Using Bitmaps for Medium Sized
Information Retrieval Systems

A. Bookstein and S.T. Klein

Center for Information and Language Studies
University of Chicago, 1100 East 57-th Street,
Chicago, Illinois 60637

The second author was partially supported by a fellowship of the Ameritech Foundation

Abstract: We describe the use of various forms of bitmaps as a basic tool for im-
proving the search algorithms in medium sized information retrieval systems. The bitmaps
considered include and extend known techniques using occurrence maps and signatures.
Such an approach to text retrieval is flexible, efficient and, relative to the customary con-
cordance approach, inexpensive in storage costs.

1. Introduction

Our ability to control textual information is being strongly influenced by a
variety of technological advances. These include new means of storing and sharing
information that makes possible and realistic an information system model in which
large bodies of full text are compactly stored, widely distributed, and shared by
a large number of interested persons. Such changes require a careful search for

techniques that promise convenient and effective access to such textual databases.

The research that is required in this environment differs from that traditional in
Information Retrieval (IR) in several ways. Most apparent, earlier research assumed
a model of an Information Retrieval System (IRS) in which IR was based upon
the existence of a collection of records about documents rather than on the full
text of the documents themselves. In such a system, each record represents, in a
manner convenient for machine manipulation, the content of a document. Various
matching functions were tested, in which document records were related to requests;
mathematical models for generating matching functions were the focus of much

effort, and considerable attention was given to finding ways to take advantage of

feedback information (Bookstein, 1985).

For a number of conceptual and practical reasons, research based on the model
noted above made heavy use of typically artificial, restricted, test databases which
included a set of document records, a set of requests and, for each request, a list
of relevant documents. The objective of the research was, given a request, to use
machine means to reproduce as well as possible the list of relevant documents. This
mode of research was and is highly productive. Through it many very innovative
retrieval techniques were generated, and an understanding of how the performance of
a retrieval mechanism ought to be evaluated developed (see for example Salton and
McGill (1983)). This approach, while still very valuable, is nonetheless limited by
the artificiality of the experimental databases and the limitations of the collections

in size and character.

In contrast, the developments noted above are drawing our attention to the

problem of IR in an environment in which

e the desired textual information is itself available in machine manipulable form

as full text; and

e the texts of interest may be widely dispersed physically but easily made avail-

able through electronic communication channels.

The primary IR problems in this environment include: developing the ability
to locate the desired text(s) within the system; developing the ability to interact
effectively with an available database of full, natural-language text to obtain the
information or textual segments that are desired; exploring new means of studying
text to amplify scholarly productivity by using methods not possible before the exis-
tence of large bodies of text in machine readable form; and creating novel techniques
for storing and organizing massive quantities of text to permit efficient access, con-
sistent with the characteristics of the new media. Questions also arise regarding the
development of new data structures that permit a user to impose a useful personal
structure on privately held document collections; such a structure should facilitate
his intellectual access to the database and potentially should be sharable with other

users.

In this paper we are concerned with the problem of designing for a realistic
environment a data structure, the bitmap, that appears to us to be very valuable

as an alternative to the customary concordance as a means of accessing full text

- 92 —

databases. It is a flexible mechanism that allows us to retrieve segments of text
on the basis of various logical combinations of words, and can also be extended to
permit retrieval on the basis of word fragments. Many of the techniques described
here have been developed elsewhere, but the sense of their unity and their impact
have been lost due to their dispersal through the literature. We here attempt a
coherent, presentation of the main results on the use of bitmaps in IR, pointing to

elaborations and extensions that may enhance their value in an IR environment.

Suppose we are given a large file consisting of text written in some natural
language, and a query of the form Ay Ay --- A;,, where the A; are keywords. Our
problem is to find all the “locations” in the text where the keywords Aq,..., Ap,
“occur together”. What exactly a location is and what it means to occur together is
defined by the retrieval situation; one could for example require that the keywords
appear in the same line, sentence or paragraph, or that they be adjacent in the text;
more generally, one could impose certain metrical constraints between the keywords
(see Choueka, Fraenkel, Klein and Segal (1987)). For most of what follows, the
exact definition is irrelevant: we need only assume that some mechanisms exist for
determining both a location and whether for a given unit of text, the co-location
condition is satisfied; in practice, the proposed system can be adapted to any of the

above choices.

When the size of the text is small, say up to a few hundred Kbytes, the problem
can be solved by some brute-force method that scans the whole text in reasonable
time. Such a method is commonly used in text-editors. At the other extreme, for
very large databases spanning tens of Mbytes, a complete scan is not feasible. The
usual approach in that case is to use inverted files, that is, auxiliary files such as a
dictionary and a concordance. As used here, a dictionary is an easily searchable list of
all the different words occurring in the text and usually contains for each word some
statistical information such as the total number of times it occurs and the number
of documents in which it appears, as well as a pointer into the the concordance. A
concordance contains for every word, W, the complete list of locations in the text
where W appears. Depending on the underlying hierarchical structure of the text,
these references may take various forms, for example: document number, paragraph
number (in the document), sentence number (in the paragraph), word number (in
the sentence); or, alternatively: book number, page, line; or simply, when any other

structure is lacking, the number of the physical block containing W and the offset

- 8 —

within the block. The retrieval process now consists of accessing the concordance for
each keyword and collating the corresponding lists of references. The main drawback
of this approach is its huge overhead: the size of the concordance is comparable to
that of the text itself and sometimes larger. Another problem is the rigidity of the
system: in order to allow fast access, the concordance must be kept sorted, so that
updating the text is difficult.

In this paper we focus on medium size texts, say up to a few Mbytes; such texts
are large enough so that a straightforward scanning approach is impractical. The
inverted file method is a possible alternative; however the method we propose allows
us to drop the concordance completely. The space and maintenance requirements
are therefore drastically reduced, which can be a great advantage for smaller systems

where disk-memory is rather scarce.

The idea is first to effectively reduce the size of the database by removing from
consideration segments that cannot possibly satisfy the request, then to use pattern
matching techniques to process the query, but only over the—hopefully small—
remaining part of the database. The filtering process which reduces the amount of
text to be scanned is based on assigning signatures to text fragments and to indi-
vidual words. Signature schemes have been used in a variety of ways in information
retrieval, such as substring testing (Harrison, 1971, Bookstein, 1973), document
ranking (Croft and Savino, 1988) and as an access method for text (Faloutsos,
1985, Faloutsos and Christodulakis, 1984, Sacks-Davis, Kent and Ramamohanarao,
1987). In the method under investigation, the signatures are transformed into a set
of bitmaps, on which Boolean operations, induced by the structure of the query, are
performed. The resulting bitmap is used to eliminate a priori parts of the text which
cannot possibly contain a solution. The way in which bitmaps, when used together
with a concordance, can enhance the retrieval process for large full-text systems has
been studied in Choueka et al. (1987). The present work is an extension to the
case where no concordance is used; it is also related to the grab command in UNIX

(Lesk, 1985) and incorporates some of its ideas.

This paper describes the theoretical framework of the new retrieval system.
The system itself is currently in the process of being tested on various subsets of the
Trésor de la Langue Frangaise (TLF), a large French database available to us. The
experimental results, as well as empirical comparisons with other retrieval systems,
will be published later.

,4,

2. The basic scheme of the retrieval process
2.1 Description of the proposed system

In the system being proposed, every word W is assigned a signature h(W') which
is a string of length k bits, for some fixed integer k. The length k should be chosen to
allow smooth computer manipulation (e.g., a multiple of a byte size), large enough
to permit effective retrieval, and small enough to limit the overall space complexity.
The function h should satisfy the basic requirements of a hash function, namely
being easily computable and distributing the values h(W) as uniformly as possible
over its range. Generally, h will not be one-to-one, but unlike hashing, where great
efforts are spent on collision resolution, the fact that several words may have the

same signature does not constitute a problem here.

The text is partitioned into relatively small logical units, say sentences, and
each unit S is assigned a signature, h(S), obtained by ORing the signatures of
all the words in S: h(S) = \/yyreg M(W). This is known as superimposed coding.
Similarly, for a given query () = A1 AND Ay AND --- AND A,,, the signature of the
query is computed: h(Q) = \/;2; h(A4;). In order for all the keywords of the query
to appear in a given text unit S, it is necessary that h(S) have 1-bits at least at all
the positions k(@) has. This is easily determined, for example, by checking for each

unit S if
(h(S) AND R(Q)) XOR h(Q) = 0, (1)

an operation efficient in machine time. However this condition is not sufficient, not
only because h is not injective, but also because the OR operation, viewed as a
function from K x K to K, is not injective, where K is the set of k-bit strings.
Therefore the text units retrieved are only potentially relevant and must now be
scanned to verify that all the keywords Aq,..., Ay, actually appear in each of them.

Such an approach was taken for example in Bookstein and Rodriguez (1978).

Let n be the number of text units, the text units themselves denoted by
Si,...,Sy. When n is fairly large, it is not practical to evaluate (1) for each n.
The set of n signatures representing the text can be viewed collectively as an n X k
bit-matrix, M. In the approach considered here, M is created row by row, but
stored column by column in so-called bit-slices (see for example Roberts (1979)).
This yields k vectors of n bits, C, ..., C}, where Cj, the i-th column-vector in M
is the concatenation of the i-th bit-position of the n signatures h(S1),...,h(Sn).

— 5 —

The retrieval process can now be reformulated as follows: let 1(Q) be the set of the
indices of the 1-bits in h(Q). We first retrieve the set of vectors {Cj};cr (). These
vectors are then ANDed to form a new vector F = /\jeI(Q) C; of the same length
of n bits. The indices of the 1-bits in F are exactly the indices of the text units S
which satisfy (1); in other words, F serves as a filter allowing us to skip the text

units corresponding to its 0-bits.

In practice, the space allocated to each column vector, C;, should exceed n
bits, thus preparing for the efficient handling of a possible future expansion of the
database. Indeed, there is no restriction on the order of the text units, so that
later additions can simply be appended at the end. The update process would then
consist of computing the signatures h(Sy41), h(Sp+2), . .. of the newly arriving units
and setting the corresponding bits in the tails of the vectors C;. The deletion of a
text unit is implemented by setting all the corresponding bits in the columns C; to
zero. Note the simplicity of these update procedures as compared to the necessary

reorganization required by the concordance approach.

2.2 Parameter setting

The effectiveness of the filtering process will be determined by the number of 1-
bits in a typical signature h(S). For example, suppose that [bits are chosen, possibly
with duplications, by independent random functions in which the probability that
any given bit in h(W) be turned on is [/k. As shown by Stiassny (1960), if a text
unit S has r words, then the expected number of 1-bits in the bit-pattern h(S) is

k(l— <1—é>r> zk(l—e_l’"/k>. 2)

Since the function is non-linear, we cannot immediately deduce from this formula
an expression for the expected number of 1-bits in h(S), averaged over all the units,
with varying values of r. However, if r is chosen to be the average number of words
occurring in a unit, we can use (2) to estimate the average number of bits set to

one.

Suppose next that a query Q contains 7’ words which do not appear in the text
unit S. The system would still retrieve S in response to () if the 1-bits corresponding
to the 7" words comprising @ happen to fall in positions occupied by 1-bits in h(S):

in other words, to a good approximation, if in /7’ random choices, with repetitions,

- 6 —

only positions of 1-bits in h(S) are selected. Thus the probability of such a “false

drop” is pgq = (1 —elr/ k>lrl. Since pgq is a decreasing function of £, the larger
the size chosen for the signature, the more effective would the resulting filter F
be, though at the price of a larger space overhead. Therefore k£ will be determined
by implementation considerations, such as the total available space and the ease of
manipulating k-bit blocks. For a fixed k, the effect of decreasing [is on one hand
to decrease the probability 1 — e~/ of a bit in h(S) being set to 1, making a false
drop more difficult, but on the other hand, to reduce the number 7' of random
choices that must succeed for us to get a false drop, making a false drop easier.
We are interested in chosing [such that, given k, pgq is minimized (the parameter
r is fixed for the database). Stiassny (1960) showed that the optimum is obtained
for [= éln 2, a result independent of r’. Intuitively this result is not surprising,
since for fixed k, the optimal value of [is such that the probability of a bit in h(S)
being set to 1 is %; in other words, about k/2 of the bits would be turned on.
This agrees with our intuition that the probability of a false drop will be minimized
when the number of possible k-bit signatures with s 1-bits, (’;), is maximized; this

requirement again yields s = k/2.

As an example, let us take a sentence as a text unit; the average number of words
in a sentence can be computed from the database being processed. For example,
on the Trésor de la Langue Francaise (TLF), a large database available to us, the
average length of a sentence is about 22 words; thus if £ is set to 64 bits, the best
choice for I would be (641n2)/22 ~ 2 bits.

We are now able to assess the implications of increasing the size of a text
retrieval unit—say from sentence to paragraph. If a new unit is «a old units, we
can increase k to ak without changing the size of our bitmap matrix. If each unit
introduces different words, then r will also increase by a factor of a, to ar, and
r/k in pgg would remain the same, as would the optimal [, and no gain (or loss)
is realized. However, in practice, if we combine o contiguous units, most likely r
will become o/r, for o/ < a; if so, % — %, < 1, and to preserve the condition that
(1 —elr/ky = %, I must increase. Thus pgg = (.5)"" will decrease. This implies
that from the point of view of minimizing false drops, given the constraint of a fixed
size bitmap matrix, we would like to use text units that are as large as possible.
Increasing the size of a text unit, however, increases the cost of physically retrieving

the unit and then of pattern matching. The actual size used should be a compromise

-1 -

of these conflicting considerations.

2.3 Implementation

The following procedure for computing the signature of a word W could be
used. Consider the concatenation of the internal representations of the characters
of W as one long binary integer v(W). Let f be a good pseudo-random number
generator (see Knuth (1973), Chapter 3), returning values between 0 and 1, and
denote by f1, fo2,... the sequence of values returned by f when initially called with
v(W) as seed. Generate the first I’ numbers of this sequence, where I’ > [is the
smallest integer for which the set J = {[f1 X k], [fe x k],...,[frr X k]} contains [
distinct values; J is the set of indices of the bits in (W) which shall be set to 1.

When the optimal value of [is not an integer, we propose to set the number of
1-bits in h(W) either to |I]| or to [I], such that on the average, [bits are set. First
1] indices are chosen as above, then the next random number fy 4 is generated. If

fra1 >1—|l], we are done; otherwise an additional index has to be selected.

3. System Considerations
3.1 Including rare and frequent words

We believe bitmaps have a potential as a retrieval mechanism beyond that
which has hitherto been attempted. We have described an approach, based on word
signatures, for generating bitmaps that are approximate in the sense that while a 0
guarantees that the corresponding segment will not satisfy the request, a 1 does not
guarantee that it will. In practice this could be combined with other bitmap based

approaches to create an efficient IR system.

We first recognize that different terms may benefit from different treatments.
The terms occurring in an actual database can be usefully partitioned, for our pur-
poses, into three classes. First we must consider the class of terms occurring very
rarely; it is well known that these account for the major part of the dictionary, if not
of the text itself. These terms can be controlled most efficiently by simply storing
their locations explicitly in a list, perhaps as part of the dictionary. Effectively, ex-
act bitmaps associated with these terms can be generated algorithmically as needed
directly from the information in the dictionary rather than being stored on disk,

and can then be used as described below. Thus this mechanism is consistent with

- 8 —

the approach we are proposing. This way of dealing with the rare words also elimi-
nates another problem caused by such words within the signature scheme, viz., that
especially for these terms, the number of bits set to 1 that will cause false drops will

greatly exceed the number of actual occurrences of these terms.

The second class of terms requiring special consideration consists of words oc-
curring very frequently, commonly called stop-words, such as to, for, the, etc. For
such words, each bit set to 1 will substantially fill a column of the bit-matrix, effec-
tively reducing the size of the signature. Typically, such words are simply ignored.
It should however be noted that the removal of stop-words, while appropriate for
languages like English, cannot easily be applied to languages like Hebrew, in which
most of the words are homographic. For example, at the Responsa Retrieval Project
(RRP), which has a database of about 60 million words, written mainly in Hebrew
and Aramaic (see for example Choueka (1980) or Fraenkel (1976)), no stop-words are
defined and all the words are searchable, including some with hundreds of thousands
of occurrences. But information retrieval systems in other languages, for example
French, have also found it advisable to include even the most frequently occurring
words (Dendien, 1986). Thus a low cost approach that extends the above scheme
to encompass the stop-words is desirable. For example, new bit-columns, serving
as occurrence maps for the stop-words, could be added to the k columns of the
signatures (see Sacks-Davis et al. (1987)). There will be one column for each of the
most frequent stop-words; these will virtually consist only of 1’s. For the somewhat
less frequent stop-words, two or more could share the same column, yielding a new
bit-matrix with a very high density of 1’s. This matrix can therefore be compressed
efficiently, for example by complementing each column and then using one of the
known techniques for compressing sparse vectors, e.g., (Teuhola, 1978) or (Fraenkel
and Klein, 1985). Thus we retain the bitmap approach, but at less cost than actually

increasing the value of k.

The scheme of Section 2 seems to be best suited for the words of the third
class, the intermediate range, which, when stop-words are ignored, account for the
large majority of entries in the concordance. Summarizing, the filter F used in the
retrieval process we are proposing is generated using bit-columns for every term in
the query, though the way in which these columns are generated and stored depends
on the frequency of each term in the database. Also, some bitmaps are accurate
representations of the occurrence of their terms, others are approximate in that some

segments will be retrieved that do not contain the term. At the highest level, the

-9 —

system calls a bitmap server to produce bitmaps as needed. The server has detailed
information about the different terms and may use a relatively complex algorithm
to construct a bitmap or simply retrieve it from storage, as appropriate for the class

of which the bitmap is a member.
3.2 General Boolean queries

To be consistent with most of the earlier literature, we have considered until
now only simple queries consisting of the ANDing of some keywords. In more
general queries, an OR operator can be used, as in information AND (science OR
retrieval), which should retrieve locations in the text including either of the two
phrases information science or information retrieval. The above procedure
is readily extendable to complex Boolean queries. It is most convenient if the query is
given in disjunctive normal form, that is in the form Q = D{V---V Dy, where each of
the disjuncts D; consists of the conjunction of keywords, D; = D;1 ADjgA-+-ADjp, ..
Then each of the D; is processed separately: to compute the signature of D;, the
signatures of D;; are ORed yielding h(D;) = \/;n:’1 h(D;j); the 1-bits of h(D;)
indicate the columns Cy which should be ANDed to compute the bitmap that points
to possible text-units that satisfy D;. Finally, the resulting vectors are ORed and

we get

F=Viz (/\ee{indices of 1-bits of h(D;)} Cé)- (3)
It is easy to implement an algorithm for computing F keeping never more than three
vectors of the size of F in main memory, independently of ¢ and m; (see Choueka
et al. (1987)).

It should be noted that it is possible to use the signature approach with arbi-
trary queries involving AND and OR: either all the Boolean operations are directly
performed with large bit-columns (each term being replaced by the bitmaps derived
from its signature) or the request can be reformulated into a form permitting more
efficient bitmap manipulation. The decision of whether a query should be used
as given or transformed into another logically equivalent form will depend on the

expected different processing times.

Extending the retrieval process to general Boolean expressions that allow also
the use of the NOT operator is however not straightforward, as was already noted
in Choueka et al. (1987). A NOT operator is useful, e.g., in queries like security

AND (NOT council), which retrieves locations of the word security only if it is

— 10 -

not in the same retrieval unit as the word council; here council is said to be negated.
Such requests often come from proximity searchs—here, all instances of security
not followed by council. The first idea which comes to mind for satisfying this
request is to use for a negated word the 1’s complement of the bitmap used for the
word when it is not negated. But recall that while, in the maps considered so far, a
0-bit indicates the absence of the word from a text unit, a 1-bit does not necessarily
indicate its presence: the text unit is only potentially relevant, and must ultimately
be scanned in order to see whether the word appears or not. If we complement such
a bitmap, a text unit corresponding to a 0-bit in the complemented map will not be
retrieved, even though it might not contain the negated word and thus possibly be
relevant. Therefore using complemented maps for negated words may result in loss

of information.

The simplest way to proceed is to insist that a negated term only occurs in
clauses with non-negated terms to which it is connected with an AND operator, as
in the case above. If so, it is easy to see that, when converted to disjunctive normal
form, such a negated term will occur in disjuncts together with at least one non-
negated term. Hence we can initially process the request ignoring the negated terms
in the bitmap manipulation stage, and afterwards test whether the full request,
including proximity as well as negation requirements, is satisfied. This approach is
well within the signature philosophy of using bitmaps as a filter preceding thorough

search.

3.3 Truncated terms

A desirable feature of a retrieval system is the ability to locate words which are
only partially specified and include don’t care characters. For example, using the
keyword comput*, one wishes to retrieve words like computer, computing, computa-
tion, etc. This is straightforward in a scanning approach, where just the truncated
keyword is searched for. For systems with inverted files, the solution is trickier (see
Bratley and Choueka (1982)). However the immediate extension of the signature
approach, in which the same hashing function h, that defined the segment signature,
is applied to the substring, fails completely, because even if one string is a substring

of another, their signatures may be completely unrelated.

The following variant, based on ideas from (Harrison, 1971), could be used.

Instead of computing signatures for every word directly, we divide the word into

— 11 -

successive substrings (or fragments), ¢ bytes in length, and compute a signature for
every word-fragment; the signature of the word is then the ORing of the signatures
of the fragments comprising it. For example, if ¢ = 3 and the word compute appears
in the text unit, then signatures are generated for the trigrams com, omp, mpu, put
and ute. The choice of t sets a lower bound to the minimal length of the word stem
which can be searched for, so to maximize the degree of truncation that can be
accommodated, ¢ should be 1. However, reduction of terms to individual characters
would result in very inefficient searches. Letter pairs or triplets (t = 2 or 3) seem to
be reasonable choices; a larger ¢ would impose too strong a restriction on the extent

to which terms could be truncated.

The signature of a fragment could again be computed using some randomizing
function. Alternatively, we could use the fact that there is fairly good knowledge of
the distribution of bi- and trigrams in natural languages (Heaps, 1978): the set of
possible bi- or trigrams being relatively small, a table could be used which assigns
signatures with near to uniform distribution. For such an application, the number
of signatures to be ORed for a word of w characters is w + 1 — ¢, so the size k
of the signature should probably be chosen larger than for the variant assigning
signatures to whole words; as above, the number of 1-bits per fragment signature
will be [= (klog2)/(w + 1 — t)r, where the denominator is the average number of
word-fragments per text unit. The signature of a query is now formed in a parallel
fashion; for example if ¢ = 3 and the query consists of the term comput*, the
signature is obtained from the strings com, omp, mpu and put (see also Bookstein et
al. (1978)).

3.4 Hierarchies

The reason for keeping the length of the signature, k, relatively small is that
the space requirements for storing the bitmap table are proportional to k. Since,
for given k, the optimal value of [is such that on the average about half of the
bits in the signature of each text unit are set to 1, this will also be true for the
columns; this means the bitmap table can probably not be compressed. However,
consider the effect of increasing k, while keeping [fixed. Such an increase in sig-
nature size enables better discrimination between the words and thus should lead
to savings in retrieval time. Further, a larger k implies sparser columns, and if

these are sparse enough, they can perhaps be compressed, using for example the

- 12 —

hierarchical bit-vector compression technique described, for example, in (Vallarino,
1976, Jakobsson, 1982, Choueka, Fraenkel, Klein and Segal, 1986). The levels of the
hierarchy would most naturally be made to conform to the structure of the text,
e.g., if the components of the original columns correspond to sentences, the next
level could be a vector with one bit per paragraph, where bit ¢ is obtained from
ORing the bits of the sentences in the i-th paragraph. The next level could be a
vector for chapters, etc. The structure of the text being constant, only the non-zero
blocks in each level need to be kept for any column, usually resulting in savings if

the original vector is sparse enough.

The different levels can now be used directly when one wishes to redefine the
retrieval unit to be, for example, a paragraph instead of a sentence. The levels can
also enhance efficiency of the retrieval process, since the basic operation defined by
equation (3) can initially be performed on the highest level, instead of involving the
original bit-columns. The next lower level is only accessed for the units correspond-
ing to the 1-bits of the vector F. If, however, the vectors are not sparse enough,
hierarchical processing would be a waste of time and space, as most of the higher

levels would consist of 1’s.

A different way to use hierarchies is to use two signatures hi and ho per text
unit, of respective lengths k1 and kg, where k1 < ka. The columns C; constructed
from the signatures of length k1 would be used as described above; however these
will only be used in a first step to reduce the number of units to be accessed during
the second step. But in the earlier procedure, we would continue by performing a
pattern match on the surviving text units. Instead, we now use the longer signature
of kg bits to improve discrimination. In the system we envisage, the ko bits of ho
are to be stored with the text itself. A unit S will actually be scanned for a query @
only if both signatures hi(Q) and ha(Q) correspond to the two signatures hy(.S) and
ha(S), as defined by (1). To summarize this approach, the basic scheme of Section 2
is applied to reduce the number of accesses, while a second signature serves to lower
the number of units to be scanned once they are accessed. Working in two steps
may permit us to choose a smaller k1 than would be necessary with a single step,
thus speeding up the first part, at the expense of a larger kg (see Sacks-Davis et al.
(1987)).

- 18 —

4. Conclusions

The use of bit-slices in conjunction with segment signatures is a technique which
has recently received a considerable amount of theoretical attention in the literature.
In this paper, we described this technique and indicated how it could be used to
satisfy the manifold requirements of a practical information retrieval system. Some
of our considerations are important for implementation: for example, integrating
into the system very rare and very frequent words; implications of the possibility of
introducing modern compaction techniques on the bitmaps; extending the method
to include OR as well as AND operations (and perhaps the NOT operator as well);
and testing various hierarchical methods for effectively increasing the size of the

signature.

Implementing an IRS based on bitmaps, a number of practical problems have
to be resolved. For example, a first step is to decide on the basic text units. While
a sentence seems to be a good choice, defining a sentence in terms of the infor-
mation available in an existing database is not always trivial. The format of full
text databases has not yet been standardized, and for many databases (e.g., TLF)
there exists very little structural information. Since different categories of words
are treated differently, we must collect statistics on the number of words (with and
without stop-words) in different text units. Samples of real queries which were
submitted by scholars in linguistics and literature should be analyzed in order to
evaluate characteristics of the search terms in a typical query. Based on such infor-
mation, we can evaluate the distribution of the number of bitmaps used per query
so the parameters of the system could be set, namely, the size k£ of the signature
and the minimal number of 1-bits to be used for the signature of a single word in

order to assure efficient processing.

We are arguing, that once the effort is made, bitmap approaches can be very

valuable as a means of organizing an information retrieval system.

,14,

References

Bookstein A., (1973). On Harrison’s substring testing technique, Comm. ACM
16 180-181.

Bookstein A., (1985). Probability and fuzzy-set applications to information
retrieval, Annual Review of Inf. Sc. and Technology 20 117-151.

Bookstein A., Rodriguez C.E., (1978). Performance test of hybrid access
method, J. Library Automation 11 41-46.

Bratley P., Choueka Y., (1982). Processing truncated terms in document re-
trieval systems, Inf. Processing € Management 18 257-266.

Choueka Y., (1980). Full text systems and research in the humanities, Computers
and the Humanities XIV 153-169.

Choueka Y., Fraenkel A.S., Klein S.T., Segal E., (1986). Improved hierarchi-
cal bit-vector compression in document retrieval systems, Proc. 9-th ACM-SIGIR
Conf., Pisa; ACM, Baltimore, MD 88-97.

Choueka Y., Fraenkel A.S., Klein S.T., Segal E., (1987). Improved Tech-
niques for Processing Queries in Full-Text Systems, Proc. 10-th ACM-SIGIR Conf.,
New Orleans 306-315.

Croft W.B., Savino P., (1988). Implementing ranking strategies using text sig-
natures, ACM Trans. on Office Inf. Systems 6 42—62.

Dendien J., (1986). Un systeme de gestion de bases de données textuelles, Proc.
Conf. on Computers and the Humanities, University of Toronto 252-266.

Faloutsos C., (1985). Signature files: Design and performance comparison of some
signature extraction methods, Proc. ACM-SIGMOD Conf., Austin; ACM, New York
63-82.

Faloutsos C., Christodulakis S., (1984). Signature files: An access method for
documents and its analytical performance evaluation, ACM Trans. on Office Inf.
Systems 2 267—288.

Fraenkel A.S., (1976). All about the Responsa Retrieval Project you always
wanted to know but were afraid to ask, Expanded Summary, Jurimetrics J. 16
149-156.

Fraenkel A.S., Klein S.T., (1985). Novel compression of sparse bit-strings, Com-
binatorial Algorithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin
169-183.

Harrison M.C., (1971). Implementation of the substring test by hashing, Comm.
ACM 14, 7T77-779.

— 15 —

Heaps H.S., (1978). Information Retrieval, Computational and Theoretical As-
pects, Academic Press, New York.

Jakobsson M., (1982). Evaluation of a hierarchical bit-vector compression tech-
nique, Inf. Proc. Letters 14 147-149.

Knuth D.E., (1973). The Art of Computer Programming, Vol. I1, Semi-numerical
Algorithms, Addison-Wesley, Reading, Mass.

Lesk M.E., (August 1985). GRAB — Inverted indexes with low storage overhead,
Memorandum, Bell Communications Research.

Roberts C.S., (1979). Partial match retrieval via the method of superimposed
codes, Proceedings IEFFE 67 1624-1642.

Sacks-Davis R., Kent A., Ramamohanarao K., (1987). Multikey access meth-
ods based on superimposed coding techniques, ACM Trans. on Database Systems
12, 655-696.

Salton G., McGill M.J., (1983). Introduction to Modern Information Retrieval,
McGraw Hill, New York.

Stiassny S., (1960). Mathematical analysis of various superimposed coding meth-
ods, Amer. Documentation 11 155—-169.

Teuhola J., (1978). A compression method for clustered bit-vectors, Inf. Proc.
Letters 7 308-311.

Vallarino O., (1976). On the use of bit-maps for multiple key retrieval, SIGPLAN
Notices, Special Issue Vol. IT 108—114.

— 16 -

