16

Chapter 2

Combining Huffman and
Run-Length Coding

Gal, amant de la reine, alla, tour magnanime,

gallament de I'aréne a la Tour Magne, a Nimes.

— Robert DESNOS

2.1 Introduction

We now turn to Jakobsson’s [34] method for the compression of sparse bit-
strings and show how it can be improved. It uses Huffman coding, and since this
algorithm will also reappear as one of the main subjects in all the subsequent chap-
ters, a brief description will now follow. The term ‘code’ is used throughout as
abbreviation for ‘set of codewords’.

We are given a set of n non-negative weights {wq, ..., wy}, which are the fre-
quencies (or probabilities) of occurrence of the letters of some alphabet. The prob-
lem is to generate a binary variable-length code, consisting of codewords with lengths
l; bits, 1 < i < n, with optimal compression capabilities, i.e., such that > 7" ; w;l;
is minimized. Moreover, to allow unique decipherability, the code should have the
prefix property, that is, no codeword is the prefix of any other. In 1952, Huffman
[32] proposed the following algorithm which solves the problem.

The Huffman encoding algorithm

1. If n = 1 then the codeword corresponding to the only weight is the nullstring;
return.

2. Let w; and wse, without loss of generality, be the two smallest weights.

3. Solve the problem recursively for the n — 1 weights wy + w2, w3, ..., wn;
let & be the codeword assigned to the weight wy + wo.

4. The code for the n weights is obtained from the code for n — 1 weights generated
in point 3 by replacing a by the two codewords a0 and al; return.

In the straightforward implementation, the weights are first sorted and then
every weight obtained by combining the two which are currently the smallest, is
inserted in its proper place in the sequence so as to maintain order. This yields
an O(n?) time complexity. Using two queues, Van Leeuwen [59] has shown how to
reduce it to O(nlogn). In fact, the dominating part of the time is spent on sorting
the weights w;, requiring Q(nlogn). If the weights are already given in order, the
algorithm can be implemented in time O(n).

For decompression, one uses either a translation table giving for each codeword
the corresponding encoded letter of the alphabet, or one uses the Huffman tree in
the leaves of which these letters are stored. Efficient techniques for the decoding of
Huffman encoded messages are presented in Chapter 3.

When a natural language text is to be encoded, the Huffman algorithm is
usually applied on the frequencies of the different letters; however, one can also
encode the different letter pairs or triplets, etc. Compression will be improved, but
at the cost of much larger translation tables. The basic idea of the new methods for
bit-vector compression which are presented in this chapter, is to use Huffman codes
to represent items of completely different nature, provided there is an unambiguous
way to decompose a given file into these items. In the present application, we apply
Huffman coding to bit patterns of constant size on one hand and to lengths of 0-bit-
runs on the other. These lengths are chosen in a systematic way, using new exotic
numeration systems. Some of the methods consistently yield compression factors
superior to the previously known ones, and even improve on method PRUNE of
Chapter 1.

2.2 Incorporating 0-Run-Length Coding

In what follows, each method is identified by a label which appears in typewriter
font and usually between parenthesis following the explanations, together with a
number referring to the corresponding line in Table 2.4 (page 27), which displays
the experimental results. Methods TREE and PRUNE of Chapter 1 were added for
comparison to the table (lines 1 and 2), as well as Jakobsson’s Huffman coding
method, which is referred to as method NORUN (line 3). We use the same notations
as in Chapter 1, i.e., the vector to be compressed is vg and has length [y bits.

As we are interested in sparse bit-strings, we can assume that the probability
p of a block of k£ consecutive bits being zero is high. If p > 0.5, method NORUN
assigns to this 0-block a codeword of length one bit, so we can never expect a better
compression factor than k. On the other hand, £ cannot be too large since we must
generate codewords for 2F different blocks.

In order to get a better compression, we extend the idea of method NORUN in

17

18

the following way: there will be codewords for the 2¥ —1 non-zero blocks of length k,
plus some additional codewords representing runs of zero-blocks of different lengths.
In the sequel, we use the term ‘run’ to designate a run of zero-blocks of k bits each.

The length (number of k-bit blocks) of a run can take any value up to ly/k, so
it is impractical to generate a codeword for each: as was just pointed out, k£ cannot
be very large, but [y is large for applications of practical importance. On the other
hand, using a fixed-length code for the run length would be wasteful since this code
must suffice for the maximal length, while most of the runs are short. The following
methods attempt to overcome these difficulties.

2.2.1 Definition of classes of run-lengths

Starting with a fixed-length code for the run-lengths, we like to get rid of the
leading zeros in the binary representation B(f) of run-length £, but we clearly cannot
simply omit them, since this would lead to ambiguities. We can omit the leading
zeros if we have additional information such as the position of the leftmost 1 in B(¢).
Hence, partition the possible lengths into classes C;, containing run-lengths ¢ which
satisfy 2071 <0 < 28 i=1,..., |logy(lg/k)|. The 2% — 1 non-zero block-patterns
and the classes C; are assigned Huffman codewords corresponding to the frequency
of their occurrence in the file; a run of length ¢ belonging to class C; is encoded by
the codeword for C;, followed by ¢ — 1 bits representing the number ¢ — 2=1 For
example, a run of 77 0-blocks is assigned the codeword for C; followed by the 6 bits
001101. Note that a run consisting of a single 0-block is encoded by the codeword
for C'1, without being followed by any supplementary bits.

The Huffman decoding procedure has to be modified in the following way: The
table contains for every codeword the corresponding class C'; as well as ¢ — 1. Then,
when the codeword which corresponds to class C; is identified, the next ¢ — 1 bits
are considered as the binary representation of an integer m. The codeword for C;
followed by those ¢ — 1 bits represent together a run of length m+2°~!; the decoding
according to Huffman’s procedure resumes at the i-th bit following the codeword
for ;. Summarizing, we in fact encode the length of the binary representation of
the length of a run (method LLRUN, line 4).

2.2.2 Representing the run-length in some numeration system

Method LLRUN seems to be efficient since the number of bits in the binary
representation of integers is reduced to a minimum and the lengths of the codewords
are optimized by Huffman’s algorithm. But encoding and decoding are admittedly
complicated and thus time consuming. We therefore propose other methods for
which the encoded file will consist only of codewords, each representing a certain
string of bits. Even if their compression factor is lower than LLRUN’s, these methods
are justified by their simpler processing.

To the 2 — 1 codewords for non-zero blocks, a set S of ¢ codewords is adjoined
representing hg, hy,... ,hs_1 consecutive 0-blocks. Any run of zero-blocks will now
be encoded by a suitable linear combination of some of these codes. The number
t depends on the numeration system according to which we choose the h;’s and on
the maximal run-length M, but should be low compared to 2¥. Thus in comparison
with method NORUN, the table used for compressing and decoding should only slightly
increase in size, but long runs are handled more efficiently. The encoding algorithm
now becomes:

Step 1: Collect statistics on the distribution of run-lengths and on the set NZ
of the 2¥ —1 possible non-zero blocks. The total number of occurrences
of these blocks is denoted by Ng and is fixed for a given set of bit-maps.

Step 2: Decompose the integers representing the run-lengths in the numera-
tion system with set S of “basis” elements; denote by TNO(S) the
total number of occurrences of the elements of S.

Step 3: Evaluate the relative frequency of appearance of the 2 —1+t elements
of NZ U S and assign a Huffman code accordingly.

For any ¢ € (NZ U S), let p(z) be the probability of the occurrence of x
and £(z) the length (in bits) of the codeword assigned to z by the Huffman al-
gorithm. The weighted average length of a codeword is then given by AL(S) =
> ze(Nzus) P(z){(z) and the size of the compressed file is

AL(S) x (No + TNO(S)).

After fixing k so as to allow easy processing of k-bit blocks, the only parameter
in the algorithm is the set S. In what follows, we propose several possible choices
for the set S = {1 = hg < hy < ... < hy_1}. To overcome coding problems, the
h; and the bounds on the associated digits a; should be so that there is a unique
representation of the form L =), a;h; for every natural number L.

Given such a set 5, the representation of an integer L is obtained by the fol-
lowing simple procedure:

for: « t—1 to 0 by -1

19

20

a; + |L/hi]
L « L— a; X hi
end

The digit a; is the number of times the codeword for h; is repeated. This algorithm

produces a representation L = f;(l) a;h; which satisfies
J
> ashi < hjg for j=0,...,t—1. (2.1)
1=0

Condition (2.1) guarantees uniqueness of representation (see [16]).

2.2.3 Selection of the set of basis elements

A natural choice for § is the standard binary system, h; = 2°, ¢ > 0, or higher
base numeration systems such as h; = m?, ¢ > 0 for some m > 2. If the run-length
is L it will be expressed as L =), a;m’, with 0 < a; < m and if a; > 0, the
codeword for m* will be repeated a; times. Higher base systems can be motivated
by the following reason.

If p is the probability that a k-bit block consists only of zeros, then the probabil-
ity of a run of r blocks is roughly p"(1 — p), i.e., the run-lengths have approximately
geometric distribution. The distribution is not exactly geometric since the involved
events (some adjacent blocks contain only zeros, i.e., a certain word does not appear
in some consecutive documents) are not independent. Nevertheless the experiments
showed that the number of runs of a given length is an exponentially decreasing
function of run-length (see Figure 2.1 below). Hence with increasing base of the
numeration systems, the relative weight of the h; for small ¢ will rise, which yields
a less uniform distribution for the elements of NZU S calculated in Step 3. This has
a tendency to improve the compression obtained by the Huffman codes. Therefore
passing to higher order numeration systems will reduce the value of AL(S).

On the other hand, when numeration systems to base m are used, TNO(S) is an
increasing function of m. Define r by m” < M < m”™t! so that at most r m-ary digits
are required to express a run-length. If the lengths are uniformly distributed, the
average number of basis elements needed (counting multiplicities) is proportional to
(m—1)r = (m—1)log,, M, which is increasing for m > 1. For our nearly geometric
distribution this is also the case as can be seen from the experiments. Thus from this
point of view, lower base numeration systems are preferable. Numeration systems
to base m were checked for m = 2,...,10 (POW2, ..., POW10; lines 5-13). For
m = 3, we experimented with another variant: instead of using certain codewords
twice where a digit 2 is needed in the ternary representation, we added a special
codeword indicating that the following codeword has to be doubled (POW3M; 14).

2.2.4 Trying to reduce the total number of codewords

As an attempt to reduce TNO(S), we pass to numeration systems with special
properties, such as systems based on Fibonacci numbers

Fo=0, F =1, F,=F,_1+4+ F,_y for i>2.

(a) The binary Fibonacci numeration system: h; = F;;9 (FIBBIN; 15). Any
integer L can be expressed as L =) .5qb;Fi4o with b; = 0 or 1, such that this
binary representation of I consisting of the string of b;’s contains no adjacent 1’s (see
Knuth [41, Exercise 1.2.8-34], Fraenkel [16]). This fact for a binary Fibonacci system
is equivalent to condition (2.1), and reduces the number of codewords we need to
represent a specific run-length, even though the number of added codewords is larger
than for POW2 (instead of t(POW2) = |logy M | we have t(FIBBIN) = Uogqﬁ(\/BM)J -1,

where ¢ = (1 4+ 1/5)/2 is the golden ratio). For example, when all the run-lengths
are equally probable, the average number of codewords per run is assymptotically
(as k — o0) 3(1 —1/+/5)¢(FIBBIN) instead of 1¢(POW2).

(b) A ternary Fibonacci numeration system: h; = F2(i+1)7 l.e., we use only
Fibonacci numbers with even indices. This system has the property that there is at
least one 0 between any two 2’s ([16]). This fact for a ternary Fibonacci system is
again equivalent to (2.1) (FIBTER; 16).

(c) Like (b), but with a special codeword for the digit 2 like in POW3M
(FIBTERM; 17).

2.2.5 Trying to reduce the average codeword length

New systems with similar properties are obtained from generalizations of the

Fibonacci systems to higher order. The idea is to lower AL(S) at the cost of TNO(SS),
while TNO(S) is kept smaller than for the POWm systems.

(a) Methods which are generalizations of method FIBBIN, based on the
following sequence of integers which is defined recursively:

for = o (2.2)
ugm) = muETl)—I— uET%, 12> 1,

(This is the recursion satisfied by the convergents of the continued fraction [1,m],
where m represents the infinite concatenation of m with itself.) For m = 1 we
get FIBBIN. The system based on the sequence u(()m),ugm), ... is an (m + 1)-ary
numeration system with the following property: there exists a unique representation

of any integer L as L =), aiuz(-m), such that 0 < a; < m, and such that if a;41
reaches its maximal value m, then a; is zero. These methods were checked for

m =2,...,10 (REC2, ..., REC10; 18-26).

21

(b) Methods which are generalizations of method FIBTER, based on the se-
quence:

u(ab) =1—e€a u(ab) =1
o P (2.3)
ul(a):(ab-l—?)ugil)—ugi), 1> 1,

where a,b and ¢ are parameters. This is the recursion satisfied by the convergents
p2i/q2; of the continued fraction [1,b,a,b,a,...]. Specifically, (2.3) is the recursion
for the go; when ¢ = 0 and for the py; when ¢ = 1. The numeration system
based on the ¢9; is denoted by AaBbQ and that based on the py; by AaBbP. Any
nonnegative integer L can be represented in these numeration systems in the form

L=3%", ciuz(-ab), where

0<c¢p<alb+e), 0<¢;<ab+1 (i>0),

and the following condition holds: if for some 0 < 7 < r < m, ¢; and ¢, assume their
maximal values, then there exists an index j satisfying « < j < r, for which ¢; < ab.
In particular for A1B1P, which is our ternary system FIBTER, we have c; = 0.

From (2.3) follows that the numeration system AaBbQ is equivalent to the system
AcBdQ if ab = c¢d. In particular, AaBbQ is equivalent to AbBaQ. We have checked the
following methods, which are listed in lexicographically increasing order of their
basis elements: A1B2Q (27), which is ternary in cg, but 4-ary in ¢; for every j > 0;
A1B2P (28), a 4-ary numeration system; A1B3Q (29), A2B1P (30), A1B3P (31), A2B2Q
(32), A1B4P (33), A3B1P (34), A2B2P (35) and A4B1P (36).

Table 2.1: Sequences defining the numeration systems

Method | Arity Sequence of basis elements

FIBBIN 2 1 2 3 5 8 13 21 34 55 89
144 233 377 610 987 1597 2584 4181

FIBTER 3 1 3 8 21 55 144 377 987 2584

REC2 3 1 3 7 17 41 99 239 577 1393 3363

REC3 4 1 4 13 43 142 469 1549

REC4 5 1 5 21 89 377 1597

REC5 6 1 6 31 161 836 4341

REC6 7 1 7 43 265 1633

REC7 8 1 8 57 407 2906

REC8 9 1 9 73 593 4817

REC9 10 110 91 829

REC10 11 1 11 111 1121

A1B2Q 43 1 3 11 41 153 571 2131

A1B2P 4 1 4 15 56 209 780 2911

A1B3Q 5,4 1 4 19 91 436 2089

A2B1P 4,5 1 5 19 71 265 989 3691

A1B3P 5 1 5 24 115 551 2640

A2B2Q 6,5 1 5 29 169 985

A1B4P 6 1 6 35 204 1189

A3B1P 5,7 1 7 34 163 781 3742

A2B2P 6,7 1 7 41 239 1393

A4B1P 6,9 1 9 53 309 1801

Table 2.1 lists the sequences of the first few basis elements of the various nu-
meration systems. A system that is f-ary in ¢y and m-ary in all other digits contains
m, £ in the column labeled “Arity”.

24

2.2.6 Error detection

As was briefly mentioned at the end of Chapter 1, one of the weak points of
Huffman codes is their sensitivity to errors: a single wrong bit may render the code
useless. In order to locally restrict the damage caused by errors, one could add
some redundant bits so as to ensure that for some constant block-size r, the bits
indexed ¢r + 1, ¢ > 0, start a new codeword. A single error can then affect at most
r bits of the coded file. This issue will be addressed later in Section 5.2.3. Since for
small 7 the loss of compression may be significant, we compare the error-detecting
capabilities of our methods supposing that no “synchronizing” bits are added and
restrict ourselves to the case when a single error occurred.

For NORUN, suppose the error occurred in z, which was the i-th codeword of
the compressed file. Now the ¢-th codeword is interpreted as some codeword y. If
z and y are of the same length, the decoding from the (¢ 4+ 1)-st codeword on is
correct and the error will not be detected. However, only a single k-bit block of
the decompressed file is garbled. If z and y are not of the same length, chances are
good to reveal the existence of an error at the end of the string either because the
last bits do not form a codeword or because the size of the decompressed file is not
as expected.

For LLRUN, error detection can be enhanced by checking that codewords for
classes (;, representing runs of zero-blocks, do not appear consecutively. This may
happen after a wrong bit which transforms the following into a sequence of inde-
pendent codewords.

For all the methods using codewords for the basis elements {hg,h1,... ,hi—1}
of a numeration system, these codewords should appear for every given run-length
in monotone order, e.g., by decreasing basis elements. An error will quickly be
discovered by checking that the decoded run-lenghts indeed appear in decreasing
order. A wrong bit would tend to mix up the codewords and there are even better
chances that an error will break this rule than for LLRUN.

2.3 Experimental Results

All the above mentioned methods were checked on the 56588 bitmaps of RRP
used also in Chapter 1. For all the methods using Huffman coding, the block-size
was chosen as k = 8, i.e., one byte. Thus codewords were generated for 255 non-zero
bytes and for 3 to 18 run-lengths, depending on the numeration system chosen. For
LLRUN, we had classes C'i to ('13. By examining the statistics of the distribution
of non-zero k-bit blocks, we found that although blocks with a fixed number s of
1-bits were nearly equiprobable, the frequency decayed rapidly as s increased. One
exception should be noted: as s passed from k — 1 to k, the frequency rose. This
fact can be explained by the “clustering effect”: adjacent bits represent usually
documents written by the same author and there is a positive correlation for a word

to appear in consecutive documents because of the specific style of the author or
simply because such documents often treat the same subject.

The Responsa maps were divided into three files of different size and density.
The first file corresponds to words of length 1 to 4 characters, which are the words
with highest frequency of occurrence; the second file contains words of length 5-8
and the third of length 8-13 (lowest frequency); for technical reasons, the 8-letter
words were split between the two last files. Finally, the three files were unified.

In order to evaluate the influence of the clustering effect on the compression, a
test was designed on the randomly generated bitmaps of Section 1.3.2.

A digitized picture can also be considered as a long bit-string, and for pictures
of technical drawings for example, these maps are usually sparse. The problem of
image compression is not quite the same as the one treated in this paper, since often
several bits can be changed without losing the general impression of the picture.
Thus methods can be applied which use noise removal, edge detection, void filling,
etc. in both dimensions (see Ramachandran [51]), and are thus not generalizable to
information retrieval bit-maps, where every single bit must be kept. Nevertheless,
we wanted to see how our methods perform on digitized pictures and to compare
them with other methods used for image compression.

The picture we chose was used by several authors to test their compression
methods (e.g., Hunter and Robinson [33]). After digitizing and after thresholding,
a bit-map of 512 x 512 = 262144 bits was obtained, which is reproduced on page 4.
Other authors used a much higher resolution (1728 x 2376). Moreover even when
different scanners operate at the same resolution and scan the same document,
they can give significantly different statistics and compression factors (see [33]).
Since our equipment did not allow a higher resolution, we decided to compare our
methods with the “Modified Huffman Codes” (MHC) proposed in [33], applying all
the methods to our low-resolution picture.

The latter method consists of coding runs of 0-bits. There are 64 so-called
“Terminal codes” TC(t) representing a run of ¢ zeros followed by a 1,7 =0,...,63,
and some “Make-up” codewords MU(j) standing for a run of 645 0-bits, 7 > 1. A
run of length ¢ is encoded by TC(¢) if £ < 64, otherwise by MU(j) followed by TC(z)
such that 645 + ¢ = . The codewords are generated using the Huffman algorithm.
One could also add codewords for runs of 1-bits, but for the sparse bit-strings we
are interested in for our information retrieval applications, their influence will be
negligible.

Table 2.2 is a summary of statistical information on the three files of Responsa-
maps, on the unified file, on the file of random maps and the picture.

25

26

Table 2.2: Statistics of the bit-maps

Contents Number Density: | Percen- Average | Average
of the file: | Number of Nbr of avg nbr tage of length number
words of of maps non-zero runs of 1-bits 1-bits of run of runs
length bytes (Np) per map | per map | (in byte) | per map
1-4 15378 6,091,250 | 3,214,770 720.15 1.70% 23.38 209.05
5-8 36004 5,951,808 | 4,336,727 218.09 0.52% 42.50 120.45
8-13 5206 518,919 427,947 117.69 0.28% 63.08 82.20
‘(‘i{flig‘)i 56588 | 12,561,977 | 7,979,444 | 345.29 0.817% 35.90 141.01
random 5664 1,468,517 | 1,053,433 342.38 0.810% 27.02 185.99
picture 1 3135 1470 11398 4.35% 20.16 1470

Figure 2.1 displays the relative frequency (in %) of runs of a certain length
as a function of run-length (number of k-bit blocks), for both the unified and the
random files.

Figure 2.1: Run-length distribution

As we started to get results, we saw that the idea of adding a special codeword
for the digit 2 in ternary systems (methods POW3M and FIBTERM) was not a good
one, therefore we did not expand it to numeration systems with larger base.

As expected, LLRUN was the best method, but REC2 which was the second best
on the Responsa and random files used only about 5-8% additional space. One of
the striking results was that for several methods there are on the average less than

2 codewords per run; if the run-lengths were uniformly distributed, the expected
number for POW2 for example was 6. Table 2.3 is a sample for some of the good
methods.

Table 2.3: Average number of codewords needed per run
File POW2 FIBBIN FIBTER REC2 A1B2Q
Unified 2.17 1.84 2.46 2.39 2.79
Random 2.17 1.85 2.47 2.40 2.79
Picture 2.22 1.70 2.29 2.20 2.38

Table 2.4 gives the results of the experiments on the unified, the random and
the picture files. The methods are listed by order of their appearance in the expla-
nations. The values for AL are given in bytes (8-bit blocks). For LLRUN, the average
length is calculated as follows: let p(NZ;) denote the probability of occurrence of the
i-th non-zero block and ¢(NZ;) the length (in bits) of the corresponding Huffman
code; define p(C;) and ¢(C;) similarly for the classes of zero-block runs; then

AL = %(ZP(NZZ')K(NZZ') + ZP(CZ‘) (f(oi)Jri—l))-

As can be seen, TNO(S) is indeed increasing and AL(S) decreasing when passing to
higher order numeration systems, with few exceptions on the picture file, which is a
very small sample (the size of the picture file is only 0.1% of the size of the random
file). The average length of a single codeword was low, about half a byte. This was
due to the Huffman procedure, which takes advantage of the great differences in the
frequencies of the non-zero blocks.

When the methods are sorted according to the compression they yield, one
obtains a similar order on all the files. The compression factors for methods 5-36
vary only slightly for a given file; on the three files of Responsa maps, the CF varies
from 10.03 to 10.61 for the words of length 1-4, from 20.68 to 22.28 for the words
of length 5-8 and from 30.16 to 33.13 for the words of length 8-13, thus the CF is
a decreasing function of the density of the file (see Table 2.2).

One can see that the results of the experiment on random maps are similar to
the results obtained on the Responsa maps. Generally, the compression is lower in
the random case so we conclude that the clustering effect in the Responsa maps
improves the performance of our compression methods.

Though the digitized picture is less sparse than the other maps — the proba-
bility for a 1-bit is 4.35% , see Table 2.2 — the strong correlation between the bits
yields a high compression factor of up to 9.2 approximately with the best method,
which is again LLRUN. The MHC method of [33] gave a compression factor of only
8.29 (which is less than for some of our methods).

27

28

Table 2.4:

Results of the experiments on three files

Unified File

Random File

Picture File

Method TNO AL CF TNO AL CF TNO AL CF
1 TREE — — 10533 — — 8451 — 5560
2 PRUNE — — 17451 — 15906 — 5809
3 NORUN | 286449015 0.151 6.568 | 28460059 0.152 6.585 | 29633 0.189 5.284
4 LLRUN 7979444 0.776 18.768 | 1053433 0.730 16.251 | 1470 0.770 9.241
5 POW2 17314002 0.587 17.039 | 2280097 0.543 14.664 | 3259 0.615 8.332
6 POW3 21355385 0.517 17.047 | 2826247 0.471 14.798 | 3683 0.562 8.553
7 POW4 24769215 0.473 16.924 | 3277474 0.430 14.675 | 4865 0.501 8.182
8 POWS 27794543 0.445 16.642 | 3688763 0.403 14.414 | 5225 0.476 8.227
9 POW6 30650875 0.418 16.545 | 4058894 0.375 14.458 | 5078 0.473 8.428
10 POW? 33231411 0.396 16.507 | 4401817 0.353 14.456 | 5441 0.451 8.465
11 Pows 35581405 0.377 16.480 | 4717956 0.335 14.447 | 6764 0.407 8.139
12 POW9 37871111 0.361 16.443 | 5030555 0.320 14.382 | 6377 0.415 8.300
13 POW10 39961965 0.348 16.380 | 5310817 0.308 14.328 | 6773 0.398 8.317
14 POW3M 21355385 0.541 16.203 | 2826247 0.499 13.964 | 3683 0.586 8.202
15 FIBBIN | 14716716 0.631 17.360 | 1944357 0.586 14.966 | 2504 0.663 8.766
16 FIBTER | 19648611 0.533 17.410 | 2598588 0.489 15.040 | 3369 0.581 8.666
17 FIBTERM | 19648611 0.558 16.637 | 2598588 0.518 14.208 | 3369 0.601 8.377
18 REC2 10089063 0.542 17.442 | 2523209 0.497 15.080 | 3231 0.588 8.750
19 REC3 23063838 0.494 17.001 | 3055201 0.446 14.825 | 3989 0.534 8.612
20 REC4 26531683 0.455 16.800 | 3515323 0.410 14.663 | 4921 0.491 8.292
21 RECE 29577710 0.423 16.766 | 3918559 0.380 14.617 | 4988 0.477 8.463
22 REC6 32385333 0.399 16.668 | 4294663 0.358 14.517 | 5411 0.451 8.500
923 REC7 34921144 0.380 16.559 | 4630351 0.338 14.500 | 6456 0.413 8.277
24 RECS 37284439 0.364 16.491 | 4957755 0.323 14.432 | 6353 0.415 8.329
25 RECY 39481131 0.350 16.427 | 5249356 0.310 14.365 | 6782 0.397 8.329
26 REC10 41572115 0.338 16.334 | 5528749 0.299 14.284 | 7273 0.380 8.287
27 A1B2Q 22284147 0.503 17.073 | 2043319 0.455 14.898 | 3497 0.565 8.740
28 A1B2P 23927839 0.481 17.037 | 3167224 0.436 14.794 | 4522 0.513 8.346
29 41B3Q 25647807 0.463 16.916 | 3395956 0.420 14.643 | 4649 0.503 8.370
30 A2B1P 25811643 0.450 16.949 | 3423471 0.414 14.786 | 4883 0.492 8.314
31 A1B3P 27306536 0.449 16.719 | 3621359 0.405 14.502 | 5275 0.476 8.180
32 A2B2Q 28601027 0.438 16.588 | 3785631 0.397 14.346 | 5345 0.473 8.174
33 A1B4P 30315745 0.420 16.602 | 4016360 0.377 14.486 | 5132 0.471 8.411
34 A3B1P 31045059 0.404 16.962 | 4127455 0.361 14.807 | 5147 0.462 8.556
35 A2B2P 32008563 0.400 16.736 | 4261207 0.358 14.577 | 5033 0.464 8.644
36 A4B1P 35720479 0.368 16.817 | 4761363 0.328 14.641 | 5869 0.425 8.558

It has been proposed to drop the codewords for the 255 non-zero blocks and to
apply our methods to 0-bit runs as in the MHC-method, instead of 0-byte runs. A
special codeword for a run of length 0 must be added. The advantage of this variant
is that it considerably reduces the size of the Huffman translation tables. On the
other hand, execution time for encoding and decoding will increase due to the bit-
manipulations. On the random file, this method gave slightly inferior compression
factors than the byte-oriented variants, for all the methods. On the Responsa maps,
the difference was more evident, as well as for the picture, which was not surprising,
since there we have relatively long runs of consecutive 1’s which are associated with
much waste in the bit-oriented method.

2.4 Concluding Speculations

Some of the new techniques presented in this chapter gave higher compression
factors on sparse bit-strings than other known methods, while being easy to imple-
ment and allowing for fast decoding. Nevertheless, the experiments showed that the
“optimal” numeration system depends on the statistics of the bit-map file. There-
fore, given a specific file, one should evaluate the CF for several systems and finally
compress with the system giving the best results. It is even not necessary to stick
to one of the above numeration systems, nor to any well-known system at all. As a
matter of fact, every increasing sequence of integers hg = 1, h1, ha, ... can be consid-
ered as the set of basis elements of some numeration system, and the representation
of any integer in it will be unique if we use the algorithm of Section 2.2.2. If we make
only small perturbations in the sequences of Table 2.1, changing one of the elements
slightly and continuing with the same recurrence formula to obtain the following,
the desirable properties of the digits of the representation will be preserved at all
places where the recurrence formula holds.

We thus suggest the following heuristic to improve the CF:

Step 1: Start the search with the numeration system giving the best CF among
the methods 5-36; 14 1.

Step 2: Create new sequences of basis elements by increasing or decreasing h;;
for 5 > 1, h; are obtained by the recurrence formula of the system
found in Step 1; for each of the sequences evaluate its CF; continue
until a first value of h; is found which gives a local optimum.

Step 3: Repeat Step 2 for 7 < ¢4+ 1 until the obtained improvement is smaller
than a certain predetermined amount.

There is of course no certainty that the optimal sequence will be found or even
approached. Perhaps the local optima in Step 2 are not global; perhaps starting the
Step 3 iteration with ¢ greater than 1 can lead to better results, but since long runs
are rare, perturbations in h; for larger ¢ will have less influence on the CF.

29

30

This heuristic was applied to the unified file, which led to the following se-
quences:

Sequence of basis elements CF
REC2 1 3 7 17 41 99 ... 17.442
1 3 7 18 43 104... 17.463
1 3 7 18 44 106... 17.478
1 3 7 18 44 107... 17.480

Note that the last few systems give a slightly better compression than method
PRUNE of Chapter 1. However, in addition to compression efficiency and robustness
against errors, the simplicity of the decoding procedure should also be taken as
criterion when deciding which compression method to use. The decoding of Huffman
codes involves bit-manipulations, whereas the block sizes for methods TREE and
PRUNE were primarily chosen so as to process only entire bytes (see Section 1.3.1).
In the next chapter, we show how Huffman codes can also be decoded without
bit-manipulations.

