
Using Bitmaps for Medium SizedInformation Retrieval SystemsA. Bookstein and S.T. KleinCenter for Information and Language StudiesUniversity of Chicago, 1100 East 57-th Street,Chicago, Illinois 60637The second author was partially supported by a fellowship of the Ameritech FoundationAbstract: We describe the use of various forms of bitmaps as a basic tool for im-proving the search algorithms in medium sized information retrieval systems. The bitmapsconsidered include and extend known techniques using occurrence maps and signatures.Such an approach to text retrieval is exible, e�cient and, relative to the customary con-cordance approach, inexpensive in storage costs.1. IntroductionOur ability to control textual information is being strongly inuenced by avariety of technological advances. These include new means of storing and sharinginformation that makes possible and realistic an information system model in whichlarge bodies of full text are compactly stored, widely distributed, and shared bya large number of interested persons. Such changes require a careful search fortechniques that promise convenient and e�ective access to such textual databases.The research that is required in this environment di�ers from that traditional inInformation Retrieval (IR) in several ways. Most apparent, earlier research assumeda model of an Information Retrieval System (IRS) in which IR was based uponthe existence of a collection of records about documents rather than on the fulltext of the documents themselves. In such a system, each record represents, in amanner convenient for machine manipulation, the content of a document. Variousmatching functions were tested, in which document records were related to requests;mathematical models for generating matching functions were the focus of muche�ort, and considerable attention was given to �nding ways to take advantage of

feedback information (Bookstein, 1985).For a number of conceptual and practical reasons, research based on the modelnoted above made heavy use of typically arti�cial, restricted, test databases whichincluded a set of document records, a set of requests and, for each request, a listof relevant documents. The objective of the research was, given a request, to usemachine means to reproduce as well as possible the list of relevant documents. Thismode of research was and is highly productive. Through it many very innovativeretrieval techniques were generated, and an understanding of how the performance ofa retrieval mechanism ought to be evaluated developed (see for example Salton andMcGill (1983)). This approach, while still very valuable, is nonetheless limited bythe arti�ciality of the experimental databases and the limitations of the collectionsin size and character.In contrast, the developments noted above are drawing our attention to theproblem of IR in an environment in which� the desired textual information is itself available in machine manipulable formas full text; and� the texts of interest may be widely dispersed physically but easily made avail-able through electronic communication channels.The primary IR problems in this environment include: developing the abilityto locate the desired text(s) within the system; developing the ability to interacte�ectively with an available database of full, natural-language text to obtain theinformation or textual segments that are desired; exploring new means of studyingtext to amplify scholarly productivity by using methods not possible before the exis-tence of large bodies of text in machine readable form; and creating novel techniquesfor storing and organizing massive quantities of text to permit e�cient access, con-sistent with the characteristics of the new media. Questions also arise regarding thedevelopment of new data structures that permit a user to impose a useful personalstructure on privately held document collections; such a structure should facilitatehis intellectual access to the database and potentially should be sharable with otherusers.In this paper we are concerned with the problem of designing for a realisticenvironment a data structure, the bitmap, that appears to us to be very valuableas an alternative to the customary concordance as a means of accessing full text{ 2 {

databases. It is a exible mechanism that allows us to retrieve segments of texton the basis of various logical combinations of words, and can also be extended topermit retrieval on the basis of word fragments. Many of the techniques describedhere have been developed elsewhere, but the sense of their unity and their impacthave been lost due to their dispersal through the literature. We here attempt acoherent presentation of the main results on the use of bitmaps in IR, pointing toelaborations and extensions that may enhance their value in an IR environment.Suppose we are given a large �le consisting of text written in some naturallanguage, and a query of the form A1 A2 � � � Am, where the Ai are keywords. Ourproblem is to �nd all the \locations" in the text where the keywords A1; : : : ; Am\occur together". What exactly a location is and what it means to occur together isde�ned by the retrieval situation; one could for example require that the keywordsappear in the same line, sentence or paragraph, or that they be adjacent in the text;more generally, one could impose certain metrical constraints between the keywords(see Choueka, Fraenkel, Klein and Segal (1987)). For most of what follows, theexact de�nition is irrelevant: we need only assume that some mechanisms exist fordetermining both a location and whether for a given unit of text, the co-locationcondition is satis�ed; in practice, the proposed system can be adapted to any of theabove choices.When the size of the text is small, say up to a few hundred Kbytes, the problemcan be solved by some brute-force method that scans the whole text in reasonabletime. Such a method is commonly used in text-editors. At the other extreme, forvery large databases spanning tens of Mbytes, a complete scan is not feasible. Theusual approach in that case is to use inverted �les, that is, auxiliary �les such as adictionary and a concordance. As used here, a dictionary is an easily searchable list ofall the di�erent words occurring in the text and usually contains for each word somestatistical information such as the total number of times it occurs and the numberof documents in which it appears, as well as a pointer into the the concordance. Aconcordance contains for every word, W , the complete list of locations in the textwhere W appears. Depending on the underlying hierarchical structure of the text,these references may take various forms, for example: document number, paragraphnumber (in the document), sentence number (in the paragraph), word number (inthe sentence); or, alternatively: book number, page, line; or simply, when any otherstructure is lacking, the number of the physical block containing W and the o�set{ 3 {

within the block. The retrieval process now consists of accessing the concordance foreach keyword and collating the corresponding lists of references. The main drawbackof this approach is its huge overhead: the size of the concordance is comparable tothat of the text itself and sometimes larger. Another problem is the rigidity of thesystem: in order to allow fast access, the concordance must be kept sorted, so thatupdating the text is di�cult.In this paper we focus on medium size texts, say up to a few Mbytes; such textsare large enough so that a straightforward scanning approach is impractical. Theinverted �le method is a possible alternative; however the method we propose allowsus to drop the concordance completely. The space and maintenance requirementsare therefore drastically reduced, which can be a great advantage for smaller systemswhere disk-memory is rather scarce.The idea is �rst to e�ectively reduce the size of the database by removing fromconsideration segments that cannot possibly satisfy the request, then to use patternmatching techniques to process the query, but only over the|hopefully small|remaining part of the database. The �ltering process which reduces the amount oftext to be scanned is based on assigning signatures to text fragments and to indi-vidual words. Signature schemes have been used in a variety of ways in informationretrieval, such as substring testing (Harrison, 1971, Bookstein, 1973), documentranking (Croft and Savino, 1988) and as an access method for text (Faloutsos,1985, Faloutsos and Christodulakis, 1984, Sacks-Davis, Kent and Ramamohanarao,1987). In the method under investigation, the signatures are transformed into a setof bitmaps, on which Boolean operations, induced by the structure of the query, areperformed. The resulting bitmap is used to eliminate a priori parts of the text whichcannot possibly contain a solution. The way in which bitmaps, when used togetherwith a concordance, can enhance the retrieval process for large full-text systems hasbeen studied in Choueka et al. (1987). The present work is an extension to thecase where no concordance is used; it is also related to the grab command in UNIX(Lesk, 1985) and incorporates some of its ideas.This paper describes the theoretical framework of the new retrieval system.The system itself is currently in the process of being tested on various subsets of theTr�esor de la Langue Fran�caise (TLF), a large French database available to us. Theexperimental results, as well as empirical comparisons with other retrieval systems,will be published later. { 4 {

2. The basic scheme of the retrieval process2.1 Description of the proposed systemIn the system being proposed, every wordW is assigned a signature h(W) whichis a string of length k bits, for some �xed integer k. The length k should be chosen toallow smooth computer manipulation (e.g., a multiple of a byte size), large enoughto permit e�ective retrieval, and small enough to limit the overall space complexity.The function h should satisfy the basic requirements of a hash function, namelybeing easily computable and distributing the values h(W) as uniformly as possibleover its range. Generally, h will not be one-to-one, but unlike hashing, where greate�orts are spent on collision resolution, the fact that several words may have thesame signature does not constitute a problem here.The text is partitioned into relatively small logical units, say sentences, andeach unit S is assigned a signature, h(S), obtained by ORing the signatures ofall the words in S: h(S) = WW2S h(W). This is known as superimposed coding.Similarly, for a given query Q = A1 AND A2 AND � � � AND Am, the signature of thequery is computed: h(Q) = Wmi=1 h(Ai). In order for all the keywords of the queryto appear in a given text unit S, it is necessary that h(S) have 1-bits at least at allthe positions h(Q) has. This is easily determined, for example, by checking for eachunit S if �h(S) AND h(Q)� XOR h(Q) � 0; (1)an operation e�cient in machine time. However this condition is not su�cient, notonly because h is not injective, but also because the OR operation, viewed as afunction from K � K to K, is not injective, where K is the set of k-bit strings.Therefore the text units retrieved are only potentially relevant and must now bescanned to verify that all the keywords A1; : : : ; Am actually appear in each of them.Such an approach was taken for example in Bookstein and Rodriguez (1978).Let n be the number of text units, the text units themselves denoted byS1; : : : ; Sn. When n is fairly large, it is not practical to evaluate (1) for each n.The set of n signatures representing the text can be viewed collectively as an n� kbit-matrix, M . In the approach considered here, M is created row by row, butstored column by column in so-called bit-slices (see for example Roberts (1979)).This yields k vectors of n bits, C1; : : : ; Ck, where Ci, the i-th column-vector in Mis the concatenation of the i-th bit-position of the n signatures h(S1); : : : ; h(Sn).{ 5 {

The retrieval process can now be reformulated as follows: let I(Q) be the set of theindices of the 1-bits in h(Q). We �rst retrieve the set of vectors fCjgj2I(Q). Thesevectors are then ANDed to form a new vector F = Vj2I(Q)Cj of the same lengthof n bits. The indices of the 1-bits in F are exactly the indices of the text units Swhich satisfy (1); in other words, F serves as a �lter allowing us to skip the textunits corresponding to its 0-bits.In practice, the space allocated to each column vector, Ci, should exceed nbits, thus preparing for the e�cient handling of a possible future expansion of thedatabase. Indeed, there is no restriction on the order of the text units, so thatlater additions can simply be appended at the end. The update process would thenconsist of computing the signatures h(Sn+1), h(Sn+2); : : : of the newly arriving unitsand setting the corresponding bits in the tails of the vectors Cj . The deletion of atext unit is implemented by setting all the corresponding bits in the columns Cj tozero. Note the simplicity of these update procedures as compared to the necessaryreorganization required by the concordance approach.2.2 Parameter settingThe e�ectiveness of the �ltering process will be determined by the number of 1-bits in a typical signature h(S). For example, suppose that l bits are chosen, possiblywith duplications, by independent random functions in which the probability thatany given bit in h(W) be turned on is l=k. As shown by Stiassny (1960), if a textunit S has r words, then the expected number of 1-bits in the bit-pattern h(S) isk�1� �1� lk�r� � k �1� e�lr=k� : (2)Since the function is non-linear, we cannot immediately deduce from this formulaan expression for the expected number of 1-bits in h(S), averaged over all the units,with varying values of r. However, if r is chosen to be the average number of wordsoccurring in a unit, we can use (2) to estimate the average number of bits set toone. Suppose next that a query Q contains r0 words which do not appear in the textunit S. The system would still retrieve S in response to Q if the 1-bits correspondingto the r0 words comprising Q happen to fall in positions occupied by 1-bits in h(S):in other words, to a good approximation, if in lr0 random choices, with repetitions,{ 6 {

only positions of 1-bits in h(S) are selected. Thus the probability of such a \falsedrop" is pfd = �1� e�lr=k�lr0 . Since pfd is a decreasing function of k, the largerthe size chosen for the signature, the more e�ective would the resulting �lter Fbe, though at the price of a larger space overhead. Therefore k will be determinedby implementation considerations, such as the total available space and the ease ofmanipulating k-bit blocks. For a �xed k, the e�ect of decreasing l is on one handto decrease the probability 1� e�lr=k of a bit in h(S) being set to 1, making a falsedrop more di�cult, but on the other hand, to reduce the number lr0 of randomchoices that must succeed for us to get a false drop, making a false drop easier.We are interested in chosing l such that, given k, pfd is minimized (the parameterr is �xed for the database). Stiassny (1960) showed that the optimum is obtainedfor l = kr ln 2, a result independent of r0. Intuitively this result is not surprising,since for �xed k, the optimal value of l is such that the probability of a bit in h(S)being set to 1 is 12 ; in other words, about k=2 of the bits would be turned on.This agrees with our intuition that the probability of a false drop will be minimizedwhen the number of possible k-bit signatures with s 1-bits, �ks�, is maximized; thisrequirement again yields s = k=2.As an example, let us take a sentence as a text unit; the average number of wordsin a sentence can be computed from the database being processed. For example,on the Tr�esor de la Langue Fran�caise (TLF), a large database available to us, theaverage length of a sentence is about 22 words; thus if k is set to 64 bits, the bestchoice for l would be (64 ln 2)=22 ' 2 bits.We are now able to assess the implications of increasing the size of a textretrieval unit|say from sentence to paragraph. If a new unit is � old units, wecan increase k to �k without changing the size of our bitmap matrix. If each unitintroduces di�erent words, then r will also increase by a factor of �, to �r, andr=k in pfd would remain the same, as would the optimal l, and no gain (or loss)is realized. However, in practice, if we combine � contiguous units, most likely rwill become �0r, for �0 < �; if so, rk ! �0� < 1, and to preserve the condition that(1 � e�lr=k) = 12 , l must increase. Thus pfd = (:5)lr0 will decrease. This impliesthat from the point of view of minimizing false drops, given the constraint of a �xedsize bitmap matrix, we would like to use text units that are as large as possible.Increasing the size of a text unit, however, increases the cost of physically retrievingthe unit and then of pattern matching. The actual size used should be a compromise{ 7 {

of these conicting considerations.2.3 ImplementationThe following procedure for computing the signature of a word W could beused. Consider the concatenation of the internal representations of the charactersof W as one long binary integer v(W). Let f be a good pseudo-random numbergenerator (see Knuth (1973), Chapter 3), returning values between 0 and 1, anddenote by f1; f2; : : : the sequence of values returned by f when initially called withv(W) as seed. Generate the �rst l0 numbers of this sequence, where l0 � l is thesmallest integer for which the set J = fdf1 � ke; df2 � ke; : : : ; dfl0 � keg contains ldistinct values; J is the set of indices of the bits in h(W) which shall be set to 1.When the optimal value of l is not an integer, we propose to set the number of1-bits in h(W) either to blc or to dle, such that on the average, l bits are set. Firstblc indices are chosen as above, then the next random number fl0+1 is generated. Iffl0+1 > l � blc, we are done; otherwise an additional index has to be selected.3. System Considerations3.1 Including rare and frequent wordsWe believe bitmaps have a potential as a retrieval mechanism beyond thatwhich has hitherto been attempted. We have described an approach, based on wordsignatures, for generating bitmaps that are approximate in the sense that while a 0guarantees that the corresponding segment will not satisfy the request, a 1 does notguarantee that it will. In practice this could be combined with other bitmap basedapproaches to create an e�cient IR system.We �rst recognize that di�erent terms may bene�t from di�erent treatments.The terms occurring in an actual database can be usefully partitioned, for our pur-poses, into three classes. First we must consider the class of terms occurring veryrarely; it is well known that these account for the major part of the dictionary, if notof the text itself. These terms can be controlled most e�ciently by simply storingtheir locations explicitly in a list, perhaps as part of the dictionary. E�ectively, ex-act bitmaps associated with these terms can be generated algorithmically as neededdirectly from the information in the dictionary rather than being stored on disk,and can then be used as described below. Thus this mechanism is consistent with{ 8 {

the approach we are proposing. This way of dealing with the rare words also elimi-nates another problem caused by such words within the signature scheme, viz., thatespecially for these terms, the number of bits set to 1 that will cause false drops willgreatly exceed the number of actual occurrences of these terms.The second class of terms requiring special consideration consists of words oc-curring very frequently, commonly called stop-words, such as to, for, the, etc. Forsuch words, each bit set to 1 will substantially �ll a column of the bit-matrix, e�ec-tively reducing the size of the signature. Typically, such words are simply ignored.It should however be noted that the removal of stop-words, while appropriate forlanguages like English, cannot easily be applied to languages like Hebrew, in whichmost of the words are homographic. For example, at the Responsa Retrieval Project(RRP), which has a database of about 60 million words, written mainly in Hebrewand Aramaic (see for example Choueka (1980) or Fraenkel (1976)), no stop-words arede�ned and all the words are searchable, including some with hundreds of thousandsof occurrences. But information retrieval systems in other languages, for exampleFrench, have also found it advisable to include even the most frequently occurringwords (Dendien, 1986). Thus a low cost approach that extends the above schemeto encompass the stop-words is desirable. For example, new bit-columns, servingas occurrence maps for the stop-words, could be added to the k columns of thesignatures (see Sacks-Davis et al. (1987)). There will be one column for each of themost frequent stop-words; these will virtually consist only of 1's. For the somewhatless frequent stop-words, two or more could share the same column, yielding a newbit-matrix with a very high density of 1's. This matrix can therefore be compressede�ciently, for example by complementing each column and then using one of theknown techniques for compressing sparse vectors, e.g., (Teuhola, 1978) or (Fraenkeland Klein, 1985). Thus we retain the bitmap approach, but at less cost than actuallyincreasing the value of k.The scheme of Section 2 seems to be best suited for the words of the thirdclass, the intermediate range, which, when stop-words are ignored, account for thelarge majority of entries in the concordance. Summarizing, the �lter F used in theretrieval process we are proposing is generated using bit-columns for every term inthe query, though the way in which these columns are generated and stored dependson the frequency of each term in the database. Also, some bitmaps are accuraterepresentations of the occurrence of their terms, others are approximate in that somesegments will be retrieved that do not contain the term. At the highest level, the{ 9 {

system calls a bitmap server to produce bitmaps as needed. The server has detailedinformation about the di�erent terms and may use a relatively complex algorithmto construct a bitmap or simply retrieve it from storage, as appropriate for the classof which the bitmap is a member.3.2 General Boolean queriesTo be consistent with most of the earlier literature, we have considered untilnow only simple queries consisting of the ANDing of some keywords. In moregeneral queries, an OR operator can be used, as in information AND (science ORretrieval), which should retrieve locations in the text including either of the twophrases information science or information retrieval. The above procedureis readily extendable to complex Boolean queries. It is most convenient if the query isgiven in disjunctive normal form, that is in the form Q = D1_� � �_Dt, where each ofthe disjuncts Di consists of the conjunction of keywords, Di = Di1^Di2^� � �^Dimi .Then each of the Di is processed separately: to compute the signature of Di, thesignatures of Dij are ORed yielding h(Di) = Wmij=1 h(Dij); the 1-bits of h(Di)indicate the columns C` which should be ANDed to compute the bitmap that pointsto possible text-units that satisfy Di. Finally, the resulting vectors are ORed andwe get F = Wti=1 �V`2findices of 1-bits of h(Di)g C`�: (3)It is easy to implement an algorithm for computing F keeping never more than threevectors of the size of F in main memory, independently of t and mi (see Chouekaet al. (1987)).It should be noted that it is possible to use the signature approach with arbi-trary queries involving AND and OR: either all the Boolean operations are directlyperformed with large bit-columns (each term being replaced by the bitmaps derivedfrom its signature) or the request can be reformulated into a form permitting moree�cient bitmap manipulation. The decision of whether a query should be usedas given or transformed into another logically equivalent form will depend on theexpected di�erent processing times.Extending the retrieval process to general Boolean expressions that allow alsothe use of the NOT operator is however not straightforward, as was already notedin Choueka et al. (1987). A NOT operator is useful, e.g., in queries like securityAND (NOT council), which retrieves locations of the word security only if it is{ 10 {

not in the same retrieval unit as the word council; here council is said to be negated.Such requests often come from proximity searchs|here, all instances of securitynot followed by council. The �rst idea which comes to mind for satisfying thisrequest is to use for a negated word the 1's complement of the bitmap used for theword when it is not negated. But recall that while, in the maps considered so far, a0-bit indicates the absence of the word from a text unit, a 1-bit does not necessarilyindicate its presence: the text unit is only potentially relevant, and must ultimatelybe scanned in order to see whether the word appears or not. If we complement sucha bitmap, a text unit corresponding to a 0-bit in the complemented map will not beretrieved, even though it might not contain the negated word and thus possibly berelevant. Therefore using complemented maps for negated words may result in lossof information.The simplest way to proceed is to insist that a negated term only occurs inclauses with non-negated terms to which it is connected with an AND operator, asin the case above. If so, it is easy to see that, when converted to disjunctive normalform, such a negated term will occur in disjuncts together with at least one non-negated term. Hence we can initially process the request ignoring the negated termsin the bitmap manipulation stage, and afterwards test whether the full request,including proximity as well as negation requirements, is satis�ed. This approach iswell within the signature philosophy of using bitmaps as a �lter preceding thoroughsearch.3.3 Truncated termsA desirable feature of a retrieval system is the ability to locate words which areonly partially speci�ed and include don't care characters. For example, using thekeyword comput*, one wishes to retrieve words like computer, computing, computa-tion, etc. This is straightforward in a scanning approach, where just the truncatedkeyword is searched for. For systems with inverted �les, the solution is trickier (seeBratley and Choueka (1982)). However the immediate extension of the signatureapproach, in which the same hashing function h, that de�ned the segment signature,is applied to the substring, fails completely, because even if one string is a substringof another, their signatures may be completely unrelated.The following variant, based on ideas from (Harrison, 1971), could be used.Instead of computing signatures for every word directly, we divide the word into{ 11 {

successive substrings (or fragments), t bytes in length, and compute a signature forevery word-fragment; the signature of the word is then the ORing of the signaturesof the fragments comprising it. For example, if t = 3 and the word compute appearsin the text unit, then signatures are generated for the trigrams com, omp, mpu, putand ute. The choice of t sets a lower bound to the minimal length of the word stemwhich can be searched for, so to maximize the degree of truncation that can beaccommodated, t should be 1. However, reduction of terms to individual characterswould result in very ine�cient searches. Letter pairs or triplets (t = 2 or 3) seem tobe reasonable choices; a larger t would impose too strong a restriction on the extentto which terms could be truncated.The signature of a fragment could again be computed using some randomizingfunction. Alternatively, we could use the fact that there is fairly good knowledge ofthe distribution of bi- and trigrams in natural languages (Heaps, 1978): the set ofpossible bi- or trigrams being relatively small, a table could be used which assignssignatures with near to uniform distribution. For such an application, the numberof signatures to be ORed for a word of w characters is w + 1 � t, so the size kof the signature should probably be chosen larger than for the variant assigningsignatures to whole words; as above, the number of 1-bits per fragment signaturewill be l = (k log 2)=(w + 1� t)r, where the denominator is the average number ofword-fragments per text unit. The signature of a query is now formed in a parallelfashion; for example if t = 3 and the query consists of the term comput*, thesignature is obtained from the strings com, omp, mpu and put (see also Bookstein etal. (1978)).3.4 HierarchiesThe reason for keeping the length of the signature, k, relatively small is thatthe space requirements for storing the bitmap table are proportional to k. Since,for given k, the optimal value of l is such that on the average about half of thebits in the signature of each text unit are set to 1, this will also be true for thecolumns; this means the bitmap table can probably not be compressed. However,consider the e�ect of increasing k, while keeping l �xed. Such an increase in sig-nature size enables better discrimination between the words and thus should leadto savings in retrieval time. Further, a larger k implies sparser columns, and ifthese are sparse enough, they can perhaps be compressed, using for example the{ 12 {

hierarchical bit-vector compression technique described, for example, in (Vallarino,1976, Jakobsson, 1982, Choueka, Fraenkel, Klein and Segal, 1986). The levels of thehierarchy would most naturally be made to conform to the structure of the text,e.g., if the components of the original columns correspond to sentences, the nextlevel could be a vector with one bit per paragraph, where bit i is obtained fromORing the bits of the sentences in the i-th paragraph. The next level could be avector for chapters, etc. The structure of the text being constant, only the non-zeroblocks in each level need to be kept for any column, usually resulting in savings ifthe original vector is sparse enough.The di�erent levels can now be used directly when one wishes to rede�ne theretrieval unit to be, for example, a paragraph instead of a sentence. The levels canalso enhance e�ciency of the retrieval process, since the basic operation de�ned byequation (3) can initially be performed on the highest level, instead of involving theoriginal bit-columns. The next lower level is only accessed for the units correspond-ing to the 1-bits of the vector F . If, however, the vectors are not sparse enough,hierarchical processing would be a waste of time and space, as most of the higherlevels would consist of 1's.A di�erent way to use hierarchies is to use two signatures h1 and h2 per textunit, of respective lengths k1 and k2, where k1 < k2. The columns Cj constructedfrom the signatures of length k1 would be used as described above; however thesewill only be used in a �rst step to reduce the number of units to be accessed duringthe second step. But in the earlier procedure, we would continue by performing apattern match on the surviving text units. Instead, we now use the longer signatureof k2 bits to improve discrimination. In the system we envisage, the k2 bits of h2are to be stored with the text itself. A unit S will actually be scanned for a query Qonly if both signatures h1(Q) and h2(Q) correspond to the two signatures h1(S) andh2(S), as de�ned by (1). To summarize this approach, the basic scheme of Section 2is applied to reduce the number of accesses, while a second signature serves to lowerthe number of units to be scanned once they are accessed. Working in two stepsmay permit us to choose a smaller k1 than would be necessary with a single step,thus speeding up the �rst part, at the expense of a larger k2 (see Sacks-Davis et al.(1987)).
{ 13 {

4. ConclusionsThe use of bit-slices in conjunction with segment signatures is a technique whichhas recently received a considerable amount of theoretical attention in the literature.In this paper, we described this technique and indicated how it could be used tosatisfy the manifold requirements of a practical information retrieval system. Someof our considerations are important for implementation: for example, integratinginto the system very rare and very frequent words; implications of the possibility ofintroducing modern compaction techniques on the bitmaps; extending the methodto include OR as well as AND operations (and perhaps the NOT operator as well);and testing various hierarchical methods for e�ectively increasing the size of thesignature.Implementing an IRS based on bitmaps, a number of practical problems haveto be resolved. For example, a �rst step is to decide on the basic text units. Whilea sentence seems to be a good choice, de�ning a sentence in terms of the infor-mation available in an existing database is not always trivial. The format of fulltext databases has not yet been standardized, and for many databases (e.g., TLF)there exists very little structural information. Since di�erent categories of wordsare treated di�erently, we must collect statistics on the number of words (with andwithout stop-words) in di�erent text units. Samples of real queries which weresubmitted by scholars in linguistics and literature should be analyzed in order toevaluate characteristics of the search terms in a typical query. Based on such infor-mation, we can evaluate the distribution of the number of bitmaps used per queryso the parameters of the system could be set, namely, the size k of the signatureand the minimal number of 1-bits to be used for the signature of a single word inorder to assure e�cient processing.We are arguing, that once the e�ort is made, bitmap approaches can be veryvaluable as a means of organizing an information retrieval system.

{ 14 {

ReferencesBookstein A., (1973). On Harrison's substring testing technique, Comm. ACM16 180{181.Bookstein A., (1985). Probability and fuzzy-set applications to informationretrieval, Annual Review of Inf. Sc. and Technology 20 117{151.Bookstein A., Rodriguez C.E., (1978). Performance test of hybrid accessmethod, J. Library Automation 11 41{46.Bratley P., Choueka Y., (1982). Processing truncated terms in document re-trieval systems, Inf. Processing & Management 18 257{266.Choueka Y., (1980). Full text systems and research in the humanities, Computersand the Humanities XIV 153{169.Choueka Y., Fraenkel A.S., Klein S.T., Segal E., (1986). Improved hierarchi-cal bit-vector compression in document retrieval systems, Proc. 9-th ACM-SIGIRConf., Pisa; ACM, Baltimore, MD 88{97.Choueka Y., Fraenkel A.S., Klein S.T., Segal E., (1987). Improved Tech-niques for Processing Queries in Full-Text Systems, Proc. 10-th ACM-SIGIR Conf.,New Orleans 306{315.Croft W.B., Savino P., (1988). Implementing ranking strategies using text sig-natures, ACM Trans. on O�ce Inf. Systems 6 42{62.Dendien J., (1986). Un syst�eme de gestion de bases de donn�ees textuelles, Proc.Conf. on Computers and the Humanities, University of Toronto 252{266.Faloutsos C., (1985). Signature �les: Design and performance comparison of somesignature extraction methods, Proc. ACM-SIGMOD Conf., Austin; ACM, New York63{82.Faloutsos C., Christodulakis S., (1984). Signature �les: An access method fordocuments and its analytical performance evaluation, ACM Trans. on O�ce Inf.Systems 2 267{288.Fraenkel A.S., (1976). All about the Responsa Retrieval Project you alwayswanted to know but were afraid to ask, Expanded Summary, Jurimetrics J. 16149{156.Fraenkel A.S., Klein S.T., (1985). Novel compression of sparse bit-strings, Com-binatorial Algorithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin169{183.Harrison M.C., (1971). Implementation of the substring test by hashing, Comm.ACM 14, 777{779. { 15 {

Heaps H.S., (1978). Information Retrieval, Computational and Theoretical As-pects, Academic Press, New York.Jakobsson M., (1982). Evaluation of a hierarchical bit-vector compression tech-nique, Inf. Proc. Letters 14 147{149.Knuth D.E., (1973). The Art of Computer Programming, Vol. II, Semi-numericalAlgorithms, Addison-Wesley, Reading, Mass.Lesk M.E., (August 1985). GRAB | Inverted indexes with low storage overhead,Memorandum, Bell Communications Research.Roberts C.S., (1979). Partial match retrieval via the method of superimposedcodes, Proceedings IEEE 67 1624{1642.Sacks-Davis R., Kent A., Ramamohanarao K., (1987). Multikey access meth-ods based on superimposed coding techniques, ACM Trans. on Database Systems12, 655{696.Salton G., McGill M.J., (1983). Introduction to Modern Information Retrieval ,McGraw Hill, New York.Stiassny S., (1960). Mathematical analysis of various superimposed coding meth-ods, Amer. Documentation 11 155{169.Teuhola J., (1978). A compression method for clustered bit-vectors, Inf. Proc.Letters 7 308{311.Vallarino O., (1976). On the use of bit-maps for multiple key retrieval, SIGPLANNotices, Special Issue Vol. II 108{114.

{ 16 {

