
On the Use of Negation
in Boolean IR Queries

Shmuel T. Klein
Department of Computer Science

Bar Ilan University, Ramat-Gan 52900, Israel
Tel: (972–3) 531 8865 Fax: (972–3) 736 0498

tomi@cs.biu.ac.il

Keywords: Boolean queries, negated keywords, distance constraints, concordance, query
processing

Abstract: The negation operator, in various forms in which it appears in Information Re-
trieval queries, is investigated. The applications include negated terms in Boolean queries,
more specifically in the presence of metrical constraints, but also negated characters used
in the definition of extended keywords by means of regular expressions. Exact definitions
are suggested and their usefulness is shown on several examples. Finally, some imple-
mentation issues are discussed, in particular as to the order in which the terms of long
queries, with or without negated keywords, should be processed, and efficient heuristics
for choosing a good order are suggested.

1. Introduction

Formulating a query in an Information Retrieval (IR) System requires an effort as to the
correct choice of the query terms. Finding the right balance between terms that may be too
broad and others that are overly restrictive is crucial to assure good retrieval performance,
as can be measured by recall and precision. In fact, the formulation of queries is an art,
and to be successful, one needs, in addition to mastering the query language syntax, also
knowledge about the underlying textual database, its language and peculiarities.

It might be objected that in a time where powerful search engines can freely be used
by everybody to access an ever growing pool of information on the internet, the usage
of complex query languages, requiring a quite sophisticated user, will be less and less
frequent. Even the already existing advanced search functions, provided by practically all
search engines, are rarely used in practice. But this view of the potential set of people
seeking some information is very much biased toward users of the internet, which enjoys
growing popularity because it is cheap and easily accessible. In particular, a large part
of the users access the internet only occasionally and with very simple queries (Spink
et al. 2001). On the other hand, there are entire communities of users of Information
Retrieval systems that are often focused on specific topics. Examples are lawyers and
judges wishing to access juridical databases (such as Lexis), physicians and other health
professionals interested in various collections of medical information (such as Medline),
researchers in the Humanities studying classical texts in different languages (such as the
ARTFL project on the Trésor de la Langue Française, Bookstein et al., 1992), etc. Taken

– 1 –

as a part of the full set of search engine users on the internet, these communities might
seem relatively small, but in fact they include many thousands of well educated users which
are not reluctant to use more sophisticated tools than the most basic queries. Research to
provide good query languages can thus be justified.

Indeed, correct query formulation has been a prominent subject in the Information
Retrieval literature, and various languages with different application areas have been sug-
gested and studied, see, e.g., Sormunen (2000), Cafarella and Etzioni (2005), or Koubarakis
et al. (2006) to cite a few recent ones. Studies relating to specific smaller communities
can be found in Mason, 2006, for Lexis, and in Yoo and Choi, 2007, for Medline. The lan-
guages used for Database systems (DBS) are usually more involved, permitting a precise
description of what is being looked for, but the task solved by a DBS is different from the
classical IR task: the underlying text is structured, and meaning is conveyed not just by
the words but also by their appearance in specific locations in well defined fields, whereas
IR deals with free, unstructured text, and some information need has to be translated
into queries which are generally quite fuzzy. XML files have common features with both
database and IR systems, and languages have been adapted to treat XML files, ranging
from the simplest that could possibly work (O’Keefe and Trotman 2003) to IR inspired
languages, as in (Fuhr and Großjohann 2004). A recent study of the processing of metrical
constraints for XML files can be found in (Klein 2008).

The present work is a systematic study of the negation operator as it appears in its
various forms in Information Retrieval applications. In fact, we restrict attention to the
Boolean query model, as in Chang et al. (1999), though several alternatives are available,
like the classical vector space model (Salton et al. 1975), the probabilistic model, and
others. By dealing with the impact of negation on the formulation of Boolean queries, this
paper complements the work in Widdows (2003), which considers negation in the context
of the vector space model: a negative term is implemented as a vector which is orthogonal
to the vectors of the positive terms.

The natural approach of most users to query formulation involves the choice of keywords
that best describe their information needs. They often overlook the possibility of choosing
also a negative set, that is, a set of keywords which should not appear in the vicinity of some
others, thereby achieving improved precision. But the use of negation might sometimes
be tricky and is not always symmetrical to the use of positive terms. To bring an example
from another IR connected application, user queries are often improved by using relevance
feedback , adding to the query typical terms that appear in documents that have been
judged relevant; the negative counterpart, adding typical terms of documents that have
been judged non-relevant as negated terms, can not always be justified, as reported by
Dunlop (1997). The meaning of negated terms in Boolean queries therefore needs precise
definitions.

Negative keyword sets are, however, not the only application of negation. Distances
can also be negative in proximity searches, and individual characters can be excluded when
defining query terms using regular expressions. In the next section, several applications of a
negation operator are investigated and exact definitions are proposed. Section 3 then deals
with the adaptations to the software which are necessary to support the use of negation. In
particular, new heuristics are suggested by which the time necessary to evaluate an efficient
order of processing the different query terms is reduced from exponential to polynomial.

– 2 –

2. Using negation operators

In this section, the usefulness of negation operators to various applications in different
areas of Information Retrieval is studied.

2.1 Negating keywords in a query

To enable a discussion on possible operators in a query language, one has first to define
the query language syntax, which we shall do incrementally.

2.1.1 Simplest syntax

Most search engines allow simple queries, consisting just of a set of keywords, such as

A1 A2 · · · Am, (1)

which should retrieve all the documents in the underlying textual database in which all the
terms Ai occur at least once. Often, some kind of stemming is automatically performed
on all the terms of the text during the construction of the database, as well as online
on the query terms (Frakes 1992, Goldsmith et al. 2001), and if the text has not been
pre-processed, the system has to replace each Ai by a set ∪ni

j=1Aij, where each Aij is a
grammatical variant of Ai, and ni is the number of such variants for keyword Ai; generating
these variants is in fact the inverse process of stemming. For example, a typical query could
be

solve differential equation,

seeking documents in which all these terms appear, but instead of solve, one could also
accept an occurrence of solving, solves, solution, solved, etc, and equation could as
well appear in plural form.

Negating one or more keywords in the query means that one is interested in prohibiting
the occurrence of the negated terms in the retrieved documents. The query is thus extended
to the form

[−/]A1 [−/]A2 · · · [−/]Am, (2)

where we use the standard notation [−/] to indicate the occurrence of either a minus sign
or an empty string, that is, each keyword is preceded by an optional minus sign. For
example, an auto mechanic could be interested in solving problems related to a differential
gear, and thus submit a query of the form

solve differential − equation problem,

to avoid documents treating differential equations. A major restriction has to be imposed
for practical reasons on queries of the type of equation (2), namely that while more than
one of the keywords may be negated, not all of the keywords can, since the set of all the
documents not containing certain keywords will most often consist of almost the entire
database. Non-negated keywords will be referred to in the sequel as positive terms.

– 3 –

2.1.2 Adding global proximity restrictions

While most of the user queries might be described by the simple forms of equations (1)
or (2), the possibility of using negated terms may raise certain problems. Suppose one
looks for news related to Orléans, a town 100 km south of Paris in France, but wants to
avoid texts dealing with New Orleans, which appears much more frequently in the news,
especially in the Katrina aftermath. A simple query could thus be

−New Orleans,

but this would be much too restrictive, since all documents containing the term New would
be rejected, even if the term is not immediately preceding the term Orleans. Note that
the simple solution of using also the term France in the query could badly affect recall, as
there might be many text passages mentioning the french town without explicitly adding
to each occurrence that the town is in France.

This leads to a further extension of the query syntax, accommodating also tools for
proximity searches. The idea is that a user may wish to limit the location of possi-
ble occurrences of the query terms to be, if not adjacent, then at least quite close to
each other. Many query languages support, in addition to the loose formulations of
(1) or (2), also an exact phrase option. This should, however, be used with care, as
one has to guess all possible occurrence patterns of the query terms, and failing to
do so may yield reduced recall. Returning to the above query example on differential
equations, submitting it with an exact phrase option would retrieve passages contain-
ing . . .solving differential equations. . ., but not text parts that include . . .solving
these differential equations. . . or . . .set of differential equations that could

not be solved. . ..

The exact phrase option is therefore also too restrictive and should be relaxed. One
possible alternative is to define a bound on what could be called a global diameter of the
set of occurrences of the query terms: let D be a positive integer limiting the diameter,
formally defined as the maximal distance between any pair of the occurrences of the Ai in
the text. The query would be rephrased as

D : [−/]A1 [−/]A2 · · · [−/]Am. (3)

For example, reusing the last example, if the text contains

. . .set of differential equations that could not be solved. . .,

where the keywords have been underlined, then the diameter is 6, since this is the distance
in words from differential to solved. Thus only if in the query one chooses D ≥ 6
would this passage be retrieved.

Choosing the right diameter is not a simple task. Obviously, if D is chosen too small,
possibly relevant occurrences will not be retrieved, lowering recall; a larger D, on the other
hand, might also lead to the retrieval of many non-relevant passages, lowering precision.
Moreover, the global nature of the diameter bound is not always appropriate. In a query
with keywords New, Orleans and Katrina, one would like to restrict to 1 the distance
between the first two terms, but the name Katrina could appear several words before or
after the occurrence of the pair New Orleans.

– 4 –

2.1.3 Adding local proximity restrictions

One therefore needs a syntax allowing more flexibility, putting constraints not just on the
global diameter, but on individual pairs of keywords. Consider thus a query containing
only positive terms as consisting of m keywords and m− 1 binary distance constraints, as
in

A1 (l1 : u1) A2 (l2 : u2) · · · Am−1 (lm−1 : um−1) Am. (4)

This is a conjunctive query, requiring all the keywords Ai to occur within the given metrical
constraints specified by li, ui, which are integers satisfying li ≤ ui for 1 ≤ i < m, with the
couple (li : ui) imposing a lower and upper limit on the distance from an occurrence of Ai

to one of Ai+1. The distance is measured in words, and usually restricts, in addition to
the specific constraints imposed by the (li : ui) pairs, all the terms to appear within some
predefined textual unit, like the same sentence, some small number of adjacent sentences
or the same paragraph.

Such a query language is used for over thirty years at the Responsa Retrieval Project
(Fraenkel 1976, Choueka 1989). Even more extended features, mixing Boolean operators
with proximity constraints between certain keywords can be found in the word pattern
models for Boolean Information Retrieval WP and AWP (Tryfonopoulos et al. 2004).
Note that similarly to database queries, the metrical constraints allow a precise description
of the required expressions. The usual fuzziness of the Information Retrieval approach is
deferred here to user feedback: if the number of retrieved items is too large or too small
or the items themselves are not satisfactory, the user can broaden or restrict the query
iteratively by changing the constraints and/or the keywords.

In a more general setting, one could also consider extended queries, consisting of several
disjuncts, each having a form similar to (4). The requested set of locations to be retrieved
is then simply the union of the sets of locations to be retrieved for each of the disjuncts.
We may therefore restrict our attention to queries of the form (4).

2.1.4 Formal definition of the set of retrieved locations: only positive terms

For every word W , let C(W) be the ordered list of the coordinates of all its occurrences in
the text. For a given textual corpus, the coordinates of a word W are the ordered list of
descriptions of the locations of W in the text. These descriptions can have several forms,
ranging from a simple (doc, offset) pair, where each occurrence is given by the document
number and an internal offset in number of words from the start of the document, to more
sophisticated hierarchical coordinates, for example, using a 4-level hierarchy to describe
a location, a coordinate could consist of a 4-tuple (d, p, s, w), where d is the document
number, p is the number of the paragraph within the document, s is the number of the
sentence within the paragraph and w is the index of the given word within the sentence.
The problem of processing a query of the form (4) consists then, in its most general form,
of finding all the m-tuples 〈a1, . . . , am〉 of coordinates ai = (di, pi, si, wi) satisfying

∀i ∈ {1, . . . , m} ∃j ∈ {1, . . . , ni} with ai ∈ C(Aij)

and
li ≤ d(ai, ai+1) ≤ ui for 1 ≤ i < m,

– 5 –

where d(x, y) denotes the distance in words from x to y, i.e., if w(x) denotes the index of
the word x in its sentence, that is, the w-component of the coordinate x is w(x), then

d(x, y) =

{
w(y)− w(x) if x and y are in the same sentence
∞ otherwise.

(5)

Every m-tuple satisfying these constraints will be retrieved and the corresponding locations
in the text are presented to the user (Choueka et al. 1987). Some reasonable defaults can
be chosen when the distance constraints are omitted, for example (li : ui) = (1 : 1), so
that a query consisting only of a sequence of keywords without (li : ui) pairs as in (1) is
interpreted as a query requesting an exact phrase.

2.1.5 Adding negated keywords

Coupling the use of metrical constraints as in (4) with the possibility of negating some
keywords raises the question of an exact definition of what the query stands for in case of
ambiguity. If a query contains no negated terms, then processing it from left to right or
vice versa will yield the same result. A query

A (1 : 5) B (1 : 3) C

can be interpreted as B following A at distance up to 5, and being itself followed by C at
distance up to 3, but equivalently, the query could be thought of as C being preceded at
distance up to 3 by B, which itself is preceded by A at distance up to 5. This equivalence
is important when one has to decide about the order of processing the terms based on the
number of their occurrences, see Section 3 below. However, in the presence of negated
terms, the above symmetry is broken: reading from left to right,

A (1 : 5) −B (1 : 3) C

stands for A not being followed, at distance up to 5, by B, but being followed by C at
distance up to 3. This is not the same as the interpretation one gets by processing the
query right to left, namely C not being preceded at distance up to 3 by B, but being
preceded by A at distance up to 5. Suppose a text passage contains the sequence of terms
x x A x x x C x x, where A and C are occurrences of the terms A and C, respectively,
and x stands for occurrences of other terms, which are different from B, then with the
former, left to right, interpretation, this passage should not be retrieved, but with the
latter, right to left one, it should.

The problem is that the treatment of negated keywords is not symmetrical to that of
their non-negated counterparts. In the query A (1 : 1) −B one looks for occurrences of
A that are not followed by an occurrence of B, but if the query were −B (1 : 1) A, we are
obviously not looking for every non-occurrence of B to be followed by an occurrence of A,
but rather for occurrences of A not preceded by B. Mathematically, the result is of course
the same, but algorithmically, it makes no sense to check for every word that is not B,
so for almost every word in the text, whether it is followed by A. The correct processing
retrieves first the coordinates of A and then filters those out that are preceded by B.

– 6 –

Therefore one has to decide whether a keyword is connected to the (li : ui) pair pre-
ceding it or to that following it, so for the above example, whether it should be read

A [(1 : 5) −B] (1 : 3) C or A (1 : 5) [−B (1 : 3)] C.

This is an arbitrary decision and has to be defined as part of the syntax. So let us define
that association of keywords to metrical constraints should be to the left, as in the first
alternative, unless there is no such option, that is, all the keywords to the left of the
leftmost non-negated one will be right associated (recall that each query must have at
least one non-negated keyword). For example, the query

−A (1 : 3) −B (1 : 2) C (3 : 6) −D (2 : 4) − E (1 : 5) F (6)

will be interpreted as

[−A (1 : 3)] [−B (1 : 2)] C [(3 : 6) −D] [(2 : 4) − E] (1 : 5) F,

thus seeking occurrences of C followed at distance up to 5 by occurrences of F , but
these occurrences of C should not be preceded by occurrences of A or B or followed by
occurrences of D or E at the given distances. Note also that if several negated terms are
adjacent, the associated distance pair refers to the closest preceding (or following for right
association) non-negated term. In the example, occurrences of E should not appear at
distance 2 to 4 from occurrences of C; interpreting this part of the query as prohibiting
the occurrence of E at distance 2 to 4 from a non-occurrence of D makes obviously no
sense, since almost every word pair in the text would match that definition.

To give some examples using real English terms:

−research (1 : 2) development (1 : 1) − fund (1 : 9) European (1 : 1) countries

looks for documents related to the development of (or in) European countries, but wants to
avoid documents containing the frequent phrases research and development or develop-
ment fund, which are considered as noise and would reduce precision.

To get information about United Airlines, an appropriate query seems to be simply
United Airlines. But in many contexts, the name United by itself refers to the airline
as in I took a United flight; requiring the appearance of the term Airlines would
thus have a negative impact on the recall. The same is true for the auto mechanic example
in Section 2.1.1 above, where the term gear did not appear in the query: a differential,
in the automobile industry jargon, generally refers to a gear rather than to an equation,
so there is no need to mention this explicitly. On the other hand, using United alone as
query term would produce much noise, reducing precision. A better query could thus be

United (1 : 1) − States (1 : 1) − Kingdom (1 : 1) − Nations (2 : 2) − Emirates.

One could abbreviate the query by using the ∨ (OR) operator, thereby defining the set
∪ni

j=1Aij explicitly, but if not all the negated terms require the same distance constraints,
as in this example, then using several negated terms allows more flexibility. The reason for
using here another distance for Emirates is that the term usually appears in the phrase
United Arab Emirates, so that the query could be rewritten as

United (1 : 1) − [States ∨ Kingdom ∨ Nations] (2 : 2) − Emirates.

– 7 –

2.1.6 Adding negated distances

If in the sentence x x A x x x B x x, the distance from A to B is 4, then the distance
from B to A is −4, in accordance with the definition in (5). In the query syntax, the bounds
on the distance constraints can be relaxed to −∞ < li ≤ ui < ∞, that is, the lower and
upper bounds can be negative, as long as li is smaller or equal to ui.

Such an extension is natural and often needed, as a user may not always know the
order in which the keywords appear in the text, and in fact all possible orders might be
plausible. We saw in the differential equation example above that the term solve can
possibly appear both before and after the others, so a good query could be

solve (−10 : 10) differential (1 : 1) equation,

referring to the fact that solve can appear in the range from at most 10 words preceding
up to 10 words following the term differential. But the negative and positive parts of
the range need not be symmetrical: a family name sometimes follows the first name, and
sometimes precedes it, so a correct query could be

Edgar (−1 : 2) Poe,

matching both Edgar Allan Poe and Poe, Edgar Allan.

A further use of negative distance is to extend slightly the set of possible queries. The
syntax implies that distance constraints relate to terms that are adjacent in the query, so
that in the query A (1 : 3) B (2 : 7) C, the constraint (2 : 7) is on the distance between B
and C; if one wishes to limit both the distance between A and B and also that between
A and C, one could reformulate the query as

C (−7 : −2) A (1 : 3) B,

but this method can not be extended to three or more constraints on distances from the
same keyword, because at most two keywords can be adjacent to any given one and by the
definition of our syntax, metrical constraints operate between codewords that are adjacent
in the query.

The use of negative distances also permits to assume without loss of generality that in
the general definition of a query as in eq. (7), the leftmost keyword is a positive one, so
that association of keywords with (li : ui) constraints is always to the left; this will lead
to simplified processing in Section 3 below. The reason for the lack of loss of generality is
that negated terms to the left of the leftmost positive term can be moved to its right by
reversing the distances. For example, the query in eq. (6) can equivalently be reformulated
as

C (−3 : −1) − A (−2 : −1) −B (3 : 6) −D (2 : 4) − E (1 : 5) F.

2.1.7 Formal definition of the set of retrieved locations: including negated terms

To formally redefine equation (5) also for the case of negated terms, we need to distinguish
between positive and negated keywords. The extended query is given by

[−/]A1 (l1 : u1) [−/]A2 (l2 : u2) · · · [−/]Am−1 (lm−1 : um−1) [−/]Am. (7)

– 8 –

Define P (1), P (2), . . . , P (p), with 1 ≤ p ≤ m, as the ordered sequence of indices of the
positive keywords in (7), and let N(1), . . . , N(m − p) be the (possibly empty) ordered
sequence of the indices of the negated keywords. Define also the function Q such that
Q(N(i)) = P (j) if the i-th negated term is attached by its distance constraint to the j-th
positive term, that is

Q(N(i)) =

{
P (1) if N(i) < P (1)
max{P (j) | P (j) < N(i)} otherwise.

For the example of eq. (6), (P (1), P (2)) = (3, 6), (N(1), . . . , N(4)) = (1, 2, 4, 5) and Q(1) =
Q(2) = Q(4) = Q(5) = 3. A solution to a query of type (7) is then any p-tuple 〈a1, . . . , ap〉
of coordinates ai = (di, pi, si, wi) satisfying

∀i ∈ {1, . . . , p} ∃j ∈ {1, . . . , nP (i)} with ai ∈ C(AP (i)j)

and
li ≤ d(ai, ai+1) ≤ ui for 1 ≤ i < p,

and satisfying the additional constraint on the negative terms, namely that

∀i ∈ {1..m− p} ∀j ∈ {1..nN(i)} ∀b ∈ C(AN(i)j) ∀j′ ∈ {1..nQ(N(i))} ∀a ∈ C(AQ(N(i))j′)

d(b, a) < lN(i) ∨ d(b, a) > uN(i) if N(i) < P (1)

d(a, b) < lN(i)−1 ∨ d(a, b) > uN(i)−1 if N(i) > P (1),

where the distance d is defined by eq. (5).

2.2 Negating characters in the definition of keywords

The definition of a query as given in equation (7), with its positive or negated keywords
and with metrical constraints, can be regarded as a generalization to a larger scale of
a similar process that can be applied to define a single keyword. Indeed, in all of the
examples above, and possibly in most real life user queries, the keywords are either given
explicitly, or one relies on some automated thesauri to generate, for a given keyword, a
set of related morphological variants. There are however many instances in which we may
want to define the set represented by a given keyword on our owns.

Again, such tools might be much too involved for the occasional user of a search engine
on the internet, but for the sophisticated researcher accessing a large database seeking
information on a specific topic, the possibility of precisely defining the set of keywords
to be used may be valuable. This is especially true for historical texts or texts in other
languages, in which the keywords may appear in a variety of not always predictable spelling
variants.

One of the useful tools for such definitions is a wild-card , often denoted by *, and
matching a variable length (possibly empty) don’t care sub-string, which allows the use
of truncated terms. For example, comput* could stand for any of computer, computers,
computation, computability, and many other variants of this root; *mycin could retrieve
a large class of antibiotics; infix truncation can help in case of foreign names that are not
always transliterated in the same way, for example, in Ba*rain, the * could match h, kh,
ch, ha, and possibly other strings.

– 9 –

2.2.1 Adding constraints to strings matched by wildcards

A variable length wild card character is sometimes not precise enough. In the last example,
one would also like to match other spelling variants, such as Bahrein with e, but using
here another wildcard as in Ba*r*in could already produce too much noise: that would
also match the word Bargain. The solution is to restrict the patterns to be matched by
means of a regular expression, using for example a syntax adapted from the Unix gawk
command:

ba ∗ r [+a,e] in

would match strings starting with ba, including then an r which is followed by one of the
two letters a or e, followed by in. Note that we chose a syntax separating the optional ele-
ments by commas, writing [+a,b,c] rather than just [+abc], which allows more flexibility,
such as the use of variable length strings, for example Ba[+kh,ch,h,ha]rain.

Similar to the + operator, one can also define a minus operator to describe a set of
characters to be avoided at the given position. Suppose we are looking for documents
related to the city of Venice in a multilingual database. Using Venic* alone as keyword
would probably yield poor results. The problem is that Venice is spelled in a variety of
ways in the different languages: Venezia, Venecia, Venetia, Venetsia, Venice, Venise,
Venedig, Velence, Benétke, Wenecja, Benátky, etc. Note that the last two variants have
only two letters in common, though W and B are obviously related, just as c and k. Trying
to match all these by

[+V,B,W] ∗ en ∗ [+t,s,z,c] ∗ [+a,e,y] ∗

would again yield unwanted words, like Vendetta, Ventilate or Venezuela, so one may
wish to restrict the scope by using negated characters, as in

[+V,B,W] ∗ en [−d,t] ∗ [+t,s,z,c] ∗ [+a,e,y] [−l] ∗ .

It should be noted that the use of negated characters in a keyword is not symmetrical to
the use of required characters. The expression xy*[+z,w] requires the string xy, followed
by some arbitrary, possibly empty string, to be followed by z or w. But the corresponding
xy*[−z,w] does not mean that we seek for the string xy, followed by some arbitrary string
S, which is not to be followed by z or w. Such an interpretation would allow z or w to
appear in S, which in fact voids the negation of its sense. Similarly xy[+z,w]t looks for
xy, followed by z or w, and then followed by t, but the negated version xy[−z,w]t does
not mean that we want xy, not followed by either z or w, but followed by t; to get the
latter interpretation, the [−z,w] is superfluous, since if xy is followed by t, it is clearly
not followed by any different letter. Moreover, the minus operator can be applied to a
single character as in xy*[−z]t, whereas this makes no sense with the plus operator,
since xy*[+z]t is equivalent to just xy*zt.

2.2.2 Formal definition of the minus operator

The definition of the minus operator should therefore be amended as follows: a negated
component is not the counterpart of a component preceded by a plus sign, but should

– 10 –

be understood as a modifier of the wild-card character to which it is adjacent. Thus in
the above example, xy*[−z,w] matches a string starting with xy and followed by some
arbitrary string S, but S is not allowed to contain either z or w. It follows that unlike
positive terms (those preceded by the + operator), the negated terms must appear in
combination with some wild-card. This wild-card could be the *, matching an arbitrary,
possibly empty, variable length string, but one could envisage other alternatives, such as
non-empty strings, strings whose lengths equal to or are bounded by some imposed integer,
strings restricted to a certain type (upper case, digits, non-alphanumeric), etc. In any case,
for * there is no need to require left or right association, because x * * y is equivalent to
x * y, so in

x ∗ [−z,w] ∗ y

one of the *’s is redundant and can be deleted. However, for fixed length or type restricted
don’t care characters, there could be a confusion, so we decide that left association is used
wherever the meaning is not obvious. Using #n to stand for an arbitrary string of fixed
length n, the interpretation of

[−a] ∗ xy #4 [−z,w] #2 [−qu] t

would thus be: the string xy, not preceded by a, but followed by some 4-character string
that does not contain z or w, further followed by some 2-character string which is not qu

and finally followed by t.

An interesting alternative for defining the sets Ai of equation (7) by using regular
expressions is to combine features from the preceding sections, coupling negated terms
with the special distance constraint (0:0). For example

comput* (0 : 0) − computer*

could be used to match words like computed, computation or computing but not computer
or computerize.

2.2.3 Extended example

While for English the possibility of using regular expressions seems to be a nice tool to
have, but not absolutely necessary, this is not the case for French with its complicated
conjugations, and even less so for German, which allows an almost unlimited series of word
concatenations. For certain non-European languages, and especially those using other
scripts than the Latin one, this tool is definitely a must. In highly inflected languages like
Hebrew and Arabic, single words often reflect what in English would be translated into a
multi-word phrase, as various prepositions and articles can be prefixed and pronouns can
be suffixed to most of the terms. Moreover, foreign names have to be transliterated, and
since there are usually several options to render the same sound, the number of spelling
variants of a single term can be large enough to make an explicit enumeration impossible.

Though this work is intended to be mainly theoretical, we now give an extended exam-
ple showing the usefulness of regular expressions with negation operators for the precise
definition of a set of keywords that are supposed to be homonymous on a Hebrew database.
The underlying IR system is that of the Responsa Project (Fraenkel 1976, Choueka 1989)

– 11 –

and contains 369 books of Responsa, written by rabbinical authorities all over the world
from the 8th century till these very days. The text is mainly in Hebrew and Aramaic, but
contains many passages in other languages like German or English, all written using the
Hebrew alphabet. The size of the database is about 60 million words.

The example chosen deals again with different spelling variants for the city of Venice.
The problem above was that the city is named and spelled differently in various languages.
The additional complication in the Responsa literature is that, depending on the origin
of the author, the transliteration used a variety of alternatives. One of the reasons for
the large number of possibilities is the lack of vowels in Hebrew. Certain consonants may
be substituted for some of the vowels, but there are no strict rules so that hundreds of
spelling possibilities for the same word are not uncommon, as can be seen below. We shall
use {ABGDHWZXtYKLMNSaPCQR$T} as transliteration of {aleph, beth, . . . , tav} respectively.

Table 1: Searching for Venice in the Responsa database

Query Retrieved Relevant recall prec

occs terms occs terms
#[+W,WW]*N*CY* 2026 352 1232 159 0.998 0.608
#[+W,WW][+Y,a]*N*[+C,S]*[+Y,H,A,’]* 1437 234 1227 149 0.994 0.854
#[+W,WW][+Y,a]*N*[+C,S]*[-N,Q][+Y,H,A,’]* 1316 192 1227 149 0.994 0.932
#[+W,WW][+Y,a]*[-K,$]N*[+C,S]*[-N,Q][+Y,H,A,’]* 1287 184 1227 149 0.994 0.953

Table 1 lists the various queries and for each, the number of retrieved terms and total
number of their occurrences. The next column shows how many of the retrieved terms
and occurrences were relevant, that is, indeed dealing with the city of Venice. The last
two columns bring the corresponding recall and precision. Note that these terms are not
used here in the usual document retrieval sense;no documents are retrieved and there is
no relevance assessment. The elements produced by the regular expression are the term
themselves, so one can extend the notions as follows: precision will denote the fraction
of the retrieved relevant terms among all retrieved terms, that is, those generated by the
query (in our case, relevance means referring to the city of Venice), whereas recall is the
fraction of the retrieved relevant terms among all the relevant terms in the text. One thus
needs some knowledge about other occurrences of relevant terms in the text, if any, that
might not have been retrieved. Indeed, we found two more relevant occurrences, which
explains why recall is not 1.0 in our example.

Recall is based on the fact that 2 more relevant occurrences have been found, which
were not matched by the given queries. The # stands for a wild-card matching only
grammatical prefixes, which, in Hebrew, include prepositions, conjunctions and articles.
Note also the use of [+W,WW] in the queries: the letter vav (W) is one of the consonants
rendering the V -sound in Venice, but W serves also, and mostly, as a replacement for some
vowels (the O- and OO-sounds), so that one of the rules calls for doubling the W to get
the consonant, but this rule is only partially adhered to. Using W alone would produce too
much noise, as this single letter corresponds to the conjunction and .

The first two lines show queries retrieving almost all the relevant variants but producing
many irrelevant terms; using negated characters, precision can be significantly improved,
without in fact affecting recall. The third and fourth queries are in fact restrictions of the

– 12 –

second one, so no more relevant items are added and recall stays constant; but the second
query is not a restriction of the first one, so it should not be surprising that in the passage
from the first to the second query, both recall and precision may change.

3. Implementation issues

While Section 2 dealt mainly with the definition of negation operators in various settings,
we now turn to implementation problems caused by the presence of negation, and in
particular try to set the proper order in which the terms should be processed.

3.1 Processing negated keywords in a query

The way to process queries depends on the algorithmic approach chosen for the Information
Retrieval system at hand. For small texts, a direct approach, using pattern matching
techniques may be feasible. A text of length n can be preprocessed in time O(n) by
building a suffix tree (Grossi and Italiano 1993), by means of which patterns of length m
can subsequently be located in time O(m). But varying distances are hard to deal with,
so that in most cases, the processing relies on inverted files (Zobel and Moffat 2006).

In the latter approach, the text is scanned and a dictionary is produced, including the
complete list of all the different words in the database. This list may be organized as
a hash table for fast access, but for certain applications, a lexicographically ordered set
is preferable, e.g., when several consecutive entries of the dictionary are requested. The
dictionary also contains for each word a pointer to the concordance, which is often called
postings file or simply index. The concordance contains, for each word W , the ordered list
C(W) of its coordinates, which in fact are pointers to its different locations and can have
several forms, as discussed above. The order within the lists is usually induced by some
global order defined on the documents of the database. This order may be chronological,
referring to the time the documents have been created, or it may group documents into
classes (by author, topic or some other criterion) and arrange the classes in alphabetical
order of their names, etc.

Processing a query of the form A (l : u) B consists of accessing the dictionary for
entries A and B, getting from there pointers to their coordinates in the concordance, and
intersecting these lists in the sense that for every pair (a, b) ∈ C(A) × C(B) one checks
whether l ≤ d(a, b) ≤ u. Since the lists are ordered, the intersection takes only time
O (|C(A)|+ |C(B)|)). For example, if the query is A (−2 : 8) B and the text contains the
passage

. . . x a1 x x a2 x b1 x a3 x x b2 x . . . ,

where x stands for an arbitrary word and ai and bj are occurrences of A and B, respectively,
then the requested output of the query is the set of pairs {(a1, b1), (a2, b1), (a2, b2), (a3, b1),
(a3, b2)}.

If one of the keywords is negated, say the query is A (l : u) − B, then the expected
result is the list C(A) from which all elements a have been purged for which there exists a
b ∈ C(B) such that l ≤ d(a, b) ≤ u. Using the above passage with query A (−2 : 2) − B

– 13 –

would retrieve only the singleton {(a1)}; note that the occurrence a3 was invalidated by
b1 and not by b2.

3.2 Evaluating the processing order

When longer queries are to be processed, the question of the order in which the keywords
should be dealt with arises. For the discussion below, we define the size of keyword Ai,
denoted by s(Ai), as the total number of occurrences of all its variants, that is, s(Ai) =∑ni

j=1 |C(Aij)|. If the sizes of all the keywords are small, the order of processing may not be
important, but if there are some keywords with very large sizes, a more careful approach is
needed. Intuitively, one would suggest to start then with the “smallest” keyword, i.e., one
with minimal s(Ai), and continue processing by order of non-decreasing size. The reason
for such intuition is that, for large enough queries and when large sizes are involved, it
makes no sense to retrieve all the coordinates of all the terms in the query and storing
them temporarily, only to throw away most of them after the intersection. Rather, only
the list L of the coordinates of the smallest keyword is stored, and the lists of the other
keywords are processed on the fly, by performing their intersection with L and gradually
removing those parts of L that did not have matching elements in the other lists. By
using bitmaps (Choueka et al. 1987), the expected range of relevant coordinates can be
dynamically reduced during the processing stages, so that parts of the lists of the larger
keywords, which have been deferred to later processing, may not have to be read at all.

There are, however, two problems with that intuition. First, ordering the keywords
by size is not always possible, because varying distance constraints may force a more
restricted order, and second, even if processing by non-decreasing order is feasible, it is
not necessarily the best choice.

If all the constraints are fixed, that is li = ui for 1 ≤ i ≤ m, then any order can be
chosen. For example, if the query is A (3 : 3) B (2 : 2) C, then the distance between A and
C must be 5; if the sizes of A, B and C are 100, 10000 and 100, respectively, one would
first intersect A with C at distance 5 — which will most often result in a list of (a, c) pairs
much shorter than 100 — and then check for occurrences of B. But if the query were
A (1 : 3) B (2 : 4) C, it would be wrong to try to intersect first A with C, assuming that
they must appear at a distance of 1 + 2 = 3 to 3 + 4 = 7 words from each other, and then
look for occurrences of B either up to 3 words after A or 2 to 4 words before C. Consider
the text passages . . . x a x b x x x x c x . . . and . . . x a x x x b x x c x . . .; the first
would be retrieved if the intersection order is (A,C) followed by (A,B), and the second
would be retrieved if the intersection order is (A,C) followed by (B, C); however, both
passages do not satisfy the query, the first because d(b, c) = 5 > 4, the second because
d(a, b) = 4 > 3.

The processing order is therefore restricted to dealing at every step with one of the
keywords that is adjacent to one of those already processed earlier. For example, if the
keywords of a query are, from left to right, A, B and C, then the possible processing orders
are (A,B, C), (B, A,C), (B,C,A) and (C, B, A). In general, if T (m) denotes the number
of possible orders for m adjacent keywords, we have that the last keyword to be dealt with
must be either the leftmost or the rightmost, so that T (m) = 2T (m − 1); since T (1) = 1
we get that T (m) = 2m−1.

– 14 –

The fact that the keywords have to be processed by adjacency order also provides
an example of the non-optimality of the heuristic suggesting to start with the smallest
keyword. Consider the query A (1 : 5) B (3 : 7) C (1 : 5) D, and suppose the sizes of A,
B, C and D are 100, 10000, 102 and 103, respectively. Starting with A would imply that
the next keyword is B, requiring an intersection of 10000 elements with 100, whereas if
one intersects first C with D, the number of coordinates left after the intersection will
probably be much lower than 100, so the intersection with the 10000 elements of B will
be more efficient.

It is true that for many queries, the number m of keywords will be small enough to jus-
tify an exhaustive search through the 2m−1 options. But this approach is not scalable, and
theoretically, the size of the queries should not be bounded. In future applications, with
much larger databases and possibly automatically generated query terms, an exponential
number of possibilities might be prohibitive.

To choose a priori the best among the 2m−1 orders, we suggest the following heuristic,
trying to estimate the expected number of comparisons needed for the sequence of inter-
sections induced by each of the orderings of the keywords, and reducing the number of the
orderings to be inspected from exponential to polynomial. Since this paper is intended
for experts in IR which might not be specialists in algorithms, some necessary background
will now be given.

3.2.1 Algorithmic background

One of the major problems dealt with by research in algorithms relates to their time
complexity , which measures the time required by a specific algorithm, in terms of number
of operations rather than in seconds, as a function of the length of the input. It is generally
accepted that exponential complexities, like in the above example a number of operations
of the order of 2m−1 for an input of m query terms, are prohibitive, because even for
moderately large m such algorithms cannot be performed in reasonable time. On the
other hand, a polynomial complexity is usually considered acceptable.

There are many optimization problems which at first sight, using a straightforward
exhaustive search through all the possibilities, seem to require exponential time, but a
more careful processing might reduce this to polynomial. One of the standard techniques
achieving this is known as dynamic programming (Cormen et al. 1990). It is generally
based on defining the solution of a problem recursively as a combination of the solutions
of some of its subproblems, but the exponential blowup of the recursive procedure — which
is often due to the frequent reevaluation of the same subproblems — may be avoided by
cleverly choosing the order in which all the subproblems are solved, thereby solving each
of them only once. Classical examples of dynamic programming include Floyd’s algorithm
(Floyd 1967) for finding a shortest path in a graph from every origin node to every target
node, finding longest common subsequences of two given input strings, finding the smallest
number of edit operations (insert, delete, replace) needed to transform one string into
another, and many others.

In our application, we have to compare 2m−1 possible orderings of the m keywords of
the query and choose one with lowest processing cost according to some pricing heuristic

– 15 –

defined below. Defining the subproblems in the proper way then yields a polynomial time
dynamic programming solution. We first deal with queries containing only positive terms,
and discuss adaptations to negated terms later.

3.2.2 Processing order with positive keywords only

Let σ be a permutation of the numbers {1, 2, . . . , m} corresponding to one of the 2m−1

possible processing orders of the keywords, that is Aσ(1) is the first element to be chosen,
and it is intersected with Aσ(2), which is either Aσ(1)−1 or Aσ(1)+1 (unless σ(1) = 1 or m),
etc.

The number of comparisons requested by each of the possible orderings depends on the
sizes of the lists to be intersected in each iteration, but these sizes change dynamically, since
after each intersection, the number of coordinates that may still be relevant is possibly
reduced. The first step is to intersect C(Aσ(1)) with C(Aσ(2)), requiring s(Aσ(1)) + s(Aσ(2))
steps. In fact, the processing time for a query A (l : u) B should also be proportional to
u − l + 1; if u = l, then each coordinate of A can match only one coordinate of B, but
for a larger range, the merging process may have to look at certain elements more than
once. Nevertheless, this will happen only rarely, even for a large (l : u) range, because
the number of occurrences of a given word in the same sentence, or even within the same
paragraph, is almost always very low (recall that according to our syntax as defined in
Section 2.1.3, the terms of a query are bound to appear in the same or at least in close
sentences). We shall therefore ignore the range in our estimates.

The expected size of the coordinates list after the first intersection will be proportional
to the sizes of both lists, but smaller or equal to the shorter one. We estimate this size as

s(Aσ(1))× s(Aσ(2))

C ×M,
(8)

where M = max{s(Ai) | 1 ≤ i ≤ m} is the size of the longest list, and C ≥ 1 is some
constant proportionality factor. It is of course easy to come up with artificial counterex-
amples, showing cases in which smaller lists gave larger intersection. For the estimations
below, we choose C = 1, implicitly assuming that the intersection with the largest list
does not reduce the list of relevant coordinates. But the bias introduced by the estimates
in eq. (8) is the same for all the permutations, and since we need the sizes of the lists
only to compare between alternative processing orders, the heuristic can be justified. The
estimated cost implied by permutation σ is thus

m−1∑

i=1

[∏i
j=1 s(Aσ(j))

M j−1
+ s(Aσ(i+1))

]
. (9)

The time for evaluating (9) for the 2m−1 possible σs can be reduced if one realizes that
for the given restricted permutations,

∏i
j=1 s(Aσ(j)) must be in fact

∏`
j=k s(Aj) for some

1 ≤ k < ` ≤ m. This suggests a dynamic programming approach: let V (i, j) be the
minimal expected cost of processing the query terms Ai · · · Aj, for 1 ≤ i < j ≤ m. The
last keyword to be processed in this subsequence is either Ai or Aj, so that V (i, j) is the

– 16 –

smaller of the two values L and R defined by

L = V (i + 1, j) + s(Ai) +
1

M j−i−2

j∏

k=i+1

s(Ak) (10)

R = V (i, j − 1) +
1

M j−i−2

j−1∏

k=i

s(Ak) + s(Aj). (11)

This yields the program in Figure 1, in which the matrix D(i, j) is used to reconstruct
the optimal permutation σ after the minimal cost has been evaluated in V (1, n). D(i, j)
is the index of the last element to be processed in the optimal arrangement of Ai · · ·Aj,
so it is either i or j.

for i ←− 1 to m− 1
V (i, i + 1) ←− s(Ai) + s(Ai+1)

for diff ←− 2 to m− 1
for i ←− 1 to m− diff

j ←− i+ diff
evaluate L and R using eq. (10) and (11)
if L < R then { V (i, j) ←− L; D(i, j) ←− i}
else { V (i, j) ←− R; D(i, j) ←− j}

end for i
end for diff

Figure 1: Evaluating the optimal cost (only positive terms)

Fill-sigma(i, j, k)
if k > 0 then

if D(i, j) = i then
σ(k) ←− i
Fill-sigma(i + 1, j, k − 1)

else /* D(i, j) = j */
σ(k) ←− j
Fill-sigma(i, j − 1, k − 1)

Figure 2: Finding the optimal permutation σ (only positive terms)

The complexity has been reduced to O(m2). The recursive procedure Fill-sigma in
Figure 2 can then be called with parameters (1,m, m) to fill, in time O(m), the optimal
permutation σ backwards from the end.

3.2.3 Processing order allowing negative keywords

Several adaptations are necessary to extend the above algorithm also to cases including
negated keywords. For the positive terms, there was a clear priority for those with smaller

– 17 –

size, since they both required fewer comparisons and also had a tendency to better reduce
the remaining set of coordinates. The reason for not using the order implied by non-
decreasing sizes was that varying distance constraints forced us to proceed by adjacency
only. For negated terms, a decision to make the order of processing dependent on their
size seems not so clear cut: on the one hand, the smaller the list of coordinates, the
less comparisons are needed, but on the other hand, since it is the non-occurrence we
are looking for, the smaller the list, the more coordinates are generally left after the
intersection.

A further difference is the possible order of processing. For positive terms, this order
was restricted, because, e.g., in the query A (1 : 3) B (2 : 5) C, there are limits both on
the distances from A to B, and from B to C. But as explained earlier in Section 2.1, a
negated term is only associated with one of the positive ones, so in fact, the negated terms
can be processed in any order. Using again the example of eq. (6), if C is the first keyword
chosen, the subsequent intersections with −A, −B, −D, −E and F can be performed in
any of the 5! = 120 possible orderings.

To derive an upper bound on the time needed to evaluate the optimal processing order,
recall that we defined P (1), . . . , P (p) as the ordered sequence of indices of the positive
keywords in the query. The relative order of the positive keywords is still restricted as
before, thus their number is 2p−1; there are at most m − p negative keywords, and these
can be processed in any order; and there are at most

(
m
p

)
possible orders to merge the set

of p positive with the set of m − p negated keywords. The total number of possibilities
is therefore bounded by

(
m
p

)
(m − p)!2p−1 = m!

p!
2p−1. This bound is not very tight, for

example, in the query of eq. (6), the order F, A,B, C, D,E is not possible: as a matter of
fact at each step of the processing, only negated terms relating to positive terms that have
already been handled can be adjoined. There are, however, cases, for which the bound is
not exaggerated: consider a query with a single positive and m− 1 negated keywords; the
number of possible processing orders is then (m− 1)!.

The following observation permits a dynamic programming solution as above, reducing
the processing time to polynomial. The intersection process is done by pairs, and when
keyword Ai is adjoined to the process, it contributes s(Ai) comparisons to the total cost,
regardless of it being negated or not. Negation only affects the size of the remaining
intersected coordinate list, whether it should be proportional to s(Ai) or to M ′ − s(Ai),
where M ′ is some constant larger than the longest list of a negated keyword. Thus when
computing the total cost of a given processing order, all the values s(Ai) will ultimately
appear exactly once in the sum, so that in fact this part of the sum is equal for any
processing order. But this implies that the optimal way to process the negated keywords
is to choose, every time there is a choice, the one with the largest s(Ai), since this will
best reduce the size of the remaining coordinate list.

The problem is therefore to find the best order, where that of the positive keywords is
restricted by adjacency, and that of the negated terms is given, at each stage, by the order
induced by s(Ai). Of course, for each partial set of keywords there is only a subset of the
negated keywords that is relevant.

Let CNI(i, j) (Corresponding Negative Indices) be the set of the indices of those negated
terms that are neighbors to one of the (positive) keywords in the range from P (i) to P (j),

– 18 –

that is, if the currently processed positive keywords are AP (i) · · ·AP (j), then each of the
negated keywords Aw, with w ∈ CNI(i, j) can be processed next. We assume that CNI(i, j)
is given as a list according to the non-increasing order of the corresponding keyword sizes.
The following example should clarify these definitions. Consider the query given in the
top line of the left table in Figure 3 (metrical constraints were omitted for clarity), and
suppose the sizes of the negated terms are as given in the row s(Ai). The left table also
shows the corresponding values of P (i) and N(i), and the matrix to the right gives the
sets CNI(i, j) for 1 ≤ i ≤ j ≤ 4.

Query A −B C −D −E F G −H

i 1 2 3 4 5 6 7 8
s(Ai) 500 200 10000 1000
P P (1) P (2) P (3)P (4)
N N(1) N(2) N(3) N(4)

CNI 1 2 3 4

1 (2) (5,2,4) (5,2,4) (5,8,2,4)
2 (5,4) (5,4) (5,8,4)
3 ∅ (8)
4 (8)

Figure 3: Example of sets of indices of negated keywords

When dealing with positive keywords, we estimated the effect of intersecting the current
list of coordinates with the list C(Ai) as reducing the size of the current set by a factor
of s(Ai)/M (see eq. (8) and (9)). For negated keywords, we assume the reduction is by
a factor of 1 − s(Ai)/2M

′, where M ′ has been defined above as M ′ = max{s(AN(j)), j =
1, . . . , m− p}. The idea is that the larger the set, the lower the probability of its elements
to be avoided, but the denominator here is chosen as 2M ′ and not just M ′ as in the positive
case, reflecting our assumption that even when dealing with the largest negated keyword,
the set of remaining coordinated should not be empty.

To extend the above dynamic programming procedure, define V (i, j, `) as the minimum
expected processing cost of the sub-query AP (i) · · ·AP (j) in which ` negated keywords are
allowed to participate, 0 ≤ ` ≤ |CNI(i, j)|. To define V (i, j, `), the following notations
are useful: let C(i, j, `) be the expected size of the coordinates list after intersecting
AP (i) · · ·AP (j) and the ` first values in CNI(i, j), and denote by F (`,X) the subset including
the first ` elements of the ordered sequence X. We then have

C(i, j, `) =
1

M j−i−1

j∏

k=i

s(AP (k))
∏

k∈F (`,CNI(i,j))

(
1− s(Ak)

2M ′

)
.

The value of V (i, j, `) can now be recursively defined by observing that the last element
to be processed is either a positive one, in which case it must be AP (i) or AP (j), or a negative
one, in which case it must be Aw(i,j,`), where w(i, j, `) denotes the `-th element of the list
CNI(i, j, `). This yields the following recursion:

V (i, j, `) = min

V (i + 1, j, `) + C(i + 1, j, `) + s(AP (i)),
V (i, j − 1, `) + C(i, j − 1, `) + s(AP (j)),
V (i, j, `− 1) + C(i, j, `− 1) + s(Aw(i,j,`))

, (12)

where the minimum should be understood as being applied only to the first two lines for
the special case ` = 0.

The corresponding program is given in Figure 4. The complexity is clearly bounded by
O(m3), but the number of iterations is in fact at most 1

2
(m− p)p2, which is at most 2

27
m3

– 19 –

for i ←− 1 to m− 1
V (i, i + 1, 0) ←− s(Ai) + s(Ai+1)

for ` ←− 0 to m− p
for diff ←− 2 to p− 1

for i ←− 1 to p − diff
j ←− i+ diff
if ` ≤ |CNI(i, j)| then

evaluate V (i, j, `) according to eq. (12)
D(i, j, `) ←− index of last element adjoined (P (i), P (j) or w(i, j, `))

end for i
end for diff

end for `

Figure 4: Evaluating the optimal cost (including negative terms)

Fill-sigma(i, j, `, k)
if k > 0 then

if D(i, j, `) = P (i) then
σ(k) ←− P (i)
Fill-sigma(i + 1, j, `, k − 1)

elseif D(i, j, `) = P (j) then
σ(k) ←− P (j)
Fill-sigma(i, j − 1, `, k − 1)

else /* D(i, j, `) = w(i, j, `) */
σ(k) ←− w(i, j, `)
Fill-sigma(i, j, `− 1, k − 1)

Figure 5: Finding the optimal permutation σ (including negative terms)

– 20 –

(for p = 2
3
m). To recover the optimal permutation, the recursive procedure Fill-sigma of

Figure 5 is called with parameters (1, p,m− p,m) and works in time O(m).

4. Conclusion

Negation has been part of most retrieval systems before and the purpose of this work was
not to reinvent some unknown features. The aim was rather to try to give exact definitions
in ambiguous cases and increase the popularity of using different forms of negation in IR
queries by showing how to use such queries in many examples. We conclude that in spite
of its connotation, negation can have some very positive aspects.

References

Bookstein A., Klein S.T., Ziff D.A. (1992), A systematic approach to compressing a full
text retrieval system, Information Processing & Management 28, 795–806.

Cafarella M.J., Etzioni O. (2005), A search engine for natural language applications, Intern.
World Wide Web Conf., Chiba, Japan, 442–452.

Chang K.C.-C, Garcia-Molina H., Paepcke A. (1999), Predicate rewriting for translating
Boolean queries in a heterogeneous information system, ACM Tarns. on Information Systems
17(1), 1–39.

Choueka Y. (1989), Responsa: A full-text retrieval system with linguistic processing for a
65-million word corpus of jewish heritage in Hebrew, IEEE Data Eng. Bull. 14(4) 22–31.

Choueka Y., Fraenkel A.S., Klein S.T., Segal E. (1987), Improved Techniques for Pro-
cessing Queries in Full-Text Systems, Proc. 10-th ACM-SIGIR Conf., New Orleans, 306–315.

Cormen T.H., Leiserson C.E., Rivest R.L. (1990), Introduction to Algorithms, MIT Press.

Dunlop M.D. (1997), The effect of accessing nonmatching documents on relevance feedback,
ACM Trans. on Information Systems 15(2) 137–153.

Floyd R.W. (1962), Algorithm 97: Shortest path, Communications of the ACM 5(6), 345.

Fraenkel A.S. (1976), All about the Responsa Retrieval Project you always wanted to know
but were afraid to ask, Expanded Summary, Jurimetrics J. 16, 149–156.

Frakes W.B. (1992), Stemming algorithms, in Frakes W.B., Baeza-Yates R. (eds), Information
Retrieval Data Structures and Algorithms, Prentice Hall, NJ, 131–160.

Fuhr N., Großjohann K. (2004), XIRQL: an XML query language based on information
retrieval concepts, ACM Transactions on Inf. Systems 22, 313–356.

– 21 –

Goldsmith J.A., Higgins D., Soglasnova S. (2001), Automatic language specific stemming
in Information Retrieval, Proc. Workshop of Cross-Language Evaluation Forum, Lisbon 2000,
LNCS 2069, 273–284.

Grossi R., Italiano G.F. (1993), Suffix trees and their applications in string algorithms. Proc.
1st South American Workshop on String Processing (WSP 1993), 57-76.

Klein S.T. (2008), Processing queries with metrical constraints in XML based IR systems,
Journal of the American Society for Information Science and Technology 59(1), 86–97.

Koubarakis M., Skiadopoulos S., Tryfonopoulos C. (2006), Logic and computational
complexity for Boolean information retrieval, IEEE Trans. on Knowledge and Data Engineering
18(12), 1659–1666.

Mason D. (2006), Legal Information Retrieval study – Lexis Professional and Westlaw UK,
Legal Information Management 6 246–250.

O’Keefe R.A., Trotman A. (2003), The simplest query language that could possibly work,
Proc. second INEX Workshop, 117–124.

Salton G., Wong A., Yang C.S. (1975), A vector space model for automatic indexing,
Communications of the ACM 18(11) 613–620.

Spink A., Wolfram D., Jansen B.J., Saracevic T. (2001), Searching the Web: the public
and their queries, Journal of the American Society for Information Science 53(2), 226–234.

Sormunen E. (2000), A novel method for the evaluation of Boolean query effectiveness across
a wide operational range, Proc. SIGIR Conf., Athens, Greece, 25–32.

Tryfonopoulos C., Koubarakis M., Drougas Y. (2004), Filtering algorithms for infor-
mation retrieval models with named attributes and proximity operators, Proc. SIGIR Conf.,
Sheffield, UK, 313–320.

Widdows D. (2003), Orthogonal negation in vector spaces for modelling word-meanings and
document retrieval, Proc. Conf. Assoc. for Computational Linguistics, Sapporo, Japan, 136–143.

Yoo S., Choi J. (2007), Improving Medline document retrieval using automatic query expan-
sion, Proc. ICADL Conf., Hanoi, Vietnam, 241–249.

Zobel J., Moffat A. (2006), Inverted files for text search engines, ACM Computing Surveys
38(2), 1–56.

– 22 –

