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Abstract: Many of the most effective compression methods involve complicated models. Un-
fortunately, as model complexity increases, so does the cost of storing the model itself. This
paper examines a method to reduce the amount of storage needed to represent a Markov
model with an extended alphabet, by applying a clustering scheme that brings together sim-
ilar states. Experiments run on a variety of large natural language texts show that much of
the overhead of storing the model can be saved at the cost of a very small loss of compression
efficiency.



1. Introduction

Text compression is one of the great successes of Information Theory. Simple, but effective,
approaches for compressing text, for example, Huffman’s classical paper (Huffman, 1952),
appeared shortly after the theory itself (Shannon, 1948). Since then, compression effectiveness
has come increasingly closer to what we believe to be the limiting value. However, each

improvement in effectiveness has involved a growth in complexity.

Modern data compression is strongly model oriented (Rissanen, & Langdon, 1981). The
approach generally taken is first to create a model giving the probability of occurrence, within
a given context, of a data unit; then to use this probability to encode the unit. The increased
complexity of techniques is typically due to the use of larger models. But the model must
itself be part of the encoded file for the decoder to work. Unfortunately, a large model may

itself be very expensive to store.

We can avoid transmitting the model by using adaptive methods. Some of the most
efficient compression techniques are adaptive, for example many of the popular schemes, like
zip, arj, DoubleSpace, and others. However, for certain applications, e.g. for Information
Retrieval (IR) systems, adaptive methods are not always adequate, even when they yield
better compression. For, in IR, it is rarely required to decompress the full database; rather,
a (possibly large) number of excerpts is retrieved in response to a query. Even should larger
blocks of text be required, their sizes will mostly be only a tiny fraction of the full text
available. Thus short pieces of the text or concordance are decompressed on demand, and
these must be accessed at random by means of pointers to their exact locations. This limits
the value of adaptive methods based on tables that systematically change from the beginning

to the end of the file.

There are also efficiency reasons that may favor a non-adaptive approach. For example,
compression and decompression are not symmetrical tasks in an IR environment. Compression
is generally done only once, while building the retrieval system. Decompression, on the other
hand, occurs very often. Thus it is realistic to use a technique that is costly in time at the
compression stage, provided decompression is fast. Non-adaptive methods, while costly at
the compression stage, can be very fast for decompression. In this paper, we concentrate on

non-adaptive (sometimes called static) compression schemes.



In Bookstein & Klein (1990), text was compressed by creating a simple, first-order Markov
model of character generation. Such a model is commonly used for this purpose (see for exam-
ple, Bell, Cleary, & Witten, 1990), although it is recognized to be an imperfect representation
of how text is actually produced. The most common way to improve the performance of
a Markov model is by increasing the number of states: for example, we can use higher, or
even variable, size contexts (see for example, Cleary & Witten, 1984). In Bookstein & Klein
(1990), we took a different approach, which we believed would be simpler, and which in fact
turned out to be very effective. Instead of creating larger contexts, we used the Markov model
itself to identify the strings for which the model worked badly, and incorporated these strings
into the alphabet — to avoid confusion, below we shall use the term symbol to refer to el-
ements from the extended alphabet, including both the elementary characters of the initial
alphabet and the strings of these characters used to extend that alphabet. That is, instead of
changing the state space to include more context, we changed the alphabet and maintained a
single symbol history. Since the instances where the initial model performed badly were now
in the extended alphabet, the simple Markov model was a better approximation of the text

generation process.

This approach retains the simplicity of simple Markov models, but at a cost. The alphabet
size can be greatly increased, which means that communicating the model is itself a serious
cost. This is most obvious if every codeword is stored explicitly for each context. But for
Huffman codes it is not necessary to give the set of codewords explicitly: a canonical code
can be easily created if one stores only the sequence of elements to be encoded, ordered by
frequency, and the optimal lengths of the codewords (see Bookstein & Klein, 1993; Witten,
Moffat & Bell, 1994). However, the amount of storage needed for a first order Markov model

on an alphabet of size n is still' ©(n?), since n codes of up to n elements each have to be kept.

The large size of the model can have serious repercussions. For example, it may make
the processing impractical: during compression and decompression, it is convenient to keep
the model in RAM. Even a moderately large model may be too large to store in RAM. Such
considerations make it useful to search for techniques that reduce model size, and which might

make the difference in whether the model can be used.

!'When expressing asymptotic behavior, we use the standard notations O, Q and # to denote, respectively,
upper bounds, lower bounds and exact order of magnitude. The formal definitions of these notations may be

found in most textbooks on algorithms (for example, Corman, Leiserson & Rivest, 1990).



In this paper, we show that we can reduce much of the model cost with little loss in com-
pression by grouping states. Initially, each scanned symbol defines a state, and the following
symbol is assigned a codeword dependent on that state. But suppose we now assign a number
of symbols to a single state, and create a shared set of codewords for each such state. When
we scan a symbol, we enter the state associated with that symbol, and encode the following
symbol accordingly. This strategy inverts that of Cormack (1985), who begins with a single
state, and breaks this into clusters to improve compression. Cormack, however, chooses a
small number of states, which he is able to do very effectively manually. We anticipate having

a very large number of states and require an approach that can be automated.

Given an effective model reducing technique, it may well be useful first to expand the al-
phabet to substantially improve overall compression, then introduce a model reduction method
that allows the model to be stored in RAM. Such an approach can be attractive even if it
surrenders some of the compression benefit of expanding the alphabet; here we consider the

size of the combined file and model, as stored in a header.

It is intriguing to consider the possibility, however, that the reduction in model size might
more than compensate for the loss in compression efficiency, resulting in an overall compression
advantage. To illustrate this point, consider the impact on a hypothetical 100 megabyte
predominantly textual database. Suppose, instead of the standard alphabet of 128 ASCII
characters, our methods achieve their best compression if we introduce strings (including

words and phrases) into the alphabet, thereby creating an extended alphabet of size 1500.

It is not unreasonable to expect this to reduce the file to, say, 30 megabytes. However,
instead of storing the 16,384 elements for a simple Markov model with 128 characters, we
would, for an alphabet of size 1500, have to store information for 2,250,000 elements; if each
of these requires 4 bytes of data, this would involve a header of nine megabytes. Thus the
header would increase the compressed file size by about 30 percent. Such an increase in the
space-complexity of the model could well eliminate a good part of the storage saved by the

new technique.

Suppose we now reduce the model size by clustering the alphabet. We still need n code-
words for each state, but if we have relatively few states as compared to symbols, then we
greatly save on the cost of storing the model. But we then deteriorate compression effective-

ness, since we are not using optimal codewords. We would like to group states into clusters



in a manner that minimizes this cost. For the example cited above, if we reduce the number
states from 1500 to 150, we reduce the header size to about one megabyte, saving about 25%
of the combined file-header size; if this can be done with a minimal decrease in compression
efficiency, then optimal clustering offers an interesting strategy for improving compression by
radically increasing the alphabet size. Here, overall compression is improved so long as the
compressed file increases by less than 9 megabytes—that is, provided the compression ratio,

initially 30%, remains better than 39%, a criterion we believe easily obtainable.

In summary, we believe the clustering of states has at least two advantages in compression.
As discussed at length above, it may make it practical to use huge alphabets as a strategy
for compressing very large databases. But also, reducing the model size may be useful even
for smaller alphabets, by allowing the model to be stored in limited RAM during processing.

This would be true even if the overall size of the file/header combination is increased!

Although we shall outline below an overall strategy for choosing an optimal size of alphabet,
which, in conjunction with efficient clustering, gives the best overall compression, this is not
the main objective of this paper. Rather, we focus on the optimal clustering itself, and test
the cost on such clustering on a variety of moderate sized files. We explain the philosophy
underlying our clustering procedure in the following section, which also presents the algorithm
used for grouping symbols. Section 3 deals with some implementations details. Finally,
experimental results of applying the method to textual databases of different sizes and in

several natural languages are presented in Section 4.

2. Clustering Probability Vectors

Clustering has often been understood as an ad hoc method for grouping items that are in
some sense similar. The grouping tends to be rough; in fact, the coarseness of the method,
and its freedom from explicit distributional models, is seen as one of its strengths. This has
allowed the development of generic clustering algorithms that apply as well to animal species

as to documents.

An example is the widespread use of the cosine function as the measure of similarity that
drives the clustering algorithm. Having a universal measure is certainly a great convenience,

but it has its drawbacks. One immediate loss is that of conceptual precision. The idea of



two objects being close to one another is an important one for understanding the nature of
the objects. Creating models requires effort, but even when not fully successful, the process

forces us to think seriously about the objects we are studying, and often yields real insight.

Using a generic clustering algorithm also has a practical cost. If the clusters formed are
sensitive to the associational measure used, we won’t get optimal clusters. There is presumably
a reason, generally unstated and imprecisely understood, for carrying out the clustering in the
first place. To accomplish our ends most effectively, our measure of similarity should reflect

our intentions.

Crude clustering techniques will often be adequate, and the benefit of improving the clus-
tering methodology may not justify its cost. Unfortunately, the ubiquity of standard clustering
methods causes us to overlook situations where the benefits of an improved technique are sub-
stantial. In this paper, we are taking a Goal Oriented Clustering approach (Bookstein A,
1995): the criterion we use to create the clusters are intimately tied to the reason the clusters

are being formed.

2.1 Grouping Probability Distributions

The basic idea behind our approach is that if the probabilities associated with two states are
similar, the set of codewords they define should likewise be similar. We want to measure the
similarity of pairs of vectors of probabilities, and to use this measure to create clusters of

states, constructed to minimize the loss in compression.

The conventional clustering approach (see, for example, Jain & Dubes, 1988), would be,
given two probability vectors P; and Ps, to take their cosine as a measure of closeness, and
initiate a clustering algorithm on the basis of this measure. If P, and P, are similar, their
cosine should be close to one, and we would expect to see little deterioration in compression
if we: create a centroid vector P = (P, + P,)/2; produce a code based on P; and use this
code to encode a symbol, if one of the symbols associated with either P; or P; is scanned.
The use of a centroid vector is conventional in clustering, though a sophisticated user might
suggest a weighted average, similar to that derived below. (The Kullback-Leibler measure,
another measure often used to measure the discrepancy between two probability-distributions,

is described below.)



In keeping with the philosophy of Goal Oriented Clustering, we took a different approach.
Since our goal was to group states to minimize the compression loss, we used as a measure of

distance the actual loss, assuming optimal encoding.

2.2 Optimal Cluster Probability-Vector

We first ask: Suppose we partition an alphabet into an arbitrary set P of symbol-clusters, and
require that all the symbols in a given cluster be represented by a single probability-vector —

then how should this probability-vector be chosen?

If we have just scanned a symbol s; of the alphabet, then the probability that the symbol
s be generated next is p;;. For a given symbol s, this probability depends on the preceding
symbol. Suppose s, belongs to the cluster C,. We now wish to replace each probability p;, for
i such that s; € C,, by a single probability value, pc.r; pc,r generalizes our earlier notation, if
pir is interpreted as shorthand for py,,y . These probabilities determine the codewords of any

symbol following a symbol in C,.

It is easy to calculate the expected size of codewords derived from these approximate
probabilities. As noted in Bookstein & Klein (1990), when we create a code based on the
(possibly incorrect) assumption that the occurrence probabilities are {p;}, then the length
of the codeword for s, will be approximately —logp,. We now apply this general result to
the cluster probabilities. Suppose that, having just scanned a character in cluster C,, we use
an assumed probability distribution pe, ;. to create the codeword for each s,. Then the above
general result asserts that the length of the codeword for s, will be approximately — log pe, ,
since now pr = pe,k- If 0; is the true unconditional probability of occurrence of symbol s;,
then the expected length EL of such a code will be approximately

EL = > > 0= pixlog pe,k)- (1)

Cr€P s5;€C, k
Here the sum over the symbols in the alphabet is broken down first into the sum of symbols
in each member C, of P, then the sum over the members of P. If no clustering occurs, and
the individual symbol probability-vectors are used, then the best compression consistent with
our generation model is attained. The expected length in this case, E'Ly, is given by:

ELy= > Y 0;(=> pixlog pir). (2)

Cr€P s5,€Cr k
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As shown in Bookstein & Klein (1990), and proved more directly here:

Theorem 1 The best summarizing distribution we can use, in the sense of minimizing the ex-

pected length of a codeword, is a weighted average. Specifically, the optimal cluster probability-

vector for cluster C is Pe = (pe1, -+, Pen), where:
0;
Pck = Z 9— Dik, (3)
s;€C ¢
and,

s;€C

In terms of the optimal probability vector, the expected length, EL, may be rewritten as

EL = Z HCT(_ chrk log pCrk)- (5)
CreP k

Proof: Let pc,i be an arbitrary distribution over the k-index. Then the increase A (which we

will show to be positive) in expected code-size using pe,j rather than pe . is

A = Z Z 0; (_Zpiklogzﬂ>
Cr€P s;€C, k pcrk
= > b > O pir log bek
0 k P

Cre€P s;eCp “Cr "

~ Yo (—zpcrklogic—”“) | (6)
k

CrEP rk

Since both the p’s and p’s are true probabilities, it is well known that

Dc.k

De.k

—> pe.ilog > 0,
%

and thus A must be non-negative as well.
Equation 5 follows immediately from the definition of pe,. O

It is interesting to compare eqn’s (2) and (5). These are formally the same, except that F'L
is defined over a set of clusters, whereas F'L is defined over the initial alphabet of symbols.
In eqn (5), 6, is the probability that some s; € C, occurs; it generalizes the notation for
the unconditional probability, #;. Similarly, the cluster probability-vector ., generalizes the

individual symbol probability-vectors. That is, if we interpret an individual symbol, s;, as a



cluster, {s;}, of one element, then the same equation describes all levels of clustering®. This

observation will be useful below.

Theorem 1 shows that the conventional representation of a cluster by its centroid is not
generally valid; unless the symbols in a cluster have equal probabilities of occurrence, the vec-
tors associated with more probable symbols should be weighted more heavily, and in precisely
the manner indicated by this theorem. This type of weighting would likely have been antic-
ipated by a more sophisticated user, and, in a sense, the theorem can be seen as a rigorous
verification such intuition. It is also interesting to note that the probabilities enter only via
the ratio of probabilities #; and f¢; thus, if convenient, we could have used any set of values

proportional to the #’s instead of the #’s themselves. This observation is true throughout this

paper.

2.3 Loss Function

Eqn (5) for the expected length of codewords after clustering allows us to compute the com-
pression cost of clustering: this cost is the increase in the expected number of bits needed
to encode a symbol if we partition the alphabet into a set of clusters and use the optimal
cluster probability-vectors to derive the codewords. The compression cost allows us to assess
the benefit of using one partition rather than another. This increase can be realized with
arithmetic coding, and usually well approximated by Huffman coding (Bookstein & Klein,

1993).

2.3.1 Definition of loss-function

The efficiency loss L(P) = EL(P) — EL(Py), for Py the initial alphabet, can be defined in
two steps. The result, while straightforward, is very important and will be stated in the form

of a theorem (we retain the symbol £ in each step for simplicity of notation):

Theorem 2 If we use the optimal cluster probability-vectors, then the loss in compression

efficiency, L, can be approximated as follows. First:

2In both cases, EL is a state based entropy function; the distinction is in the state space

~10 -



o For a given set, or cluster, of symbols, C, we define the loss by

E(C) = — Z 91 Z Dik logp

Ch
s;ieC  k Dik

In particular, L(C) =0 if C is a singleton cluster.

e Given an arbitrary partition P = {C,} of the alphabet, then

LP) =Y L(C). (8)

CreP

e An important special case deserves separate mention: If P is made up of a number of
singleton clusters and one multi-symbol cluster C, then L(P) = L(C). Thus the loss is

determined solely by the items being merged.

We have derived the cluster probability-vectors and loss function of a partition in terms of
the symbols of the underlying alphabet. Our results depend on only two parameters describing
each symbol: a probability-vector and the probability of occurrence of the symbol. However,
after we define a partition, we formally have a situation similar to the one we began with.
Now the clusters that make up a partition appear as pseudo-symbols, parallel to the symbols

in the initial alphabet; and each has a #-value and a probability-vector associated with it.

It is now possible, and below will be convenient, to combine clusters in a partition to create
a coarser partition. We can consider the coarser partition, then, either as made up of clusters
of pseudo-symbols, or as being made up of clusters of primary symbols. It is interesting, then,
to relate the probability-vectors, #-weights and loss function of the resulting coarser partition,
when defined in terms of the pseudo-symbols, to that obtained by using the parameters of the

primary symbols.

2.3.2 Self-consistency property

Suppose then that the clusters are formed by a multi-stage process: starting with Py, the
initial alphabet, in each stage a number of clusters are combined to form a coarser set of
clusters. The relationship between the parameters in two stages obeys an important self-
consistency property; this property allows us to determine the parameters in the nezt stage
from their values in the current stage, without regard either to history or the parameters of

the inital alphabet.

- 11 -



Suppose at the current stage we have a set of pseudo-symbols, P, and are given a partition
of this set into subsets {C;}. Then we can create #-values and optimal probability-vectors
P, for each member C; by using eqns 3 and 4 on the pseudo-symbols. But each C; is itself a
cluster of symbols taken from the initial alphabet, and this also defines a set of #-values and
cluster probability vectors. The self-consistency property relates these ways of creating the

parameters:

Suppose in the current stage of cluster formation, the pseudo-symbols are {C;},---,{C,},
where in the 0-th stage the pseudo-symbols are identical to the initial alphabet. Let {Ci},-- -,

{Cs} combine to form cluster C’. Then:

o If we define ¢ = 3¢,ccr Oc;, then it is obvious that Oc = 35 ccr 0;.

e Similarly, if we define per, = >ocicer Z—‘;pcik, it is easy to confirm that perp = 3, c¢r %pik'

Thus, given any stage of clustering, we can form 6 and perp for the next stage using only

parameters defined in the preceding stage.

The self-consistency property for the loss function is a bit more complex, as expressed by

the following theorem:

Theorem 3 Suppose we have a partition P, and a second partition P’, all of whose members
are unions of members in P. Then we can compute the actual loss L(P') by applying eqn (8)
based on the elementary symbols. Formally, we could also have computed a value by introducing
the parameters of the pseudo-symbols of P into eqn (8); call this value AL(P,P"), or, where
the partitions involved are understood, AL for short. If we do this, we find

L(P") = L(P)+AL; 9)
that is, AL is the increment in loss as we combine clusters into coarser clusters.
Proof: Suppose that P’ is a partition coarser than P. We denote members of P’ by C;, and

members of P by C,. Then, the formula for £(P') becomes, after the sum over elements in Cj

is expressed first as a sum of elements in C,, then over the components C, of C;:

L(P') =
Clepl S Ecl
Dcjk Pe.k
--y ¥ Zezpzklog -2 2 2 ) palosT
C,EP' €, CC) si€Cr Crk C,eP' CrCC) si€Cy

19 —



where we added and subtracted the term 0;p;; log pe,x, to every term of the first sum to get the
final equation. In effect, we have rewritten L(P’) = EL(P')— EL(P,) as (EL(P')—EL(P))—
(EL(P) — EL(Py)).

By combining the outer sums, the right-hand summation is immediately seen to be L(P).

But in the left hand term, we can invert the order of the two innermost summations and,

recalling eqn (3), carry out the sum over s; first:
0;
> Oipik =bc, D g, Pik = Oc, e, k-
5;,E€Cp 5;€Cr Cr
Substituting this result, we find that the left-hand summation is:
AL = > AL(Cy),
CLEP!

where,

Z ecr chrk log —

cce, pe.k
Bringing together the two sums demonstrates our assertion. O

If we construct a partition P’ by a sequence of r mergings, then, by an obvious inductive

argument, we can conclude:
L(P)=AL +ALy+ -+ AL, (10)

where AL; is the loss function for the i-th merger, computed with the parameters of the
pseudo-symbols at the preceding stage. (Of course, the initial £(P), for P the original alpha-

bet, is zero.)

Thus we can assert that £ is an increasing function in the following sense: if P and P’
are two partitions of the alphabet, and P’ is coarser than P, then L(P’) > L(P); this follows

from the fact that AL has the form given in eqn (6), which is non-negative.

Below, a stage will involve the merging of two clusters in P to form a single cluster in P’.
With this restriction, the loss function has properties reminding us of a distance function. To
emphasize this, below we shall denote AL by d,.; when P’ is generated from P by combining

two of its elements, C, and C,.

Now that we know, given an arbitrary partition of the alphabet into, say, N clusters, how

best to assign a probability distribution to each cluster, we can give a criterion for an optimal
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partition into those N clusters: select that set of N clusters that, with optimal probability-
distribution assignment, minimizes the overall loss. If we wish, we could then choose that value
of N that minimizes the overall size of the file, including a header that contains information

necessary for decoding (see Section 3.3 below).

Finally, recall that the alphabet is itself variable: we could increase the size of the alphabet
by adding more, and perhaps longer, strings. Given an alphabet extension algorithm that
optimally allows us to choose new strings to append to the alphabet, we can now add another
stage of cluster definition: once we know for each size alphabet the optimal cluster set, and the
consequent file size, we can then determine the size of the alphabet for which the overall file
size is minimized. Thus, potentially, our program permits us through the iterative procedure
indicated above, to determine the optimal extended alphabet, the optimal number of clusters,

and their definition.

In this paper we consider only the cluster formation problem. We believe finding an
optimal partition to be a hard problem. However, a greedy algorithm for approximating this
partition is suggested in the next section. A similar process was suggested in the area of image

compression in Equitz (1989).

2.4 Description of Algorithm

The self-consistency property noted above strongly suggests a greedy iterative procedure to
cluster the symbols. We start with each isolated symbol constituting its own cluster. Then,
at each stage, we combine two clusters, such that the loss in compression efficiency caused by
this merging action is minimal over all possible cluster pairs. Details on how this loss can be
evaluated are presented below. This process is continued until one or more of the following

halting conditions is reached:

e the number of clusters is less than some threshold V;

e the overall internal memory requirements (clusters, tables, probabilities or Huffman trees

for the successors of each cluster, etc.) are below some threshold M;

e the cumulative loss in compression efficiency relative to the full Markov model is above

some threshold ¢;

-1} -



e the total size of the compressed file plus model description is minimized.

At first sight, it would seem that the last of these criteria would be preferred; that is, we
might in principal successively reduce the number of clusters, keeping track of the total size of
the file plus model, for each number of clusters N. We then choose that value of N for which
this total sum is minimized. However, there are other considerations that may dominate that
of external file storage efficiency. For example, it may be required that during processing the
entire model be held in core. In that case, it may be necessary to sacrifice external storage

efficiency in order to permit effective processing of the file.

In any case, we proceed iteratively. Let K be the number of iterations performed until
the halting condition is reached, where 0 < K < n — 1. As K varies, we range from high
compression, but huge model storage requirements (full Markov model, K = 0), to lower

compression, with low model storage requirements (independence model, K =n — 1).

It is instructive to examine separately the special case K = n — 1, which corresponds to
the merging of all the elements into a single cluster. If A denotes the cluster that contains all

the symbols of the alphabet, we get from the above definition of the cluster probabilities:

0,
par = Y, H—Z pi = Y, 0 Dk,
sieA VA si€A
since 04 = Y, ca0; = 1. Let P(s;sg) denote the probability of occurrence of the sequence

s;Sk. We have then
Par = Z 0; pir = Z 91@ = Z P(sisy) = 0.
s;€A s;€A ¢ s;€A
The last equality follows from the fact that when we sum the probabilities of the symbol
pairs s;s; over all possible first symbols s; in A, we get #;, the unconditional probability of
occurrence of si. This argument verifies that combining all the vectors into a single cluster is

equivalent to having the simple unconditional model.

We begin with P, made up of singleton clusters C; = {s;}, each with its associated symbol
probability, 6;, and symbol probability-vector. After several stages, we have a partition P
comprised of clusters of characters. We now turn to the problem of choosing the pair of

clusters belonging to P that should be merged.

Suppose that at any stage, we wish to to form cluster Cz by combining clusters C, and Cg;

to simplify our notation, we now denote their overall probabilities by 6, and #,, respectively,

15 —



and their probability vectors by P, and P;. We can now take advantage of eqn (9) to compute
the loss in compression efficiency of combining these clusters. We first form the new combined

cluster probabilities using equations (3) and (4), as described in Thm 1:

9 9
p.-tp  %p 1
ot T (11)

where 0= = 0, + 0. Equation (11) is justified by the self consistency property.

The loss of compression efficiency resulting from merging C, and C; is then given by d,.,,

where:
dry = 0,3 pri log P28 — 60,3 pyy log P2, (12)
k prk; k psk

The expression for d,, is complex, and we address the technical details of using it iteratively
to construct clusters in the next section. We should, however, note how different this is from
the cosine measure; and that this measure was not chosen from a standard repertoire, but

carefully manufactured while guided by the goal we were attempting.

The form taken by eqn (12) also deserves comment. The commonly used Kullback-Leibler

(KL) measure (Kullback, 1959) of the distance between two arbitrary probability distributions

{p;} and {¢;} is given by
q;

d¥t = —Z p; log, —.

i Di

Our measure is an alternative to this that 1) is symmetric, and 2) can easily be generalized to
measure the extent of disagreement among a set of probability distributions. Given two prob-
ability distributions, we don’t use the KL. measure directly. Instead we compute a summary
distribution, compute the K. measure between each of the individual distributions and the
summary distribution, and take an average of these measures, weighted by the probabilities

of the elements that are being combined.

Note also that both the K. and our measure are based on the assumption that the infor-
mation content of an element with probability p is — log, p. This suggests the use of arithmetic
codes for compression. We shall however prefer Huffman codes in our implementation, which
are much faster and for which the necessary information (lengths of codewords) can be stored
more economically than the information required for arithmetic codes (probabilities); the
loss incurred by substituting arithmetic codes by Huffman codes is usually small and often

negligible (Bookstein & Klein, 1993).

~ 16 -



Unfortunately, our measure, restricted to two vectors, is not a true metric: though always
positive, symmetric and equal to zero only if the two probability distributions are identical,
the triangle inequality is not valid. For example, consider the case of three vectors Py, P, and
P3, with equal probability of occurrence. Thus we have 6;/ O = .5 for each each vector in a
pair, regardless of the pair taken. Suppose P, = (.8,.2), P, = (.6,.4), and P3 = (.2,.8). Then
using the f-weights as given above, we find Pm = (.7,.3), P = (.4,.6), and Pz = (.5,.5).
This results in (taking logarithms to base 2) dio = .023, dos = .083, and d;3 = .185. Clearly,
dip + doz = .106 < .185 = d;3, in conflict with the demands of the triangle inequality.

Our greedy technique, which makes locally optimal decisions at each step, may not neces-
sarily yield a globally optimum partition. Suppose that at some step of the greedy algorithm,
clusters C; and Cy are combined, and at the next step C3 and Cy. The cumulative loss is

dyo + ds4.

But it may be that dio + d3s > dy34, for dy34 the loss associated with the cluster consisting
of Cy, C3, and C4. Using a sequential algorithm, such a cluster may be formed in two steps by,
say, first combining C; and Cs, even though dy3 > di9; then combining this cluster with C,.
But if we first combined C; and C,, it would not be possible to subsequently combine C; and
Cs. Here an early stage of the greedy algorithm makes a choice that prevents us making an

even better choice later.

An optimal procedure would then have to inspect all the partitions of the set of symbols
into a given number of clusters, and this might be computationally impossible: the number of
ways to partition the n symbols into & clusters is a Stirling number of the second kind {Z} (see
Knuth D.E. (1973), Exercise 1.2.7-64). But {Z} is asymptotically ¥ k" ~#+1/2 (' Abramowitz
& Stegun, 1965: Section 24.1.4), so if we want, e.g., to reduce the number of clusters to half
(where we consider the initial full Markov model to consist of n singleton-clusters), the number
of partitions is {732} = Q(n™?). However, our experiments (see Section 5) indicate that
in practice, our clustering heuristic is so efficient, that a possible improvement by an optimal
algorithm will often be negligible. The additional effort to find the optimal partition will thus

generally not be worthwhile for realistic applications.
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3. Implementation details

3.1 Distance between probability distributions

We first note that our distance measure d,s is not well-defined unless the two probability
distributions are defined on the same set of elements. This is important regarding our Markov
model, since different symbols may have different sets of successors. We circumvent this by
using the full alphabet for each probability distribution, assigning zeroes as the probability
values for non-occurring symbols. These zeroes cause problems if the KL measure is used,
since the KL distance from {p;} to {¢;} is infinite if for some i, ¢; = 0 but p; # 0. On the
other hand, our measure (eqn. (12)) is well-defined, since by eqn. (11), prx = 0 only if either
the k-th components of both P, and P; are zero, or if, say, the k-th component of P, is not
zero, but the unconditional probability f, is zero. In both cases the k-th term of the each of

the summations in eqn. (12) is also zero, under the usual convention that 0log0 = 0.

3.2 Merging clusters

Our algorithm iteratively chooses the pair of clusters giving minimum d;;. For an alphabet
of size n, we can accomplish this straightforwardly by building a two-dimensional table D, of

size n?. Such a table would be symmetric, and all entries on the diagonal are zero; thus only

V= @ entries are needed. The construction of the initial table requires n(n — 1)/2
evaluations of loss values d;;, each of which involves two summations over the full alphabet.

The complexity of the initialization of D is thus 6(n?).

We now proceed iteratively by finding the minimum value in D. Suppose the minimal
element is found at position (i,7). We would then modify the matrix so as to eliminate
reference to clusters C; and C; and introduce a new cluster Cz7. The complexity of the iterative
part could be reduced by using a heap for managing the requirement of successively finding
minimum distances, but the overall complexity does not change, as it is dominated by the

initialization of table D.

We also have to keep track, during the clustering process, of the current partition of the
alphabet into clusters. This is not needed for the clustering itself, since we handle only cluster

names, and not their individual components; at the end of the process, however, we do need to
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know the final partition for the encoding and decoding algorithms. A simple way to monitor
the formation of the clusters is by representing each cluster by a rooted tree, using Union-Find
algorithms (Cormen, Leiserson & Rivest, 1990). Of course, once the clustering is completed,
there is no sense in keeping information about the partition in the form of a forest of rooted
trees, since during the encoding and decoding phases, we need many accesses to the clusters
of a given element. So before starting the encoding process, we construct in a single scan of

the alphabet, a vector giving for each symbol the name of the cluster it belongs to.

3.3 Additional overhead

The main reason for using the clustering technique is to reduce the huge overhead implied by

mega-state models. In fact, this overhead must be considered in two different contexts:

e at run-time: the decoding trees, the extended alphabet and the partition into clusters
have to be available in RAM to permit fast decompression; the required space depends

on the extent to which we are willing to sacrifice space for an increase in speed.

e in a header-file: in storage, the necessary information that allows the construction of

the decoding trees must be kept along with the file.

We now concentrate on the header file. The succinct coding of this meta-information is a

challenge in itself (Bookstein & Klein, 1993), and we suggest here one possible solution.

The header can be schematically represented as follows:
(header):=(extended alphabet)(cluster definitions)(definition of Huffman trees).
We now shall describe each in turn.

1. Extended alphabet: The extended alphabet consists of an ordered list of symbols. Below
we shall be interested in the actual realization of the symbols as strings. We emphasize below
that some of these symbols are actually strings of one or more characters taken from an
initial alphabet by referring to them as meta-characters. To represent the extended alphabet,
we concatenate these meta-characters into a single string S, proceeding by increasing length,
where the length of a meta-character x is defined as the number of eg ASCII characters forming

x. The string S is preceded by the sequence R = ry,73,...,7,,, Where 7; is the number of
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meta-characters of length 4, and the value r; is assumed known; R is preceded by m, the length
of the longest meta-character. Thus the size of the extended alphabet is given by >, r;, and

2. Cluster definitions: We first store the number K of clusters, followed by the numbers
ti,...,tx, where t; is the number of symbols constituting cluster i, followed by a list of indices

to the )", ¢; meta-characters themselves.

3. Definition of Huffman trees: For each of the clusters C;, one has to store the Huffman
tree corresponding to the distribution of the symbols that are successors of C;. In fact, it
suffices to store the sequence of the successors of C;, sorted by decreasing frequency, along
with the sequence of numbers k,nq,...,ng, where k is the depth of the Huffman tree (the
length in bits of the longest codeword), and n; is the number of codewords of length j bits.
Let N; be the number of successors of C;, so that N; = Z?Zl nj. The string T = (nq,...,n)
uniquely determines a canonical Huffman code as follows: first derive from 7" the length ¢; of
the j-th codeword, for 1 < j < NN;; the j-th codeword itself consists then of the first ¢; bits
immediately to the right of the “binary point” in the infinite binary expansion of Zg;% 2t

for j =1,..., N; (Gilbert & Moore, 1959).

To store the indices of the the meta-characters in the header, [log,(n)] bits are needed
for each, but since n — K trees are stored, there are many repetitions. It could thus be that
one can save by using a Huffman code to encode these meta-characters; this Huffman code
would be internal to the header. The numbers in the header are most easily stored in fixed
length format, using [log,(max)] bits for each, where max is the number of distinct symbols
in the original alphabet — however, since most of the numbers are small, some variable-length
universal encoding of the integers may be preferable. A large variety of such encodings can be
found in Bell, Cleary, & Witten (1990). More methods for encoding the header are discussed
in Bookstein & Klein (1993).

The largest component of the header is clearly the description of the Huffman trees, which
is linear in the number of clusters. This is the reason why reducing the number of clusters

generates savings over the complete Markov representation.
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4. Experimental Data

Since our primary concern is IR applications, we decided to test our clustering algorithm on
files in several natural languages. Since our main motivation is to closely examine the trade-
off of clustering and compression efficiency, we restrict our experiments to moderately sized

databases.

The first set of files consists of the Bible in English (King James version), Finnish, Ger-
man (Elberfelder Ubersetzung) and Hebrew, and a French text by Voltaire called Dictionaire
philosophique. Each of these texts is large, so the size of the header, relative to the main text,
is not significant — to simplify our experiments, we are working with a relatively small, fixed,
extended alphabet, and are not considering here the possibility, noted earlier, of expanding
the size of the alphabet enough to optimize overall compression. However, it is still useful to

reduce the size of the header to facilitate processing of the file in RAM.

We also included a set of smaller texts, for which the header, when considered as part of
the compressed file, has a dramatic impact on compression efficiency. This set includes the
first 10000 words of Gadsby, the famous novel by E. Wright in which the letter E never occurs;
and the files progc, progl, and progp from the Calgary corpus (Bell, Cleary, & Witten,
1990), which are programs in C, Lisp and Pascal, respectively. Finally, we also studied other
non-textual files from the Calgary collection: obj1, some object code, and pic, a facsimile
picture. These were chosen just for comparison, since the size n of the extended alphabet for

obj1 is much larger, and the compression for pic is much better, than for the other test files.

For each of these files, we first selected the set of meta-characters that will constitute
the symbols of our extended alphabet, and then applied Huffman coding on a full Markov
model that uses a different Huffman tree for the successors of each of the symbols. The
selection of meta-characters was done automatically by a simple procedure, and there was no
attempt to optimize this selection process. Nonetheless, some of the meta-characters strongly
reflect the language or the type of file they were taken from. For example, the English
Bible produced strings like® ith, jthe,, y,shall, LORD.; in Finnish mppeli, Jumal, Ja;
in German: icht der HERR, Kénig, Volk; in Hebrew (translated): House of God, King in,
David; in French: hommes, vertu,,, je,su; in the C-program: fprintf (stderr, ,, endif; in

the Pascal program: begin, writeln. The string Egyp appeared both in English and Finnish,

3blanks are visualized by the symbol |,
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as did Agyp in German. In the object code and picture file, the improved compression is due

to a meta-character of 256 nulls.

Table 1 summarizes the main statistics describing these files. The sizes of the files are given
in bytes, and the column entitled n gives the total size of the meta-alphabet (the number of
ASCII characters used in the file plus the number of character strings). The column entitled
compressed lists the size of the compressed file, excluding the header, expressed as number
of bits per original character used. For example, this value is 2.5065 for the English Bible,
which means that the size of the compressed file is (2.5065%3230258)/8 = 1.012 MB. The next
column gives the size of the header file in bytes, and the column entitled compressed with head
gives the total size of the file, including the header, expressed as the ratio of bits per character
as before. We calculated the size of the header without any attempt at optimization, using
one byte for each of the values r; and n; mentioned in Section 3.3, and 9 bits to refer to each

meta-character.

File Size " compressed | header | compressed | com- ezip | ppnc
(bytes) (bits/char) | (bytes) | with head | press
English Bible | 3230258 | 243 2.51 16239 2.55 279 | 2.31
Finnish Bible || 3178050 | 251 2.71 19934 2.76 3.14 | 2.69
German Bible || 3518702 | 296 2.63 21175 2.68 3.14 | 2.70
Hebrew Bible || 1519526 | 182 3.13 14764 3.21 3.47 | 3.00
Voltaire 554719 | 219 2.51 13559 2.71 3.07 | 2.81
Gadsby 55840 | 215 2.57 7834 3.69 3.63 | 3.18
progc 39611 | 245 2.59 6540 3.91 3.87 | 2.68 | 2.49
progl 71646 | 230 2.45 5441 3.05 3.03 | 1.80 | 1.90
progp 49379 | 242 1.99 5874 2.94 3.11 | 1.81 | 1.84
objl 21504 | 430 2.72 10607 6.67 5.23 | 3.84 | 3.76
pic 513216 | 212 0.78 8252 0.91 097 | 0.82 | 1.09

Table 1: Statistics and compression results
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compression ratio

The final three columns assess the compression efficiency. The values for compress were
produced by the standard Unix compress utility, which is based on the LZW algorithm (Welch,
1984); gzip is based on the first Lempel-Ziv algorithm (Ziv & Lempel, 1977), and was applied
with the parameter yielding maximal compression; the numbers for ppmc are taken from Bell,
Cleary, & Witten (1990) for the files of the Calgary corpus. These three are adaptive methods,
even though we are concerned with static methods only. We give these values to set some

baselines, rather than as a measure of relative merit.

Note, nevertheless, that even though we did not at all try to find an optimal model, the
compression with the full Markov model is often almost as good as with gzip or ppmc and
sometimes even better. Depending on the size and the compressibility of the file at hand,
the size of the header file, for the large natural language files, is 2-8% of the compressed file,
which is not negligible. For small or non-textual files, the header may even be larger than
the compressed file itself: see, for example, obj1, which has been compressed to 7314 bytes!
There is thus good reason for trying to reduce the header, in particular for applications on

smaller machines with scarce internal memory.
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T English
20000 Fithish — -
38 . German -
HFebrevK
36 - renen =
15000 E
34 E
32 E
10000 i
3 4
28 1 5000 ;
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clustering steps clustering steps
Figure 1: Compression tradeoffs Figure 2: Header size

Figure 1 is a graphical representation of the compression efficiency as a function of the
number of clustering steps performed, for the five large natural language files of the first set.
Compression is measured, as before, in bits per original character, but omits the size of the
header. As can be seen, the general form of the graphs for the different languages is similar,
and this was also true for all the other files we checked. We note that the increase in size of the

compressed file is almost negligible at the beginning (actually of the order of several bits (!)
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even for MegaByte large files), and becomes significant only when the number of remaining

clusters is reduced to a few tens.

Such behavior, at least at the beginning, might be expected: in a large alphabet, there are
often several symbols that either occur only rarely, or are almost always followed by the same
symbols, with similar probability distributions. In either case, such symbols can be merged
into a single cluster with little cost. In the extreme case we might merge two symbols which
have the same set of successors; should these successors occur with frequencies that are similar

enough to generate the same Huffman code, the compressed file does not increase at all.

On the other hand, as can be seen in Figure 2, the size of the header, measured in bytes,
decreases steadily and almost reaches zero, again with no striking difference in form between

the languages.

File After 75 After 50% After reducing

name clustering steps || clustering steps || to single cluster

loss (%) | head || loss (%) | head | loss (%) | head

English Bible 0.14 13919 0.81 10862 44.2 206
Finnish Bible 0.19 16252 1.17 12755 44 .4 659
German Bible 0.04 19425 0.91 14079 48.3 657
Hebrew Bible 0.30 11032 0.61 9658 23.2 203

Voltaire 0.35 11002 1.18 8454 42.7 571

Table 2: Tradeoff details on natural language files

Table 2 displays the exact values for selected points of the above graphs. The first pair
of columns corresponds to the values after 75 merging steps have been performed. The next
pair of columns gives the values after the number of clusters has been reduced to half of the
size of the original extended alphabet (given in the column headed n of Table 1). Finally, the
last columns correspond to a single cluster, i.e., simple, unconditional Huffman coding. The
values in the columns headed loss give the increase, in percent, of the size of the compressed
file, relative to the compression obtained by the full Markov model; this loss is of the file itself,

not including the header. The columns headed head are the size of the header in bytes. In
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particular, the last column lists the size needed to store the extended alphabet and the single
Huffman code. We see that even after hundreds of clustering steps, the loss of compression is
still around 1% only, whereas the size of the header has decreased considerably. The values
for simple Huffman coding correspond to the right upper top of the graphs in Figure 1. For
example, using simple Huffman coding increases the size of the English Bible by 44.2%, to
3.62 bits per character; we note that this is still much better than using a Huffman code on

English text without extending the alphabet first.

Since in successive clustering steps the size of the compressed file increases, while at the
same time the size of the header decreases, we next consider the combined size. For our
natural language files, the plots are almost identical to the corresponding ones in Figure 1,
since the size of the header is very small as compared to the texts. But for the smaller files,

the combined size clearly decreases, reaches some minimum, and then increases.

compression ratio
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8 1 Gadsby | 186 | 20373 | 1997 | 3.205
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32 i
3l | progp 195 | 13971 | 2535 | 2.674
28l | objl 393 9426 | 3294 | 4.732
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Figure 3: Compression tradeofts Table 3: Tradeoff details

For the file Gadsby and the three program files, the total size of the compressed file plus
header expressed in bits per character, as a function of the number of clustering steps, is
displayed in Figure 3. Details on the exact point at which the minimum is reached for each of
these files are given in Table 3. The first column gives the number K,,, of merging steps for
which the combined size is minimized. The next two columns are the sizes of the compressed
file and the header in bytes, after K, merging steps, and the last column gives the total size,
again in bits per character. We see that for the smaller files, clustering not only reduces the
space needed to store the model, but can actually reduce the space required to store the model

and file combined. In our examples, performing K, merging steps reduced the combined size
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by 5-13%, and on the obj1 file, by as much as 29%. Note also that K, is surprisingly high
relative to the size of the extended alphabet.

The following are a few examples of elements that clustered. As one might expect, their
Huffman trees were often quite similar. For example, for the English file, the meta-characters
usai and . An were united at an early stage. Indeed, the successors of the first were: d,,, d,
th,,, th, nt, and of the second d,,, d, ., uh, s, ,a. But for both, the probability of d,, was
the highest (0.58 and 0.99 respectively). A (canonical) Huffman code can be defined by the
number of elements having codeword sizes 1, 2, etc. For the two codes we are describing,
these sequences were very similar ((1,1,1,2) for the first and (1,1,1,1,2) for the second).
Other elements that were merged are the letters a, i and e (vowels); the words hall , have,,,
uhave,, ywill,, ubey, noty and noty, (all terminating in space); and the words of, And,
and, that, shall and ,shall (all full words in English, and thus generally followed by space,

comma, etc.).

5. Conclusion

In this paper we examined a novel application of the concept of clustering — methods for
partitioning a set into subsets of like items. Our compression task involved creating large
alphabets and predicting symbol occurrence by means of a Markov model. We used a greedy
clustering heuristic to group states in a manner that greatly reduced the cost of storing the
model. This permitted a choice from a range of compression / overhead tradeoffs. Selecting
the best one for our application generally yielded significant savings in model storage, at the

cost of a negligible loss in compression efficiency.
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