 codewords dy, . .., dp,, where dy is a string of
k+1 1’s, and for 1 < i < m, d; is the k-bit binary representation of i — 1 (i.e., the
binary representation of ¢ — 1, padded on the left with leading 0’s to fill to length
k), followed by a trailing 0-bit. Replacing any d; by its k-bit prefix preserves the
prefix property.

Define now m + 1 meta-characters g, ..., 7, by
T0 = 00 Ti = (014(i=1) mod n)W—l)/nJJr1 for 0 < i <m,

where z¥ designates, here and below, the concatenation of the string = by itself y
times, and x1zo is the concatenation of z1 followed by zo. In other words, 7; = o;

for 0 < i < n, then 7; = (0y_y)? for n < i < 2n, etc.

Define the text T' and the binary sequence S by

T = {(ror)" (1072)*2 -+ (ro7m)™™ }, S = {(dod1) ** (dod2)** - -+ (dodm) “™ }.

Note that 24 < |T'| < ([m/n]+1)A and that |S| = 2(k+1) A, which are exponential
in the input length Q(>°1"", loga;). This follows from the fact that SUS is solvable
in pseudo-polynomial time (see [2]), so in its NP-complete instances, the weights
a; are exponentially large with respect to the number m of the weights. Letting

m =qgn+r, 0 <r < n, we construct succinct representations 7" and S” of T and

S

1
T" = {0-070-17170'1;"';O-an-na170'71;0-070-17270'714-1;"';0070n72aa2n;"';0-070-17Q7
a(q—l)n+1§"';0'070'n7Qaaqn;0'0a0'1aQ+1aaqn-|-1§"';O'an'r7Q+1aam}
1
S" = {do,dy,a1;---;do, dn, an; do, dnt1, any1; - - -5 do, dan, azn; -+
dOad(q_l)n+1,a(q_1)n+1;"‘§d07dqn,aqn§d0,dqn+17aqn-{-l;‘"SdO,dm,am}a

where the o; are encoded by the logarithms of their indices and all numbers are
encoded in binary. In particular, all the a; are encoded in binary (with [logs a;|
bits). Then |T”| and |S”| are linear in the input length. Also A can be written with
logg A < Y71, logy a; bits.

We complete the construction by letting p = 1 and £ = 2kA + A + B (thus S’
is obtained by deleting some A — B bits from S).

,4,



Suppose there is (e1,...,em) € {0,1}" with Y"1, e;a; = B. We define the
codewords ¢ as follows: ¢(7y) = dp; ¢(;) is the k-bit prefix of d; (and the rightmost
0-bit deleted) if e; = 0; c(7;) = d; if e; = 1 (1 <4 < m). Then {c(;)}%, is a prefix
code and S” = {(c(70)c(71))? (c(10)c(72)) 2 - - - (c(70)c(Tm))?™ } is an encoding of T
of length |S'| =Y"1" 1 (k+1+k +¢;)a; = 2kA+ A+ B = {. The codewords have
lengths k or k+ 1, so p =1 as required.

Conversely, suppose S’ C S, |S’| = £, that the set of codewords in S’ is prefix
and that S’ is an encoding of T each of whose codewords has length s or s+ 1 for

some s € ZT.

Claim: The partition of T into meta-characters to be encoded consists of a; occur-
rences of my7;, 1 <4 < m, and the codeword corresponding to 7; is either d; or the

k-bit prefix of d;, 0 < i < m.

Proof of the Claim: By induction on i. As to the partition of T into meta-characters
to be encoded, since a meta-character consists only of a run of identical characters,
and in the prefix (1911)% of T, o¢ and o1 alternate, there is no other possibility to

parse this prefix into meta-characters.

As to the lengths of ¢(my) and ¢(71), consider the prefix ogoiogo; of T, where
r = 1 or x = 2, depending on whether a1 > 1 or not. Consider the prefix
1k+1gk+11k+10k=1 of S Because of consistency, the lengths of both c(og) and
¢(o1) must be larger than (k 4 1)/2, otherwise both ¢(o() and ¢(oq) would consist
only of 1’s. If the length of ¢(o() is larger than (k 4 1)/2 but smaller than k, then
c(og) consists of a string of 1’s of length < k, so that due to the assumption that
codeword lengths can differ by at most 1, ¢(o7) is also of length at most k (but
has at least one 0 in its suffix), but then the encoding c¢(og) of the third character
would start with a 0, contradicting consistency. If the length of ¢(og) is larger than
k + 1, then |c(oq)| must be at least k + 1, so that ¢(o1) would include some 1’s of
the second block of 1’s, but then the encoding of the third and first characters are
inconsistent because the former has less 1’s as prefix. Thus |¢(og)| is either k + 1
(i.e., ¢(og) = dg) or k (i.e., ¢(og) is the k-bit prefix of dy). In either case, the first
c(o1) begins with the first 0 of S. It follows that |c(oq)| cannot be less than k or
more than k + 1, as otherwise the encoding of the third character would either start

with a zero, or have at least one zero in its suffix. Thus ¢(o1) is either dy or its k-bit
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prefix, proving the induction claim for ¢ < 1.

Suppose the claim is true for ¢ < j, so that the partition of a prefix of T" into
meta-characters consists of a; occurrences of 7g7; for ¢ < j, but that the immediately
following substring (797;)% of T' is not parsed as a; occurrences of 797;. Suppose
that a prefix of (797;)% is parsed as (197;)*70Ty, with 0 < a < a; and u # j. It
is not possible that u < 7, because 1, already appeared earlier in the partition of
T and has, by the inductive hypothesis, d,, or its k-bit prefix as the corresponding
codeword; however, the corresponding bitstring in S is different from d,, contra-
dicting consistency. But u > j is also impossible, since this would mean that more

are encoded here as a

than [(j —1)/n] + 1 adjacent occurrences of 014 (j_1) mod n

single meta-character, whereas the text doesn’t contain so many. Thus v = j, which

proves the first part of the claim.

As to the second part, we know from the inductive hypothesis that 7; is encoded
by d; or its k-bit prefix, for ¢ < 7, so that the encoding of the substring of T" starting
with (797;)% starts with dod;dp. Note that dy consists of k£ + 1 1’s, while d; has
a leading and trailing 0. Tt follows that [c(7;)| cannot be less than &k or more than
k + 1, as otherwise the encoding of the second 7 of the block (797;)? would either
start with a zero, or have at least one zero in its suffix. Thus c(7;) is either d; or

its k-bit prefix, proving the induction claim. n

It follows from the claim that s = k. The codeword c¢(1y) cannot be the k-bit
prefix of dy, because then even if |c¢(7;)| = k + 1 for all 0 < 4 < m, the length of S’
would only be 2kA + A < £. Thus ¢(1g) = dy. It follows that for 1 < i < m, there
is an €; € {0, 1} such that the length of ¢(7;) is k + ;. We have

2kA+ A+ B=1L= 8" =37, (le(r0)| + le(mi) Nai = 25724 ((k + 1) + (k + &;))ai,

thus Y i, e;a; = B, which shows that (g;,...,&p) is a solution of the given SUS-

instance. [ |

If inserting new bits into the ciphertext makes decoding more difficult, it re-
duces, on the other hand, the compression efficiency. In the following theorem we
show that decoding may still be difficult, even if no new bits are inserted, if we

do not insist on encoding each meta-character of the cleartext T individually. The
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idea is that if one can use also general variable length strings in 7', this puts the
additional burden on the opponent of guessing not only the partition of S, but also
that of T'. This is one of the defenses against a cryptographic attack suggested in [6].
In [5] and [4], some heuristics are suggested for choosing the variable length strings.
Choosing a set of strings so as to maximize compression may be intractable, since
if its elements are restricted to be the prefixes or suffixes of words in the text, the
problem has been shown in [1] to be NP-complete. Thus even if the opponent quite
naturally assumes that we try to optimize compression, he still has to guess the set

of elements used.

We could, for example, decide that this set should include the single (upper
and lower case) letters, k1 out of the ny most frequent bigrams, kg out of the ng
most frequent trigrams, k3 out of the ng most frequent words of any length, and
other frequent strings. It is easy to compile a list of the most promising variable
length strings of this kind, and compression efficiency will barely be affected by
the preference of a specific subset over another, if these subsets include a large
enough number of elements. The corresponding Huffman codes, however, can be
completely different. Thus the exact set could be chosen at random, with (Zi)
choices for the bigrams, (Z;) for the trigrams, etc. The indices j; of the chosen
subsets are our secret key (1 < j; < (ZZ)) The number of choices is maximized
by setting k; ~ n;/2, yielding a number of possibilities of order 227 Thus the
possibility of the opponent guessing the key, which would also let him guess the
partition of the cleartext and the lengths of the corresponding codewords, can be

ruled out.

Though the determination of the secret key is difficult, there might presumably
be a direct way of decrypting the given ciphertext. We now show that also any such
attempt seems to be very hard. We first consider the case where in the partition of
T only simple meta-characters or pairs consisting of a meta-character followed by a
character are allowed and where the lengths of the codewords in S are restricted to

certain values. Define the following problem:

RPE (Restricted Prefix Encoding). Input: z € ZT, a sequence T = {t1,...,t3}
of text-characters over the letters {og,01,...,0,} with fixed n > 1, and a binary

sequence S. Question: Is S a prefix encoding of T satisfying the restrictions stated
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below, in other words, can T be partitioned into £ elements and S into ¢ codewords
such that the set C' of these codewords forms a prefix code and such that the sequence
of codewords in the partition of S encodes the sequence of elements in the partition
of T? The additional restrictions are:

1. each element in the partition of T consists either of a meta-character, or of a
meta-character followed by a single character;

2. each codeword in the partition of S has length 1, s or s + 1 for some s € ZT;

3. there are precisely z occurrences of codewords of length 1 in the partition of S.

Theorem 2. RPE is NP-complete.

Proof: Given sequences T' and S and their partitions into elements and codewords,
a linear scan of S can verify that there are precisely z codewords of length 1. Let
f1,--., fr denote the elements of the partition of T, where each f is either a single
meta-character or a meta-character followed by a character. There are at most
O(h?) different elements in the partition of 7. We have to check that the partition
of S induces a consistent encoding of the partition of T, that is, f; = f; if and only
if c(f;) = c(fj). This can be checked by a linear scan of T' and S using a table of
size O(h?). Moreover, it can be verified in at most O(h*) steps that c(f;) is not a
prefix of ¢(f;) unless i = j. Thus RPE € NP.

We show SUS oc RPE. Let (a1,...,am) € (ZT)™ and B€ Z1 (B< Y., a;)
be an instance of SUS. We construct an instance of RPE. Let £ be defined by
k = [logy(m +1)]. For 1 <i < m, let d; be the k-bit binary representation of i — 1
(i.e., the binary representation of ¢ — 1, padded on the left with leading 0’s to fill
to length k), preceded by a leftmost 0-bit and followed by a rightmost 1-bit; then
the set of m codewords dy,...,dy, is a (non-complete) prefix code, with all of its
codewords of length k£ + 2. The prefix property is preserved if the codeword 1 is
added to the set, or if any (k + 2)-bit codeword is replaced by its (k + 1)-bit prefix.

Let A =>"7", a;. Asin the proof of Theorem 1, we define m+1 meta-characters

T0y- - -, Tm DYy

0 = 00 T, = (Ul+(i—1) mod n) L(i=1)/n]+1 for 0 <@ < m.



We define the text T" and the binary string S by

T — {Té(m+2)A(T1T0)4a1 (7_27_0)4112 . (TmTO)4am}7

S = {14(m+2)Ad14a1d24a2 . _d;'llam}-

We have 4(m + 4)A < |T| < 4(m + [m/n] + 3)A and |S| = 4(k + m + 4) A, since
|dil = k+2 (1 <i < m). Thus |T| and |S| are exponential in the input length,
but can be rewritten succinctly as in the proof of Theorem 1. The construction is

completed by letting z = 4(m + 2) A + 4B.

Suppose SUS has a solution (e1,...,em) € {0,1}™ with 1" e;a;, = B. We
define the codewords ¢ € C' by ¢(1g) = 1, and by ¢(7;79) = d; ife; = 0; ¢(73)c(19) = d;
if e; = 1, i.e., ¢(7;) is the (k 4 1)-bit prefix of d;, and it is followed by c(mp) = 1.
Then C'is a prefix code, S is an encoding of T" with s = k + 1, and the number of

occurrences of ¢(7g) is

m
4(m+2)A + Z dae; =4(m+2)A+4B = z.
=1

Conversely, suppose S is an encoding of T using elements of a prefix code
C whose codewords have length 1, s or s + 1 for some s € ZT, and that there
are precisely z occurrences of codewords of length 1 in the partition of S. Let
R = T(;l(m+2)A be the prefix of length 4(m +2)A of T', and denote by T” the suffix of
T obtained by deleting the prefix R, and by S’ the suffix of S obtained by deleting
the prefix 14(m+2)4

Claim 1: In the partition of R into meta-characters and pairs of the form (meta-

character, character) to be encoded, each 7y in R is encoded by itself, and ¢(m) = 1.

Proof of Claim 1: The string T’ contains at most 4([m/n] + 1)A < z characters.
Hence some element in R is necessarily encoded by a single bit. If this element is a
meta-character of the form Tg or a pair of the form (Tg _1, 79) for some j > 1, then
there are at most 4(m +2)A/j < z such elements, because a string of more than one
consecutive 7y appears only in R. Thus the element which is encoded by a single

bit must be .

There are 4(k + 2)A bits in S, so the total number of zeros in S is less than
A4(k +2)A < z (since k < m). It follows that ¢(m9) = 1. But then it is not possible
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that any meta-character of the form Tg or any pair of the form (Tg _1, 79) for some
j > 1 is encoded, nor is it possible that a suffix Tg of R, for some j > 0, is encoded
together with the following 7, because the corresponding codewords in the partition
of S would start with a 1, violating the prefix property. Thus each of the 4(m+2)A
first 79’s is encoded by the single bit 1. »

Claim 2: In the partition of 7" into elements to be encoded: (1) every meta-

character is of maximal length, i.e., in any substring aoag oo of ogT", 'the run 0‘27 is
parsed as one block, either as a single meta-character, or as the pair 0‘27 00; (2) there
is no pair of the form ogo;; and (8) the bits in S corresponding to ;7 are d;, in
the sense that either ;7 is encoded as one element by d;, or 7; is encoded by the

(k 4 1)-bit prefix of d; and 7 is encoded by 1.

Proof of Claim 2: By induction on i. Suppose that there is an element in the
partition of 7" that is encoded by more than k + 2 bits. Then we are left with at
least 44 —1 elements in T, each of which is encoded by at least k42 bits, so that the
length of the encoding of T" is at least (44 —1)(k+2) + (k+3) > 4A(k+2) = ||
Thus the length of the encoding of no element can exceed k + 2.

Consider the first few characters (ry79)* of T’, and consider the prefix
(0F+11)4 of S’. Suppose that the first 7 of T’ is encoded on its own and that
lc(T1)| = k + 2. Then the following 7 in 7" is not encoded on its own, since the fol-
lowing bit in S’ is 0, and we know by Claim 1 that c¢(7p) = 1. But if 797y is encoded
as one element, then |c(1971)| must be k+2 or k+1, contradicting either consistency
or the prefix property. Thus if the first 71 is encoded on its own, |c(71)| must be
less than k 4 2. It cannot be less than (k + 2)/2, since then the following codeword
would also consist only of zeros. If |c(m)| = ¥, with (k+2)/2 < k' < k, then again
the following bit in S’ is 0, so that the second character 7y must be encoded together
with the following 71, and a prefix of ¢(mor1) is 05t1=%"_ But |e(rp71)| is then at
most k + 1, so that the next codeword must start with at least £ + 2 — k' zeros; on
the other hand, the next characters in T” are again 197y (because there are at least
4 occurrences of 717 in the prefix of T"), and 7 cannot be encoded on its own, so
the next codeword is also ¢(7y7y), violating consistency. If |¢(71)| = k + 1, the next
codeword starts with a 1, and because of the prefix property, the next codeword

must then be 1, so it is ¢(7p).
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Suppose now that the first 7 is encoded together with 7, and suppose that
the second pair 77 is also encoded together. If |c(7179)| < k+2, then ¢(m97m1) must
consist only of zeros, so k' = |e(T179)] is at most (k+1)/2. The partition of the prefix
of S” into codewords consists therefore of r > 2 occurrences of Ok,, followed by a
codeword containing a 1, followed again by a codeword consisting only of zeros. The
length of this codeword cannot be different from &’ because of the prefix property,
so it must be the encoding of 717y because of consistency. However, there is no
possibility to parse the prefix (r17)**1 of T’ into elements to be encoded such that
the first r and the (r 4+ 2)-nd elements are 7179, but the (r 4+ 1)-st element being
different. Thus if both the first and the second pair 77y are encoded together, we
must have |c¢(m179)| =k + 2.

Still assuming that the first pair 7177 is encoded together, suppose now that the
following 7y is encoded on its own. Suppose |c(1179)| = k' < k+2, and consider the
fourth character, 7. If it is encoded together with the next (the third) 7, then the
first three codewords satisfy |c(1179)| < k+2, |c(m1)] < k+2 and |e(rom1)| < k + 2.
Thus c(mg7y) starts with at least k& + 2 — &’ zeros and must include the second 1
(the 2k + 4-th bit) of S’, otherwise it would consist only of zeros. But then the next
codeword starts with a 0, so it cannot be ¢(7g), therefore it must be ¢(mg71) (since
there are at least 4 occurrences of 717 at the beginning of 7”), but the corresponding
bits in S’ start with at least k + 3 — k’ zeros, a contradiction. It follows that also in

the case that the second 71 is encoded on its own, we have |c(T179)| = k + 2.

Summarizing, we have shown that the first characters 7179 of T’ are either
encoded together by dy, or 71 is encoded on its own by the (k + 1)-bit prefix of dy,
and 7 is then encoded on its own by 1. Suppose this is true for the first « — 1 pairs
7170, 0 < u—1 < 4ay, then we know that the bits corresponding to the encoding of
the following characters in T” start with 0%+11, which implies, by consistency and
the prefix property, that the u-th pair 77y of T” is also either encoded together by
dy, or 71 is encoded on its own by the (k+1)-bit prefix of dy, and 7 is then encoded

on its own by 1. This concludes the proof for : = 1.

Assume the claim is true for 4 < v and let T” be the suffix of T” starting with

4a,

(1Ty70)*?. By the induction hypothesis, the encoding of T” starts with d%v.
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Consider the partition of 7" into elements to be encoded. Each such element
is encoded either by k£ + 2 or k£ + 1 bits. Consider the first element encoded by
k + 1 bits, if any; since the first bit of the codeword in S’ corresponding to the next
element is 1, this must be the codeword 1 because of the prefix property, so the
following encoded element in 7" must be 7¢. If D is the number of elements 7 in
the partition of T”, it follows that exactly D elements are encoded by k + 1 bits, D
are encoded by 1 bit and the others by k + 2 bits.

Suppose that the first 7, is not parsed as a single meta-character, but that its
prefix 7,/, with v/ < v, is encoded as a single unit, either as the meta-character 7,
or as a pair, together with the following character. The length of the corresponding
codeword must then be k+2, because it cannot be less than k41 or more than k+ 2,
and if it were k£ + 1, the next codeword would start with a 1, contradicting either
consistency or the prefix property, since the following character in 7" is not 7¢. Thus
the codeword corresponding to 7, or to the pair 7,/ followed by the next character,
is d,. We are then left with at least A’ =" 4a; elements in the partition of 7",
which are encoded by at least (A" — D)(k +2) + D+ A'(k+ 1) = (k + 2) A’ bits,
which is impossible, since only (k + 2)(A’ — 1) bits remain in S’. Tt follows that the

first 7, is parsed as a single meta-character.

Suppose that the first 7, is encoded on its own and that ¢(7,) = dy. Then the
next codeword must also be d,, because of the prefix property, which means that the
next element should again be 7,; however, the next element starts with 7. Thus
if the first 7, is encoded on its own, we have |¢(7y)| = k + 1, and the next element
is 9. If, on the other hand, the first 7, is encoded together with the following 7,
lc(Ty7p)| cannot be k + 1, as the next bit in S” would be 1 and the next element is
not 7y, so we have |¢(m,79)| = k + 2. As above, consistency and the prefix property
imply that this is also true for subsequent pairs 7,79, showing that the claim is true

fori=v. n

By Claim 2 we know that in the partition of 7", all the pairs 7;7y are either
encoded as a single element, or as two elements: the meta-character 7; followed by
the character 7. For every i € {1,...,m} the encoding of ;79 may thus be either
by the single codeword d; of length k42, or by two codewords ¢(7;)e(7), where ¢(7;)
is the (k + 1)-bit prefix of d;. Now the prefix property implies that for every fixed i,
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precisely one of these two possibilities prevails for all the 4a; occurrences of d;. Thus
we may define (e1,...,emy) € {0,1}™ such that ¢; = 0 if and only if 7;7p is encoded
by the single codeword d; (1 < i < m). The number of occurrences of the codeword
70 is thus 4(m + 2)A + Y1 | 4a;e; which must be equal to z = 4(m + 2)A + 4B.
Thus B = > /% €;a;4, so that (e1,...,em,) is a solution of the given instance of
SUS. ||

Note that though z is given, the problem is NP-complete. The point is that even
if the opponent guesses the element encoded by a single bit, not all its occurrences

are necessarily encoded by a single bit, due to a different parsing.

We now define a less restrictive version of RPE.

PE (Prefix Encoding). Input: Positive integers z,/1,p and ¢, a sequence T =
{t1,...,tp} of text-characters over the letters {og, 01, ...,0n} with fixed n > 1,
and a binary sequence S. Question: Is S a prefix encoding of T' in the sense defined
in RPE, satisfying:

1. each element in the partition of T' consists either of a single meta-character or of
up to p — 1 consecutive meta-characters followed by a character;

2. the lengths of the codewords in the partition of S belong to the set {£1,fa,..., 44},
where £y < g <--- <Ly and £y = £; — {; for some 1 <4 < j < g;

3. there are precisely z occurrences of codewords of length /1 in the partition of S.

Corollary. PE is NP-complete.

Proof: Restricting PE to the values /1 = 1, p = 2 and ¢ = 3 we get RPE, which
is NP-complete by Theorem 2. [ ]

Returning to our application of storing, in encrypted form, a large literary
database on a CD-ROM, we conclude that there is probably no polynomial algorithm
for breaking the code, unless P = NP. The price of applying a non-polynomial
algorithm will, on the other hand, even for subtexts of moderate length, soon exceed
the value an opponent might gain by infringing on the copyright. Thus Huffman
coding, which is widely known to yield efficient compression, can also, in certain

applications, be useful as an encryption method.
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