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Abstract: Many of the most e�ective compression methods involve complicated models. Un-fortunately, as model complexity increases, so does the cost of storing the model itself. Thispaper examines a method to reduce the amount of storage needed to represent a Markovmodel with an extended alphabet, by applying a clustering scheme that brings together sim-ilar states. Experiments run on a variety of large natural language texts show that much ofthe overhead of storing the model can be saved at the cost of a very small loss of compressione�ciency.
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1. IntroductionText compression is one of the great successes of Information Theory. Simple, but e�ective,approaches for compressing text, for example, Hu�man's classical paper (Hu�man, 1952),appeared shortly after the theory itself (Shannon, 1948). Since then, compression e�ectivenesshas come increasingly closer to what we believe to be the limiting value. However, eachimprovement in e�ectiveness has involved a growth in complexity.Modern data compression is strongly model oriented (Rissanen, & Langdon, 1981). Theapproach generally taken is �rst to create a model giving the probability of occurrence, withina given context, of a data unit; then to use this probability to encode the unit. The increasedcomplexity of techniques is typically due to the use of larger models. But the model mustitself be part of the encoded �le for the decoder to work. Unfortunately, a large model mayitself be very expensive to store.We can avoid transmitting the model by using adaptive methods. Some of the moste�cient compression techniques are adaptive, for example many of the popular schemes, likezip, arj, DoubleSpace, and others. However, for certain applications, e.g. for InformationRetrieval (IR) systems, adaptive methods are not always adequate, even when they yieldbetter compression. For, in IR, it is rarely required to decompress the full database; rather,a (possibly large) number of excerpts is retrieved in response to a query. Even should largerblocks of text be required, their sizes will mostly be only a tiny fraction of the full textavailable. Thus short pieces of the text or concordance are decompressed on demand, andthese must be accessed at random by means of pointers to their exact locations. This limitsthe value of adaptive methods based on tables that systematically change from the beginningto the end of the �le.There are also e�ciency reasons that may favor a non-adaptive approach. For example,compression and decompression are not symmetrical tasks in an IR environment. Compressionis generally done only once, while building the retrieval system. Decompression, on the otherhand, occurs very often. Thus it is realistic to use a technique that is costly in time at thecompression stage, provided decompression is fast. Non-adaptive methods, while costly atthe compression stage, can be very fast for decompression. In this paper, we concentrate onnon-adaptive (sometimes called static) compression schemes.{ 3 {



In Bookstein & Klein (1990), text was compressed by creating a simple, �rst-order Markovmodel of character generation. Such a model is commonly used for this purpose (see for exam-ple, Bell, Cleary, & Witten, 1990), although it is recognized to be an imperfect representationof how text is actually produced. The most common way to improve the performance ofa Markov model is by increasing the number of states: for example, we can use higher, oreven variable, size contexts (see for example, Cleary & Witten, 1984). In Bookstein & Klein(1990), we took a di�erent approach, which we believed would be simpler, and which in factturned out to be very e�ective. Instead of creating larger contexts, we used the Markov modelitself to identify the strings for which the model worked badly, and incorporated these stringsinto the alphabet | to avoid confusion, below we shall use the term symbol to refer to el-ements from the extended alphabet, including both the elementary characters of the initialalphabet and the strings of these characters used to extend that alphabet. That is, instead ofchanging the state space to include more context, we changed the alphabet and maintained asingle symbol history. Since the instances where the initial model performed badly were nowin the extended alphabet, the simple Markov model was a better approximation of the textgeneration process.This approach retains the simplicity of simple Markov models, but at a cost. The alphabetsize can be greatly increased, which means that communicating the model is itself a seriouscost. This is most obvious if every codeword is stored explicitly for each context. But forHu�man codes it is not necessary to give the set of codewords explicitly: a canonical codecan be easily created if one stores only the sequence of elements to be encoded, ordered byfrequency, and the optimal lengths of the codewords (see Bookstein & Klein, 1993; Witten,Mo�at & Bell, 1994). However, the amount of storage needed for a �rst order Markov modelon an alphabet of size n is still1 
(n2), since n codes of up to n elements each have to be kept.The large size of the model can have serious repercussions. For example, it may makethe processing impractical: during compression and decompression, it is convenient to keepthe model in RAM. Even a moderately large model may be too large to store in RAM. Suchconsiderations make it useful to search for techniques that reduce model size, and which mightmake the di�erence in whether the model can be used.1When expressing asymptotic behavior, we use the standard notations O, 
 and � to denote, respectively,upper bounds, lower bounds and exact order of magnitude. The formal de�nitions of these notations may befound in most textbooks on algorithms (for example, Corman, Leiserson & Rivest, 1990).{ 4 {



In this paper, we show that we can reduce much of the model cost with little loss in com-pression by grouping states. Initially, each scanned symbol de�nes a state, and the followingsymbol is assigned a codeword dependent on that state. But suppose we now assign a numberof symbols to a single state, and create a shared set of codewords for each such state. Whenwe scan a symbol, we enter the state associated with that symbol, and encode the followingsymbol accordingly. This strategy inverts that of Cormack (1985), who begins with a singlestate, and breaks this into clusters to improve compression. Cormack, however, chooses asmall number of states, which he is able to do very e�ectively manually. We anticipate havinga very large number of states and require an approach that can be automated.Given an e�ective model reducing technique, it may well be useful �rst to expand the al-phabet to substantially improve overall compression, then introduce a model reduction methodthat allows the model to be stored in RAM. Such an approach can be attractive even if itsurrenders some of the compression bene�t of expanding the alphabet; here we consider thesize of the combined �le and model, as stored in a header.It is intriguing to consider the possibility, however, that the reduction in model size mightmore than compensate for the loss in compression e�ciency, resulting in an overall compressionadvantage. To illustrate this point, consider the impact on a hypothetical 100 megabytepredominantly textual database. Suppose, instead of the standard alphabet of 128 ASCIIcharacters, our methods achieve their best compression if we introduce strings (includingwords and phrases) into the alphabet, thereby creating an extended alphabet of size 1500.It is not unreasonable to expect this to reduce the �le to, say, 30 megabytes. However,instead of storing the 16,384 elements for a simple Markov model with 128 characters, wewould, for an alphabet of size 1500, have to store information for 2,250,000 elements; if eachof these requires 4 bytes of data, this would involve a header of nine megabytes. Thus theheader would increase the compressed �le size by about 30 percent. Such an increase in thespace-complexity of the model could well eliminate a good part of the storage saved by thenew technique.Suppose we now reduce the model size by clustering the alphabet. We still need n code-words for each state, but if we have relatively few states as compared to symbols, then wegreatly save on the cost of storing the model. But we then deteriorate compression e�ective-ness, since we are not using optimal codewords. We would like to group states into clusters{ 5 {



in a manner that minimizes this cost. For the example cited above, if we reduce the numberstates from 1500 to 150, we reduce the header size to about one megabyte, saving about 25%of the combined �le-header size; if this can be done with a minimal decrease in compressione�ciency, then optimal clustering o�ers an interesting strategy for improving compression byradically increasing the alphabet size. Here, overall compression is improved so long as thecompressed �le increases by less than 9 megabytes|that is, provided the compression ratio,initially 30%, remains better than 39%, a criterion we believe easily obtainable.In summary, we believe the clustering of states has at least two advantages in compression.As discussed at length above, it may make it practical to use huge alphabets as a strategyfor compressing very large databases. But also, reducing the model size may be useful evenfor smaller alphabets, by allowing the model to be stored in limited RAM during processing.This would be true even if the overall size of the �le/header combination is increased!Although we shall outline below an overall strategy for choosing an optimal size of alphabet,which, in conjunction with e�cient clustering, gives the best overall compression, this is notthe main objective of this paper. Rather, we focus on the optimal clustering itself, and testthe cost on such clustering on a variety of moderate sized �les. We explain the philosophyunderlying our clustering procedure in the following section, which also presents the algorithmused for grouping symbols. Section 3 deals with some implementations details. Finally,experimental results of applying the method to textual databases of di�erent sizes and inseveral natural languages are presented in Section 4.2. Clustering Probability VectorsClustering has often been understood as an ad hoc method for grouping items that are insome sense similar. The grouping tends to be rough; in fact, the coarseness of the method,and its freedom from explicit distributional models, is seen as one of its strengths. This hasallowed the development of generic clustering algorithms that apply as well to animal speciesas to documents.An example is the widespread use of the cosine function as the measure of similarity thatdrives the clustering algorithm. Having a universal measure is certainly a great convenience,but it has its drawbacks. One immediate loss is that of conceptual precision. The idea of{ 6 {



two objects being close to one another is an important one for understanding the nature ofthe objects. Creating models requires e�ort, but even when not fully successful, the processforces us to think seriously about the objects we are studying, and often yields real insight.Using a generic clustering algorithm also has a practical cost. If the clusters formed aresensitive to the associational measure used, we won't get optimal clusters. There is presumablya reason, generally unstated and imprecisely understood, for carrying out the clustering in the�rst place. To accomplish our ends most e�ectively, our measure of similarity should reectour intentions.Crude clustering techniques will often be adequate, and the bene�t of improving the clus-tering methodology may not justify its cost. Unfortunately, the ubiquity of standard clusteringmethods causes us to overlook situations where the bene�ts of an improved technique are sub-stantial. In this paper, we are taking a Goal Oriented Clustering approach (Bookstein A,1995): the criterion we use to create the clusters are intimately tied to the reason the clustersare being formed.2.1 Grouping Probability DistributionsThe basic idea behind our approach is that if the probabilities associated with two states aresimilar, the set of codewords they de�ne should likewise be similar. We want to measure thesimilarity of pairs of vectors of probabilities, and to use this measure to create clusters ofstates, constructed to minimize the loss in compression.The conventional clustering approach (see, for example, Jain & Dubes, 1988), would be,given two probability vectors P1 and P2, to take their cosine as a measure of closeness, andinitiate a clustering algorithm on the basis of this measure. If P1 and P2 are similar, theircosine should be close to one, and we would expect to see little deterioration in compressionif we: create a centroid vector P = (P1 + P2)=2; produce a code based on P ; and use thiscode to encode a symbol, if one of the symbols associated with either P1 or P2 is scanned.The use of a centroid vector is conventional in clustering, though a sophisticated user mightsuggest a weighted average, similar to that derived below. (The Kullback-Leibler measure,another measure often used to measure the discrepancy between two probability-distributions,is described below.) { 7 {



In keeping with the philosophy of Goal Oriented Clustering, we took a di�erent approach.Since our goal was to group states to minimize the compression loss, we used as a measure ofdistance the actual loss, assuming optimal encoding.2.2 Optimal Cluster Probability-VectorWe �rst ask: Suppose we partition an alphabet into an arbitrary set P of symbol-clusters, andrequire that all the symbols in a given cluster be represented by a single probability-vector |then how should this probability-vector be chosen?If we have just scanned a symbol si of the alphabet, then the probability that the symbolsk be generated next is pik. For a given symbol sk, this probability depends on the precedingsymbol. Suppose sk belongs to the cluster Cr. We now wish to replace each probability pik, fori such that si 2 Cr, by a single probability value, pCrk; pCrk generalizes our earlier notation, ifpik is interpreted as shorthand for pfsig k. These probabilities determine the codewords of anysymbol following a symbol in Cr.It is easy to calculate the expected size of codewords derived from these approximateprobabilities. As noted in Bookstein & Klein (1990), when we create a code based on the(possibly incorrect) assumption that the occurrence probabilities are fp̂kg, then the lengthof the codeword for sk will be approximately � log p̂k. We now apply this general result tothe cluster probabilities. Suppose that, having just scanned a character in cluster Cr, we usean assumed probability distribution p̂Crk to create the codeword for each sk. Then the abovegeneral result asserts that the length of the codeword for sk will be approximately � log p̂Crk,since now p̂k = p̂Crk. If �i is the true unconditional probability of occurrence of symbol si,then the expected length dEL of such a code will be approximatelydEL = XCr2P Xsi2Cr �i(�Xk pik log p̂Crk): (1)Here the sum over the symbols in the alphabet is broken down �rst into the sum of symbolsin each member Cr of P, then the sum over the members of P. If no clustering occurs, andthe individual symbol probability-vectors are used, then the best compression consistent withour generation model is attained. The expected length in this case, EL0, is given by:EL0 = XCr2P Xsi2Cr �i(�Xk pik log pik): (2){ 8 {



As shown in Bookstein & Klein (1990), and proved more directly here:Theorem 1 The best summarizing distribution we can use, in the sense of minimizing the ex-pected length of a codeword, is a weighted average. Speci�cally, the optimal cluster probability-vector for cluster C is PC = (pC1; � � � ; pCn), where:pCk = Xsi2C �i�C pik; (3)and, �C � Xsi2C �i: (4)In terms of the optimal probability vector, the expected length, EL, may be rewritten asEL = XCr2P �Cr(�Xk pCrk log pCrk): (5)Proof: Let p̂Crk be an arbitrary distribution over the k-index. Then the increase � (which wewill show to be positive) in expected code-size using p̂Crk rather than pCrk is� = XCr2P Xsi2Cr �i  �Xk pik log p̂CrkpCrk!= XCr2P �Cr Xsi2Cr �i�Cr  �Xk pik log p̂CrkpCrk!= XCr2P �Cr  �Xk pCrk log p̂CrkpCrk! : (6)Since both the p's and p̂'s are true probabilities, it is well known that�Xk pCrk log p̂CrkpCrk � 0;and thus � must be non-negative as well.Equation 5 follows immediately from the de�nition of pCr . 2It is interesting to compare eqn's (2) and (5). These are formally the same, except that ELis de�ned over a set of clusters, whereas EL0 is de�ned over the initial alphabet of symbols.In eqn (5), �Cr is the probability that some si 2 Cr occurs; it generalizes the notation forthe unconditional probability, �i. Similarly, the cluster probability-vector PCr generalizes theindividual symbol probability-vectors. That is, if we interpret an individual symbol, si, as a{ 9 {



cluster, fsig, of one element, then the same equation describes all levels of clustering2. Thisobservation will be useful below.Theorem 1 shows that the conventional representation of a cluster by its centroid is notgenerally valid; unless the symbols in a cluster have equal probabilities of occurrence, the vec-tors associated with more probable symbols should be weighted more heavily, and in preciselythe manner indicated by this theorem. This type of weighting would likely have been antic-ipated by a more sophisticated user, and, in a sense, the theorem can be seen as a rigorousveri�cation such intuition. It is also interesting to note that the probabilities enter only viathe ratio of probabilities �i and �C ; thus, if convenient, we could have used any set of valuesproportional to the �'s instead of the �'s themselves. This observation is true throughout thispaper.2.3 Loss FunctionEqn (5) for the expected length of codewords after clustering allows us to compute the com-pression cost of clustering: this cost is the increase in the expected number of bits neededto encode a symbol if we partition the alphabet into a set of clusters and use the optimalcluster probability-vectors to derive the codewords. The compression cost allows us to assessthe bene�t of using one partition rather than another. This increase can be realized witharithmetic coding, and usually well approximated by Hu�man coding (Bookstein & Klein,1993).2.3.1 De�nition of loss-functionThe e�ciency loss L(P) � EL(P) � EL(P0), for P0 the initial alphabet, can be de�ned intwo steps. The result, while straightforward, is very important and will be stated in the formof a theorem (we retain the symbol L in each step for simplicity of notation):Theorem 2 If we use the optimal cluster probability-vectors, then the loss in compressione�ciency, L, can be approximated as follows. First:2In both cases, EL is a state based entropy function; the distinction is in the state space
{ 10 {



� For a given set, or cluster, of symbols, C, we de�ne the loss byL(C) = � Xsi2C �i Xk pik log pCkpik : (7)In particular, L(C) = 0 if C is a singleton cluster.� Given an arbitrary partition P = fCrg of the alphabet, thenL(P) = XCr2P L(Cr): (8)� An important special case deserves separate mention: If P is made up of a number ofsingleton clusters and one multi-symbol cluster C, then L(P) = L(C). Thus the loss isdetermined solely by the items being merged.We have derived the cluster probability-vectors and loss function of a partition in terms ofthe symbols of the underlying alphabet. Our results depend on only two parameters describingeach symbol: a probability-vector and the probability of occurrence of the symbol. However,after we de�ne a partition, we formally have a situation similar to the one we began with.Now the clusters that make up a partition appear as pseudo-symbols, parallel to the symbolsin the initial alphabet; and each has a �-value and a probability-vector associated with it.It is now possible, and below will be convenient, to combine clusters in a partition to createa coarser partition. We can consider the coarser partition, then, either as made up of clustersof pseudo-symbols, or as being made up of clusters of primary symbols. It is interesting, then,to relate the probability-vectors, �-weights and loss function of the resulting coarser partition,when de�ned in terms of the pseudo-symbols, to that obtained by using the parameters of theprimary symbols.2.3.2 Self-consistency propertySuppose then that the clusters are formed by a multi-stage process: starting with P0, theinitial alphabet, in each stage a number of clusters are combined to form a coarser set ofclusters. The relationship between the parameters in two stages obeys an important self-consistency property; this property allows us to determine the parameters in the next stagefrom their values in the current stage, without regard either to history or the parameters ofthe inital alphabet. { 11 {



Suppose at the current stage we have a set of pseudo-symbols, P, and are given a partitionof this set into subsets fCig. Then we can create �-values and optimal probability-vectorsPCi for each member Ci by using eqns 3 and 4 on the pseudo-symbols. But each Ci is itself acluster of symbols taken from the initial alphabet, and this also de�nes a set of �-values andcluster probability vectors. The self-consistency property relates these ways of creating theparameters:Suppose in the current stage of cluster formation, the pseudo-symbols are fC1g; � � � ; fCng,where in the 0-th stage the pseudo-symbols are identical to the initial alphabet. Let fC1g; � � � ;fCsg combine to form cluster C 0. Then:� If we de�ne �C0 = PCi�C0 �Ci , then it is obvious that �C0 = Psi2C0 �i.� Similarly, if we de�ne pC0 k = PCi�C0 �Ci�C0 pCik, it is easy to con�rm that pC0 k = Psi2C0 �i�C0 pik.Thus, given any stage of clustering, we can form �C0 and pC0 k for the next stage using onlyparameters de�ned in the preceding stage.The self-consistency property for the loss function is a bit more complex, as expressed bythe following theorem:Theorem 3 Suppose we have a partition P, and a second partition P 0, all of whose membersare unions of members in P. Then we can compute the actual loss L(P 0) by applying eqn (8)based on the elementary symbols. Formally, we could also have computed a value by introducingthe parameters of the pseudo-symbols of P into eqn (8); call this value �L(P;P 0), or, wherethe partitions involved are understood, �L for short. If we do this, we �ndL(P 0) = L(P) + �L; (9)that is, �L is the increment in loss as we combine clusters into coarser clusters.Proof: Suppose that P 0 is a partition coarser than P. We denote members of P 0 by C 0̀ andmembers of P by Cr. Then, the formula for L(P 0) becomes, after the sum over elements in C 0̀is expressed �rst as a sum of elements in Cr, then over the components Cr of C 0̀:L(P 0) = � XC 0̀2P 0 Xsi2C 0̀ �iXk pik log pC 0̀kpik= � XC 0̀2P 0 XCr�C 0̀ Xsi2Cr �iXk pik log pC 0̀kpCrk � XC 0̀2P 0 XCr�C 0̀ Xsi2Cr �iXk pik log pCrkpik ;{ 12 {



where we added and subtracted the term �ipik log pCrk to every term of the �rst sum to get the�nal equation. In e�ect, we have rewritten L(P 0) = EL(P 0)�EL(P0) as (EL(P 0)�EL(P))�(EL(P)� EL(P0)).By combining the outer sums, the right-hand summation is immediately seen to be L(P).But in the left hand term, we can invert the order of the two innermost summations and,recalling eqn (3), carry out the sum over si �rst:Xsi2Cr �ipik = �Cr Xsi2Cr �i�Cr pik = �Cr pCrk:Substituting this result, we �nd that the left-hand summation is:�L = XC 0̀2P 0 �L(C 0̀);where, �L(C 0̀) = � XCr�C 0̀ �Cr Xk pCrk log pC 0̀kpCrk :Bringing together the two sums demonstrates our assertion. 2If we construct a partition P 0 by a sequence of r mergings, then, by an obvious inductiveargument, we can conclude: L(P 0) = �L1 +�L2 + � � �+�Lr; (10)where �Li is the loss function for the i-th merger, computed with the parameters of thepseudo-symbols at the preceding stage. (Of course, the initial L(P), for P the original alpha-bet, is zero.)Thus we can assert that L is an increasing function in the following sense: if P and P 0are two partitions of the alphabet, and P 0 is coarser than P, then L(P 0) � L(P); this followsfrom the fact that �L has the form given in eqn (6), which is non-negative.Below, a stage will involve the merging of two clusters in P to form a single cluster in P 0.With this restriction, the loss function has properties reminding us of a distance function. Toemphasize this, below we shall denote �L by drs when P 0 is generated from P by combiningtwo of its elements, Cr and Cs.Now that we know, given an arbitrary partition of the alphabet into, say, N clusters, howbest to assign a probability distribution to each cluster, we can give a criterion for an optimal{ 13 {



partition into those N clusters: select that set of N clusters that, with optimal probability-distribution assignment, minimizes the overall loss. If we wish, we could then choose that valueof N that minimizes the overall size of the �le, including a header that contains informationnecessary for decoding (see Section 3.3 below).Finally, recall that the alphabet is itself variable: we could increase the size of the alphabetby adding more, and perhaps longer, strings. Given an alphabet extension algorithm thatoptimally allows us to choose new strings to append to the alphabet, we can now add anotherstage of cluster de�nition: once we know for each size alphabet the optimal cluster set, and theconsequent �le size, we can then determine the size of the alphabet for which the overall �lesize is minimized. Thus, potentially, our program permits us through the iterative procedureindicated above, to determine the optimal extended alphabet, the optimal number of clusters,and their de�nition.In this paper we consider only the cluster formation problem. We believe �nding anoptimal partition to be a hard problem. However, a greedy algorithm for approximating thispartition is suggested in the next section. A similar process was suggested in the area of imagecompression in Equitz (1989).2.4 Description of AlgorithmThe self-consistency property noted above strongly suggests a greedy iterative procedure tocluster the symbols. We start with each isolated symbol constituting its own cluster. Then,at each stage, we combine two clusters, such that the loss in compression e�ciency caused bythis merging action is minimal over all possible cluster pairs. Details on how this loss can beevaluated are presented below. This process is continued until one or more of the followinghalting conditions is reached:� the number of clusters is less than some threshold N ;� the overall internal memory requirements (clusters, tables, probabilities or Hu�man treesfor the successors of each cluster, etc.) are below some threshold M ;� the cumulative loss in compression e�ciency relative to the full Markov model is abovesome threshold �; { 14 {



� the total size of the compressed �le plus model description is minimized.At �rst sight, it would seem that the last of these criteria would be preferred; that is, wemight in principal successively reduce the number of clusters, keeping track of the total size ofthe �le plus model, for each number of clusters N . We then choose that value of N for whichthis total sum is minimized. However, there are other considerations that may dominate thatof external �le storage e�ciency. For example, it may be required that during processing theentire model be held in core. In that case, it may be necessary to sacri�ce external storagee�ciency in order to permit e�ective processing of the �le.In any case, we proceed iteratively. Let K be the number of iterations performed untilthe halting condition is reached, where 0 � K � n � 1. As K varies, we range from highcompression, but huge model storage requirements (full Markov model, K = 0), to lowercompression, with low model storage requirements (independence model, K = n� 1).It is instructive to examine separately the special case K = n � 1, which corresponds tothe merging of all the elements into a single cluster. If A denotes the cluster that contains allthe symbols of the alphabet, we get from the above de�nition of the cluster probabilities:pAk = Xsi2A �i�A pik = Xsi2A �i pik;since �A = Psj2A �j = 1. Let P (sisk) denote the probability of occurrence of the sequencesisk. We have thenpAk = Xsi2A �i pik = Xsi2A �i P (sisk)�i = Xsi2A P (sisk) � �k:The last equality follows from the fact that when we sum the probabilities of the symbolpairs sisk over all possible �rst symbols si in A, we get �k, the unconditional probability ofoccurrence of sk. This argument veri�es that combining all the vectors into a single cluster isequivalent to having the simple unconditional model.We begin with P0 made up of singleton clusters Ci = fsig, each with its associated symbolprobability, �i, and symbol probability-vector. After several stages, we have a partition Pcomprised of clusters of characters. We now turn to the problem of choosing the pair ofclusters belonging to P that should be merged.Suppose that at any stage, we wish to to form cluster Crs by combining clusters Cr and Cs;to simplify our notation, we now denote their overall probabilities by �r and �s, respectively,{ 15 {



and their probability vectors by Pr and Ps. We can now take advantage of eqn (9) to computethe loss in compression e�ciency of combining these clusters. We �rst form the new combinedcluster probabilities using equations (3) and (4), as described in Thm 1:Prs = �r�rs Pr + �s�rs Ps; (11)where �rs = �r + �s. Equation (11) is justi�ed by the self consistency property.The loss of compression e�ciency resulting from merging Cr and Cs is then given by drs,where: drs = ��rXk prk log prs kprk � �s Xk psk log prs kpsk : (12)The expression for drs is complex, and we address the technical details of using it iterativelyto construct clusters in the next section. We should, however, note how di�erent this is fromthe cosine measure; and that this measure was not chosen from a standard repertoire, butcarefully manufactured while guided by the goal we were attempting.The form taken by eqn (12) also deserves comment. The commonly used Kullback-Leibler(KL) measure (Kullback, 1959) of the distance between two arbitrary probability distributionsfpig and fqig is given by dKL = �Xi pi log2 qipi :Our measure is an alternative to this that 1) is symmetric, and 2) can easily be generalized tomeasure the extent of disagreement among a set of probability distributions. Given two prob-ability distributions, we don't use the KL measure directly. Instead we compute a summarydistribution, compute the KL measure between each of the individual distributions and thesummary distribution, and take an average of these measures, weighted by the probabilitiesof the elements that are being combined.Note also that both the KL and our measure are based on the assumption that the infor-mation content of an element with probability p is � log2 p. This suggests the use of arithmeticcodes for compression. We shall however prefer Hu�man codes in our implementation, whichare much faster and for which the necessary information (lengths of codewords) can be storedmore economically than the information required for arithmetic codes (probabilities); theloss incurred by substituting arithmetic codes by Hu�man codes is usually small and oftennegligible (Bookstein & Klein, 1993). { 16 {



Unfortunately, our measure, restricted to two vectors, is not a true metric: though alwayspositive, symmetric and equal to zero only if the two probability distributions are identical,the triangle inequality is not valid. For example, consider the case of three vectors P1, P2, andP3, with equal probability of occurrence. Thus we have �i=�ij = :5 for each each vector in apair, regardless of the pair taken. Suppose P1 = (:8; :2), P2 = (:6; :4), and P3 = (:2; :8). Thenusing the �-weights as given above, we �nd P12 = (:7; :3), P23 = (:4; :6), and P13 = (:5; :5).This results in (taking logarithms to base 2) d12 = :023, d23 = :083, and d13 = :185. Clearly,d12 + d23 = :106 < :185 = d13, in conict with the demands of the triangle inequality.Our greedy technique, which makes locally optimal decisions at each step, may not neces-sarily yield a globally optimum partition. Suppose that at some step of the greedy algorithm,clusters C1 and C2 are combined, and at the next step C3 and C4. The cumulative loss isd12 + d34.But it may be that d12+ d34 > d134, for d134 the loss associated with the cluster consistingof C1, C3, and C4. Using a sequential algorithm, such a cluster may be formed in two steps by,say, �rst combining C1 and C3, even though d13 > d12; then combining this cluster with C4.But if we �rst combined C1 and C2, it would not be possible to subsequently combine C1 andC3. Here an early stage of the greedy algorithm makes a choice that prevents us making aneven better choice later.An optimal procedure would then have to inspect all the partitions of the set of symbolsinto a given number of clusters, and this might be computationally impossible: the number ofways to partition the n symbols into k clusters is a Stirling number of the second kind nnko (seeKnuth D.E. (1973), Exercise 1.2.7{64). But nnko is asymptotically ek kn�k+1=2 ( Abramowitz& Stegun, 1965: Section 24.1.4), so if we want, e.g., to reduce the number of clusters to half(where we consider the initial full Markov model to consist of n singleton-clusters), the numberof partitions is n nn=2o = 
(nn=2). However, our experiments (see Section 5) indicate thatin practice, our clustering heuristic is so e�cient, that a possible improvement by an optimalalgorithm will often be negligible. The additional e�ort to �nd the optimal partition will thusgenerally not be worthwhile for realistic applications.
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3. Implementation details3.1 Distance between probability distributionsWe �rst note that our distance measure drs is not well-de�ned unless the two probabilitydistributions are de�ned on the same set of elements. This is important regarding our Markovmodel, since di�erent symbols may have di�erent sets of successors. We circumvent this byusing the full alphabet for each probability distribution, assigning zeroes as the probabilityvalues for non-occurring symbols. These zeroes cause problems if the KL measure is used,since the KL distance from fpig to fqig is in�nite if for some i, qi = 0 but pi 6= 0. On theother hand, our measure (eqn. (12)) is well-de�ned, since by eqn. (11), prs k = 0 only if eitherthe k-th components of both Pr and Ps are zero, or if, say, the k-th component of Pr is notzero, but the unconditional probability �r is zero. In both cases the k-th term of the each ofthe summations in eqn. (12) is also zero, under the usual convention that 0 log 0 � 0.3.2 Merging clustersOur algorithm iteratively chooses the pair of clusters giving minimum dij. For an alphabetof size n, we can accomplish this straightforwardly by building a two-dimensional table D, ofsize n2. Such a table would be symmetric, and all entries on the diagonal are zero; thus onlyPn�1j=1 j = n(n�1)2 entries are needed. The construction of the initial table requires n(n � 1)=2evaluations of loss values dij, each of which involves two summations over the full alphabet.The complexity of the initialization of D is thus �(n3).We now proceed iteratively by �nding the minimum value in D. Suppose the minimalelement is found at position (i; j). We would then modify the matrix so as to eliminatereference to clusters Ci and Cj and introduce a new cluster Cij. The complexity of the iterativepart could be reduced by using a heap for managing the requirement of successively �ndingminimum distances, but the overall complexity does not change, as it is dominated by theinitialization of table D.We also have to keep track, during the clustering process, of the current partition of thealphabet into clusters. This is not needed for the clustering itself, since we handle only clusternames, and not their individual components; at the end of the process, however, we do need to{ 18 {



know the �nal partition for the encoding and decoding algorithms. A simple way to monitorthe formation of the clusters is by representing each cluster by a rooted tree, using Union-Findalgorithms (Cormen, Leiserson & Rivest, 1990). Of course, once the clustering is completed,there is no sense in keeping information about the partition in the form of a forest of rootedtrees, since during the encoding and decoding phases, we need many accesses to the clustersof a given element. So before starting the encoding process, we construct in a single scan ofthe alphabet, a vector giving for each symbol the name of the cluster it belongs to.3.3 Additional overheadThe main reason for using the clustering technique is to reduce the huge overhead implied bymega-state models. In fact, this overhead must be considered in two di�erent contexts:� at run-time: the decoding trees, the extended alphabet and the partition into clustershave to be available in RAM to permit fast decompression; the required space dependson the extent to which we are willing to sacri�ce space for an increase in speed.� in a header-�le: in storage, the necessary information that allows the construction ofthe decoding trees must be kept along with the �le.We now concentrate on the header �le. The succinct coding of this meta-information is achallenge in itself (Bookstein & Klein, 1993), and we suggest here one possible solution.The header can be schematically represented as follows:hheaderi::=hextended alphabetihcluster definitionsihdefinition of Huffman treesi.We now shall describe each in turn.1. Extended alphabet: The extended alphabet consists of an ordered list of symbols. Belowwe shall be interested in the actual realization of the symbols as strings. We emphasize belowthat some of these symbols are actually strings of one or more characters taken from aninitial alphabet by referring to them as meta-characters. To represent the extended alphabet,we concatenate these meta-characters into a single string S, proceeding by increasing length,where the length of a meta-character x is de�ned as the number of eg ASCII characters formingx. The string S is preceded by the sequence R = r2; r3; : : : ; rm, where ri is the number of{ 19 {



meta-characters of length i, and the value r1 is assumed known; R is preceded by m, the lengthof the longest meta-character. Thus the size of the extended alphabet is given by Pmi=1 ri, andjSj = Pmi=1 i ri.2. Cluster definitions: We �rst store the number K of clusters, followed by the numberst1; : : : ; tK , where ti is the number of symbols constituting cluster i, followed by a list of indicesto the Pi ti meta-characters themselves.3. Definition of Huffman trees: For each of the clusters Ci, one has to store the Hu�mantree corresponding to the distribution of the symbols that are successors of Ci. In fact, itsu�ces to store the sequence of the successors of Ci, sorted by decreasing frequency, alongwith the sequence of numbers k; n1; : : : ; nk, where k is the depth of the Hu�man tree (thelength in bits of the longest codeword), and nj is the number of codewords of length j bits.Let Ni be the number of successors of Ci, so that Ni = Pkj=1 nj. The string T = hn1; : : : ; nkiuniquely determines a canonical Hu�man code as follows: �rst derive from T the length tj ofthe j-th codeword, for 1 � j � Ni; the j-th codeword itself consists then of the �rst tj bitsimmediately to the right of the \binary point" in the in�nite binary expansion of Pj�1s=1 2�ts ,for j = 1; : : : ; Ni (Gilbert & Moore, 1959).To store the indices of the the meta-characters in the header, dlog2(n)e bits are neededfor each, but since n �K trees are stored, there are many repetitions. It could thus be thatone can save by using a Hu�man code to encode these meta-characters; this Hu�man codewould be internal to the header. The numbers in the header are most easily stored in �xedlength format, using dlog2(max)e bits for each, where max is the number of distinct symbolsin the original alphabet | however, since most of the numbers are small, some variable-lengthuniversal encoding of the integers may be preferable. A large variety of such encodings can befound in Bell, Cleary, & Witten (1990). More methods for encoding the header are discussedin Bookstein & Klein (1993).The largest component of the header is clearly the description of the Hu�man trees, whichis linear in the number of clusters. This is the reason why reducing the number of clustersgenerates savings over the complete Markov representation.
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4. Experimental DataSince our primary concern is IR applications, we decided to test our clustering algorithm on�les in several natural languages. Since our main motivation is to closely examine the trade-o� of clustering and compression e�ciency, we restrict our experiments to moderately sizeddatabases.The �rst set of �les consists of the Bible in English (King James version), Finnish, Ger-man (Elberfelder �Ubersetzung) and Hebrew, and a French text by Voltaire called Dictionairephilosophique. Each of these texts is large, so the size of the header, relative to the main text,is not signi�cant | to simplify our experiments, we are working with a relatively small, �xed,extended alphabet, and are not considering here the possibility, noted earlier, of expandingthe size of the alphabet enough to optimize overall compression. However, it is still useful toreduce the size of the header to facilitate processing of the �le in RAM.We also included a set of smaller texts, for which the header, when considered as part ofthe compressed �le, has a dramatic impact on compression e�ciency. This set includes the�rst 10000 words of Gadsby , the famous novel by E. Wright in which the letter E never occurs;and the �les progc, progl, and progp from the Calgary corpus (Bell, Cleary, & Witten,1990), which are programs in C, Lisp and Pascal, respectively. Finally, we also studied othernon-textual �les from the Calgary collection: obj1, some object code, and pic, a facsimilepicture. These were chosen just for comparison, since the size n of the extended alphabet forobj1 is much larger, and the compression for pic is much better, than for the other test �les.For each of these �les, we �rst selected the set of meta-characters that will constitutethe symbols of our extended alphabet, and then applied Hu�man coding on a full Markovmodel that uses a di�erent Hu�man tree for the successors of each of the symbols. Theselection of meta-characters was done automatically by a simple procedure, and there was noattempt to optimize this selection process. Nonetheless, some of the meta-characters stronglyreect the language or the type of �le they were taken from. For example, the EnglishBible produced strings like3 ith the , y shall, LORD.; in Finnish mppeli, Jumal,  Ja ;in German: icht der HERR, K�onig, Volk; in Hebrew (translated): House of God, King in,David; in French: hommes, vertu , je su; in the C-program: fprintf(stderr, , endif; inthe Pascal program: begin, writeln. The string Egyp appeared both in English and Finnish,3blanks are visualized by the symbol  { 21 {



as did �Agyp in German. In the object code and picture �le, the improved compression is dueto a meta-character of 256 nulls.Table 1 summarizes the main statistics describing these �les. The sizes of the �les are givenin bytes, and the column entitled n gives the total size of the meta-alphabet (the number ofASCII characters used in the �le plus the number of character strings). The column entitledcompressed lists the size of the compressed �le, excluding the header, expressed as numberof bits per original character used. For example, this value is 2.5065 for the English Bible,which means that the size of the compressed �le is (2:5065�3230258)=8 = 1:012 MB. The nextcolumn gives the size of the header �le in bytes, and the column entitled compressed with headgives the total size of the �le, including the header, expressed as the ratio of bits per characteras before. We calculated the size of the header without any attempt at optimization, usingone byte for each of the values ri and nj mentioned in Section 3.3, and 9 bits to refer to eachmeta-character.File Size n compressed header compressed com- gzip ppmc(bytes) (bits/char) (bytes) with head pressEnglish Bible 3230258 243 2.51 16239 2.55 2.79 2.31Finnish Bible 3178050 251 2.71 19934 2.76 3.14 2.69German Bible 3518702 296 2.63 21175 2.68 3.14 2.70Hebrew Bible 1519526 182 3.13 14764 3.21 3.47 3.00Voltaire 554719 219 2.51 13559 2.71 3.07 2.81Gadsby 55840 215 2.57 7834 3.69 3.63 3.18progc 39611 245 2.59 6540 3.91 3.87 2.68 2.49progl 71646 230 2.45 5441 3.05 3.03 1.80 1.90progp 49379 242 1.99 5874 2.94 3.11 1.81 1.84obj1 21504 430 2.72 10607 6.67 5.23 3.84 3.76pic 513216 212 0.78 8252 0.91 0.97 0.82 1.09Table 1: Statistics and compression results
{ 22 {



The �nal three columns assess the compression e�ciency. The values for compress wereproduced by the standard Unix compress utility, which is based on the LZW algorithm (Welch,1984); gzip is based on the �rst Lempel-Ziv algorithm (Ziv & Lempel, 1977), and was appliedwith the parameter yielding maximal compression; the numbers for ppmc are taken from Bell,Cleary, & Witten (1990) for the �les of the Calgary corpus. These three are adaptive methods,even though we are concerned with static methods only. We give these values to set somebaselines, rather than as a measure of relative merit.Note, nevertheless, that even though we did not at all try to �nd an optimal model, thecompression with the full Markov model is often almost as good as with gzip or ppmc andsometimes even better. Depending on the size and the compressibility of the �le at hand,the size of the header �le, for the large natural language �les, is 2{8% of the compressed �le,which is not negligible. For small or non-textual �les, the header may even be larger thanthe compressed �le itself: see, for example, obj1, which has been compressed to 7314 bytes!There is thus good reason for trying to reduce the header, in particular for applications onsmaller machines with scarce internal memory.
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Figure 1: Compression tradeo�s Figure 2: Header sizeFigure 1 is a graphical representation of the compression e�ciency as a function of thenumber of clustering steps performed, for the �ve large natural language �les of the �rst set.Compression is measured, as before, in bits per original character, but omits the size of theheader. As can be seen, the general form of the graphs for the di�erent languages is similar,and this was also true for all the other �les we checked. We note that the increase in size of thecompressed �le is almost negligible at the beginning (actually of the order of several bits (!){ 23 {



even for MegaByte large �les), and becomes signi�cant only when the number of remainingclusters is reduced to a few tens.Such behavior, at least at the beginning, might be expected: in a large alphabet, there areoften several symbols that either occur only rarely, or are almost always followed by the samesymbols, with similar probability distributions. In either case, such symbols can be mergedinto a single cluster with little cost. In the extreme case we might merge two symbols whichhave the same set of successors; should these successors occur with frequencies that are similarenough to generate the same Hu�man code, the compressed �le does not increase at all.On the other hand, as can be seen in Figure 2, the size of the header, measured in bytes,decreases steadily and almost reaches zero, again with no striking di�erence in form betweenthe languages. File After 75 After 50% After reducingname clustering steps clustering steps to single clusterloss (%) head loss (%) head loss (%) headEnglish Bible 0.14 13919 0.81 10862 44.2 506Finnish Bible 0.19 16252 1.17 12755 44.4 659German Bible 0.04 19425 0.91 14079 48.3 657Hebrew Bible 0.30 11032 0.61 9658 23.2 503Voltaire 0.35 11002 1.18 8454 42.7 571Table 2: Tradeo� details on natural language �lesTable 2 displays the exact values for selected points of the above graphs. The �rst pairof columns corresponds to the values after 75 merging steps have been performed. The nextpair of columns gives the values after the number of clusters has been reduced to half of thesize of the original extended alphabet (given in the column headed n of Table 1). Finally, thelast columns correspond to a single cluster, i.e., simple, unconditional Hu�man coding. Thevalues in the columns headed loss give the increase, in percent, of the size of the compressed�le, relative to the compression obtained by the full Markov model; this loss is of the �le itself,not including the header. The columns headed head are the size of the header in bytes. In{ 24 {



particular, the last column lists the size needed to store the extended alphabet and the singleHu�man code. We see that even after hundreds of clustering steps, the loss of compression isstill around 1% only, whereas the size of the header has decreased considerably. The valuesfor simple Hu�man coding correspond to the right upper top of the graphs in Figure 1. Forexample, using simple Hu�man coding increases the size of the English Bible by 44.2%, to3.62 bits per character; we note that this is still much better than using a Hu�man code onEnglish text without extending the alphabet �rst.Since in successive clustering steps the size of the compressed �le increases, while at thesame time the size of the header decreases, we next consider the combined size. For ournatural language �les, the plots are almost identical to the corresponding ones in Figure 1,since the size of the header is very small as compared to the texts. But for the smaller �les,the combined size clearly decreases, reaches some minimum, and then increases.
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Figure 3: Compression tradeo�s

File Kopt compr head totalname size size comprGadsby 186 20373 1997 3.205progc 215 14923 2052 3.428progl 172 22839 2973 2.882progp 195 13971 2535 2.674obj1 393 9426 3294 4.732pic 191 51336 2818 0.844Table 3: Tradeo� detailsFor the �le Gadsby and the three program �les, the total size of the compressed �le plusheader expressed in bits per character, as a function of the number of clustering steps, isdisplayed in Figure 3. Details on the exact point at which the minimum is reached for each ofthese �les are given in Table 3. The �rst column gives the number Kopt of merging steps forwhich the combined size is minimized. The next two columns are the sizes of the compressed�le and the header in bytes, after Kopt merging steps, and the last column gives the total size,again in bits per character. We see that for the smaller �les, clustering not only reduces thespace needed to store the model, but can actually reduce the space required to store the modeland �le combined. In our examples, performing Kopt merging steps reduced the combined size{ 25 {



by 5{13%, and on the obj1 �le, by as much as 29%. Note also that Kopt is surprisingly highrelative to the size of the extended alphabet.The following are a few examples of elements that clustered. As one might expect, theirHu�man trees were often quite similar. For example, for the English �le, the meta-characters sai and . An were united at an early stage. Indeed, the successors of the �rst were: d , d,th , th, nt, and of the second d , d,  ,  h, s,  a. But for both, the probability of d wasthe highest (0.58 and 0.99 respectively). A (canonical) Hu�man code can be de�ned by thenumber of elements having codeword sizes 1, 2, etc. For the two codes we are describing,these sequences were very similar (h1; 1; 1; 2i for the �rst and h1; 1; 1; 1; 2i for the second).Other elements that were merged are the letters a, i and e (vowels); the words hall , have , have ,  will ,  be , not and  not (all terminating in space); and the words of, And,and, that, shall and  shall (all full words in English, and thus generally followed by space,comma, etc.).5. ConclusionIn this paper we examined a novel application of the concept of clustering | methods forpartitioning a set into subsets of like items. Our compression task involved creating largealphabets and predicting symbol occurrence by means of a Markov model. We used a greedyclustering heuristic to group states in a manner that greatly reduced the cost of storing themodel. This permitted a choice from a range of compression / overhead tradeo�s. Selectingthe best one for our application generally yielded signi�cant savings in model storage, at thecost of a negligible loss in compression e�ciency.Acknowledgment: We would like to thank Nili Schwartz for doing a large part of the programming.
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