
Should one always use Repeated Squaring

for Modular Exponentiation?

Shmuel T. Klein
Department of Computer Science

Bar Ilan University, Ramat-Gan 52900, Israel

Tel: (972–3) 531 8865 Fax: (972–3) 736 0498

tomi@cs.biu.ac.il

Abstract: Modular exponentiation is a frequent task, in particular for many cryptographic

applications. To accelerate modular exponentiation for very large integers one may use repeated

squaring, which is based on representing the exponent in the standard binary numeration system.

We show here that for certain applications, replacing the standard system by one based on

Fibonacci numbers may yield a new line of time / space tradeoffs.

Keywords: Design of algorithms, modular exponentiation, Fibonacci number system, cryptog-

raphy

1. Introduction

Modular exponentiation is defined as the task of raising a number a to a power m and
considering the result modulo some integer N . This is a frequent and time consuming
operation, and has many applications, in particular in cryptography. In a typical setting, a,
m and N are large integers, say of the order of 21024, so it is not feasible to calculate am mod
N by using m − 1 multiplications, each followed by a modulo operation. The standard
solution to this problem is using repeated squaring and appears in many handbooks on
algorithms, such as [4, 2, 8] to cite just a few.

To improve readability, we shall not always explicitly mention that the multiplications
are to be taken modulo N , which is fixed throughout the paper. Note that instead of
calculating

a8 = a× a× a× · · · × a
︸ ︷︷ ︸

8 factors

,

the number of multiplications can be reduced by repeatedly squaring the results:

a8 =
((

a2
)2
)2

.

If m is not a power of two, it can be expressed as a sum of such powers, giving, for example,
a12 = a8 × a4. For the general case, consider the standard binary representation of m as a

sum of powers of 2, that is m =
∑⌊log2 m⌋

i=0 bi2
i, where each bi ∈ {0, 1}. Then

am = ab0 × a2b1 × a4b2 × · · · × a2ibi × · · · .

The procedure is thus as follows: prepare a list of basis items a, a2, . . . , a2i

, . . . where each
element is obtained by taking its predecessor in the list, squaring it, and reducing the

– 1 –

result modulo N ; then take the subset of this list corresponding to the 1-bits in the binary
representation of m and multiply the elements of this subset. Denoting the number of
1-bits in the binary representation of m by h(m), the number of multiplications is thus
⌊log2 m⌋+ h(m)− 1.

This is not necessarily the minimum number of required multiplications. For example,
for m = 15, ⌊log2 m⌋+h(m)−1 = 6, but a15 can be evaluated in 5 operations, calculating
first d = a5 = (a2)2 × a in 3 multiplications, and then a15 = d3 = d2 × d in two more
multiplications; see Knuth [10, Section 4.6.3] for an investigation of the function l(m),
giving the smallest number of multiplications necessary to calculate am. We are, however,
not interested in finding the minimum number for each given exponent m, but are rather
looking for a general algorithm, giving good average performance when applied with a
large number of possible values m. Repeated squaring is one such algorithm, and the
point of this work is to show that for certain applications, a different general evaluation
procedure might be preferable.

2. Alternatives to repeated squaring

2.1 Standard k-ary number system

As mentioned above, the standard evaluation algorithm is based on representing the ex-

ponent m in the standard binary number system as m =
∑⌊log2 m⌋

i=0 bi2
i, with bi ∈ {0, 1},

yielding ⌊log2 m⌋ + h(m) − 1 multiplications. The first term can be reduced to ⌊logk m⌋
for k > 2, if one uses the standard k-ary number system in which one can represent m as

m =
∑⌊logk m⌋

i=0 cik
i, with ci ∈ {0, 1, . . . , k−1}. However, the basis elements aki+1

cannot be
anymore evaluated by a single multiplication from preceding basis elements:

aki+1

= aki·k =
(

aki
)k

,

so for k = 2, only one multiplication is needed (this is squaring), but for k = 3, one needs
two multiplication, for k = 4 also two multiplications are sufficient (squaring twice), etc.

mult per # basis # mult avg # avg # total # total
k basis elmt elements for all mult per mult for mult mult

l(k) (digits) basis elmts digit all digits Horner

2 1 1.000 1.000 1/2 0.500 1.500 1.500
3 2 0.631 1.262 1 0.631 1.893 1.682
4 2 0.500 1.000 6/4 0.750 1.750 1.375
5 3 0.431 1.292 9/5 0.775 2.067 1.637
6 3 0.387 1.161 13/6 0.838 1.999 1.483
7 4 0.356 1.425 17/7 0.865 2.299 1.730
8 3 0.333 1.000 22/8 0.917 1.917 1.292
9 4 0.316 1.262 26/9 0.911 2.173 1.542

Table 1: Number of multiplications for the standard k-ary system

– 2 –

Table 1 presents the relevant data for k = 2, . . . , 9. The second column gives the
number l(k) of required operations for the calculation of each basis element. The number
of necessary basis elements is the number of k-ary digits, which is logk N , where N is the
modulus mentioned above, and this is normalized in the third column, which gives the
number of basis elements in units of log2 N . The fourth column is the total number of
multiplications needed for all the basis elements, again in units of log2 N .

After having evaluated the basis elements, the members of a selected subset of them

have to be multiplied. If m =
∑⌊logk m⌋

i=0 cik
i, the basis element aki

is raised to power ci in
l(ci) multiplications if ci > 0, and one more multiplication is needed per basis element with
ci > 0 to get the final product. Assuming that the exponent m is chosen at random, each
of the digits 0, 1, . . . , k − 1 appears in each position with probability 1/k. The expected
number of multiplications for a given digit is thus 1

k

∑k−1
i=1 (l(i) + 1), and these values

appear in the fifth column of Table 1. The sixth column is then the average number of
multiplications taking all the digits into account, and the seventh column, headed total #

mult, is the total sum of operations for both the basis elements and the product of the
elements of the subset, again in units of log2 N . One sees that though interestingly, the
total number of multiplications is not monotonically increasing with the order k of the
number system, the minimum is still reached for the binary case k = 2, so among these
alternatives, binary squaring still seems to be the best choice.

There are nevertheless options to reduce the number of required multiplication [9].
The so-called k-ary method uses precomputed values a2, a3, . . . , ak−1 and Horner’s rule as
follows. Setting r(k) = ⌊logk m⌋, the equation for the representation of m in basis k can
be rewritten as

m =
r(k)
∑

i=0

cik
i = c0 + k(c1 + k(c2 + · · ·+ k(cr(k)−1 + kcr(k)) · · ·)).

This suggests that am can be evaluated iteratively as follows, working from the innermost
parentheses outwards:

precompute A[j]←− aj for j = 1, 2, . . . , k − 1
R←− 1
for i←− r(k) to 0 by -1

R←− Rk

if ci > 0 then R←− R× A[ci]

The expected number of multiplications in each iteration for a randomly chosen m is
l(k)+(k−1)/k, as l(k) operations are necessary to raise R to the kth power and one more
to multiply with A[ci], but ci will be zero with probability 1/k. The last column of Table 1
displays the total number of required multiplications in units of log2 N . As can be seen, it
is possible to get better values than the 1.5 needed for k = 2, in particular for values of k
that are powers of 2, for which raising to the power k is done by log2 k repeated squarings.

In fact, the k-ary method for k = 2s can be interpreted as processing the standard
binary representation of m by consecutive windows of s bits in each iteration, and the
savings relative to the original method with k = 2 are due to the fact that the set of
possible values in each s-bit window, {0, 1, . . . , 2s − 1}, is fixed relative to the size log2 N

– 3 –

of m. This can be generalized to what is known as the window method , which achieves even
greater savings for certain exponents, when there are long runs of zeros in the standard
binary representation of m. The idea is to evaluate the exponentiation as above by windows
of limited size, but not to restrict the windows to be adjacent, so that stretches of zeros
may be skipped. For example, if m = 10100000001101000 in binary, where the chosen

windows are underlined, then one could evaluate am =
(

(a5)27 × a13
)23

. However, for our
assumption of a random exponent m, the expected length of a run of zeros is just 1, so
that the windows method does not yield any additional savings over the k-ary method.

2.2 Fibonacci k-ary number system

To improve processing time, the above methods tried to shorten the representation of the
exponent m. A complementing approach may suggest to try alternative representations
which might be longer than the log2 N bits needed for the standard binary form, but pos-
sibly sparser. Indeed, such representations do exist, and they use the Fibonacci sequence
as basis elements instead of the sequence of powers of 2 [7].

Fibonacci numbers of order k ≥ 2, denoted by F (k)
n , are defined by the following

recurrence relation:

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for n > 0,

and the boundary conditions

F
(k)
0 = 1 and F (k)

n = 0 for − k < n < 0. (1)

Let us first consider the standard Fibonacci numbers of order 2, and use Fn as shortcut
for F (2)

n .

Any integer B can be represented by a binary string crcr−1 · · · c2c1 of length r such
that B =

∑r
i=1 ciFi. This can be seen from the following procedure producing such a

representation: given the integer B, find the largest Fibonacci number Fr smaller or equal
to B; then continue recursively with B−Fr. For example, 45 = 34+8+3 = F8 +F5 +F3,
so its binary Fibonacci representation would be 10010100. Moreover, the use of the largest

possible Fibonacci number in each iteration implies the uniqueness of this representation.
Note that as a result of this encoding procedure, there are never consecutive Fibonacci
numbers in any of these sums, implying that in the corresponding binary representation,
there are no adjacent 1s. Similarly, in the binary representations corresponding to the
system based on {F (k)

n }, there are no k consecutive 1s.

The average number of multiplications being composed of the number of bits plus the
average number of 1-bits, we need to evaluate these numbers for k-order Fibonacci codes.

2.2.1 Length of k-ary Fibonacci representation

For fixed order k, F (k)
n can be represented as a linear combination of the nth powers of the

k roots of the corresponding polynomial P (k) = xk − xk−1 − · · · − x − 1. P (k) has only
one real root that is larger than 1, which we shall denote by φ(k), the other k− 1 roots are

– 4 –

complex numbers with norm < 1 (for k = 2, the second root is also real and its absolute
value is < 1) [1]. Therefore, when representing F (k)

n as such a linear combination, the
term with φn

(k) will be the dominant one, and the others will rapidly become negligible for
increasing n. It follows that the number of bits needed to represent the integer N in the
k-ary Fibonacci representation is about logφ(k)

N = (1/ log2(φ(k))) log2 N . The values of

φ(k) and 1/ log2(φ(k)) for k = 2, . . . , 6 are given in the second and third columns of Table 2
below. The last line of the table is the limiting value as k −→ ∞, which is equivalent to
the standard binary system based on powers of 2.

2.2.2 Density of 1-bits in the Fibonacci representation

To evaluate the average number of 1-bits, we shall assume that for each given length r
of the representation of the exponent m, all the possible values of m appear with equal
probability. For the standard binary numeration system based on the powers of 2, the
probability of a 1-bit is then 1

2
. For the Fibonacci representations, the appearance of a

1 is more restricted, e.g. for k = 2, a 1 in a given bit position implies that the adjacent
positions hold zeros.

Let us first restrict ourselves to the standard Fibonacci case k = 2, and refer to the
binary strings representing numbers in the 2-ary Fibonacci number system as F -strings.
Thus 100 is an F -string, but 110 is not. Define Tr as the number of different F -strings of
length r, and Qr as the total number of 1’s in all the F -strings of length r, r ≥ 0. We thus
have T0 = Q0 = 0, T1 = 2, Q1 = 1, T2 = 3 and Q2 = 2, and the set of F -strings of length
3 being {000, 001, 010, 100, 101}, we get T3 = 5 and Q3 = 5. In general, one gets

Tr = Tr−1 + Tr−2,

since the F -strings of length r can be generated by either prefixing an F -string of length
r − 1 by 0, or by prefixing an F -string of length r − 2 by 10. The Tr are thus Fibonacci
numbers, and according to the boundary conditions defined in eq. (1), Tr = Fr+1 for r ≥ 1.
Similarly, the general recurrence for Qr is

Qr = Qr−1 + Qr−2 + Tr−2 :

we again split the set of F -strings of length r into those with leading 0 and those with
leading 10; removing these leading bits, we are left in the former set with F -strings of
length r − 1, which contribute Qr−1 1-bits, and in the latter set with Tr−2 F -strings of
length r − 2, which contribute Qr−2 1-bits, to which the Tr−2 1’s in the removed prefixes
of the form 10 have to be added. By repeatedly applying the resulting recurrence for Qr,
one gets

Qr = Qr−1 + Qr−2 + Fr−1

= 2 Qr−2 + Qr−3 + Fr−1 + Fr−2

= 3 Qr−3 + 2 Qr−4 + Fr−1 + Fr−2 + 2 Fr−3

= 5 Qr−4 + 3 Qr−5 + Fr−1 + Fr−2 + 2 Fr−3 + 3 Fr−4.

The last equation can be rewritten as

Qr = F4 Qr−4 + F3 Qr−5 + F0 Fr−1 + F1 Fr−2 + F2 Fr−3 + F3 Fr−4,

– 5 –

which can be generalized to

Qr = Fℓ Qr−ℓ + Fℓ−1 Qr−ℓ−1 +
ℓ∑

j=1

Fj−1 Fr−j.

Substituting ℓ = r − 1, this yields

Qr = Fr−1 Q1 + Fr−2 Q0 +
r−1∑

j=1

Fj−1 Fr−j

= Fr−1 Q1 + Fr−2 Q0 +
r∑

j=1

Fj−1 Fr−j − Fr−1F0

=
1

5
[(r + 1)Lr+1 − Fr] ,

where Lr is the r-th Lucas number, and we have used a well known formula for the
convolution of Fibonacci numbers, see, e.g., [5, Formula A3.55].

To evaluate the density of 1-bits in the Fibonacci representation, we divide the number
of 1-bits by the total number of bits, both limited to F -strings of length r, to get

Qr

r Tr

=
1
5
[(r + 1)Lr+1 − Fr]

r Fr+1
.

We are interested in the limiting value as r →∞, so one can use Fr ≈ 1√
5
φr+1 and Lr ≈ φr

as approximations to Fibonacci and Lucas numbers (see, e.g., [5, Formulas A3.71–72]),

where φ = φ(2) = 1+
√

5
2

is the golden ratio. This gives

Qr

r Tr

=
1

5

(

1 +
1

r

)
φr+1

1√
5
φr+2

− 1

5r

1

φ

−→ 1

5

√
5

φ
=

1√
5

(

2

1 +
√

5

)

=
1

2

(

1− 1√
5

)

= 0.276393

as r tends to infinity.

2.2.3 Usefulness of the Fibonacci representation for modular exponentiation

The density of 1-bits in the Fibonacci representation with k = 2 is thus surprisingly low,
only slightly more than a quarter of the bits are 1’s, and even taking into account that the
representation itself is about 44% longer than for the standard binary system, the expected
number of 1-bits for representing an integer N will be only 1.4404 × 0.2764 log2 N =
0.398 log2 N , which is more than 20% smaller than for the standard system. The fourth
and fifth columns of Table 2 give, for k ≥ 2, the probability for a given bit-position
to hold a 1, and the coefficient of log2 N of the expected number of 1-bits in the k-ary
Fibonacci representation of the integer N . The probabilities for k > 2 have been evaluated
numerically.

Recall that the operations needed to evaluate the modular exponentiation am mod N
could be split into two classes: the generation of basis elements, the number of which

– 6 –

prob. of avg # total #
k φ(k) # bits a 1-bit of 1-bits of mult

(× log2 N) (× log2 N) (× log2 N)

2 1.6180 1.4404 0.276 0.398 1.839
3 1.8393 1.1375 0.382 0.434 2.709
4 1.9276 1.0562 0.434 0.458 3.627
5 1.9660 1.0254 0.462 0.474 4.575
6 1.9836 1.0120 0.478 0.484 5.544
∞ 2 1 0.5 0.5 1.5

Table 2: Number of multiplications for the k-ary Fibonacci number systems

equals the number of bits in the representation of N , and the multiplications of a selected
subset of these basis elements, the size of this subset being the number of 1-bits in the
representation of m. For each basis element, a single operation is needed for k = 2, as

aFi+1 = aFi × aFi−1 ,

so the element is not obtained by squaring the preceding one, but rather by multiplying the
two preceding ones. But similarly to the case of the standard k-ary numeration systems,
for k > 2, a single operation is not sufficient to generate a basis element, and in fact,
k − 1 multiplications are needed. The last column of Table 2 gives the total sum for both
calculating the basis elements and then multiplying some of them, again in units of log2 N .

Because of the high price to be paid for evaluating the basis elements for k > 2, the
total number of required operations is strictly increasing with k, and the minimum is thus
reached for k = 2 with 1.84 log2 N , which is about 23% more than for the standard binary
system based on powers of two. It thus seems that repeated squaring can not be beaten
by changing the representation of the integers.

The surprising part is, however, the fact that once the basis elements are given, the
average number of such elements to be multiplied is smaller for the Fibonacci representa-
tions than for the standard binary system, with a minimum at k = 2, as given in the fifth
column (in boldface). This corresponds to a scenario in which modular exponentiation
am mod N is repeatedly requested with constant a and N , but for many different expo-
nents m. In that case, the basis elements aF1 , aF2, . . . , a

F⌊logφ N⌋ , are evaluated only once
and stored in an array A, and the operations required for calculating am mod N , for each
m, are:

1. represent m by the F -string cr · · · c2c1 in the Fibonacci system with k = 2;

2. multiply the elements of A whose indices correspond to the 1-bits in cr · · · c2c1.

The time needed for generating the basis elements is therefore not accounted for, as it
can be amortized over a potentially unlimited number of evaluations of am mod N . The
time required for step 1. involves the conversion of a number m from the standard to the
Fibonacci representation. This can be done by the above mentioned iterative procedure
using logφ(2)

m subtractions, but since subtractions and multiplications require times of

different orders of magnitudes, the dominant part of the time complexity is that of step 2.

– 7 –

Other variants of storing precomputed values have been suggested to accelerate ex-
ponentiation [3, 11], and the Fibonacci approach gives another line of time / storage
tradeoffs. Figure 1 plots the number of multiplications against the corresponding number
of elements that are stored, both in units of log2 N , for the Fibonacci approach and two
k-ary methods using precomputed values. In the Partial precomputation method, the
elements stored are ak, ak2

, . . . , aklogk N

, and each element is raised to a power i, 0 ≤ i < k
in l(i) multiplications. The corresponding values appear in Table 1, where the number of
elements appears in the third column (in italics), and the number of multiplications in the
sixth column (in boldface); the corresponding points on the plot are labeled P2, P3, etc.
The Full precomputation method stores, in addition to the above basis elements, also all
their required powers, that is, aikj

, for 1 ≤ i < k and 1 ≤ j ≤ logk N . The space is thus
(k − 1) logk N , but only one multiplication is needed for each of the logk N terms. The
values are listed in Table 3 and the corresponding points on the plot are F2, F3, etc.

stored avg

k elements mult

2 1.000 0.500

3 1.262 0.421

4 1.500 0.375

5 1.723 0.345

6 1.934 0.322

7 2.137 0.305

8 2.333 0.292

9 2.524 0.280

Table 3: Full storage
method

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.3 0.4 0.5 0.6 0.7 0.8

S
to

ra
ge

 o
ve

rh
ea

d

Number of multiplications

F6

F5

F4

F3

Fib2

Fib3

Fib4 Fib5 Fib6
F2 = P2 = Fib-inf

P3

P4

P5

k-ary, Full precomputing
Fibonacci

k-ary, Partial precomputing
x = 0.5
y = 1.0

Figure 1: Plot of time / space tradeoffs

The space and time values for the Fibonacci variants of order k appear in Table 2, in
the third (italics) and fifth (boldface) columns, respectively, and the points on the plot
are labeled Fibk. The curves for both standard k-ary methods have their origin at the
same point (0.5,1) and progress in opposite directions with increasing k. The Fibonacci
variants yield another kind of tradeoffs, originating for k = 2 at the point (0.398,1.44) and
asymptotically approaching, for k → ∞, the point (0.5,1) which was the origin for the
other methods.

3. Conclusion

While modular exponentiation is usually performed using repeated squaring or its general-
izations to standard k-ary methods, this work suggests that non-standard representations,
such as those based on Fibonacci numbers, may yield new time / space tradeoffs, which
can be advantageous in certain applications.

Examples of possible applications where a and N are fixed, and am mod N is to be
evaluated for many different m, include cryptographic protocols based on the discrete
logarithm and El-Gamal [6] encryption and signature schemes.

– 8 –

References

[1] Apostolico A., Fraenkel A.S., Robust transmission of unbounded strings using
Fibonacci representations, IEEE Trans. Inform. Theory 33 (1987) 238–245.

[2] Brassard G., Bratley P., Fundamentals of Algorithmics, Prentice Hall, Engle-
wood Cliffs, NJ (1996).

[3] Brickell E.F., Gordon D.M., McCurley K.S., Wilson D., Fast exponenti-
ation with precomputation, Proc. Eurocrypt’92 , LNCS 658, Springer Verlag (1992)
200–207.

[4] Cormen T.H., Leiserson C.E., Rivest R.L., Introduction to Algorithms, MIT
Press, Cambridge (1990).

[5] Dunlap R.A., The Golden Ratio and Fibonacci Numbers, World Scientific Pub-
lishing, Singapore (1997).

[6] El Gamal T., A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. on Inf. Th. IT–31 (1985) 469–472.

[7] Fraenkel A.S., Klein S.T., Robust Universal Complete Codes for Transmission
and Compression, Discrete Applied Mathematics 64 (1996) 31–55.

[8] Goodrich M.T., Tamassia R., Algorithm Design: Foundations, Analysis, and

Internet Examples, John Wiley & Sons, Inc., New York, NY (2002).

[9] Gordon D.M., A survey of fast exponentiation methods, Journal of Algorithms

27(1) (1998) 129–146.

[10] Knuth D.E., The Art of Computer Programming, Vol. II, Semi-Numerical Algo-

rithms, Addison-Wesley, Reading, MA (1973).

[11] Lim C.H., Lee P.J., More flexible exponentiation with precomputation, Proc.

Crypto’ 94, LNCS 839, Springer Verlag (1994) 95–107.

– 9 –

