
Layouts for Improved
Hierarchical Parallel Computations

Michael Hirscha, Shmuel T. Kleinb, Yair Toaffa

aIBM – Diligent, Tel Aviv, Israel
{hirschm,yairtoaff}@il.ibm.com

bComputer Science Department, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract

New layouts for the assignment of a set of n parallel processors to perform
certain tasks in several hierarchically connected layers are suggested, leading,
after some initialization phase, to the full exploitation of all of the process-
ing power all of the time. This framework is useful for a variety of string
theoretic problems, ranging from modular arithmetic used, among others,
in Karp-Rabin type rolling hashes, as well as in cryptographic applications,
and up to data compression and error-correcting codes.

Keywords: Data compression, parallel processors, modular arithmetic.

1. Introduction

We consider an (unbounded) stream of character strings of fixed, given
length k, called chunks, and wish to apply a certain operation on each of
the elements of this stream. For the ease of description, we shall use the
remainder operation modulo some large integer P as a running example, con-
sidering each chunk as representing an integer of size k bytes. The method,
however, applies as well to a large variety of other associative operations: if
one considers a chunk as a sequence of numbers, one could calculate their
sum, product, maximum or minimum, or Boolean operations like and, or
or xor.

The motivation for the repeated application of the remainder operation
stems from our work on a large deduplication system [1], whose technical
details are not relevant here. For the present work, it suffices to know that
we wish to evaluate the remainders, modulo a large prime number P , of an
unbounded sequence of input chunks. Specifically, we shall: (1) identify a
chunk B, which is a character string of fixed size k, with its ASCII encoding;
(2) consider this encoding as the standard binary representation of a large
8k-bit long integer; and (3) evaluate h(B) = B mod P .

Preprint submitted to Journal of Discrete Algorithms June 26, 2014

The use of the remainder operation has many other applications, be-
side deduplication, like Karp and Rabin’s probabilistic pattern matching
algorithm [10], modular exponentiation in cryptographic methods, like El
Gammal’s scheme [5] or RSA [13].

The length k of the chunks may be 512 or more, so that the evaluation
might put a serious burden on the processing time. This can be improved
if we assume the availability of several processors working in parallel. We
show below how to exploit a set of n hierarchically connected parallel pro-
cessors to perform the needed operations in several layers, but keeping all
the processors busy without idle time, after some initialization phase. The
challenge is to design the transition protocols from one step to another in a
way that can be repeated indefinitely.

Parallelism has been discussed in connection with accelerating hashes
in deduplication systems in [9], which uses the cryptographic SHA hash
function for collision resistant fingerprinting, and in [14], presenting a dedu-
plication system called P-Dedupe that pipelines and parallelizes the pro-
cesses. More generally, [6] study the use of hashing in storage systems when
a Graphics Processing Unit (GPU) can be used to speed up the processing.
In another application, [2] use GPUs to parallelize hashing for the detection
of image fragments in an image database.

Other applications of the hierachical method we describe below, be-
side remainder calculations, are the compression of sparse bit-strings, as
described in [3] in which the recursive operation is the bit-wise or, and
the evaluation of the parity bits in the Hamming Error-Correcting Code
[7], where the recursive operation is summation modulo 2, or equivalently,
bit-wise xor. The general case of a parallel hierarchical evaluation of an
associative operation has been studied in [12], and our basic scheme with
log n phases for n elements is mentioned in [11], but without referring to
the layout permitting to keep all processors busy. Parallel implementations
for more specific operations (multiplication and addition modulo (2n ± 1))
appear in [15].

The pertinence of the current work to string manipulation methods is
thus twofold: it is not restricted to the suggested solution itself, which as-
signs the processors on the basis of the binary representation of their indices,
but extends also to a large body of potential string-theoretic applications,
such as data compression, pattern matching, error-correcting codes, cryp-
tography, and others.

In the next section, we introduce the notation used below followed by
the details of the suggested layouts in Section 3, using the application to the
evaluation of a modulus B mod P as an underlying example, rather than

2

giving a generic description of the method. Section 4 deals with the mathe-
matical details of this application and Section 5 presents some experimental
results.

2. Notation

Given a sequence of chunk Bi = xi1x
i
2 · · ·xim, where the xij denote charac-

ters of an alphabet Σ, we wish to apply the classical hash function h(Bi) =
Bi mod P for some large prime number P . We assume the availability of
several processors working in parallel. A simplistic solution of assigning a
set of ℓ processors would be as follows. Suppose an (unbounded) stream
of non-overlapping chunks B is given, we shall process them by subsets of
ℓ elements. For each subset, the ℓ processors are assigned sequentially to
the ℓ chunks. Once all of them have produced their output, the whole set
of processors is reassigned to the following ℓ chunks, etc. We may assume
that all the processors need roughly the same time for the processing of their
respective chunks, since the execution time of the given operation, B mod P
in our example, is not data dependent. Therefore this way of processing the
stream by subsets of ℓ chunks keeps all the processors busy all of the time.
We call this the basic parallel method.

The drawback, on the other hand, is that results are produced by packets
of ℓ every t time units, where t is the sequential time needed by a single
processor for processing a single chunk. In a streaming mode, we would
prefer to apply the combined power of several processors in parallel on a
single chunk and thereby obtain the requested result in less than t time
units.

The following strategy could thus be applied. Partition the chunk to be
processed into n blocks of k/n bytes each. For example, a chunk of 512 bytes
could be split into n = 64 blocks of 8 bytes each. In a first stage which we
call Step 0, a set of n processors is used to work simultaneously on the n
blocks of the chunk. In Step 1, only n/2 processors are used, each acting on
two blocks evaluated in the previous step, and in general in Step i, only n/2i

processors are used, each acting on two blocks evaluated in the previous step
i−1. Finally, in Step logn, only a single processor is used. While the overall
work of all the processors together is not reduced relative to an equivalent
sequential evaluation on a single processor, the total processing time, if
one accounts only once for commands executed in parallel, is reduced from
t = O(n) to t = O(log n). We call this the hierarchical method.

However, only in the first stage is the set of processors fully exploited,
and in fact, for reasonable choices of n, most of the processors remain idle

3

for most of the time. The average number of occupied processors is

n+ n
2 + n

4 + · · ·+ 2 + 1

1 + logn
=

2n− 1

1 + log n
,

which means that for n = 64, only about 28% of the processors are busy
on average. The present work addresses this waste of processing time, by
grouping several tasks together so as to get full exploitation of the available
processing power, thereby reducing the waste to zero. This optimal utiliza-
tion of the n processors is achieved by means of a particular strategy and a
special way, to be described below, of assigning processors to tasks; we shall
refer to a specific processor assignment as a layout .

The main idea leading to the full exploitation of all of the processors
all of the time, is to assign them in such a way that, after an initialization
phase of log n steps, a sequence of log n consecutive chunks will be processed
simultaneously in parallel. The challenge is therefore to design an appropri-
ate layout, showing how to assign the available processors at each time step.
In particular, this layout has to be consistent over time transitions from
step i to step i+ 1, while also complying with the hierarchical definition of
the function to be evaluated. In other words, we are looking for a function
from the set of indices of the processors to itself, showing how to assign the
subtasks to the processors at each step, so that the chain of transitions can
be continued indefinitely without wasting any processing power. This will
be called the interleaving hierarchical method.

3. Processor layouts for hierarchical computations

We assume a task, such as evaluating B mod P , is given, which has to
be executed in several layers by a set of parallel processors, as explained
above. The number of processors needed for layer 0 is n, we then further
suppose that 2n− 1 processors are available. A typical value of n could be
64 or some larger power of 2. We wish to exploit the processing power of all
the processors, but only for layer 0 would all the processors be active, while
for the next layer this is true for only half of them, then for a quarter, etc.

We start, at time 0, by assigning n processors to the first chunk (chunk
indexed 0), where they will perform layer 0 of the parallel evaluation algo-
rithm. At the following step, at time 1, n/2 of the so far idle processors will
perform layer 1 for chunk 0, while the first n processors are reassigned to
perform layer 0 of chunk 1. At time 2, n/4 new processors will perform layer
2 for chunk 0, the n/2 processors working in the previous step on layer 1 for
chunk 0 are reassigned to perform layer 1 for chunk 1, and the n processors

4

working in the previous step on layer 0 for chunk 1 are reassigned to perform
layer 0 for chunk 2. This is schematically drawn in Figure 1, in which solid
lines indicate blocks of currently working processors, and broken lines recall
processors that have been working on lower layers in earlier time steps.

Time 0

Time 1

Time 2

Chunk 0 Chunk 1 Chunk 2 Chunk 3

Time 3Layer 0

Layer 1

Layer 2
Layer 3

Figure 1: Layout for the first few chunks

In general, at time i, i = 0, 1, . . . , logn, the set of available processors
is partitioned into i + 1 uneven parts dealing with the first i + 1 chunks
as follows: n/2i new processors will perform layer i of chunk 0, n/2i−1

processors will perform layer i−1 of chunk 1,. . ., n/2 processors will perform
layer 1 of chunk i− 1, and n processors will perform layer 0 of chunk i.

That is, only
∑i

j=0
n
2j

= 2n− n
2i

processors are working at time step i for
i < log n, but after the initial logn− 1 time steps, all the 2n− 1 processors
will be working. Figure 1 is the scenario for the initial steps. Following
that, for j = 1, 2, . . . , at time step j + log n, one processor will perform
layer log n of chunk j − log n, two processors will perform layer log n− 1 of
chunk j − log n + 1, four processors will perform layer logn − 2 of chunk
j − log n + 2,. . ., n/2 processors will perform layer 1 of chunk j − 1, and n
processors will perform layer 0 of chunk j. This can be summarized by:

5

For j = 1, 2, . . . and i = 0, 1, . . . , log n, at time j + log n,
n

2logn−i
processors will perform layer log n− i of chunk j − log n+ i.

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
���������

����
����

����
����
��������

����
����

����
����
��������������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
��������

����
����
����
����

����
����
����
����
���������

�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
���������

�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��������
��������
��������

��������
��������
�����������������

���������
���������

���������
���������
���������������������������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

������������������

���������������������������������� ������������������������

. . .

jjj j− 1− 2− 3 + 1j − 4 j

Layer 0

Layer 1

Layer 2
Layer 3
Layer 4

. . .

Figure 2: Layout for the general case

Figure 2 summarizes this layout for the general case, after the initial
steps. While in Figure 1, there is a separate drawing for each time step,
all these drawings appear overlaid in Figure 2. More precisely, each column
in Figure 2 corresponds to one of the chunks (indexed here j − 4 to j + 1),
and the time steps are characterized by the shading, that is, rectangles with
identical fill patterns represent sets of processors working simultaneously.
The solid black rectangles represent the set of processors working in parallel
at time j + logn: half of them on chunk j, a quarter on chunk j − 1, etc.
The solid grey rectangles are the working processors in the following step,
at time j + log n+ 1.

One can see in both Figures 1 and 2 that at the transition from one time
step to the following one, all the processors move to the following chunk, but
remain working on the same layer as before. Looking at a specific chunk, the
transition from one time step to the following one corresponds to passing to
the next higher layer and to reducing the number of processors working on
this chunk by half.

As a result of this policy of assigning the processors to the chunks, no
processor will stay idle after the initialization phase of logn time steps, after
which all 2n−1 processors will work in parallel on logn consecutive chunks;
moreover, the modulus for each of the processed chunks will be evaluated in
layers within logn consecutive time steps.

There is still a certain degree of freedom for partitioning the processors
into the subsets performing different tasks. We consider two possible sce-
narios. In the first, we ignore the time needed for each processor to read its
necessary data, but consider the possibility of the use of some parameters
which depend only on the index of the currently processed layer, and not

6

on the particular chunk itself. This suggests a layout in which a processor
is always assigned to perform a task at the same layer. In the second sce-
nario, input operations are also being considered, which leads to a layout in
which the assignment of new data to a processor is reduced to the possible
minimum. In fact, a processor reads new data only after being done with
the data that has been released.

3.1. Assigning processors to layers

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4
0 00000 1 00001 3 00011 7 00111 15 01111
2 00010 5 00101 11 01011 23 10111
4 00100 9 01001 19 10011
6 00110 13 01101 27 11011
8 01000 17 10001
10 01010 21 10101
12 01100 25 11001
14 01110 29 11101
16 10000
18 10010
20 10100
22 10110
24 11000
26 11010
28 11100
30 11110

Table 1: Partition of the indices 0–30 into layers

It would be easiest to design the layout such that the processors are
divided into fixed sets of n, n2 ,

n
4 , . . . , 2, 1 processors, respectively. In that

case, referring to Figure 3, the first subset, of n processors, will always work
on layer 0, and generally, the subset of n/2j processors will always work
on layer j, for j = 0, 1, . . . , log n. This could be an advantage if different
constants are used for the different layers. For example, in the application
to parallel remainder evaluation mentioned above, each processor acts on
an input consisting of two data blocks. These data blocks are adjacent for
layer 0, but for higher layers, the blocks are further apart, and the distance
between the blocks depends on the index of the layer. This fact translates
to using a constant Ci in the evaluation procedure performed by each of
the processors, and this constant is the same for all processors acting within
the same layer, but differs from layer to layer. If a given processor is thus

7

always assigned to the same layer i, there is no need to update its constant
Ci, which can be hardwired into it. A possible fixed partition of the indices
of processors is given below in Table 1.

Suppose the processors are indexed from 0 to 2n− 2. The n processors
acting on level 0 are those with the even indices, {0, 2, 4, 6, . . .}. The n/2
processors acting on level 1 are those with indices that are of the form 1 +
multiples of 4, {1, 5, 9, 13, . . .}. The n/4 processors acting on level 2 are those
with indices that are of the form 3 + multiples of 8, {3, 11, 19, 27, . . .}, etc.
In general, the n/2i processors acting on level i are those with indices that
are of the form 2i − 1+ multiples of 2i+1, i = 0, 1, . . . , logn. An equivalent
way of describing this partition, which also has the advantage of showing
that this way of numbering indeed induces a partition, that is, that all
indices are accounted for and none of them appears twice, is by referring
to the (1 + log n)-bit standard binary representation of the numbers 0 to
2n − 2: the n even indices are those ending in 0, the indices of level 1 are
those ending in 01, then 011, and generally, the indices of level i are the
n/2i numbers whose (1 + log n)-bit standard binary representation ends in
011 · · · 1, where the length of the string of 1s is i. Table 1 brings the partition
for n = 16, the indices appearing in decimal and binary, with their suffixes
emphasized.

3.2. Assigning processors to chunks

The drawback of the approach of assigning a given processor at each
time step to work on the same layer is that all the processors would have to
read new data, and the overhead caused by this input operation could void
all the benefits of using parallelization in the first place.

Consider therefore the following more involved indexing scheme, assign-
ing the processors according to their index in such a way that only n, that
is, about half of the processors, have to read new data at each time step,
which is the possible minimum as at each time step, a new data chunk is
accessed. The remaining n− 1 processors stay with the data they have read
when they have been assigned to layer 0. This implies that there is no delay
caused by input commands during the logn consecutive steps required to
process the chunk in layers. The following explanation corresponds to the
general case, not the initial logn chunks.

Let us this time index the 2n − 1 processors by the integers from 1 to
2n−1, where we assume that n is a power of 2, say n = 2d, and consider the
(left 0-padded) (d + 1)-bit standard binary representation of these indices.
For example, for d = 4, the indices are 00001, 00010, . . . , 11110 and 11111.
The processors are partitioned as follows: the n processors assigned to chunk

8

j are those with odd indices (in other words, those with indices equal to 1
modulo 2), the n/2 processors assigned to chunk j−1 are those with indices
ending in 10 (in other words, those with indices equal to 2 modulo 4), and
in general, the n/2r processors assigned to chunk j−r are those with indices
ending in 10 · · · 0 (1 followed by r zeros, in other words, those with indices
equal to 2r modulo 2r+1). These blocks of processors can be seen in the
upper part of Figure 3 below, where they are ordered, within each column,
lexicographically. The fixed suffixes for each block, 1, 10, 100, etc, are boxed
for emphasis.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4
1 00001 2 00010 4 00100 8 01000 16 10000
3 00011 6 00110 12 01100 24 11000
5 00101 10 01010 20 10100
7 00111 14 01110 28 11100
9 01001 18 10010
11 01011 22 10110
13 01101 26 11010
15 01111 30 11110
17 10001
19 10011
21 10101
23 10111
25 11001
27 11011
29 11101
31 11111

Table 2: New partition of the indices 1–31

When passing from time step i to i+1, half of the processors working on
each of the currently processed consecutive chunks j, j − 1, . . . , j − log n are
reassigned to the new chunk to be processed, indexed j +1, while the other
half remains with the chunk they started with and pass to a higher layer.
More precisely, all the processors with indices ≥ n, that is, whose binary
representation starts with 1 (those in the bold rectangles in Figure 3), are
assigned to the new chunk, while those with indices < n remain with their
earlier chunk. To get a consistent numbering, the following transformation
is applied to each of the indices at the transition between time steps: the
index B at time i+ 1 is obtained from the index A at time i by applying a
cyclical shift by one bit left to the binary representation. Note that this is
a bijection, so that starting with all the numbers between 1 and 2n− 1, we

9

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

10000 0
1

1000
1000

00
01
10
11

100
100
100
100

00001
10001

101
101
101
101

1001
1001

000
001
010
011
100
101
110
111
00
01
10
11
0
1

11
11
11
11
11
11
11
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

000
001
010
011
100
101
110
111

10
10
10
10
10
10
10
10

000
001
010
011
100
101
110
111

10
10
10
10
10
10
10
10

00
01
10
11

100
100
100
100

0
1

1000
1000

10000

Time

Time i + 1

i

j + 1− 1− 2− 3− 4j j j j j
Chunk Chunk Chunk Chunk Chunk Chunk

Figure 3: Index layout for transition from time step i to i+ 1

10

again get the same set after the transformation on all the elements of the
initial set. For example, if A = 11001 = 25 then B = 10011 = 19, and if
A = 01010 = 10 then B = 10100 = 20. In other words

B =

{
2(A− n) + 1 if A ≥ n
2A if A < n

After this transformation, all indices in the new chunk j + 1 end in 1,
all those in chunk j (which is now processing layer 1) end in 10, etc. As
can be seen, the new layout is similar to the one we had in the previous
time step. Indeed, the column of indices of Chunk t in the lower part of the
figure, corresponding to time i + 1, is identical to the column of indices of
Chunk t − 1 in the upper part of the figure, corresponding to time i + 1,
for t = j, j − 1, j − 2 and j − 3. Note that the elements in the last column
(chunk j+1 in the lower part of the figure) are not ordered lexicographically
to emphasize their origin, but one can easily check that this column is just
a permutation of the elements in the column of Chunk j of the upper part
of the figure. Figure 3 summarizes this layout and shows the details of the
transition from time step i to i+ 1 for d = 4, i.e., n = 16.

Table 2 above summarizes this new layout and the partition it induces
in a similar way as done above for the previous partition in Table 1. An
alternative way of interpreting the new partition is by noting a correspon-
dence between Tables 1 and 2: the element indexed i in a certain position
of Table 1 corresponds to the element indexed i+ 1 in the same position of
Table 2.

4. Application

Though many applications for the above layouts are possible, we shall
restrict our description to the example mentioned above that is related to
compression and coding problems we are interested in, namely the evaluation
of the remainder function [8]. Consider the input string B partitioned into n
subblocks of d bits each, denoted A[0], . . . , A[n−1], where n is a power of 2,
and d is a small integer, so that d bits can be processed as an indivisible unit,
typically d = 32 or 64. Given also is a large constant number P of length
up to d bits, that will serve as modulus. Typically, but not necessarily, P
will be a prime number. For example, one could use n = d = 64. We would
like to split the evaluation of B mod P so as to make use of the possibility
to evaluate functions of the A[i] in parallel on n independent processors
p0, p1, . . . , pn−1, which should yield a speedup.

11

Note then that if we have a string D of 2d bits and we want to evaluate
D = D mod P , then we can write D = D1 × 2d + D2, where D1 and D2

are the leftmost, respectively rightmost d bits of D. We get that D =

D1 × 2d +D2 = D1 × C +D2, where C = 2d mod P is a constant that can
be pre-computed.

This can be generalized to a hierarchical tree structure that exploits the
parallelism repeatedly in logn layers, using the n available processors. In
Step 0, the n processors are used to evaluate A[i] mod P , for 0 ≤ i < n, in
parallel. This results in n residues, which can be stored in the original place
of the n blocks A[i] themselves, since P is assumed to fit into d bits.

In Step 1, only n
2 processors are used and each of them works, in parallel,

on two adjacent blocks. The work to be performed by each of these proces-
sors is what has been described earlier for the block D. Again, the results
will be stored in-place, that is, right-justified in 2d-bit blocks, of which only
the rightmost d bits will be affected.

In Step 2, n
4 processors are used, and each of them is applied, in parallel,

on two adjacent blocks of the previous stage. That is, we should have applied
now the first processor on A[0]A[1] and A[2]A[3], but in fact we know that
A[0] and A[2] contain only zeros, so we can simplify and apply the processor
on A[1] and A[3], and in parallel apply the next processor on A[5] and A[7],
etc. Again, the work to be performed by each of these processors is what has
been described earlier for the block D since we are combining two blocks,
with the difference that the new constant C should now be 22d mod P = C2.
The results will be stored right-justified in 4d-bit blocks, of which, as before,
only the rightmost d bits or less will be affected. Continuing with further
steps will yield a single operation after logn iterations, and the final value
B mod P will be in A[n− 1].

for i ←− 1 to log n do
for k ←− 0 to n

2i
− 1 do

use the set of processors assigned to layer i to evaluate, in parallel,
ℓ ←− 2ik + 2i − 1
A[ℓ] ←−

(
A[ℓ− 2i−1]× C[i] +A[ℓ]

)
mod P

Figure 4: Hierarchical parallel evaluation of B mod P

Summarizing, we first evaluate an array of constants C[i] = C2i−1 =

12

2d×2i−1 to be used in layer i for i = 1, 2, . . . , log n. This is easily done
noticing that C[1] = C and C[i+1] = C[i]2 for i ≥ 1. The parallel procedure
for the higher layers is then given in Figure 4.

5. Experimental results

To get some empirical evaluation of the influence of the suggested layout,
we ran the following tests. The tests were run on a GPU: a Nvidia GeForce
GTX 465 graphics board, programmed in CUDA [4]. The input was 32MB
of a video file, which in fact is not important, since the processing time
does not depend on the specific input data given. The file was processed
1000 times, and the timing results averaged, excluding data copy time. The
number of parallel processors was n = 64. As a baseline, to measure the
GPU overhead, we ran a simple loop Xoring every fourth byte of the input.
The intention was to force a data flow similar to the proposed algorithms,
but which an optimizer could not eliminate. The time in milliseconds to
process the whole file and the throughput in GB per second is given in the
first column of Table 3.

For the second column of Table 3, we used the basic parallel method
described in the introduction. The file has been processed in subsets of n
consecutive strings of length 512 bytes, each of these strings being considered
as a chunk, on which a single processor worked sequentially. Once all n
chunks have been processed, the n processors were assigned to the following
subset of n chunks.

baseline 64 parallel hierarchical hierarchical
processors single block interleave

Time 4.86 19.53 17.45 7.09
Throughput 6.43 1.60 1.79 4.40

Table 3: Processing time in ms and throughput in GB/sec

The next step was to apply the hierarchical method in which 64 pro-
cessors were applied, in turn, in 7 layers, to the consecutive chunks. A
new output value was produced each 7th time step, but most of the proces-
sors were idle on the average. The total time appears in the third column
and shows an increase in throughput of about 10% relative to the previous
method.

Finally, the timing for the interleaving hierarchical method appears in
the last column, which corresponds to the layout of Table 2. We see that

13

the interleaving was able to increase the throughput 2.5 fold relative to the
simple hierarchical method, while yielding a streaming mode in which a new
output value is produced at each time step.

Summarizing, we suggest an indexing mechanism for a set of parallel
processors by means of which one may assign the processors to act on parts
of chunks at various layers, according to the algorithm at hand. At each
time step transition, a part of the processors is reassigned in such a way
that the assignment of processors to chunks remains consistent with the
earlier definition, which allows an unlimited sequence of transitions, while
constantly keeping all the processors busy.

References

[1] Aronovich L., Asher R., Bachmat E., Bitner H., Hirsch M., Klein
S.T., The Design of a Similarity Based Deduplication System, Proc. SYS-
TOR’09 , Haifa, (2009) 1–14.

[2] Collange S., Dandass Y.S., Daumas M., Defour D., Using graph-
ics processors for parallelizing hash-based data carving, Proc. 42nd Hawaii
Intern. Conf. on System Sciences, Waikoloa (2009) 1–10.

[3] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved Hier-
archical Bit-Vector Compression in Document Retrieval Systems, Proc. 9-th
ACM-SIGIR Conf., Pisa (1986) 88–97.

[4] Nvidia CUDA C Programming Guide, www.nvidia.com/cuda.

[5] El Gamal T., A public key cryptosystem and a signature scheme based
on discrete logarithms, Proc. CRYPTO’84 on Advances in cryptology (1985)
10–18.

[6] Gharaibeh A., Al-Kiswany S., Gopalakrishnan S., Ripeanu M., A
GPU accelerated storage system, Proc. 19th ACM Intern. Symposium on
High Performance Distributed Computing , Chicago (2010) 167–178.

[7] Hamming R.W., Coding and Information Theory , 2nd ed., Prentice Hall
(1986).

[8] Hirsch M., Klein S.T., Toaff Y., Improving deduplication techniques
by accelerating remainder calculations, Discrete Applied Mathematics 163(3)
(2014) 307–315.

[9] Li X., Lilja D.J., A highly parallel GPU-based hash accelerator for a data
deduplication system, Proc. 21st IASTED Intern. Conf. Parallel and Dis-
tributed Computing and Systems, Cambridge, USA (2009) 268–275.

[10] Karp R.M., Rabin M.O., Efficient Randomized Pattern-Matching Algo-
rithms, IBM Journal of Research and Development , 31(2) (1987) 249–260.

14

[11] Kruskal C.P., Rudolph L., Snir M., The power of parallel prefix, IEEE
Transactions on Computers C–34(10) (1985) 965–968.

[12] Ladner R.E., Fischer M.J., Parallel prefix computation, Journal of the
ACM , 27(4) (1980) 831–838.

[13] Rivest R.L., Shamir A., Adleman L.M., A Method for Obtaining Digi-
tal Signatures and Public-Key Cryptosystems, Communications of the ACM
21(2) (1978) 120–126.

[14] Xia W., Jiang H., Feng D., Tian L., Fu M., Wang Z., P-Dedupe:
exploiting parallelism in data deduplication systems, Proc. 7th Intern. IEEE
Conf. on Networking, Architecture and Storage, Xiamen, Fujian (2012) 338–
347.

[15] Zimmermann R., Efficient VLSI implementation of modulo (2n±1) addition
and multiplication, Proc. 14th IEEE Symposium on Computer Arithmetic,
Adelaide, Australia (1999) 158–167.

15

