
Parallel Hu�man Decodingwith Applications to JPEG Files�S. T. KleinDept. of Computer ScienceBar Ilan UniversityRamat Gan 52900Israeltomi@cs.biu.ac.il
Y. WisemanDept. of Computer ScienceBar Ilan University andJerusalem Collegeof Technologywiseman@cs.biu.ac.ilShort Title: Parallel Hu�man DecodingCorresponding author: S.T. Klein, Tel (972{3) 531 8865, Fax (972{3) 736 0498Abstract: A simple parallel algorithm for decoding a Hu�man encoded �le is pre-sented, exploiting the tendency of Hu�man codes to resynchronize quickly, i.e., recov-ering after possible decoding errors, in most cases. The average number of bits thathave to be processed until synchronization is analyzed and shows good agreementwith empirical data. As Hu�man coding is also a part of the JPEG image compres-sion standard, the suggested algorithm is then adapted to the parallel decoding ofJPEG �les.

�This is an extended version of a paper that appeared earlier in the Proceedings of Data Com-pression Conference DCC'00, Snowbird, Utah, IEEE Computer Society, (2000) pp. 383{392.{ 1 {

1. IntroductionHu�man coding is still one of the popular compression techniques and is widelyused by itself [1, 2] or in connection with other methods such as gzip and JPEG.Hu�man's original method [3] is not adaptive and needs two passes over the datato be compressed. This might be a disadvantage in certain applications, in whichdynamic algorithms, such as those based on the works of Lempel and Ziv [4, 5], arethe preferred choice. There are, however, situations, in which a static method isrequired, such as for large static information retrieval systems [6], or when searchingfor patterns directly in a compressed text [7]. Another area of application is whenmore than one processor is available, in which case a static compression scheme, i.e.,one that does not change the codewords dynamically during processing, may allowthe decoding of several data pieces in parallel.It is on this last point that we shall concentrate in this paper. We shall explore amethod allowing the parallel decoding of a �le that has been compressed by a staticHu�man code, exploiting in particular the tendency of Hu�man codes to resynchro-nize quickly in case of an error. This will then be extended to deal with the paralleldecoding of JPEG �les. JPEG is a widely used standard image compression tech-nique [8], and the last phase of its baseline implementation includes Hu�man coding.We shall assume basic knowledge of Hu�man's algorithm and of the properties ofHu�man codes, in particular of canonical Hu�man codes, which can be found inmany good textbooks, e.g., [1].Previous work on parallelizing compression includes [9, 10, 11], which deal with LZcompression, and [12]. A parallel method for the construction of Hu�man trees canbe found in [13], and parallel encoding has been addressed in [14]. In fact, parallelstatic Hu�man encoding is quite simple: the input text can be split among theavailable processors, each of which would collect statistics in its assigned block aboutthe frequency of occurrence of the various characters. The counters of the di�erentprocessors have then to be added and a global Hu�man tree will be constructed,though no parallelization can be used for this step. The actual encoding can then{ 2 {

again be performed in parallel for each block independently. Using such parallelencoding assumes alignment at block boundaries, so that some bits may be lost atthe end of each block.Our focus, however, is on decompression, because it may be more importantthan compression in some cases. For instance, in information retrieval applications,compression is done only once and may therefore be as time consuming as necessary,but decompression of short pieces is done on-line and ought to be fast to allow areasonable response time to a query.The organization of this paper is as follows: in the next section we review the mainproblem faced by parallel decompression, namely synchronization. Section 3 presentsthe algorithm and Section 4 some experimental results relating to general Hu�manencoded �les. Section 5 then deals in detail with JPEG decoding and explains how thegeneral idea of the parallel decoding can be adapted to �t the speci�c characteristicsof a JPEG �le.2. SynchronizationWhen more than one processor is available at decompression time, the compressedtext can be split into blocks, and each processor can be assigned one of the blocksfor decompression. The problem is of course that the sizes of the blocks are �xedin advance, and since Hu�man codewords have variable length, a block-boundarydoes not necessarily coincide with a codeword boundary. But Hu�man codes arecomplete, which means that any binary sequence can be \decoded" as if it were theencoding of some text, so that synchronization errors may go undetected (see [15] fora de�nition of synchronization in our context).Consider for example the simple Hu�man code f00; 010; 011; 10; 11g for the char-acters A,B,C,D,E, respectively. The encoding of the string BACEAD would then be thebinary string 01000011110010. Suppose that one of the processors would be assigneda block starting at the third bit of this string, indicated by the arrow in the upper{ 3 {

part of Figure 1. It would then decode the block as AAEEAD, the �rst three charactersof which are erroneous.
A A E E A D

0 1 0 0 0 0 1 1 1 1 0 0 1 0

0 1 0 0 0 0 1 1 1 1 0 0 1 0

B A C E A DXXXzblock boundary erroneous decoding xcorrect decoding y ��� synchronization point
Figure 1: Schematic representation of parallel decodingThe general situation is given in the lower part of Figure 1. The upper linesymbolizes the decoding which starts at the block boundary and might thereforeproduce an erroneous decoding for several codewords. The line below shows thecorrect decoding: the block boundary could have occurred within a codeword, sothat the following block starts with some proper su�x of a codeword. Typically, thecorrect and the erroneous decodings could then generate di�erent output sequences,up to a position in the binary string to be decoded, which, for both processes, holdsa bit that completes a codeword of the given code. This position is indicated assynchronization point , as subsequent bits will be correctly decoded in any case.Synchronization points do not always exist. A simple example would be a �xedlength code, for which every codeword has length k bits. If the block size is not amultiple of k, all the codewords of the second block will be out of synchronization.But in the case of a �xed length code, the block size could be chosen a priori as amultiple of the codeword length. Moreover, �xed length codes are optimal, from thecompression point of view, only for nearly uniform distributions.On the other hand, there are also variable length codes for which synchronizationwill not be achieved. Refer again to Figure 1, and denote by x and y, respectively,the last codeword before the synchronization point for the erroneous and the correct{ 4 {

decoding. Then either y has to be a su�x of x (as in the example in the �gure), orx is a su�x of y. In either case, the code cannot have the so-called su�x-property ,asserting that no codeword can be the su�x of any other, similarly to the well-knownpre�x-property of all Hu�man codes. Accordingly, codes having both the pre�x andthe su�x property have been called never-self-synchronizing in [15]; they are calleda�x codes in [16]. There are in�nitely many di�erent complete variable-length a�xcodes, e.g., f01; 000; 100; 110; 111; 0010; 0011; 1010; 1011g, but they are nonethelessextremely rare [17]. For none of the real-life distributions we checked could an a�xcode be constructed. For those rare arti�cial distributions for which it was possible,the a�x code had to be carefully designed; selecting the code in some systematicway or using canonical codes [18] did not yield a�x codes.For certain distributions, a Hu�man code may be constructed that includes syn-chronizing codewords or sequences [19, 20]. These are codewords or sequences afterthe occurrence of which decoding will be correct, regardless of any possible errorbefore them. The higher the probability of these codewords, the lower the expectednumber of falsely decoded bits at the beginning of each block, so the techniques of[19] may be applied to improve the performance of the parallel Hu�man decoding.In practice, however, synchronization is fast even without the help of synchronizingcodewords.3. Parallel DecodingThe simplest approach to allow parallel decoding is to decide in advance on the sizesof the blocks, and force alignment at block boundaries by inserting padding bits atthe end of the blocks. Note, however, that padding cannot always be done simply byinserting zeroes or random bits, since such a sequence of padding bits might turn outto be \decodable", yielding erroneous decoding. The padding should thus consist ofa proper pre�x of one of the codewords.An easy way to implement this for a �xed block size b would be as follows: startwith a Hu�man encoded string T and repeat until T is empty: remove from T a pre�x{ 5 {

of size b | this pre�x constitutes the following block B; if the last codeword w did not�t in its entirety in B, prepend the pre�x of w which is a su�x of B in front of T . Theaverage number per block of added bits will be about half of the average codewordlength, which might be negligible if the block size is large enough.Alternatively, instead of repeating a pre�x of the last codeword for each block,one could record the length ` of this pre�x in a separate table. Processor i would thenstart its work by reading a su�x of length ` from block i�1 before turning to its ownblock i. The overhead per block in this case is log(maximum codeword length), whichagain may be very small relative to a large block. It should however be noted thatassuming a lower bound to the size of a block is equivalent, as the size of the input �leis given, to an upper bound on the number of processors. So if many processors areavailable and the input �le is not very large, either we agree not to take advantageof all the given processing power, or one has to deal also with smaller blocks. In thelatter case, increasing each block with padding bits or adding an integer ` to eachblock might not be a negligible overhead any more.In any case, even if the overhead is very small, the main disadvantage is that thenumber of processors has to be �xed in advance, at encoding time. The algorithmwe suggest below does not alter the original Hu�man encoded �le and has thereforeno overhead. Moreover, any number of processors can be accommodated, the exactnumber is only needed at decoding time and may even change from one decoding toanother.3.1 Description of the suggested algorithmThe basic idea of the parallel decoding algorithm is letting the processor i, which hasbeen assigned to decode block i, over
ow and continue decoding in the consecutiveblock i+1, until a synchronization point is reached. Assuming that the last codewordsin block i are already correctly decoded, processor i will give the correct decoding ofthe �rst few codewords in block i + 1. Once a synchronization point in block i + 1is detected, processor i can stop (or be reassigned to the decoding of another block),{ 6 {

since the remaining bits in block i+1 have been correctly decoded by processor i+1.In particular, the synchronization point can be immediately at the block boundary,in case the last codeword of the previous block happens to �t there in its entirety.The formal parallel decoding algorithm for processor i is given in Figure 2. Pro-cessor i maintains a linked list Li of pairs (index; char), which is also accessible toprocessors j, for j < i, and records the indices, within block i, of the last bit ofeach codeword, as well as the corresponding decoded characters. Denote by Li[p]the element of Li pointed to by p, and by Li[p]:index and Li[p]:char the index andcharacter �elds within Li[p], respectively. In general, the �rst few elements of Li willbe wrong, corresponding to the erroneous decoding at the beginning of the block, butthey will be corrected when processor i�1 moves into block i. The list Li also servesas indicator for processor i to stop: as soon as an index value is detected that isequal to one of the index values stored in Li by an earlier processor, synchronizationhas been achieved. The �nal decoded sequence can then be obtained by accessing inparallel the lists Li[p]:char.We use the abbreviations EOB for end of block, EOF for end of �le and eoc forend of codeword. A pointer headi points to the head of Li, and if p points to anelement of Li, p:next points to its successor in the linked list. The wait statementshave been added to allow correct processing even in the (quite unlikely) case thatprocessor i � 1 �nishes work on block i � 1, moves to block i and gets to the endof some codewords there, before processor i has reached these codewords in its ownblock.To show correctness, we use an indictive argument: note that getting a correctdecoding in block i+ 1 is based on the assumption that the last codewords in blocki have been correctly decoded by processor i. If this assumption is not true, thesynchronization point found in block i + 1 is worthless. However, in this case, pro-cessor i � 1 has not been able to �nd a synchronization point in block i, and didtherefore continue working also on block i+ 1. The correctness is now based on theassumption that the last codewords in block i� 1 have been correctly decoded. Thisargument can be extended to i�2, etc., but ultimately, there must be a block j, with{ 7 {

Start decoding at beginning of block iRecord indices of end of codewords in list LiContinue until EOBIf EOB is an eoc or EOB is EOF (last block) STOPelse // over
ow to next blockf i � i+ 1p � headirepeatf decode to next eocif this eoc is EOB STOPif EOB was passedf i � i+ 1 p � headi gelsef j � index of eoc in block ic � corresponding decoded characterif Li[p] not yet de�ned, wait until de�nedwhile Li[p]:index < jf p old � pp � p:nextremove Li[p old] from Liif Li[p] not yet de�ned, wait until de�nedgif Li[p]:index = j STOPelse insert (j; c) in front of Li[p] in Liggg Figure 2: Decoding algorithm for processor i{ 8 {

j < i, for which this is true, since processor 1 starts at the beginning of the �le andits output is correct. Therefore, in the worst case, any output produced by all theprocessors i, with i > 1, is useless, and the parallel decoding reduces to a sequentialone by processor 1 alone. As mentioned above, such a worst case behavior seemsto be extremely rare, as in most cases, the synchronization points are found quickly,long before the end of the block.3.2 AnalysisTo get an estimate of the number of bits that have to be processed before a syn-chronization point is found, we introduce the following notations. Let T denotethe Hu�man tree corresponding to a given Hu�man code. The elements which areencoded appear with probabilities p1; : : : ; pn in the text, and the lengths of the cor-responding Hu�man codewords are `1; : : : ; `n, respectively. We shall also use thenotation py for the probability of the element corresponding to the leaf y. Denoteby L the set of the leaves of T , and by I the set of its internal nodes. For eachx 2 I, we de�ne Tx as the subtree of T rooted at x, and we denote by Lx = L \ Txthe set of its leaves. The internal nodes I correspond to the positions at which acodeword might be cut by a block-boundary. In particular, the root r of the tree,which belongs to I, corresponds to the special case where the block-boundary fallsbetween two codewords.We assume that a block boundary occurs at random in any possible position, thatis, at any internal node of T . This is an approximation, since in certain cases, notall the positions are possible cut-points, nor do those that are possible all appearwith the same probability. For example, if both the block-size and all the codewordlengths are even, then no codeword can be cut by a block boundary after an oddnumber of bits. But for many real-life distributions, especially for the large oneswith thousands or even millions of elements, the corresponding Hu�man codes havecodewords of all possible lengths in a certain range; adding to this the fact that theblock size is generally chosen so as to accommodate a very large number of consecutivecodewords, we conclude that our assumption can be justi�ed.{ 9 {

Consider the fact of having a block boundary in a certain position as if it weregenerated by the following random process: the compressed text consisting of agiven sequence of concatenated codewords, we \throw" at random boundaries intothis string, that is, we pick randomly bit positions which shall act as the startingpositions of the blocks. In this sense, we can speak about the probability of having ablock boundary in a certain position. For a given internal node x 2 I, the probabilityP (x) of the position corresponding to x being picked as a boundary point will beproportional to pi`i, and not just to pi, since we deal with a random process onthe compressed text and not on the original one. Each leaf of the Hu�man tree isassociated with a probability pi, and the probability associated with an internal nodey is the sum of the probabilities associated with the two children of y. Thus, whenadding the probabilities associated with all the internal nodes, we get W = Pni=1 pi`i,the weighted average codeword length, and the probability P (x) is given byP (x) = Py2Lx pyW :This is indeed a probability distribution, as Px2I P (x) = 1. As example, refer againto the simple Hu�man code f00; 010; 011; 10; 11g mentioned earlier, and assume thatthe characters A,B,C,D,E appear with probabilities 0.3, 0.15, 0.15, 0.2, and 0.2,respectively, yielding an average W of 2.3. Figure 3 shows the corresponding tree,with each node having its associated probability to its left. The probabilities P (x)appear in boxes to the right of the internal (black) nodes.
0.15 0.15

0.3 0.3 0.2 0.2

0.6 0.4

1.0

0.174

A

C

D

B

E

0.261

0.435

0.130Figure 3: Probabilities P (x) for example Hu�man tree{ 10 {

For x 2 I and y 2 Lx, de�neQ(x; y) = 8>>>><>>>>: 1 if the path from x to y corresponds to a sequenceof one or more codewords in the code0 otherwise,that is, Q(x; y) = 1 if and only if, in case a codeword has been cut by a blockboundary, synchronization is reestablished at the end of this codeword. In particular,for an a�x code, Q(x; y) = 0 for all x and y, unless x is the root. For the examplein Figure 3, Q(x; y) is 1 if x is the root or if x is the internal node corresponding tothe pre�x 0 and y is one of the leaves corresponding to B or C.For a given block starting at some internal bit of a codeword c, let S denote theevent that the synchronization point is already at the end of c, i.e., only the codewordcut by the boundary is lost, if at all, and the subsequent ones will be correctlyrecognized by the processor assigned to this block. We evaluate the probability P (S)by conditioning on the position of the possible cut-points:P (S) = Xx2I P (S j cut-point is at x) P (x):But P (S j cut-point is at x) is the weighted average of the decoding successes,summed over all the leaves of Tx, that isP (S j cut-point is at x) = Py2Lx py Q(x; y)Py2Lx py ;from which we get that P (S) = Px2IPy2Lx py Q(x; y)W : (1)We therefore conclude that the probability P (S) depends only on the given dis-tribution and on the shape of the Hu�man tree. The more paths from internal nodesto the leaves match other such paths starting at the root, the more Q(x; y)s willbe 1 and the higher P (S) will be. A good choice for the shape seems then to bea canonical tree, in which the leaves appear, from left to right, in non-decreasingorder of their depths [18]. Such a shape tends to favor reoccuring structure patterns.Returning to the example of the a�x code above, the canonical Hu�man code with{ 11 {

the same codeword lengths is f00; 010; 011; 100; 101; 1100; 1101; 1110; 1111g. For thistree, we have Q(x; y) = 1 if x is the root or if x is the internal node correspondingto the pre�x 1 and y is one of the leaves corresponding to 100, 1100 or 1101; or if xcorresponds to 11 and y to 1100; for all other (x; y) pairs, Q(x; y) = 0.Consider now the case when the complementary event of S occurs, that is, syn-chronization was not regained at the end of the �rst codeword. But we are then ina similar situation: a decoding process is started at some internal position within acodeword c and we ask what is the probability to resynchronize at the end of c. If thenumber of codewords in a block is large enough, we may assume that this event isindependent of the previous one, so we again get the same probability P (S). Extend-ing this argument, we see that the number of codewords c we have to process untilsuccess, i.e., synchronization, is geometrically distributed, and its expected value is1=P (S), from which we derive an estimate for the number of bits E scanned at thebeginning of a block until synchronization as:E = WP (S): (2)In the experimental section below, we bring examples of this expected value and ofactual empirical results.4. Experimental resultsWe now report on some experiments with the parallel algorithm on various �les. The�rst set consisted of textual �les in di�erent languages: the Bible (King James Ver-sion) in English, the Dictionnaire philosophique of Voltaire in French and the Bible inHebrew. These �les were Hu�man encoded according to their individual characters.In the second set, the same �les were encoded as a sequence of bigrams, yieldingmuch larger alphabets. In the third set, we took three �les of the Calgary corpus.Canonical Hu�man codes were used throughout, which indeed gave noticeably fastersynchronization than the other Hu�man codes we tried.Table 1 summarizes the results. The �rst columns give values calculated from{ 12 {

n W P (S) E # bits till sync Decode timeavg max sequential parallelEnglish 63 4.42 0.42 9.4 8.1 63 11.75 3.40French 56 4.50 0.43 10.6 7.9 36 1.44 0.39Hebrew 26 4.07 0.40 10.2 9.8 98 3.53 1.21English{2 1121 8.08 0.17 47.6 72.3 675 11.48 3.28French{2 713 7.86 0.20 39.2 37.2 257 1.73 0.54Hebrew{2 562 7.69 0.22 35.7 33.6 240 3.99 1.40obj1 256 6.04 0.25 24.0 14.0 112 0.05 0.02paper1 95 5.01 0.34 15.0 10.6 39 0.10 0.05bib 81 5.24 0.31 16.8 13.5 68 0.25 0.11Table 1: Calculated and measured values for parallel decodingthe �les themselves: the size n of the alphabet used to compress the �le, the aver-age codeword length W , the synchronization probability P (S) of eqn. (1) and theexpected number of processed bits until synchronization, E, of eqn. (2). The follow-ing columns contain values that have been empirically measured: �rst the averageand maximum number of bits until synchronization. The numbers reported for thesynchronization correspond to a block size of 512 bytes (4096 bits). The �nal twocolumns give the time, in seconds, of decoding the �les sequentially and in parallelwith 4 processors, using as block-size a quarter of the �le-size. Standard Hu�mandecoding was used for both the sequential and parallel programs. More sophisticateddecoding procedures exist [18, 21], but we did not want to bias the relative gain inspeed due to parallelization. The time measurements were taken on a Sun 450 withfour UltraSPARC{II 248 MHz processors. The model we used is the shared memoryintroduced in Solaris 2.6 [22], protected by the standard Unix System V semaphoresand allocated according to the Slab Allocator [23].Other block sizes were also checked, but essentially the same behavior was ob-tained for 700, 900 and 1024 bytes. This shows that the block sizes were large enoughto support the assumption that the position of a block boundary occurs at random.{ 13 {

For such large blocks, the overhead of forcing alignment by padding would also bevery low, less than 0.1% for all our examples. However, if blocks as small as 40 bytes| still much more than needed to get synchronization | are permitted, the paddingoverhead would increase up to 2%.As can be seen, the expected values of the number of bits to be processed untilsynchronization at the beginning of a block �t generally well the average of the actualvalues measured. As expected, synchronization is obtained faster for distributionswith small average codeword length, in our examples typically in less than 100 bits,which is only 0.25% of the size of the block. But even for the larger alphabets onlya few tens of bytes were needed, which is reasonable since the size of the block canbe chosen larger than in our tests. For the processing time, we obviously did notexpect a reduction to a quarter of the sequential speed, since beside the overlap ofthe blocks to be processed, there is also some overhead for the parallelization. Thevalues we obtained for 4 processors were typically around one third of the sequentialdecoding time.5. Application to JPEG5.1 Baseline JPEGWe start with an overview of the essentials of JPEG needed to understand the detailsof the parallel decoding. JPEG [24] is a lossy image compression method. In a �rststep, the picture is split into a sequence of blocks of size 8 � 8 pixels. Each block isthen compressed by the following sequence of transformations:1. Applying a Discrete Cosine Transform (DCT) [25] to the set of 64 values ofthe pixels in the block;2. Applying Quantization to the DCT coe�cients, thereby producing a set of 64smaller integers. This step causes a loss of information but makes the datamore compressible; { 14 {

3. Applying an entropy encoder to the quantized DCT coe�cients. Baseline JPEGuses Hu�man coding in this step, but the JPEG standard speci�es also arith-metic coding [26] as possible alternative.The decompression process just reverses the actions and their order. It �rst ap-plies Hu�man decoding, then dequantizes the coe�cients, and �nally uses an inverseDCT to obtain the original set of values. Because of the quantization step, thereconstructed set includes only approximated values.The coe�cient in position (0,0) (left upper corner) is called the DC coe�cient andthe 63 remaining values are called the AC coe�cients. In principle, the DC coe�cientshould store a measure of the average of the 64 pixel values of the given block, butsince there is usually a strong correlation between the DC coe�cients of adjacentblocks, what is actually stored is the di�erence between the average in this block andthe average in the previous one.Baseline JPEG uses two di�erent Hu�man trees to encode the data. The �rstencodes the lengths in bits (1 to 11) of the binary representations of the values in theDC �elds. The second tree encodes information about the sequence of AC coe�cients.As many of them are zero, and most of the non-zero values are often concentratedin the upper left part of the 8� 8 block, the AC coe�cients are scanned in a zig-zagorder, processing elements on a diagonal close to the upper left corner before thoseon such diagonals further away from that corner; that is, the order is given by (0,1),(1,0), (2,0), (1,1), (0,2), (0,3), (1,2), etc. The second Hu�man tree encodes pairs ofthe form (n; `), where n (limited to 0 to 15) is the number of elements that are 0,preceding a non-zero element in the given order, and ` is the length in bits (1 to 10)of the binary representation of the non-zero quantized AC value. The second treeincludes also codewords for End of Block (EOB), which is used when no non-zeroelements are left in the scanning order, and for a sequence of 16 consecutive 0s inthe AC sequence (ZRL), necessary to encode 0-runs that are longer than 15. TheHu�man trees used in baseline JPEG are static, and can be found in [8].{ 15 {

Each 8�8 block is then encoded by an alternating sequence of Hu�man codewordsand binary integers (except that the codeword for ZRL is not followed by any inte-ger), the �rst codeword belonging to the �rst tree and relating to the DC value, theother codewords encoding the (n; `) pairs for the AC values, with the last codewordin each block representing EOB. Figure 4(a) brings an example block of quantizedvalues, with the DC value in boldface in the upper left corner. The upper part ofFigure 4(b) shows the encoding of this block, with Hu�man encoded elements ap-pearing in parentheses; the binary translation of the encoding, with framed Hu�mancodewords, is shown underneath.20 1 0 0 0 0 0 00 3 0 0 0 0 0 00 0 0 0 0 0 0 0-2 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0(a) Typical JPEG block
(3) 5 (0,1) 1 (2,2) 3 (4,2) -2 (EOB)100 101 00 1 11111001 11 1111111000 01 1010(b) Encoding of JPEG blockFigure 4: Example of JPEG block and its encodingTurning now to the problem of parallel decoding, the above idea, with a few adap-tations, can be applied to decompress Hu�man based JPEG �les in parallel, whichcan yield faster reconstruction of the image when several processors are available.One possible approach to adjust JPEG to a parallel scheme is to change the basicJPEG scheme to a more adequate format, as suggested in [27, 28]. Our goal, however,is a method capable of decoding in parallel without changing the standard.As done above for general Hu�man encoded �les, we start by splitting the imageinto several slices, and assigning di�erent processors, each working on a di�erentslice of the image. The synchronization problems mentioned in Section 2 appearalso here and are even more severe. Not only does the beginning of the block to{ 16 {

be decoded by the current processor not necessarily coincide with the beginning ofa Hu�man codeword, but even if it does, synchronization is not guaranteed. Thefollowing di�erent cases may occur: the block boundary could be located� within the codeword representing the length of the DC coe�cient;� at the beginning or within the stored DC value;� at the beginning or within a codeword representing an (n; `) pair used for theAC coe�cients;� at the beginning or within a stored AC value.Only if the block happens to start with a codeword for the length of the stored DCvalue will the block be correctly decoded.To illustrate the problem, assume that the block used in the example in Figure 4appears consecutively three times in the given �le. Suppose then that a new processorstarts working six bits before the end of the �rst block, which corresponds to thebeginning of the binary encoding of the AC value -2. The processor would try torecognize a Hu�man codeword representing the length of a DC value, and would thuserroneously interpret the next three bits 011 as representing the length 2, implyingfurther errors. Figure 5 shows in its upper part the correct decoding and in its lowerpart the decoding obtained when starting at the sixth bit before the end of the �rstblock, as indicated by the arrow. As can be seen, the �rst few decoded elementsare wrong, but soon a synchronization point, indicated by the vertical bar, is found,after which the decoded elements are correct.(3) 5 (0,1)1 (2,2) 3 (4,2) -2 (EOB) (3) 5 (0,1)1 (2,2) 3 (4,2) -2 (EOB) (3) 5 (0,1)1 (2,2) 3 (4,2) -2 (EOB)100 101 00 1 11111001 11 1111111000 01 1010 100 101 00 1 11111001 11 1111111000 01 1010 100 101 00 1 11111001 11 1111111000 01 1010100 101 00 1 11111001 11 1111111000 011 01 01 00 1010 011 11 1100 1 1111111110000110 10100101 00 1 11111001 11 1111111000 01 1010x?? (2) -2(0,2) -3 (EOB) (2) 3 (1,1) 1 (1,8) 165 (0,1)1 (2,2) 3 (4,2) -2 (EOB)Figure 5: Example of wrong decoding and synchronization{ 17 {

In this example, the �rst decoded block is completely wrong, and the secondincludes at its end some correctly decoded AC coe�cients, which, however, are uselessbecause of their wrong position within the block. Only after the second EOB will thecorrect decoding resume. In general, correct decoding, and not just synchronization,will only be achieved after a correct EOB codeword is detected. Note that twodi�erent errors may occur: a true occurrence of EOB (1010 in our example) may beoverlooked, as the �rst and second EOB in the upper part of Figure 5, or an EOBmay be detected even though there is none in the true decoding, as in the case ofthe �rst EOB of the lower part of Figure 5. The correct EOB after which decodingis correct is the �rst EOB found after synchronization.The parallel decoding algorithm for baseline JPEG is similar to the general algo-rithm of Section 3, with the following additions.5.1.1 Invalid codewordsAny Hu�man code is complete, in the sense that any binary string can be \decoded"as if it were some Hu�man encoding, so that errors in the binary �le will stay un-detected unless the end of the �le is reached within a codeword. In the particularcase of JPEG, errors may be detected in certain circumstances: keeping track ofthe number of AC elements by summing the n �elds of the (n; `) pairs and addingthe number of non-zero coe�cients, if this number exceeds 63, there must obviouslyhave been an error. In addition, the particular Hu�man trees used (see [8]) are notcomplete and in fact, certain codewords are missing (for example 111111111 in the�rst Hu�man tree, used for the DC coe�cients). The appearance of such an invalidcodeword is therefore a sign that some error has occurred. As it makes no senseto display a block which is obviously incorrect, an empty block will be substituted.The error will be �xed when the decoder of the previous block will over
ow into thecurrent block.
{ 18 {

5.1.2 Positioning of the imageAnother factor applying to the decoding of JPEG �les is the possibility to displaypartial data while decoding, even if the correct location is yet unknown. As thecompressed data has variable length, the location of each block in the image cannot be known accurately. The algorithm will then choose an estimated location, atabout (i� 1)=k of the decoded image for the output of processor i if k processors areavailable. Only when processor i� 1 �nishes its block will the correct position of theoutput of processor i be known, so blocks that have been temporarily displayed atthe estimated location will probably have to be relocated.The wrong positioning of a decoded block may cause the cutting of a line of blocksinto two parts: the left part may appear at the right end of a line of blocks in theimage, whereas the right part will be at the left border of the following line. For manyimages this will result in a discontinuity which is often easily detectable by a humaneye, as for example in the lower part of Figure 6(a) below. A straightforward ideawould then be to try to detect if such discontinuities (which are equivalent to highDC values, since these store di�erences from preceding blocks) happen to reoccur atthe same position in consecutive lines, suggesting that this position should be movedto the edge of the image. However, such a rule of thumb may fail, either in casewhen blocks at the left or right edges of the image are similar, or when there is atrue discontinuity in the given position. Moreover, the algorithm would be moretime consuming, which might cancel a part of the gain in speed due to the parallelprocessing.5.1.3 Adjusting the colorAs mentioned, the DC values are not encoded themselves, but rather as the di�erencebetween the current value and that of the previous block. When decoding does notstart at the beginning of the �le, the exact DC for the current blocks are not known.One can then assume some arbitrary basis value for DC (for example, the middlevalue zero) to enable the decoding of the chain of DC values within a block. A{ 19 {

wrong guess may result in a biased image, which can be too bright or too dark forgreyscale pictures, if the change was in the luminance component; a change in thechrominance component of color pictures may turn the image too reddish or bluish.This is still better than not seeing this part of the image at all. Once all the precedingprocessors get to the blocks following the one they have been assigned to, this biaswill be corrected. This means, however, that to get a correct decoding of the picture,we actually have to process it sequentially. The advantage of the parallel decodingreduces in this case to the ability of getting quickly some partial information in formof a biased picture, that will subsequently be recti�ed.Note that the new standard JPEG{2000 [29] has built-in synchronization code-words which make the synchronization faster. Obviously, this will improve the per-formance of the parallel decoding application.
(a) Parallel decoding with 4 processors (b) Original imageFigure 6: Example of parallel decoding of a greyscale imageFigure 6 is an example of the decoding of a greyscale picture, decoded by 4processors. Part (a) shows the reconstructed image after having processed all theblocks, but before letting the processors over
ow into the adjacent blocks to correctthe wrong positioning and luminance. Part (b) brings then the corrected picture.

{ 20 {

5.2 Other JPEG FormatsThe JPEG standard [24] has some other formats for encoding images. In severalprogressive modes , the scanning order is altered. In one of the variants, for instance,using 8 bits for each encoded coe�cient, the 64 � 8 � k bits of the k blocks con-stituting an image are rearranged, clustering the 64k most signi�cant bits together,followed by the 64k bits in position 2 of each coe�cient, etc. The resulting sequenceis then Hu�man encoded. This mode of transmission has the advantage of permit-ting to get a sequence of approximations of the image before having read all of thedata. The �rst approximation will be blurred, but the consecutive ones will becomeprogressively clearer. Unfortunately, this and similar rearrangements are not suitablefor our parallel decoding: even if synchronization is regained, we still don't know towhich of the k blocks the decoded values have to be assigned, nor do we have anyinformation about the index of the bit currently processed.

(a) Parallel decoding with 4 processors (b) Original imageFigure 7: Example of parallel decoding of a color imageJPEG also deals with pictures encoded by several components, such as colorimages. There are several methods for splitting a color pixel into components [30,31]. The common standards are RGB [32] and YUV [33]. A color picture is not{ 21 {

decomposed into three independent images in each of the color shades, but ratherfor each block, the three components (RGB or YUV) are encoded consecutively.In the parallel decoding process, the current color shade (e.g., R, G or B) aftersynchronization can only be guessed, and will be corrected if necessary when allthe preceding processors over
ow into the next image slices. Until this correction isperformed, the color shades may be incorrect. Figure 7 is an example of the decodingof a color image by 4 processors, similarly to Figure 6.Avg size of # bits till sync size of picture8� 8 block avg max (# of 8� 8 blocks)Greyscale image 144.1 74.9 1815 63� 43Color image 339.3 150.1 1853 20� 29Table 2: Statistics on JPEG decodingTable 2 displays some statistics about the parallel JPEG decoding. Note thatbecause the encoded �le is not just a sequence of Hu�man codewords, but alsoincludes various integer encodings, the relevant number is not the average size of aHu�man codeword but the average size of an encoded block of 8 � 8 pixels, whichis given, in bits, in the �rst column. The number of bits till synchronization is thusalso measured up to the beginning of the following correctly decoded 8 � 8 block.For the color image, each block consists in fact of three independent ones (for Y,U and V). We see that synchronization is achieved on the average after about halfa block, which, given the size of the pictures (last column), is hardly noticeable.Timing �gures have not been included: as mentioned above, full decoding includingrelocation and color adjustment might force a sequential scan. On the other hand,if we measure the decoding time only until each processor �nishes its own block, theprocessors can work independently of each other, so the time is reduced by a factorof n if n processors are available. { 22 {

6. Concluding RemarksParallelization of the decoding process of a Hu�man compressed �le seems to bean easy task if one is willing to change the original compressed �le slightly, forcingcodeword alignment at block boundaries. The incurred overhead will often be negli-gible. The new algorithm does not alter the encoded �le at all, using the well-knownproperty of Hu�man codes to resynchronize quickly after errors. We have analyzedthe average length of the segment until synchronization is achieved, and comparedthe theoretical expected values with experimental results on real-life data, showinggenerally good agreement.The basic idea has then been extended to deal with the parallel decoding of JPEGencoded images, since Hu�man coding is a part of the JPEG scheme. Decoding ismore involved in this case, and to get the correct reconstructed picture, it may attimes take as long as for the sequential procedure. The bene�t of using paralleldecoding reduces then to the ability of getting faster partial visual information.In fact, the technique of letting the processors over
ow to neighboring blocksmight have applications beyond those of parallel decompression. Any Divide andConquer scheme splits its input into several independent parts, which are then pro-cessed (in parallel or sequentially) individually, and whose results are then somehowcombined. Usually, the division points between the parts are well de�ned. For cer-tain applications, however, it might not be clear where to choose the boundaries ofthe partition. In such cases, permitting a certain overlap between the parts similarto that of our parallel Hu�man decoding, might possibly yield easier ways for therecombination of the results.Acknowledgment: The authors wish to thank three anonymous referees for theirhelpful comments.
{ 23 {

References[1] Witten I.H., Moffat A., Bell T.C., (1994) Managing Gigabytes, Compressingand Indexing Documents and Images, International Thomson Publishing, London.[2] Bookstein A., Klein S.T., (1993) Is Hu�man coding dead?, Computing 50279{296.[3] Huffman D., (1952) A Method for the Construction of Minimum RedundancyCodes, Proc. of the IRE 40, Kansas City, Sep 9 1952, 1098{1101, The Institute ofElectronics and Radio Engineers, London.[4] Ziv J., Lempel A., (1977) A universal algorithm for sequential data compression,IEEE Trans. on Inf. Th. IT{23 337{343.[5] Ziv J., Lempel A., (1978) Compression of individual sequences via variable-ratecoding, IEEE Trans. on Inf. Th. IT{24 530{536.[6] Bookstein A., Klein S.T., Ziff D.A., (1992) A systematic approach to compress-ing a full text retrieval system, Information Processing & Management 28 795{806.[7] Navarro G., Raffinot M., (1999) A general practical approach to pattern match-ing over Ziv-Lempel compressed text, Proc. 10th Symp. on Combinatorial PatternMatching, Warwick, UK, July 22{24 1999, LNCS 1645, Springer Verlag, Berlin,14{36.[8] Wallace G.K., (1991) The JPEG Still Picture Compression Standard, Communi-cation of the ACM 34 30{44.[9] De Agostino S., Storer J.A., (1995) Near Optimal Compression with Respect toa Static Dictionary on a Practical Massively Parallel Architecture, Proc. Data Com-pression Conference DCC{95, Snowbird, Utah, March 28{30 1995, 172{181, IEEEComputer Society, New Jersey.[10] De Agostino S., Storer J.A., (1992) Parallel Algorithms for Optimal Compres-sion using Dictionaries with the Pre�x Property, Proc. Data Compression ConferenceDCC{92, Snowbird, Utah, March 24{27 1992, 52{61, IEEE Computer Society, NewJersey.[11] Gonzalez Smith M.E., Storer J.A., (1985) Parallel Algorithms for Data Com-pression, Journal of the ACM 32(2) 344{373.[12] Hirschberg D.S., Stauffer L.M., (1994) Parsing Algorithms for DictionaryCompression on the PRAM, Proc. Data Compression Conference DCC{94, Snowbird,Utah, March 29{31 1994, 136{145, IEEE Computer Society, New Jersey.{ 24 {

[13] Lawrence L.L., Przytycka T.M., (1995) Constructing Hu�man Trees in Paral-lel, SIAM Journal of Computing 24(6) 1163{1169.[14] Howard P.G., Vitter J.S., (1992) Parallel lossless image compression using Hu�-man and aithmetic coding, Proc. Data Compression Conference DCC{92, Snowbird,Utah, March 24{27 1992, 299{308, IEEE Computer Society, New Jersey.[15] Gilbert E.N., Moore E.F., (1959) Variable-length binary encodings, The BellSystem Technical Journal 38 933{968.[16] Fraenkel A.S., Mor M., Perl Y., (1983) Is text compression by pre�xes andsu�xes practical? Acta Informatica 20 371{389.[17] Fraenkel A.S., Klein S.T., (1990) Bidirectional Hu�man Coding, The ComputerJournal 33 296{307.[18] Klein S.T., (2000) Skeleton trees for the e�cient decoding of Hu�man encodedtexts, Kluwer Journal of Information Retrieval 3 7{23.[19] Ferguson T.J., Rabinowitz J.H., (1984) Self-synchronizing Hu�man codes, IEEETrans. on Inf. Th. IT{30 687{693.[20] Lam W.M., Kulkarni S.R., (1996) Extended Synchronizing Codewords for BinaryPre�x Codes, IEEE Trans. Information Theory IT{42 984{987.[21] Brodnik A., Carlsson S., (1998) Sublinear decoding of Hu�man codes almost inplace, Technical Report 36/600, IMFM, Ljubljana, Slovenia.[22] Vahalia U., (1996) UNIX Internals - The New Frontiers, Prentice Hall, EnglewoodCli�s, NJ.[23] Bonwick J., (1994) The Slab Allocator: An Object-Caching Kernel Memory Alloca-tor, Proc. of the summer 1994 USENIX Technical Conference, Boston, Massachusetts,June 6 { 10 1994, 87{98, USENIX, Berkeley, CA, 94710 USA.[24] ISO/IEC 10918-1 (1993) Information Technology - Digital Compression and Codingof Continuous{Tone Still Images Requirements and Guidelines. International Stan-dard ISO/IEC, Geneva, Switzerland.[25] Rao K.R., Yip P., (1990) Discrete Cosine Transform Algorithms, Advatages, Ap-plications, Academic Press Inc., London.[26] Witten I.H., Neal R.M. and Cleary J.G., (1987) Arithmetic Coding for DataCompression Comm. of the ACM 30 520{540.[27] Yun D.Y.Y., Chen C., (1996) ESS Project, Annual Report FY96 - Applications,NASA, USA Government, Greenbelt, MD.{ 25 {

[28] Yun D.Y.Y., Chen C., (1997) ESS Project, Annual Report FY97 - Applications,NASA, USA Government, Greenbelt, MD.[29] Marcellin M.W., Gormish M.J., Bilgin A., Boliek M.P., (2000) An Overviewof JPEG-2000 Proc. Data Compression Conference DCC-2000, Snowbird, Utah,March 28{30 2000, 523{541, IEEE Computer Society, New Jersey.[30] Hearn D., Baker M.P., (1986) Computer Graphics, Prentice Hall, EnglewoodCli�s, NJ.[31] Jain A.K., (1986) Fundamentals of Digital Image Processing, Prentice Hall, Engle-wood Cli�s, NJ.[32] Hunt R.W.G., (1952) The Reproduction of Colour, Morgan Publ., Keene Valley,NY.[33] Laplante P.A., Stoyenko A.D., (1996) Real Time Imaging, Theory, Techniquesand Applications, IEEE Press Inc., NY.

{ 26 {

