
16 Chapter 2Combining Hu�man andRun-Length Coding Gal, amant de la reine, alla, tour magnanime,gallament de l'ar�ene �a la Tour Magne, �a N̂�mes.| Robert DESNOS
2.1 IntroductionWe now turn to Jakobsson's [34] method for the compression of sparse bit-strings and show how it can be improved. It uses Hu�man coding, and since thisalgorithm will also reappear as one of the main subjects in all the subsequent chap-ters, a brief description will now follow. The term `code' is used throughout asabbreviation for `set of codewords'.We are given a set of n non-negative weights fw1; : : : ; wng, which are the fre-quencies (or probabilities) of occurrence of the letters of some alphabet. The prob-lem is to generate a binary variable-length code, consisting of codewords with lengthsli bits, 1 � i � n, with optimal compression capabilities, i.e., such that Pni=1wiliis minimized. Moreover, to allow unique decipherability, the code should have thepre�x property, that is, no codeword is the pre�x of any other. In 1952, Hu�man[32] proposed the following algorithm which solves the problem.The Hu�man encoding algorithm1. If n = 1 then the codeword corresponding to the only weight is the nullstring;return.2. Let w1 and w2, without loss of generality, be the two smallest weights.3. Solve the problem recursively for the n� 1 weights w1 +w2; w3; : : : ; wn;let � be the codeword assigned to the weight w1 +w2.

174. The code for the n weights is obtained from the code for n � 1 weights generatedin point 3 by replacing � by the two codewords �0 and �1; return.In the straightforward implementation, the weights are �rst sorted and thenevery weight obtained by combining the two which are currently the smallest, isinserted in its proper place in the sequence so as to maintain order. This yieldsan O(n2) time complexity. Using two queues, Van Leeuwen [59] has shown how toreduce it to O(n log n). In fact, the dominating part of the time is spent on sortingthe weights wi, requiring
(n log n). If the weights are already given in order, thealgorithm can be implemented in time O(n).For decompression, one uses either a translation table giving for each codewordthe corresponding encoded letter of the alphabet, or one uses the Hu�man tree inthe leaves of which these letters are stored. E�cient techniques for the decoding ofHu�man encoded messages are presented in Chapter 3.When a natural language text is to be encoded, the Hu�man algorithm isusually applied on the frequencies of the di�erent letters; however, one can alsoencode the di�erent letter pairs or triplets, etc. Compression will be improved, butat the cost of much larger translation tables. The basic idea of the new methods forbit-vector compression which are presented in this chapter, is to use Hu�man codesto represent items of completely di�erent nature, provided there is an unambiguousway to decompose a given �le into these items. In the present application, we applyHu�man coding to bit patterns of constant size on one hand and to lengths of 0-bit-runs on the other. These lengths are chosen in a systematic way, using new exoticnumeration systems. Some of the methods consistently yield compression factorssuperior to the previously known ones, and even improve on method PRUNE ofChapter 1.2.2 Incorporating 0-Run-Length CodingIn what follows, each method is identi�ed by a label which appears in typewriterfont and usually between parenthesis following the explanations, together with anumber referring to the corresponding line in Table 2.4 (page 27), which displaysthe experimental results. Methods TREE and PRUNE of Chapter 1 were added forcomparison to the table (lines 1 and 2), as well as Jakobsson's Hu�man codingmethod, which is referred to as method NORUN (line 3). We use the same notationsas in Chapter 1, i.e., the vector to be compressed is v0 and has length l0 bits.As we are interested in sparse bit-strings, we can assume that the probabilityp of a block of k consecutive bits being zero is high. If p � 0:5, method NORUNassigns to this 0-block a codeword of length one bit, so we can never expect a bettercompression factor than k. On the other hand, k cannot be too large since we mustgenerate codewords for 2k di�erent blocks.In order to get a better compression, we extend the idea of method NORUN in

18 the following way: there will be codewords for the 2k�1 non-zero blocks of length k,plus some additional codewords representing runs of zero-blocks of di�erent lengths.In the sequel, we use the term `run' to designate a run of zero-blocks of k bits each.The length (number of k-bit blocks) of a run can take any value up to l0=k, soit is impractical to generate a codeword for each: as was just pointed out, k cannotbe very large, but l0 is large for applications of practical importance. On the otherhand, using a �xed-length code for the run length would be wasteful since this codemust su�ce for the maximal length, while most of the runs are short. The followingmethods attempt to overcome these di�culties.2.2.1 De�nition of classes of run-lengthsStarting with a �xed-length code for the run-lengths, we like to get rid of theleading zeros in the binary representation B(`) of run-length `, but we clearly cannotsimply omit them, since this would lead to ambiguities. We can omit the leadingzeros if we have additional information such as the position of the leftmost 1 in B(`).Hence, partition the possible lengths into classes Ci, containing run-lengths ` whichsatisfy 2i�1 � ` < 2i, i = 1; : : : ; blog2(l0=k)c. The 2k � 1 non-zero block-patternsand the classes Ci are assigned Hu�man codewords corresponding to the frequencyof their occurrence in the �le; a run of length ` belonging to class Ci is encoded bythe codeword for Ci, followed by i � 1 bits representing the number ` � 2i�1. Forexample, a run of 77 0-blocks is assigned the codeword for C7 followed by the 6 bits001101. Note that a run consisting of a single 0-block is encoded by the codewordfor C1, without being followed by any supplementary bits.The Hu�man decoding procedure has to be modi�ed in the following way: Thetable contains for every codeword the corresponding class Ci as well as i� 1. Then,when the codeword which corresponds to class Ci is identi�ed, the next i � 1 bitsare considered as the binary representation of an integer m. The codeword for Cifollowed by those i�1 bits represent together a run of length m+2i�1; the decodingaccording to Hu�man's procedure resumes at the i-th bit following the codewordfor Ci. Summarizing, we in fact encode the length of the binary representation ofthe length of a run (method LLRUN, line 4).

192.2.2 Representing the run-length in some numeration systemMethod LLRUN seems to be e�cient since the number of bits in the binaryrepresentation of integers is reduced to a minimum and the lengths of the codewordsare optimized by Hu�man's algorithm. But encoding and decoding are admittedlycomplicated and thus time consuming. We therefore propose other methods forwhich the encoded �le will consist only of codewords, each representing a certainstring of bits. Even if their compression factor is lower than LLRUN's, these methodsare justi�ed by their simpler processing.To the 2k � 1 codewords for non-zero blocks, a set S of t codewords is adjoinedrepresenting h0; h1; : : : ; ht�1 consecutive 0-blocks. Any run of zero-blocks will nowbe encoded by a suitable linear combination of some of these codes. The numbert depends on the numeration system according to which we choose the hi's and onthe maximal run-length M , but should be low compared to 2k. Thus in comparisonwith method NORUN, the table used for compressing and decoding should only slightlyincrease in size, but long runs are handled more e�ciently. The encoding algorithmnow becomes:Step 1: Collect statistics on the distribution of run-lengths and on the set NZof the 2k�1 possible non-zero blocks. The total number of occurrencesof these blocks is denoted by N0 and is �xed for a given set of bit-maps.Step 2: Decompose the integers representing the run-lengths in the numera-tion system with set S of \basis" elements; denote by TNO(S) thetotal number of occurrences of the elements of S.Step 3: Evaluate the relative frequency of appearance of the 2k�1+t elementsof NZ [S and assign a Hu�man code accordingly.For any x 2 (NZ [S), let p(x) be the probability of the occurrence of xand `(x) the length (in bits) of the codeword assigned to x by the Hu�man al-gorithm. The weighted average length of a codeword is then given by AL(S) =Px2(NZ[S) p(x)`(x) and the size of the compressed �le isAL(S)� (N0 +TNO(S)):After �xing k so as to allow easy processing of k-bit blocks, the only parameterin the algorithm is the set S. In what follows, we propose several possible choicesfor the set S = f1 = h0 < h1 < : : : < ht�1g. To overcome coding problems, thehi and the bounds on the associated digits ai should be so that there is a uniquerepresentation of the form L =Pi aihi for every natural number L.Given such a set S, the representation of an integer L is obtained by the fol-lowing simple procedure:for i t� 1 to 0 by �1

20 ai bL=hicL L� ai � hiendThe digit ai is the number of times the codeword for hi is repeated. This algorithmproduces a representation L =Pt�1i=0 aihi which satis�esjXi=0 aihi < hj+1 for j = 0; : : : ; t� 1: (2:1)Condition (2.1) guarantees uniqueness of representation (see [16]).2.2.3 Selection of the set of basis elementsA natural choice for S is the standard binary system, hi = 2i, i � 0, or higherbase numeration systems such as hi = mi, i � 0 for some m > 2. If the run-lengthis L it will be expressed as L = Pi aimi, with 0 � ai < m and if ai > 0, thecodeword for mi will be repeated ai times. Higher base systems can be motivatedby the following reason.If p is the probability that a k-bit block consists only of zeros, then the probabil-ity of a run of r blocks is roughly pr(1�p), i.e., the run-lengths have approximatelygeometric distribution. The distribution is not exactly geometric since the involvedevents (some adjacent blocks contain only zeros, i.e., a certain word does not appearin some consecutive documents) are not independent. Nevertheless the experimentsshowed that the number of runs of a given length is an exponentially decreasingfunction of run-length (see Figure 2.1 below). Hence with increasing base of thenumeration systems, the relative weight of the hi for small i will rise, which yieldsa less uniform distribution for the elements of NZ[S calculated in Step 3. This hasa tendency to improve the compression obtained by the Hu�man codes. Thereforepassing to higher order numeration systems will reduce the value of AL(S).On the other hand, when numeration systems to basem are used, TNO(S) is anincreasing function ofm. De�ne r bymr �M < mr+1 so that at most r m-ary digitsare required to express a run-length. If the lengths are uniformly distributed, theaverage number of basis elements needed (counting multiplicities) is proportional to(m�1)r = (m�1) logmM , which is increasing for m > 1. For our nearly geometricdistribution this is also the case as can be seen from the experiments. Thus from thispoint of view, lower base numeration systems are preferable. Numeration systemsto base m were checked for m = 2; : : : ; 10 (POW2, : : :, POW10; lines 5{13). Form = 3, we experimented with another variant: instead of using certain codewordstwice where a digit 2 is needed in the ternary representation, we added a specialcodeword indicating that the following codeword has to be doubled (POW3M; 14).2.2.4 Trying to reduce the total number of codewords

21As an attempt to reduce TNO(S), we pass to numeration systems with specialproperties, such as systems based on Fibonacci numbersF0 = 0; F1 = 1; Fi = Fi�1 + Fi�2 for i � 2:(a) The binary Fibonacci numeration system: hi = Fi+2 (FIBBIN; 15). Anyinteger L can be expressed as L = Pi�0 biFi+2 with bi = 0 or 1, such that thisbinary representation of L consisting of the string of bi's contains no adjacent 1's (seeKnuth [41, Exercise 1.2.8{34], Fraenkel [16]). This fact for a binary Fibonacci systemis equivalent to condition (2.1), and reduces the number of codewords we need torepresent a speci�c run-length, even though the number of added codewords is largerthan for POW2 (instead of t(POW2) = blog2Mc we have t(FIBBIN) = blog�(p5M)c�1,where � = (1 + p5)=2 is the golden ratio). For example, when all the run-lengthsare equally probable, the average number of codewords per run is assymptotically(as k !1) 12 (1� 1=p5)t(FIBBIN) instead of 12 t(POW2).(b) A ternary Fibonacci numeration system: hi = F2(i+1), i.e., we use onlyFibonacci numbers with even indices. This system has the property that there is atleast one 0 between any two 2's ([16]). This fact for a ternary Fibonacci system isagain equivalent to (2.1) (FIBTER; 16).(c) Like (b), but with a special codeword for the digit 2 like in POW3M(FIBTERM; 17).2.2.5 Trying to reduce the average codeword lengthNew systems with similar properties are obtained from generalizations of theFibonacci systems to higher order. The idea is to lower AL(S) at the cost of TNO(S),while TNO(S) is kept smaller than for the POWm systems.(a) Methods which are generalizations of method FIBBIN, based on thefollowing sequence of integers which is de�ned recursively:u(m)�1 = 1; u(m)0 = 1u(m)i = mu(m)i�1+ u(m)i�2; i � 1; (2:2)(This is the recursion satis�ed by the convergents of the continued fraction [1, .m],where .m represents the in�nite concatenation of m with itself.) For m = 1 weget FIBBIN. The system based on the sequence u(m)0 ; u(m)1 ; : : : is an (m + 1)-arynumeration system with the following property: there exists a unique representationof any integer L as L = Pi aiu(m)i , such that 0 � ai � m, and such that if ai+1reaches its maximal value m, then ai is zero. These methods were checked form = 2; : : : ; 10 (REC2, : : :, REC10; 18{26).

22 (b) Methods which are generalizations of method FIBTER, based on the se-quence: u(ab)�1 = 1� �a; u(ab)0 = 1u(ab)i = (ab+ 2) u(ab)i�1 � u(ab)i�2 ; i � 1; (2:3)where a,b and � are parameters. This is the recursion satis�ed by the convergentsp2i=q2i of the continued fraction [1; b; a; b; a; : : :]. Speci�cally, (2.3) is the recursionfor the q2i when � = 0 and for the p2i when � = 1. The numeration systembased on the q2i is denoted by AaBbQ and that based on the p2i by AaBbP. Anynonnegative integer L can be represented in these numeration systems in the formL =Pni=0 ciu(ab)i , where0 � c0 � a(b+ �); 0 � ci � ab+ 1 (i > 0);and the following condition holds: if for some 0 � i < r � m, ci and cr assume theirmaximal values, then there exists an index j satisfying i < j < r, for which cj < ab.In particular for A1B1P, which is our ternary system FIBTER, we have cj = 0.From (2.3) follows that the numeration system AaBbQ is equivalent to the systemAcBdQ if ab = cd. In particular, AaBbQ is equivalent to AbBaQ. We have checked thefollowing methods, which are listed in lexicographically increasing order of theirbasis elements: A1B2Q (27), which is ternary in c0, but 4-ary in cj for every j > 0;A1B2P (28), a 4-ary numeration system; A1B3Q (29), A2B1P (30), A1B3P (31), A2B2Q(32), A1B4P (33), A3B1P (34), A2B2P (35) and A4B1P (36).
Table 2.1: Sequences de�ning the numeration systems

23
Method Arity Sequence of basis elementsFIBBIN 2 1 2 3 5 8 13 21 34 55 89144 233 377 610 987 1597 2584 4181FIBTER 3 1 3 8 21 55 144 377 987 2584REC2 3 1 3 7 17 41 99 239 577 1393 3363REC3 4 1 4 13 43 142 469 1549REC4 5 1 5 21 89 377 1597REC5 6 1 6 31 161 836 4341REC6 7 1 7 43 265 1633REC7 8 1 8 57 407 2906REC8 9 1 9 73 593 4817REC9 10 1 10 91 829REC10 11 1 11 111 1121A1B2Q 4,3 1 3 11 41 153 571 2131A1B2P 4 1 4 15 56 209 780 2911A1B3Q 5,4 1 4 19 91 436 2089A2B1P 4,5 1 5 19 71 265 989 3691A1B3P 5 1 5 24 115 551 2640A2B2Q 6,5 1 5 29 169 985A1B4P 6 1 6 35 204 1189A3B1P 5,7 1 7 34 163 781 3742A2B2P 6,7 1 7 41 239 1393A4B1P 6,9 1 9 53 309 1801

Table 2.1 lists the sequences of the �rst few basis elements of the various nu-meration systems. A system that is `-ary in c0 and m-ary in all other digits containsm; ` in the column labeled \Arity".

24 2.2.6 Error detectionAs was briey mentioned at the end of Chapter 1, one of the weak points ofHu�man codes is their sensitivity to errors: a single wrong bit may render the codeuseless. In order to locally restrict the damage caused by errors, one could addsome redundant bits so as to ensure that for some constant block-size r, the bitsindexed ir + 1, i � 0, start a new codeword. A single error can then a�ect at mostr bits of the coded �le. This issue will be addressed later in Section 5.2.3. Since forsmall r the loss of compression may be signi�cant, we compare the error-detectingcapabilities of our methods supposing that no \synchronizing" bits are added andrestrict ourselves to the case when a single error occurred.For NORUN, suppose the error occurred in x, which was the i-th codeword ofthe compressed �le. Now the i-th codeword is interpreted as some codeword y. Ifx and y are of the same length, the decoding from the (i + 1)-st codeword on iscorrect and the error will not be detected. However, only a single k-bit block ofthe decompressed �le is garbled. If x and y are not of the same length, chances aregood to reveal the existence of an error at the end of the string either because thelast bits do not form a codeword or because the size of the decompressed �le is notas expected.For LLRUN, error detection can be enhanced by checking that codewords forclasses Ci, representing runs of zero-blocks, do not appear consecutively. This mayhappen after a wrong bit which transforms the following into a sequence of inde-pendent codewords.For all the methods using codewords for the basis elements fh0; h1; : : : ; ht�1gof a numeration system, these codewords should appear for every given run-lengthin monotone order, e.g., by decreasing basis elements. An error will quickly bediscovered by checking that the decoded run-lenghts indeed appear in decreasingorder. A wrong bit would tend to mix up the codewords and there are even betterchances that an error will break this rule than for LLRUN.2.3 Experimental ResultsAll the above mentioned methods were checked on the 56588 bitmaps of RRPused also in Chapter 1. For all the methods using Hu�man coding, the block-sizewas chosen as k = 8, i.e., one byte. Thus codewords were generated for 255 non-zerobytes and for 3 to 18 run-lengths, depending on the numeration system chosen. ForLLRUN, we had classes C1 to C13. By examining the statistics of the distributionof non-zero k-bit blocks, we found that although blocks with a �xed number s of1-bits were nearly equiprobable, the frequency decayed rapidly as s increased. Oneexception should be noted: as s passed from k � 1 to k, the frequency rose. Thisfact can be explained by the \clustering e�ect": adjacent bits represent usuallydocuments written by the same author and there is a positive correlation for a word

25to appear in consecutive documents because of the speci�c style of the author orsimply because such documents often treat the same subject.The Responsa maps were divided into three �les of di�erent size and density.The �rst �le corresponds to words of length 1 to 4 characters, which are the wordswith highest frequency of occurrence; the second �le contains words of length 5{8and the third of length 8{13 (lowest frequency); for technical reasons, the 8-letterwords were split between the two last �les. Finally, the three �les were uni�ed.In order to evaluate the inuence of the clustering e�ect on the compression, atest was designed on the randomly generated bitmaps of Section 1.3.2.A digitized picture can also be considered as a long bit-string, and for picturesof technical drawings for example, these maps are usually sparse. The problem ofimage compression is not quite the same as the one treated in this paper, since oftenseveral bits can be changed without losing the general impression of the picture.Thus methods can be applied which use noise removal, edge detection, void �lling,etc. in both dimensions (see Ramachandran [51]), and are thus not generalizable toinformation retrieval bit-maps, where every single bit must be kept. Nevertheless,we wanted to see how our methods perform on digitized pictures and to comparethem with other methods used for image compression.The picture we chose was used by several authors to test their compressionmethods (e.g., Hunter and Robinson [33]). After digitizing and after thresholding,a bit-map of 512� 512 = 262144 bits was obtained, which is reproduced on page 4.Other authors used a much higher resolution (1728 � 2376). Moreover even whendi�erent scanners operate at the same resolution and scan the same document,they can give signi�cantly di�erent statistics and compression factors (see [33]).Since our equipment did not allow a higher resolution, we decided to compare ourmethods with the \Modi�ed Hu�man Codes" (MHC) proposed in [33], applying allthe methods to our low-resolution picture.The latter method consists of coding runs of 0-bits. There are 64 so-called\Terminal codes" TC(i) representing a run of i zeros followed by a 1, i = 0; : : : ; 63 ,and some \Make-up" codewords MU(j) standing for a run of 64j 0-bits, j � 1. Arun of length ` is encoded by TC(`) if ` < 64, otherwise by MU(j) followed by TC(i)such that 64j + i = `. The codewords are generated using the Hu�man algorithm.One could also add codewords for runs of 1-bits, but for the sparse bit-strings weare interested in for our information retrieval applications, their inuence will benegligible.Table 2.2 is a summary of statistical information on the three �les of Responsa-maps, on the uni�ed �le, on the �le of random maps and the picture.

26 Table 2.2: Statistics of the bit-mapsContents Number Density: Percen- Average Averageof the �le: Number of Nbr of avg nbr tage of length numberwords of of maps non-zero runs of 1-bits 1-bits of run of runslength bytes (N0) per map per map (in byte) per map1{4 15378 6,091,250 3,214,770 720.15 1.70% 23.38 209.055{8 36004 5,951,808 4,336,727 218.09 0.52% 42.50 120.458{13 5206 518,919 427,947 117.69 0.28% 63.08 82.20uni�ed 56588 12,561,977 7,979,444 345.29 0.817% 35.90 141.01(1{13)random 5664 1,468,517 1,053,433 342.38 0.810% 27.02 185.99picture 1 3135 1470 11398 4.35% 20.16 1470Figure 2.1 displays the relative frequency (in %) of runs of a certain lengthas a function of run-length (number of k-bit blocks), for both the uni�ed and therandom �les.

Figure 2.1: Run-length distributionAs we started to get results, we saw that the idea of adding a special codewordfor the digit 2 in ternary systems (methods POW3M and FIBTERM) was not a goodone, therefore we did not expand it to numeration systems with larger base.As expected, LLRUN was the best method, but REC2 which was the second beston the Responsa and random �les used only about 5{8% additional space. One ofthe striking results was that for several methods there are on the average less than

272 codewords per run; if the run-lengths were uniformly distributed, the expectednumber for POW2 for example was 6. Table 2.3 is a sample for some of the goodmethods. Table 2.3: Average number of codewords needed per runFile POW2 FIBBIN FIBTER REC2 A1B2QUni�ed 2.17 1.84 2.46 2.39 2.79Random 2.17 1.85 2.47 2.40 2.79Picture 2.22 1.70 2.29 2.20 2.38Table 2.4 gives the results of the experiments on the uni�ed, the random andthe picture �les. The methods are listed by order of their appearance in the expla-nations. The values for AL are given in bytes (8-bit blocks). For LLRUN, the averagelength is calculated as follows: let p(NZi) denote the probability of occurrence of thei-th non-zero block and `(NZi) the length (in bits) of the corresponding Hu�mancode; de�ne p(Ci) and `(Ci) similarly for the classes of zero-block runs; thenAL = 18 Xi p(NZi) `(NZi) + Xi p(Ci) (`(Ci) + i� 1)! :As can be seen, TNO(S) is indeed increasing and AL(S) decreasing when passing tohigher order numeration systems, with few exceptions on the picture �le, which is avery small sample (the size of the picture �le is only 0.1% of the size of the random�le). The average length of a single codeword was low, about half a byte. This wasdue to the Hu�man procedure, which takes advantage of the great di�erences in thefrequencies of the non-zero blocks.When the methods are sorted according to the compression they yield, oneobtains a similar order on all the �les. The compression factors for methods 5{36vary only slightly for a given �le; on the three �les of Responsa maps, the CF variesfrom 10.03 to 10.61 for the words of length 1{4, from 20.68 to 22.28 for the wordsof length 5{8 and from 30.16 to 33.13 for the words of length 8{13, thus the CF isa decreasing function of the density of the �le (see Table 2.2).One can see that the results of the experiment on random maps are similar tothe results obtained on the Responsa maps. Generally, the compression is lower inthe random case so we conclude that the clustering e�ect in the Responsa mapsimproves the performance of our compression methods.Though the digitized picture is less sparse than the other maps | the proba-bility for a 1-bit is 4.35% , see Table 2.2 | the strong correlation between the bitsyields a high compression factor of up to 9.2 approximately with the best method,which is again LLRUN. The MHC method of [33] gave a compression factor of only8.29 (which is less than for some of our methods).

28 Table 2.4: Results of the experiments on three �lesUni�ed File Random File Picture FileMethod TNO AL CF TNO AL CF TNO AL CF1 TREE � � 10.533 � � 8.451 � � 5.5602 PRUNE � � 17.451 � � 15.906 � � 5.8093 NORUN 286449015 0.151 6.568 28460059 0.152 6.585 29633 0.189 5.2844 LLRUN 7979444 0.776 18.768 1053433 0.730 16.251 1470 0.770 9.2415 POW2 17314002 0.587 17.039 2289097 0.543 14.664 3259 0.615 8.3326 POW3 21355385 0.517 17.047 2826247 0.471 14.798 3683 0.562 8.5537 POW4 24769215 0.473 16.924 3277474 0.430 14.675 4865 0.501 8.1828 POW5 27794543 0.445 16.642 3688763 0.403 14.414 5225 0.476 8.2279 POW6 30650875 0.418 16.545 4058894 0.375 14.458 5078 0.473 8.42810 POW7 33231411 0.396 16.507 4401817 0.353 14.456 5441 0.451 8.46511 POW8 35581405 0.377 16.489 4717956 0.335 14.447 6764 0.407 8.13912 POW9 37871111 0.361 16.443 5030555 0.320 14.382 6377 0.415 8.30013 POW10 39961965 0.348 16.380 5310817 0.308 14.328 6773 0.398 8.31714 POW3M 21355385 0.541 16.293 2826247 0.499 13.964 3683 0.586 8.20215 FIBBIN 14716716 0.631 17.360 1944357 0.586 14.966 2504 0.663 8.76616 FIBTER 19648611 0.533 17.410 2598588 0.489 15.040 3369 0.581 8.66617 FIBTERM 19648611 0.558 16.637 2598588 0.518 14.208 3369 0.601 8.37718 REC2 19089063 0.542 17.442 2523209 0.497 15.080 3231 0.588 8.75019 REC3 23063838 0.494 17.001 3055201 0.446 14.825 3989 0.534 8.61220 REC4 26531683 0.455 16.800 3515323 0.410 14.663 4921 0.491 8.29221 REC5 29577710 0.423 16.766 3918559 0.380 14.617 4988 0.477 8.46322 REC6 32385333 0.399 16.668 4294663 0.358 14.517 5411 0.451 8.50023 REC7 34921144 0.380 16.559 4630351 0.338 14.500 6456 0.413 8.27724 REC8 37284439 0.364 16.491 4957755 0.323 14.432 6353 0.415 8.32925 REC9 39481131 0.350 16.427 5249356 0.310 14.365 6782 0.397 8.32926 REC10 41572115 0.338 16.334 5528749 0.299 14.284 7273 0.380 8.28727 A1B2Q 22284147 0.503 17.073 2943319 0.455 14.898 3497 0.565 8.74028 A1B2P 23927839 0.481 17.037 3167224 0.436 14.794 4522 0.513 8.34629 A1B3Q 25647807 0.463 16.916 3395956 0.420 14.643 4649 0.503 8.37030 A2B1P 25811643 0.450 16.949 3423471 0.414 14.786 4883 0.492 8.31431 A1B3P 27306536 0.449 16.719 3621359 0.405 14.502 5275 0.476 8.18032 A2B2Q 28601027 0.438 16.588 3785631 0.397 14.346 5345 0.473 8.17433 A1B4P 30315745 0.420 16.602 4016360 0.377 14.486 5132 0.471 8.41134 A3B1P 31045059 0.404 16.962 4127455 0.361 14.807 5147 0.462 8.55635 A2B2P 32098563 0.400 16.736 4261207 0.358 14.577 5033 0.464 8.64436 A4B1P 35720479 0.368 16.817 4761363 0.328 14.641 5869 0.425 8.558

29It has been proposed to drop the codewords for the 255 non-zero blocks and toapply our methods to 0-bit runs as in the MHC-method, instead of 0-byte runs. Aspecial codeword for a run of length 0 must be added. The advantage of this variantis that it considerably reduces the size of the Hu�man translation tables. On theother hand, execution time for encoding and decoding will increase due to the bit-manipulations. On the random �le, this method gave slightly inferior compressionfactors than the byte-oriented variants, for all the methods. On the Responsa maps,the di�erence was more evident, as well as for the picture, which was not surprising,since there we have relatively long runs of consecutive 1's which are associated withmuch waste in the bit-oriented method.2.4 Concluding SpeculationsSome of the new techniques presented in this chapter gave higher compressionfactors on sparse bit-strings than other known methods, while being easy to imple-ment and allowing for fast decoding. Nevertheless, the experiments showed that the\optimal" numeration system depends on the statistics of the bit-map �le. There-fore, given a speci�c �le, one should evaluate the CF for several systems and �nallycompress with the system giving the best results. It is even not necessary to stickto one of the above numeration systems, nor to any well-known system at all. As amatter of fact, every increasing sequence of integers h0 = 1; h1; h2; : : : can be consid-ered as the set of basis elements of some numeration system, and the representationof any integer in it will be unique if we use the algorithm of Section 2.2.2. If we makeonly small perturbations in the sequences of Table 2.1, changing one of the elementsslightly and continuing with the same recurrence formula to obtain the following,the desirable properties of the digits of the representation will be preserved at allplaces where the recurrence formula holds.We thus suggest the following heuristic to improve the CF:Step 1: Start the search with the numeration system giving the best CF amongthe methods 5{36; i 1.Step 2: Create new sequences of basis elements by increasing or decreasing hi;for j > i, hj are obtained by the recurrence formula of the systemfound in Step 1; for each of the sequences evaluate its CF; continueuntil a �rst value of hi is found which gives a local optimum.Step 3: Repeat Step 2 for i i+1 until the obtained improvement is smallerthan a certain predetermined amount.There is of course no certainty that the optimal sequence will be found or evenapproached. Perhaps the local optima in Step 2 are not global; perhaps starting theStep 3 iteration with i greater than 1 can lead to better results, but since long runsare rare, perturbations in hi for larger i will have less inuence on the CF.

30 This heuristic was applied to the uni�ed �le, which led to the following se-quences: Sequence of basis elements CFREC2 1 3 7 17 41 99 : : : 17.4421 3 7 18 43 104 : : : 17.4631 3 7 18 44 106 : : : 17.4781 3 7 18 44 107 : : : 17.480Note that the last few systems give a slightly better compression than methodPRUNE of Chapter 1. However, in addition to compression e�ciency and robustnessagainst errors, the simplicity of the decoding procedure should also be taken ascriterion when deciding which compression method to use. The decoding of Hu�mancodes involves bit-manipulations, whereas the block sizes for methods TREE andPRUNE were primarily chosen so as to process only entire bytes (see Section 1.3.1).In the next chapter, we show how Hu�man codes can also be decoded withoutbit-manipulations.

