
International Journal of Foundations of Computer Science
c⃝ World Scientific Publishing Company

USING ALIGNMENT FOR

MULTILINGUAL TEXT COMPRESSION

EHUD S. CONLEY

Department of Computer Science, Bar-Ilan University
52100 Ramat-Gan, Israel

konli@cs.biu.ac.il

and

SHMUEL T. KLEIN

Department of Computer Science, Bar-Ilan University
52100 Ramat-Gan, Israel

tomi@cs.biu.ac.il

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

Multilingual text compression exploits the existence of the same text in several

languages to compress the second and subsequent copies by reference to the first. We

explore the details of this framework and present experimental results for parallel English
and French texts.

Keywords: Compression, multilingual texts, text alignment, coding

1. Introduction

In countries like Canada, Belgium and Switzerland, where speakers of two or

more languages live side-by-side, all official texts have to be published in multilin-

gual form. The current legislation of the ever expanding European Union obliges

the translation of all official texts into the languages of all member states. As a

result, there is a growing corpus of important texts, large parts of which are highly

redundant, since they do not have any information content of their own, and are

just transformed copies of some other parts of the text collection.

We wish to exploit this redundancy to improve compression efficiency in such

situations, and introduce the notion of Multilingual Text Compression: one is given

two or more texts, which are supposed to be translations of each other and are

referred to as parallel texts. One of the texts will be stored on its own (or com-

pressed by means of pointers referencing only the text itself), the other texts can

be compressed by referring to the translation, using appropriate dictionaries.

1

Data compression in general, and text compression in particular, have for long

been prominent topics in the Information Retrieval literature, as full text IR systems

are voracious consumers of storage space, both for the underlying textual database

itself, but also for the auxiliary overhead, such as indices, dictionaries, thesauri, etc.,

see, for example, [14, 20, 13]. This work concentrates on multilingual information

retrieval systems and how their data could be compressed.

In a certain sense, multilingual text compression is an extension of delta-coding ,

in which source and target files S and T are given, with the assumption that T is

very similar to S, for example in the case of several versions of the same software

package. Highly efficient compression schemes have been designed for that case, and

the compressibility is obviously a function of the similarity of the input files. Our

problem extends the delta-coding paradigm to the case where similarity is not based

on the appearance of identical strings, but allow the use of some transformation to

pass from a given text fragment to its matching part.

The basis for enabling multilingual text compression is first the ability to match

the corresponding parts of related texts by identifying semantic correspondences

across the various sub-texts, a task generally referred to as alignment. As the

methods for detailed alignment are quite sensitive to noise, they usually use a

rough alignment of the text as an auxiliary input. They might also use an existing

multilingual glossary, but they always generate their own probabilistic glossary,

which corresponds to the processed text.

The current work extends the use of alignment to the question of whether and

how the property of parallelism can be exploited to store those texts in a more space-

efficient way. In other words, we wish to find a way to compress the constituent

parallel sub-texts so that the result will demand less space than would be required

if they were compressed without exploiting their parallelism.

In the next section, we review some related work. Section 3 brings the suggested

algorithm and reports on preliminary experimental results. The last section suggests

future work.

2. Related work

Multilingual texts have been considered in the Information Retrieval literature,

where the challenge is to access information in one language while the query might

be given in another, see, e.g. [5]. Alignment of parallel texts has been used mainly

for machine translation, machine-aided translation and bilingual term extraction

[17]. Most algorithms for alignment are designed for bilingual texts only [9], but

some work has been done already for three languages as well [16]. However, the

state of the art for detailed alignment, even for two languages, is still far from

perfect. It is thus not surprising that works on more than two languages do not

exist, but a reasonable mapping for (A,B,C) can be synthesized given alignment

outputs for (A,B) and (A,C).

Most current detailed alignment techniques are based on one of the following

models: (a) IBM’s Model 2 [3], from which the word align algorithm [7] has been

derived; and (b) Hiemstra’s model [12], used both by Xerox’ system [10] and the

2

Linköping Word Aligner [1].

All these methods use some monolingual tools such as part-of-speech taggers,

lemmatizers and possibly parsers for phrase detection. Determining the lemma

(= base form) of each word is critical for the success of the alignment process,

especially when performed across languages from different groups [6]. When the

lemmatized versions of the texts are processed instead of the original versions, the

words within the induced bilingual glossary will naturally be all lemmata rather

than morphological variants.

The compression of similar texts has been considered in the vast research area

dealing with delta coding, see [4, 2]. The popular ZLIB tool is optimized to take

advantage of the similarity across the files, and some of its features are used also

in our algorithm. The compression of parallel texts is treated in [15], but without

using text alignment tools.

3. Compression of a text using its translation

3.1. Compression modeling

The following compression algorithm tries to take advantage of the fact that the

text being compressed is divisible into two parallel parts which are translations of

each other. Dictionary based compression algorithms use pointers to occurrences

of the same substrings either along the text, as in LZ77 [21] or within an auxiliary

dictionary, as in LZW [19]. The current algorithm, however, uses pointers to the

translations of the substring appearing in the parallel section of the text. The

original substrings may be easily retrieved through these pointers using a bilingual

glossary along with some other linguistic resources.

Pointing to another occurrence of a given substring within the same text some-

times requires a relatively large number of bits. That is because the closest occur-

rence of that substring can happen far back in history, which is why most imple-

mentations limit the size of the window in which a previous occurrence is to be

searched for. In contrast, translations of words or phrases within a parallel text, if

such exist, must appear in the corresponding translation unit, namely a sentence

or paragraph. Moreover, if no large omissions or insertions occur, the translation is

expected to be found within a very narrow text window, whose middle position is

computable using the given alignment. The encoding pointers can store the offset

of the translation from that alignment; these offsets are always very small and thus

may be encoded using only a few bits.

It is important to emphasize that the quality of the alignment does not have any

effect on the correctness of the compression algorithm. That is because the missing

words or word sequences are restored according to the same glossary by which the

alignment has been determined. It is expected that the compression rate would

not be affected either, as alignment algorithms make mistakes due to the consistent

appearance of the wrong translations in the corresponding text windows, even in

more probable positions. This means that the same sequence can be compressed at

3

least the same number of times using the erroneous translation and perhaps even

at a better cost.

The suggested algorithm assumes the following resources:

1. S, T : The source- and target-language texts, respectively, where T is a trans-

lation of S.

2. AS,T : A word- and phrase-level alignment of the text pair (S, T). Let si,l
denote the word sequence of length l within S beginning at the ith word.

Similarly, let tj,m denote the word sequence of length m within T beginning

at the jth word. AS,T consists of a set of connections of the form ⟨i, l, j,m⟩,
each of which indicating the fact that si,l and tj,m have been determined as

matching phrases. We assume that for any pair (j,m) there is at most one

connection of the form ⟨i, l, j,m⟩ within AS,T . From here and below, si and tj
stand for si,1 (the ith word of S) and tj,1 (the jth word of T), correspondingly.

3. S lem, T lem: Lemmatized forms of S and T . Let slem

i,l and tlemj,m denote the lemma

sequences corresponding to si,l and tj,m, respectively. That is the concate-

nations of the lemmata of si, si+1, . . . , si+l−1 and tj , tj+1, . . . , tj+l−1, corre-

spondingly.

4. LS : A lemmata dictionary. The entries of this dictionary are the words ap-

pearing in S. Each entry stores a list of all possible lemmata of the keyword,

sorted in descending order of frequency. Let LS(s) denote the lemma list

for the word s. For instance, if S is an English text, then LS(working) =

(work, working).

5. VT : A variant dictionary. The entries of this dictionary are the lemmata of all

words appearing in T . Each entry stores a list of all possible morphological

variants of the key lemma, sorted in descending order of frequency. Let VT (t)

denote the variant list for the lemma t. For example, if T is a French text,

then VT (normal) = (normal, normale, normaux, normales).

6. GS,T : A bilingual glossary corresponding to the text pair (S, T). The entries

of this glossary are source language lemma sequences. Each entry includes a

list of possible translations of the key sequence into target language sequences,

sorted in descending order of probability. The translations also appear in lem-

matized form. Let GS,T (s) denote the translation list of the source language

sequence s into the target language. For instance, if S and T are English and

French texts, correspondingly, then GS,T (mineral water) = (eau mineral).

Note that the word eau (water) in French is feminine, which requires a

feminine-form adjective, namely minerale, whereas the adjective mineral

is the masculine singular form, which is the corresponding lemma.

Let al(j) denote the expected position within S of the term corresponding to tj
in T , that is,

al(j) =

⌊
|S|
|T |

j +
1

2

⌋
.

4

compress target

j ←− 1

while j ≤ |T | do
found ←− false

for m ←− mmax downto 1 do

if ∃i, l such that ⟨i, l, j,m⟩ ∈ AS,T //⟨i, l, j,m⟩ is unique
diff ←− i− al(j)

if diff ≥ 0 then sign ←− 0

else sign ←− 1

offset ←− B(|diff|)
length ←− B(l − 1)

for n ←− 0 to l − 1 do

lemman ←− I(slem
i+n, LS(si+n))

trans ←− I(tlemj,m, GS,T (s
lem

i,l))

for n ←− 0 to m− 1 do

variantn ←− I(tj+n, VT (t
lem
j+n))

pointer ←− concatenation (1, offset, sign, length,
lemma0, . . . , lemmal−1, trans,

variant0, . . . , variantm−1)

output pointer
j ←− j +m

found ←− true
break

endif
end for

if not found

output concatenation (0, code(tj))
j ←− j + 1

endif
end while

Figure 1: Compression using a translated file

5

In other words, sal(j) is the source word parallel to tj if taking into account only

the proportion between the lengths of S and T . The accurate alignment may then

be expressed by the signed offset from sal(j). If a paragraph- or sentence-level

alignment is available, then S and T can be referred to as the current parallel units,

and the indices i and j are then relative to the beginnings of these units.

Token number S (English) T (French) Encoding

1 Subject Objet 1(0,ϵ,0,ϵ,6,0)

2 : : 0(c(:))

3 Supplies Livraisons 0(c(livraison),2)

4 of de 1(2,0,0,ϵ,1,0,0)

5 military matériel

6 equipment militaire 1(0,ϵ,0,ϵ,0,1)

7 to à 0(c(à),0)

8 Iraq l’ 0(c(le),2)

9 Irak 1(0,ϵ,0,ϵ,0,ϵ)

Figure 2: Example of compression of French text using its English parallel

The algorithm works as follows: beginning at the first position j = 1 within T ,

use AS,T to find the longest sequence tj,m having a corresponding sequence si,l in

S. If found, create a pointer to si,l by concatenating some binary encodings of the

following details:

1. i− al(j): Offset of si from al(j), including sign bit.

2. l − 1: Length of the source sequence minus 1. As l is always greater than 0,

l − 1 can be encoded.

3. Indices of slem
i . . . slem

i+l−1 within LS(si) . . . LS(si+l−1), respectively. If a single

lemma exists, then the empty string ϵ is used as index (no need for encoding).

4. Index of tlemj,m within GS,T (s
lem

i,l). As above, in the case of a single translation,

ϵ will be used.

5. Indices of tj . . . tj+m−1 within VT (t
lem
j) . . . VT (tj+m−1), correspondingly. Again,

ϵ is used in the case of singletons.

The pointer is then output with a 1-bit prefix. The next iteration will work for

j = j +m.

If no m is found such that ⟨i, l, j,m⟩ ∈ AS,T , an alternative encoding of tj is

written to the output stream preceded by a 0-bit, and j is incremented by 1. The

process continues while j ≤ |T |. We shall use some UD (Uniquely Decypherable)

code, e.g., a Huffman code, for all unaligned words in T . This code may be initially

generated for all words in T and then be improved when the counts of unaligned

6

words are known. Alternatively, the final code can be generated in advance following

a preliminary parsing stage.

As to the encoding of the pointer consisting of a sequence of generally very small

numbers, many of which are zeros, a simple solution would be to use an Elias γ-

code for each component. A more compact encoding can be achieved by devising a

Huffman code for the possible numbers, see the section on coding below.

Figure 1 displays the formal pseudo-code. B(x) denotes the variable length

binary encoding of x and I(x, y) denotes the variable length binary encoding of the

index of x within the dictionary entry y; if y contains only one item, I(x, y) = ϵ.

The decompression algorithm is straightforward. Note that it needs only the

dictionary files, as all relevant information included in the other files is encoded

within the compressed text itself.

Figure 2 gives an example of the algorithm’s output. The second and third

columns contain the English and French parallel texts, respectively. The fourth

column is a decimal representation of the binary encoding. The 0 to the left of

parentheses denotes the encoding of unaligned words, while a 1 indicates a pointer.

Numeric values within the parentheses are actually written to the binary output

as variable length binary numbers, for example, if a γ-code is used, the 6-tuple

(2, 0, 0, ϵ, 1, 0, 0) would be encoded as 1100|0|0||10|0|0 (10 bits).

As an example, we explain in detail the decoding of the fourth encoded token,

which is (2, 0, 0, ϵ, 1, 0, 0), assuming that the first three items have already been

decoded to Objet : Livraison. The current position (in terms of tokens) in the

file T is therefore 4, and in S, it is ⌊(8/9) × 4 + 1
2⌋ = 4, corresponding to the

word of. The first two numbers of the 6-tuple are retrieved: 2, 0 are translated

to +2, indicating the fact that the translation sequence is located two words to

the right of the current position in S, which brings us to the term equipment.

Adding 1 to the next value, 0, tells the decoder that it should relate to a 1-word

English sequence beginning (and ending) at the word equipment. Taking a look at

the entry equipment in the English lemmata dictionary (Len(equipment)) reveals

there is only one lemma for that word (the lemma equipment). Therefore, no bits

are needed in order to lemmatize it.

Now the decoder looks up the entry equipment within the bilingual glossary

(Gen,fr(equipment)) and finds the list le équipement, de matériel, équipe-

ment. Since several French translations exist, it reads the next value, 1, and retrieves

the corresponding translation (the second option), namely de matériel, so the

translation sequence is of length 2. Since both words in this sequence have more

than one variant, another two values are fetched in order to determine the exact form

of each. The variants list of the lemma de starts with de, des, d’, du. . . and that

of matériel starts with matériel, matériaux, matériels, matérielles, maté-

rielle. . . . The two last zeros in the sequence to be decoded indicate that the first

variant of each list should be taken, yielding finally the terms (not the lemmata) de

matériel as translation for equipment.

Note that this translation, if considered on its own and not within the larger

context of a bilingual corpus, is in fact quite wrong, since de matériel is a genitive

7

form rather corresponding to of equipment. This is an example for the fact that an

erroneous translation can still be useful in our case, if the error appears consistently.

3.2. Choosing the encoding

To understand the rational of the encoding decisions, consider Figure 3, listing

the first few output lines of the above algorithm applied to our test data.

1 0 0 0 0

0 :

0 organigramme 1

0 de 0

1 11 0 0 1 1 0

1 5 0 0 3 5 0

1 1 0 0 3 0

0 elle 0

0 :

1 9 0 0 0

0)

1 3 0 0 2 0

1 5 0 0 5 4 0 2

0 agent 0

1 7 0 0 1

1 10 0 0 0 3 0

0 dans 0

Figure 3: Output of translation algorithm

The first column is a flag indicating whether the element is a pointer or one

of the non-aligned words. If it is a word, it may be followed by a number, giving

the index of the requested variant in the list of alternatives for this lemma. If it

is a pointer, it starts with a number k, representing an offset, in number of words,

between some term positions as explained above. If k is not zero, it is followed by a

sign bit, encoded here by 0 or 1. The rest of the numbers in the pointers are indices

within sets of variants.

The encoding tries to take advantage of the fact that the distribution of the

elements in the different fields is not the same. In fact, three Huffman codes are

used:

1. H1 — for the different words in the lines labeled 0;

2. H2 — for the offsets (first numbers in lines labeled 1);

3. H3 — for all the indices appearing in both types of lines, words and pointers.

The first tree H1 is quite large, giving a codeword for each of the different non-

aligned words. As to H2, most of the offsets are small, and their distribution is

skewed, with a clear bias to the smaller numbers. The numbers encoded by H3

8

are usually even smaller, since for most sets, there are generally very few variants.

Moreover, since these variants are ordered by decreasing frequency, the first few

integers, especially 0, will appear with high probability. The reason for not using

the same Huffman tree for the last two classes, in spite of the fact that similar

elements are encoded, is that their distributions are different enough to justify two

trees, in particular because no ambiguity arises: there is only one element of H2

for each pointer line, so no special indicator is needed for the fact that the next

codeword is from H3.

There is no need to encode the sign field by some Huffman code. Once we know

that a pointer is encoded, the first codeword belongs to H2, and if it is decoded

as representing a number different from 0, we know that it is followed by a sign

bit, so the Huffman codeword is just followed by the sign bit itself. On the other

hand, the flag bit indicating if the current line is a word or a pointer, needs to be

encoded. Instead of wasting one bit for each line, it turned out, on our tests, to be

advantageous to adopt the following scheme: every new line is by default assumed

to represent a word, and the Huffman tree H1 is extended to accommodate also an

“Escape” word, which will be used at the beginning of every pointer line.

The encoding of H3 can further be improved by noticing that the probability of

the number 0 will be higher than 1
2 , suggesting, as in [8], to build a Huffman code

for a set of items consisting of (a) individual numbers appearing in the sequences

and (b) of runs of zeros of different lengths. The elements to be encoded by H3 are

therefore 0, 1, 2, . . . , Z2, Z3, . . ., where Zi stands for a run of i zeros.

As example, the first 5 lines of Figure 3 would be encoded by the sequence:

H1(ESC), H2(0), H3(Z3), H1(:), H1(organigramme), H3(1), H1(de), H3(0),

H1(ESC), H2(11), 0, H3(0), H3(1), H3(1), H3(0).

3.3. Results

The bilingual text used for evaluating the new algorithm comprises the English

and French versions of the European Union’s JOC corpus, a collection of pairs

of questions and answers on various topics. These texts, used on the ARCADE

alignment evaluation project [18], were supplied aligned at the question/answer

(paragraph) level. As the translation is rather precise, correct word- and phrase-

level alignments reside quite close to the linear alignment of each paragraph pair.

The automatic word- and phrase-level alignment as well as the bilingual glossary

were obtained using an extended version of the word align algorithm [7].

The English raw text has about 1,050,000 words, whereas the respective French

text consists of about 1,162,000 words. Table 1 brings the sizes of the compressed

French file (as a fraction of the original) for various compression schemes: Gzip,

based on LZ77, Bzip, based on the Burrows-Wheeler transform, Hword, a Huffman

code encoding each of the different words in the text as single items, and finally

Trans, the algorithm suggested in this work, based on the translation from the

English parallel.

The numbers do not include the sizes of the auxiliary files for Trans and

Hword, since in the scenario of a large multilingual information retrieval system,

9

dictionaries and glossaries are needed anyway and are not stored exclusively as an

aid for compression. However, even if those sizes are to be considered, it should

be kept in mind that, according to Heaps’ Law [11], the size of a dictionary for

a text of size n is expected to be αnβ , where 0.4 ≤ β ≤ 0.6. The total size of

the auxiliary dictionaries for the current evaluation corpus, compressed using Bzip

(rather than a dictionary-oriented compression scheme), is about 9% of the French

raw text. Should a 1GB corpus be compressed, then corresponding dictionaries

would comprise less than 0.9% of the original text. Obviously, specific dictionary

compression can further decrease that rate.

Full size Gzip Bzip Hword Trans

7551550 0.307 0.214 0.225 0.212

Table 1: Comparison of compression efficiency

As can be seen, Trans is better than Gzip, Hword and Bzip, even without

attempting to optimize the code further. Additional savings can be achieved by

using an improved alignment module, transforming a larger part of the file into

pointers rather than words, or by improving the encoding schemes. Consider, for

example, again the table in Figure 3. At first sight, having a variant number

associated with words like agent seems reasonable, as the word could also appear

in plural form agents, but getting such a number for a preposition like dans might

be surprising. A closer look however reveals that almost every word appears in at

least two forms: all lower case and capitalized (except, obviously, special words like

punctuation signs). This suggests the following strategy (not yet implemented).

Only one form of every word will be kept, using capitalization for proper nouns

and lower case for the other words. If a word appears at the beginning of a sentence

(follows a period or similar mark), it will be assumed to be capitalized. Exceptions,

which should be rare, are handled by adding a codeword for an Override, which

will be encoded as part of the Huffman tree H1 and will have the interpretation of

(a) being followed by another codeword w from H1; and (b) changing the case of

the first letter of the word represented by w. The Override will be used in case of

lower case proper nouns (like in email addresses) or capitalized other words in the

middle of a sentence. The effect of such a change will be to reduce the number of

variants, so that smaller numbers will be encoded, and in some cases, if the number

of variants is reduced to 1, no encoding at all is needed.

A significant improvement can be achieved if the compression scheme is altered

with the following one. The source text will be kept in lemmatized form, that is,

each word will be replaced by its lemma along with the suitable variant (inflection)

code. This is not expected to worsen the compression rate of the source text, as

lemmatization decreases the number of different strings, which results in a shorter

code for them. The savings should be much greater than the additional space

needed for the variant codes, as their variety is very low. This method has already

improved our results when we applied it to the unaligned target words, as described

10

above. Now, the lemmatization information, currently integrated into target-text

pointers, can be simply omitted.

Another optimization could be to compare, for each item, the number of bits

required to encode it with reference to its translation with the number of bits

needed for the corresponding word using a word based Huffman code, that is, it

might sometimes pay to consider a term that could be aligned as if it were unaligned.

The resulting hybrid algorithm improves on both the original form of Trans and

on Hword.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16 32 64 128

C
om

pr
es

si
on

 r
at

io

Number of documents per blockFigure 4: Compression performance as function of basic block size

Gzip and Bzip are adaptive methods and not really competitors for the appli-

cations treated here. The full decoding of the entire corpus is rarely needed, and

small sub-parts, such as a single question/answer document, should be accessible

individually. This is, however, not the case for adaptive methods, which require a

sequential scan from the beginning of the file, while methods like Trans and static

Huffman coding support selective access and decoding. One can, of course, encode

smaller parts of the file individually also by Gzip and Bzip, but compression will

deteriorate. Figure 4 shows the relative size of the compressed French file for the

various methods, as a function of the size of a basic block, which is supposed to be

encoded independently from the others. This size is expressed by the number of

consecutive question/answer documents in each block. For example, if each docu-

ment is compressed on its own, compression by Gzip and Bzip reduces the full file

only to 0.516 and 0.549, respectively, while Trans stays at 0.212. With increas-

ing block size, compression by the adaptive methods improves, but approaches the

performance of Trans only for very large blocks of more than 500 documents.

The ability of compressing small blocks without paying for it, is a good reason

to think of an efficient search method for compressed parallel texts, based on space-

efficient indices. The idea is to store a full index for the source text, while the

indices for the other versions will only include unaligned tokens. Keeping partial

11

indices is extremely beneficial for large IR systems, as the size of an index is linear

in the size of the respective text. A search within target texts will be done by

extending the search query using the translation dictionary. This extension will

be performed by extracting the source equivalents of the search words or phrases.

Then, a list of candidate blocks will be built using the source-text index. Knowing

the binary representation of the target text, it is possible to invalidate many of

those candidates by applying pattern-matching methods to the compressed text.

The remaining candidate blocks will be decoded to verify the match. However, as

block sizes are very small, this process should be quite rapid. Note also that the

processing of various sub-queries as well as candidate elimination and verification

can be done in parallel.

4. Conclusion and Future Work

The existence of the same text in several languages can be used to improve

the compression of a multilingual system. We have presented preliminary tests for

two languages, achieving a good performance. By fine tuning the encoding, the

compression results may be improved.

We intend to test our method on much larger parallel corpora of various lan-

guages, in order to obtain more reliable and generic results. We plan to explore also

the possibility of bidirectional bilingual compression, where pointers can refer both

from S to T and vice versa, which could lead to improvements, since phrases may

have different lengths in different languages. A further topic to be treated is search-

ing the compressed bilingual text using efficient indexing and pattern matching in

the compressed text.

And last, but not least: we would like to seek for a generic model for k languages,

which would be not just a trivial extension of the bilingual model, but would rather

take advantage of the even greater redundancy existing in a multilingual text.

Acknowledgements: This work has been supported in part by Grant 25915 of the Israeli

Ministry of Industry and Commerce (Magnet Consortium Kite). The first author also

wishes to express his gratitude for the support by a grant from Globes, the Israeli business

daily.

References

1. Ahrenberg, L., Andersson, M., and Merkel, M. A knowledge-lite approach to word

alignment. In J. Véronis, editor, Parallel Text Processing, pages 97–116. Kluwer

Academic Publishers, Dordrecht, 2000.

2. Ajtai, M., Burns, R. C., Fagin, R., and Long, D. D. E. Compactly encoding un-

structured inputs with differential compression. Journal of the ACM, 49(3):318–367,

2002.

3. Brown, P. F., Della Pietra, S., Della Pietra, V. J., and Mercer, R. L. The math-

ematics of statistical machine translation: parameter estimation. Computational

Linguistics, 19(2):263–311, 1993.

4. Burns, R. C. and Long, D. D. E. Efficient distributed backup and restore with delta

compression. In Workshop on I/O in Parallel and Distributed Systems (IOPADS).

12

ACM, 1997.

5. Carbonell, J. G., Yang, Y., Frederking, R. E., Brown, R. D., Geng, Y., and Lee,

D. Translingual information retrieval : A comparative evaluation. In Proc. IJCAI,

pages 708–715, 1997.

6. Choueka, Y., Conley, E. S., and Dagan, I. A comprehensive bilingual word alignment

system : Application to disparate languages: Hebrew and english. In J. Véronis, edi-

tor, Parallel Text Processing, pages 69–96. Kluwer Academic Publishers, Dordrecht,

2000.

7. Dagan, I., Church, K. W., and Gale, W. A. Robust bilingual word alignment for

machine-aided translation. In Proc. of the Workshop on Very Large Corpora: Aca-

demic and Industrial Perspectives, pages 1–8, Columbus, Ohio, 1993.

8. Fraenkel, A. S. and Klein, S. T. Novel compression of sparse bit-strings. In Apos-

tolico, A. and Galil, Z., editors, Combinatorial Algorithms on Words, volume F12

of NATO ASI Series, pages 169–183. Springer Verlag, Berlin, 1985.

9. Gale, W. A. and Church, K. W. A program for aligning sentences in bilingual

corpora. Computational Linguistics, 19(3):75–102, 1993.

10. Gaussier, É., Hull, D., and Aı̈t-Mokhtar, S. Term alignment in use : Machine-aided

human translation. In J. Véronis, editor, Parallel Text Processing, pages 253–274.

Kluwer Academic Publishers, Dordrecht, 2000.

11. J. Heaps. Information Retrieval : Computational and Theoretical Aspects. Aca-

demic Press, Inc., New York, NY, 1978.

12. D. Hiemstra. Using statistical methods to create a bilingual dictionary. Master’s

thesis, Universiteit Twente, 1996.

13. S. T. Klein. Techniques and applications of data compression in information re-

trieval systems. In C. Leondes, editor, Database and Data Communication Network

Systems, volume 2, chapter 16, pages 573–633. Elsevier Science, San Diego, CA,

2002.

14. Moffat, A. and Zobel, J. Adding compression to a full-text retrieval system. Software

— Practice & Experience, 25(8):891–903, 1995.

15. Nevill, C. and Bell, T. Compression of parallel texts. Information Processing &

Management, 28:781–793, 1992.

16. M. Simard. Translation-text alignment: Three languages are better than two. In

Proc. of the Joint SIGDAT Conference on Empirical Methods in Natural Language

Processing and Very Large Corpora, pages 2–11, June 1999.

17. J. Véronis, editor. Parallel Text Processing. Kluwer Academic Publishers, Dor-

drecht, 2000.

18. Véronis, J. and Langlais, P. Evaluation of parallel text alignment systems: The

arcade project. In J. Véronis, editor, Parallel Text Processing, pages 369–388.

Kluwer Academic Publishers, Dordrecht, 2000.

19. T. A. Welch. A technique for high-performance data compression. IEEE Computer,

17:8–19, June 1984.

20. Witten, I. H., Moffat, A., and Bell, T. C. Managing Gigabytes: Compressing and

Indexing Documents and Images. Van Nostrand Reinhold, New York, 1994.

21. Ziv, J. and Lempel, A. A universal algorithm for sequential data compression. IEEE

Trans. on Inf. Th., IT–23:337–343, 1977.

13

