
Is Hu�man Coding Dead?A. Bookstein1 and S.T. Klein21Center for Information & Language Studies, University of Chicago, Chicago IL 60637, USATel: (312) 702 8268 Fax: (312) 702 0775 Email: bkst@caper.uchicago.edu2 Dept. of Mathematics & Computer Science, Bar-Ilan University, Ramat Gan 52900, IsraelTel: (972{3) 531 8681 Fax: (972{3) 535 3325 Email: tomi@bimacs.cs.biu.ac.ilAbstract: In recent publications about data compression, arithmetic codes are often suggested asthe state of the art, rather than the more popular Hu�man codes. While it is true that Hu�mancodes are not optimal in all situations, we show that the advantage of arithmetic codes in compressionperformance is often negligible. Referring also to other criteria, we conclude that for many applications,Hu�man codes should still remain a competitive choice.1. IntroductionIt is paradoxical that, as the technology for storing and transmitting informationhas gotten cheaper and more e�ective, interest in data compression has increased.There are many explanations, but most conspicuous is that improvements in mediahave expanded our sense of what we wish to store. For example, CD-Rom technologyallows us to store whole libraries instead of records describing individual items; butthe requirements of storing full text easily exceeds the capabilities even of the opticalformat. Similarly, there is growing interest in storing and transmitting images: in colorand at improved resolutions, sometimes in animation. For such cases, data compressioncan be a very powerful means of increasing the e�ective capacity of the technology.Although many ad hocmethods have been used over the years, Hu�man coding hasplayed a special role as a systematic coding mechanism that has provable optimalitycharacteristics and is easily implemented. However, recent publications about datacompression leave one with the impression that Hu�man coding has become somewhatout of fashion. These publications stress the suboptimality of Hu�man codes, whichcan be severe in some situations, to the advantage of proposed alternatives. Indeed,the \optimality" of Hu�man codes has often been overemphasized in the past and itis not always mentioned that Hu�man codes have been shown to be optimal only forblock codes [1]: codes in which a message is encoded a character at a time, with eachnew character resulting in a �xed bit pattern being appended to the current code for{ 1 {



the message; this bit pattern is made up of an integral number of bits and is uniquelyand instantaneously decodable as the character generating it.The constraint of the integral number of bits had probably been considered asobvious prior to the development of arithmetic coding, since the possibility of cod-ing elements in fractional bits is quite surprising. Therefore Hu�man codes enjoyedwidespread popularity in the four decades since their invention.Arithmetic codes overcome the limitations of block codes. In fact, arithmetic codeshave had a long history [1], [37], [38], but became especially popular after Witten, Nealand Cleary's paper [43] in 1987. They are claimed in [43] to be superior in mostrespects to the better known Hu�man method, and the general impression one getsfrom the preponderance of recent papers dealing with or mentioning arithmetic codingis that Hu�man coding is outdated, and that : : : everything Hu�man codes can do,arithmetic codes can do better : : :Arithmetic coding has some very strong advantages:1. they do permit codes that come very close to the entropy bound;2. they are easily used with an adaptive model, yielding e�cient encoding if thealphabet or its characteristics are changing over the �le; and3. the encoding procedure can be naturally and simply extended to encompass evenan in�nite alphabet. Hu�man type codes require special considerations for eachsuch alphabet.But these advantages come at some cost relative to Hu�man codes. Most obvious:1. arithmetic codes tend to run signi�cantly more slowly than Hu�man codes, whichcan be critical in some applications;2. they are much less intuitive than Hu�man codes and more di�cult to explainto a system user;3. the main advantage of arithmetic codes, their compression e�ectiveness, doesnot obtain in most realistic situations. As we shall see below, for text basedapplications, the savings is typically very small; and4. in applications in which inaccurate probabilities are used, the savings may ac-tually be negative. { 2 {



These and other more subtle points discussed below explain Hu�man coding'senduring appeal and suggest that it is appropriate at this time to reconsider the valueof Hu�man coding for compression. We shall try, in this paper, to o�er a balancedview of the two approaches, and shall point, in subsequent sections, to various aspectsand applications for which Hu�man codes should still be the preferred choice. Similarideas have been mentioned in [3], [25], [34]. We assume the reader is familiar with thedetails of Hu�man codes [26] and arithmetic codes [43], which can be found in mosttextbooks on compression.2. How badly do Hu�man codes compress?The compression e�ectiveness of Hu�man codes is sensitive to the characteristicsof the alphabet. For purposes of discussion, it is useful to consider separately twoextremes in the spectrum of alphabets that one might wish to encode: Large Alphabetsand Binary Alphabets.2.1 Large AlphabetA database is often composed from an alphabet of a moderate to large number ofcoding units, for example a natural language alphabet, numbers, and punctuation fora textual database. In this case, a bound by Gallager is often applicable. Gallager [19]showed that the redundancy of a Hu�man code is at most p1 + 0:086, where p1 is theprobability of the most frequent codeword. (The redundancy is de�ned as the di�erencebetween the average length of a Hu�man code and the corresponding entropy, or forour application, by how much Hu�man codes are worse than arithmetic codes.) Morebounds on the redundancy can be found in Capocelli & al. [8], [9].For non-pathological cases, the most frequent character of a large alphabet willoccur infrequently, and the di�erence between Hu�man and arithmetic coding canbecome insigni�cant. Cases in which the most frequent character does occur with highprobability may indicate poor alphabet construction, since most characters have littleinformation content. Here, it is often desirable to extend the alphabet to incorporaten-grams that include the frequent characters; in the expanded alphabet, the highestprobability will be reduced and Hu�man coding could be e�ective. That Hu�mancoding is e�ective for databases of natural text is shown in the �rst two columns ofTable 1, which is discussed in detail below. There we �nd the Hu�man cost (de�ned as{ 3 {



the relative increase of the compressed �le when using Hu�man instead of arithmeticcoding) is small, but even these values exaggerate the increase since using arithmeticcoding requires an explicit end-of-�le indication, which incurs an additional storagepenalty.Dealing with End-Of-File. When comparing the e�ectiveness of arithmetic codingwith other techniques, one generally uses the value of the entropy as the measureof e�ectiveness for arithmetic coding, without taking into account the fact that anadditional EOF indication is usually required. This e�ect is generally small, but adetailed analysis of its impact is useful when trying to assess the often very smallcompression cost of using Hu�man coding.In general, one stores a large �le as several blocks, both to permit more entrypoints into the �le and to limit the propagation of possible errors. Often we don'tknow the number of characters in a block, as when sentences of natural language textare processed; in this case, an explicit EOF character is needed. But even if a list ofthe lengths of the blocks is given, or if all the blocks are of the same length, we still lose1/2 bit per block as an alignment e�ect: a typical �le may in principle require b bitsto store, but in practice, dbe bits, since it must be represented in an integral numberof bits. Hu�man arithmetic Hu�man cost KminEnglish 4.1854 4.1603 0.6% 426Finnish 4.0448 4.0134 0.8% 329French 4.0003 4.0376 0.9% 269German 4.1475 4.1129 0.8% 294Hebrew 4.2851 4.2490 0.8% 279Italian 4.0000 3.9725 0.7% 383Portuguese 4.0100 3.9864 0.6% 457Spanish 4.0469 4.0230 0.6% 451Russian 4.4704 4.4425 0.6% 377English{2 7.4446 7.4158 0.4% 363Hebrew{2 8.0370 8.0085 0.4% 368Table 1: Compression of natural language alphabets{ 4 {



We can now evaluate the increase in the average codeword length, assuming thatan EOF element is adjoined after each block. Suppose the �le is T characters long,broken up into B possibly variable length blocks, and let K = T=B be the averagenumber of characters per block.Let f1; : : : ; fn be the frequencies of the n elements of the alphabet, fai : i =1 � � �ng, in the given text, so T = Pni=1 fi. The corresponding probabilities are pi =fi=T and the entropy is H = �Pni=1 pi log2 pi. If we add one EOF element, a0, to theend of each block, we are actually encoding T 0 = T + B elements, and the new set ofprobabilities is fp0igni=0, with p00 = B=(B+T ) and p0i = fi=(T +B) = piT=(T +B), for0 < i � n. The length of the compressed �le will now beS = B2 � (B + T ) nXi=0 p0i log2 p0i;where the �rst term indicates the alignment loss of 1/2 bit per block. We can nowamortize the total length over the T original elements in the �le, to get the increase,�(K), in average codeword length:�(K) = 1T S �H:= 12K + �1 + 1K� log2(K + 1)� log2K:Note that �(K) depends only on the block size K, and not on the probability dis-tribution at hand. Considering �(K) as a continuous function, we �nd that thederivative @�@K is negative for all K, thus �(K) is strictly decreasing, as expected,and limK!1�(K) = 0.Data. It is not easy to agree on what a \typical" probability distribution is. Wetherefore decided to run our tests of relative compression performance on the characterdistributions of various natural languages. Even though more sophisticated modelsexist, the simple encoding of the individual characters or character pairs is often pre-ferred. The distribution of the 26 letters and the 371 letter pairs of English was takenfrom Heaps [22]; the distribution of the 29 letters of Finnish is from Pesonen [36]; thedistribution for French (26 letters) has been computed from the database of the Tr�esorde la Langue Fran�caise (TLF) of about 112 million words (for details on TLF, see [6]);for German, the distribution of 30 letters (including blank and Umlaute) is given in{ 5 {



Bauer & Goos [2]; for Hebrew (30 letters including two kinds of apostrophes and blank,and 735 bigrams), the distribution has been computed using the database of The Re-sponsa Retrieval Project (RRP) [14] of about 40 million Hebrew and Aramaic words;the distribution for Italian, Portuguese and Spanish (26 letters each) can be found inGaines [18], and for Russian (32 letters) in Herdan [23]. The results are summarizedin Table 1, the two last lines corresponding to the bigrams.The �rst two colums list the average codeword length of Hu�man codes and arith-metic codes respectively, and the third column gives the increase of the former over thelatter in percent. We see that this increase is very low, at most one percent, withouttaking the EOF character into account. The fourth column lists for each language theminimal average block size, Kmin, for which arithmetic codes improves compression,that isKmin = minfK j average for arithmetic codes +�(K) < average for Hu�man codesg(the block size being measured in number of encoded elements). In other words, onlyif the average blocksize is chosen larger or equal to Kmin does it pay to use arithmeticcodes. For example, for English, if the average blocksize is smaller than 426 elements,Hu�man codes would yield better compression. The surprising result here is thatthese Kmin values are relatively large. If, for example, each block consisted of a singlesentence (a reasonable assumption in an information retrieval system), given that theaverage length of a word (including the following blank) in English is 5.38 characters[22], arithmetic codes give better compression only for sentences of at least 79 words!Very few sentences are that long. Moreover, even if the blocksize is larger than Kmin,the EOF e�ect still reduces the Hu�man cost, shown in column 3. For example,choosing K = 1000 lowers the values in the third column by between 0.2 and 0.3.We conclude that even though there is, in principle, a compression advantagefor arithmetic over Hu�man codes, this advantage is so small that it might often benegligible, and if the additional overhead of arithmetic codes is taken into account, theadvantage may vanish completely. These conclusions are consistent with the extensiveempirical tests carried out by Mo�at & al. [33].2.2 Small AlphabetThe possibility of poor compression e�ciency for Hu�man codes is, in practice,{ 6 {



most pronounced for small alphabets. Consider for example a binary alphabet, withthe two letters appearing with probabilities " and 1 � " respectively. The length of acodeword for any binary alphabet is exactly 1 bit with Hu�man coding. However, witharithmetic coding, the entropy �" log2 "� (1� ") log2(1� ") could be reached; in thiscase, the ratio of the size of the Hu�man encoded �le to the arithmetically encoded �lewould tend to in�nity as "! 0. In such a situation, the argument for using arithmeticencoding is most pursuasive.But this is an extreme case. Clearly, if, in a real application, the probabilities areclose to .5, then there is little advantage in using any type of compression method.But even if the probabilities are very skewed, it is often possible to reformulate theproblem in such a way that Hu�man coding is acceptable. As in the large alphabetcase, a skewed probability distribution may well indicate alphabet mis-speci�cation,and suggests that we rede�ne the alphabet. The classical approach is to use blocking:instead of treating individual bits as members of the alphabet, use blocks of bits. Thisextends the alphabet and creates a probability distribution that is not so skew. Becauseof the Gallager bound, for the new alphabet, Hu�man codes can be quite good. Mo�at& al. [33] also found that the case of arithmetic coding is strongest for highly skewed(although arti�cially obtained) alphabets, but did not try minor alphabet rede�nitions.But the possibility of blocking is only one example in which a highly skewedprobability distribution may be an indicator that the wrong alphabet is being used.For example, if one of the characters of the binary alphabet is very unlikely, it suggeststhat run length encoding is more appropriate. To illustrate this point, consider thecompression of large, sparse bitmaps. Such bitmaps often serve as occurrence mapsfor the di�erent terms of a large full-text information retrieval system, where theyspeed up the processing of Boolean queries. All the maps are of the same length whichequals the total number of documents in the system, and there is one map for eachterm (or for terms appearing more often than some threshold); bit i of map j is 1 if andonly if term j appears in document number i. The advantage of such bitmaps is thatBoolean queries on keywords are easily translated to corresponding logical operationson bitmaps, speeding up the retrieval process. The disadvantage of the maps is theirsize (several hundreds of MB on certain systems), making them unpractical, unlesscompression methods are used to shrink them considerably.{ 7 {



n total Hu�man arithmetic increasemillions MB MB %each bit 2 650.1 77.49 9.64 703k-blocks 256 81.3 13.70 7.70 78POW2 266 14.2 8.26 8.22 0.5LLRUN 267 9.3 7.354 7.316 0.5Table 2: Compression of sparse bitmapsTable 2 compares the compression e�ectiveness for various expansions of a binaryalphabet. It is based on a �le of 15378 bitmaps taken from RRP; each map is 5284bytes in length, representing 42272 documents. The �rst column describes the alphabetused. The column entitled n gives the alphabet size; the next column gives the totalnumber of occurrences in millions; the next two columns give the size of the �le inMegabytes, if compressed by Hu�man or arithmetic coding; the last column shows byhow much the Hu�man encoded �le is larger than the arithmetically encoded one.As a binary �le, one could encode the 0 and 1 bits individually. This obviouslygives no compression by Hu�man coding, but could be quite e�cient with arithmeticcodes. The consequence of using this alphabet is shown in row 1. We then increase thesize of the alphabet in order to improve the compression e�ectivenes of Hu�man codes(and in fact also for arithmetic codes). Simplest is to encode all blocks of k consecutivebits [27]. The second line of Table 2, corresponding to this method for k = 8, showsthere is still a clear advantage of using arithmetic codes, though the bene�t has beenconsiderably reduced. The problem is that, even with 256 elements to be encoded,the distribution is still very skew. The overall frequency of 1-bits in the �le is onlyabout 1.7% and a block of 8 consecutive zeros has probability 0.925 (it is larger than(1 � 0:017)8 because the 1-bits are not uniformly scattered through the maps). Thenext step consists therefore of generating also codewords for runs of 0-blocks of variouslengths.Several such methods are suggested in [15]. The results of methods POW2 andLLRUN of [15] appear in the third and fourth lines of Table 2; the bene�t of arithmeticcodes has now been reduced to merely half a percent.Noting the e�ect of the EOF requirement of arithmetic codes further reduces the{ 8 {



Hu�man cost. In our case, each bitmap has to be accessible individually. Adding thusan EOF to each of the 15378 maps, and half a bit on the average for bit alignment, thiswould, for the last two lines of Table 2, raise the size of the arithmetically compressed�le to 8.24MB and 7.34MB respectively, reducing the Hu�man cost (last column) toonly 0.2% for both lines. Thus this small e�ect cuts in half the bene�t of arithmeticencoding.3. The case of inaccurate probabilitiesArithmetic codes give better compression than Hu�man codes if, as one generallyassumes, the probabilities are given and correct. Regretfully, this is not always the case,especially when the probabilities on which the code is based are derived from a mathe-matical model. The problem of inaccurate source probabilities has been considered byGilbert [20], who suggests that we avoid the ine�ciency caused by underestimating aprobability (which leads to assigning longer codewords than needed) by bounding thedepth of the Hu�man tree. An optimal linear procedure for bounding the depth canbe found in [31].We saw above that Hu�man codes may theoretically be in�nitly worse than arith-metic codes for certain probability distributions; but if our estimates are wrong, justthe opposite may be true. Consider the set of probabilities f13 + "; 13 ; 13 � 2"; "g, for0 < " � 16 ; the corresponding Hu�man codewords have lengths f1; 2; 3; 3g respectively,so the average codeword length is 2�2". For " = 10�3, one gets an average of 1.998 forHu�man codes and 1.594 for arithmetic codes. But suppose the above estimates werewrong and the true distribution was in fact uniform, i.e., f14 ; 14 ; 14 ; 14g. The previousHu�man tree is no longer optimal, and the actual average codeword length using codesbased on the incorrect Hu�man tree is Ah = 2:25. For arithmetic codes on the otherhand, if we use codes based on the incorrect probabilities, the actual average code-word length, Aa, tends to 34 log2(3) � 14 log2 " as " ! 0. For example, for " = 10�3,Aa = 3:68, which is already larger than the corresponding Hu�man average, and as"! 0, we get Aa=Ah !1.The use of incorrect probabilities is not very unusual. In an application to model-based bitmap compression [5], Hu�man codes gave consistently better compressionthan arithmetic codes. This was explained by the fact that the model predicted manyvery low probabilities for certain bit patterns, but the very fact that some of these bit{ 9 {



patterns actually appeared, showed that their probabilities had been underestimated.Such wrong guesses may indeed lead to very ine�cient codes. Ernest Wrightwrote in 1939 a novel called Gadsby , in which the letter E never appears. If one usesthis novel to estimate the character frequencies in English, the Hu�man codewordassigned to E would be 14 bits long (based on the �rst 10028 words of the novel, andassuming a frequency of 1 for E), instead of just 3 bits on regular English text. Forarithmetic codes, each E would add 15.4 bits. Taking the full distribution into account,basing ourselves on Gadsby's frequencies but encoding regular English text, the averageHu�man codeword length would increase from 4.19 to 5.46, and for arithmetic codesfrom 4.16 to 5.60! We thus see that arithmetic codes give worse compression in thiscase, even without considering the overhead caused by EOF.Table 3 summarizes an experiment in which we took the probability distributionsof English, German, Finnish and French (as in Table 1), adding to them the characterdistribution in Gadsby, and checked what happens if they are mutually interchanged.The rows correspond to the distributions which are used to generate the codewords (theassumed distribution), and the columns correspond to the distribution that actuallyoccurs (the true distribution). For each pair of distributions (A;B), both Hu�manand arithmetic codes were computed, and the table lists at the intersection of row Awith column B by how much (in percent) the average Hu�man codeword is longer thanthe average arithmetic codeword, i.e., the value (Ah=Aa � 1)� 100. A negative valuethus means that for the given pair, Hu�man codes do better than arithmetic codes.English Gadsby German Finnish FrenchEnglish 0.6 1.4 -2.1 -5.1 0.4Gadsby -2.4 1.0 -2.9 -0.8 -3.3German -1.8 -3.6 0.9 -5.2 -0.1Finnish 2.4 1.2 2.7 0.8 2.9French 0.8 2.2 -4.6 -11.3 0.9Table 3: Excess of Hu�man over arithmetic in percent whenassuming the rows to compress the columnsFor example, if we assume a character distribution like in a German text, butuse this to encode an English text, the average arithmetic codeword length would be{ 10 {



1.8% longer than the average Hu�man codeword length. For computing the table, weassumed a 32 character alphabet for each of the 5 distributions, since there are 3 lettersin German and 3 others in Finnish which do not exist in other languages. We useda frequency of 1 for each non-occurring letter. Hu�man codes could have dealt easilyalso with probabilities that are zero, but for arithmetic codes, a probability of 0 causesproblems.An interesting point about Table 3 is the fact that so many entries are negative.The diagonal corresponds to assuming the true distribution, so clearly all the valuesthere must be positive. But of the remaining 20 entries, 12 have negative values.Moreover, in absolute value, the negative entries seem larger than the positive ones:the average of the positive entries is 1.4 while the average of the negative entries is -3.6.We therefore conclude that if the probabilities are not sure to be known accurately, orif they are estimated by means of a model which could generate very low values, wemight be better o� by using Hu�man codes rather than arithmetic codes.But even if the codes are based on actual statistics, errors could appear. It isnot uncommon, in a dynamic �le, to create a code with a portion of the �le and thencontinue to use that code as new records arrive. Even if the records are generated bythe same mechanism as the earlier records, statistical 
uctuations occur [7]. But, moreseriously, the record generation mechanism is rarely static, and considerable probabilitydrift could occur. In such a situation, the deterioration in compression might be serious.4. Time considerationsOne of the major advantages of Hu�man codes is its speed. There is generalagreement that Hu�man codes are faster than arithmetic codes, though the reporteddegree of improvement varies from a bit faster for encoding and decoding [43] to up to40 times faster for decoding [34] (although it is shown in [33] that this issue must bereconsidered when adaptive coding is used).The construction of a Hu�man code can be done in O(n logn), where n is thesize of the alphabet [41]; relative to the size of the text, this is a constant. Oncethe code is given, encoding consists of concatenating �xed bit-strings. Decoding isslightly more involved, as a binary tree is traversed, guided by the sequence of bitsof the compressed �le. On the other hand, arithmetic codes require multiplications{ 11 {



and sometimes also divisions [25], which clearly are more time consuming; however theextent of performance deterioration depends on many implementation details.In the following experiment, we used the routines supplied with [35], compiledby the Turbo C++ compiler, on a 16 MHz 386SX machine. We chose the text �lesGadsby (as above) and the Hebrew Pentateuch; to test also non-text �les, we alsoused gnuplot.exe, the executable �le of the Gnuplot V.2 Shareware program, andchess.bmp, a picture bitmap supplied as part of the Windows 3.0 system. Table 4 liststhe encoding and decoding times in seconds.size encoding decodingK arith Hu� adap H arith Hu� adap HGadsby 56 23.1 10.4 25.0 90.1 13.8 24.5Pentateuch 437 182.9 84.6 190.6 775.7 108.4 184.8gnuplot.exe 204 109.9 53.7 143.3 339.5 74.1 139.6chess.bmp 150 42.2 16.6 40.0 228.8 22.1 38.1Table 4: Comparison of processing speedNote that encoding for arithmetic codes took more than twice as long as for Hu�-man codes, and decoding up to 10 times as long! Since arithmetic codes can easily beused with an adaptive model, it is perhaps more fair to compare them with adaptiveHu�man codes [19], [42], [30], as done in [43]. Our results (columns headed `adap H')were however di�erent from those reported in [43], yielding a decoding speed up to 6times faster for adaptive Hu�man codes than for arithmetic codes.There have been attempts to improve the speed of arithmetic codes, either ap-proximating the multiplication operations [10], or approximating the probabilities [25],or using a mixture of block and nonblock coding [40]. These methods, however, gainin speed by sacri�cing the compression optimality.The slow decoding speed of arithmetic codes can be a signi�cant disadvantage,because in many compression applications, encoding and decoding are not symmetricaltasks. For instance, in large static information retrieval systems [28], [3], encoding isdone only once when the system is set up, but decoding is needed each time the{ 12 {



compressed �les are accessed. For such applications, encoding time is not critical, butdecoding must be very fast.Several methods are presented in [11] that allow accelerated decoding of a Hu�manencoded �le, using a set of m partial decoding tables. The coded input is processed on ablock-per-block basis, rather than bit-per-bit, where each block consists of k bits, andk is chosen to facilitate computer manipulation (e.g., k = 8, yielding a byte orientedroutine). The number of entries in each table is 2k, corresponding to the 2k possiblevalues of the k-bit patterns. Each entry is of the form (W; `), where W is a sequenceof characters and ` (0 � ` < m) is the index of the next table to be used. The idea isthat entry i, 0 � i < 2k, of table number 0 contains, �rst, the longest possible decodedsequence W of characters from the k-bit block representing the integer i (W may beempty when there are codewords of more than k bits); usually some of the last bitsof the block will not be decipherable, being the pre�x P` of more than one codeword;` will then be the index of the table corresponding to that pre�x (if P` = the emptystring, then ` = 0). Table number ` is constructed in a similar way except for the factthat entry i will contain the analysis of the bit pattern formed by the pre�xing of P`to the binary representation of i. We thus need a table for every possible proper pre�xof the given Hu�man code, so that m = n� 1, where n is the size of the alphabet.Suppose, for example, that our alphabet is fA, B, C, Dg, and that the corre-sponding Hu�man codewords are f0; 11; 100; 101g. There are thus 3 possible properpre�xes: the empty string, 1 and 10, so that 3 tables are needed. If we choose k = 3,each table will have 8 entries. The tables are depicted in Figure 1.Pattern Table 0 Table 1 Table 2Entry for Table 0 W ` W ` W `0 000 AAA 0 CA 0 CAA 01 001 AA 1 C 1 CA 12 010 A 2 DA 0 C 23 011 AB 0 D 1 CB 04 100 C 0 BAA 0 DAA 05 101 D 0 BA 1 DA 16 110 BA 0 B 2 D 27 111 B 1 BB 0 DB 0Figure 1: Partial decoding tables{ 13 {



The column headed `Pattern' contains for every entry the binary string whichis decoded in Table 0; the binary strings which are decoded by Tables 1 and 2 areobtained by pre�xing `1', resp. `10', to the strings in `Pattern'. For example, entrynumber 5 of table 2 contains the decoding of the binary string 10101, which yields DAand we are left with a remainder of 1; the next table to be accessed will thus be thetable corresponding to this proper pre�x, which is table 1. The decoding procedure isthus extremely simple and fast: M(i) denotes the i-th block of the input stream, ` isthe index of the currently used table and T (`; j) is the j-th entry of table `:` 0for i 1 to length of input do(output; `) T (`;M(i))endThe storage requirements for these tables are generally reasonable (about 25K fora 26 characters English alphabet distribution), but if the alphabet is larger or RAM isscarce, the necessary space can be reduced, see [11].This decoding method is not restricted to Hu�man codes, but can be applied toany method for which every member of the alphabet is always encoded in the sameway. This is not true for adaptive methods. For arithmetic codes, it is not true evenfor its static variant. Having each character always encoded in the same way may alsobe used to improve certain search problems. Suppose we are given a large �le X inwhich we wish to locate a substring Y , but assume that X is stored in its compressedform C(X). The obvious way to procede is to decompress C(X) and to search for Yin D(C(X)) = X. But in our case, we could instead encode the pattern, which is ingeneral much shorter than the text, and search for C(Y ) in C(X). The search mightbe trickier now, but will often yield signi�cant savings.5. Communicating the CodeTo decode a compressed �le, the decoder must know the code that was used.Adaptive methods do this by keeping the encoder and decoder in synchonization asthe �le is encoded. These codes often yield good compression, but can be slow, since themodel needs constant updating. But if an invariant code is used, it must be transmittedtogether with the encoded �le. { 14 {



Coding the code is not usually considered a problem, since the size of the descrip-tion of the code depends only on the alphabet, and is thus generally independent of thesize of the text itself. But for smaller �les, this overhead is not always negligible, andfor more sophisticated models, like basing compression on a �rst order Markov chainof an extended alphabet [4], the necessary header may be of considerable size.Most implementations of arithmetic codes use 2 bytes to store the cumulativeprobabilities, yielding a precision of 2�14. This might be enough for many applications,but not for all. If a large text is encoded based on word frequency counts [3], higherprecision may be needed, usually 4 bytes for each probability. For Hu�man codes, onthe other hand, the frequencies need not be transmitted, nor the codewords themselves.In fact, it su�ces for both encoder and decoder to know the lengths of the codewords, asboth could construct, based on those lengths, the same optimal code. A natural choicewould be a canonical code [39], [21], [16]. An easy way to generate such a code, whichis needed in the encoding phase, is as follows [21]: given are the lengths `1; : : : ; `n of theHu�man codewords in non-decreasing order (thus corresponding to the probabilitiesthat have been sorted into non-increasing order), the i-th codeword consists of the `i�rst bits to the right of the \binary point" in the binary representation of Pi�1j=1 2�`j .For decoding, the corresponding Hu�man tree is needed, which can be constructedby the following simple procedure [16] in linear time. The idea is to pass sequentiallyover the vector of lengths f`ig and to simulate a depth �rst traversal of a binary treewhich is built by the procedure itself; i.e., when passing to a left or right son whichhas not yet been de�ned, a new node is allocated and linked into the tree. Duringthis traversal, every time a level is reached which equals the current value of `i, theprocedure passes to `i+1 and considers the current node v as a leaf (thus the next nodeto be visited will be the father of v).The string of codeword lengths f`1; : : : ; `ng can be represented compactly ashn1; : : : ; nki, where ni is the number of codewords of length i, and k = `n is themaximal length (or depth of the Hu�man tree). Such a string is called a quantizedsource in [13], and satis�es Pki=1 ni2�i = 1 [29, Exercise 2.3.4.5{3]. The quantizedsource is all we need to construct the Hu�man code, but in order to assign the propercodewords to the corresponding characters, one also needs the list of characters sortedby frequency. There are several ways of doing this.{ 15 {



Method A. A direct way to encode the code is by the sequence k; n1; : : : ; nk; a1;a2; : : : ; an, where n = Pki=1 ni and a1; : : : ; an is the sorted list of characters. Forsimplicity, we can assume that k and each ni is encoded in one byte, though a universalencoding of the integers can be used [12], encoding the integer x in O(logx) bits.Method B. If n is large, we might be better o� not sorting the characters, butsimply listing the lengths of the codewords in the alphabet's natural order. Charactersthat don't appear are indicated by length 0. The lengths of the codewords can mostlybe coded in half a byte each | they rarely exceed 16 bits.Method C. If enough characters don't appear, it might be most e�cient to indicatethe characters that do appear by a bitmap. For example, many applications assumethat the basic alphabet is the set of the 256 8-bit patterns. Instead of the full list ofcharacters, a 32-byte bit-vector can be used to indicate which characters appear in thegiven text.Method D. A �nal method can be used when the set of characters appearing ina given text consists of several runs of consecutive elements from a well-known basicset like ASCII (e.g., upper case, lower case, digits, etc.) In this case, it could be moreeconomical to encode the given alphabet by a list of pairs, indicating the beginningand end of each run, preceded by the number of runs; e.g., (3, (LF, LF), (A, Z), (0,9)) for an alphabet consisting only of line-feed, upper case letters and digits.Method A is speci�c to Hu�man codes, since it relies on the fact that the possiblelengths of the codewords are integers. The other methods are variants for the encodingof the character set: omitting it by assuming the natural order (B), using a bitmap(C) or lists (D). The chosen representation of the character set can be used for bothHu�man and arithmetic codes. The di�erence between the two would then be in thenumber of bits needed to encode the lengths of the codewords for Hu�man codes, orthe probabilities for arithmetic codes. Since the lengths generally �t into 4 bits, butat least 2 bytes are needed for the probabilities, we may count an excess of 1.5 bytesper element of the alphabet for using arithmetic codes. For more details on coding thecode, the reader is referred to [24].Take for example the distribution of the characters in English as given in [22]. Thecorresponding quantized source is h0; 0; 2; 7; 7; 5; 1; 1; 1; 2i; MethodA would precede thissequence by k = 10, the depth of the tree, and follow it by the 26 characters in order of{ 16 {



frequency: E, T, A, O, I, N, S, R, H, L, D, U, C, F, M, W, Y, G, P, B, V, K, X, J, Q, Z. Storing k,each ni and each character in one byte, we would thus need 37 bytes here. To store thealphabet with methods B, C and D one needs 26, 32 and 3 bytes respectively, to which13 bytes have to be added for the lengths of the Hu�man codewords, or 52 bytes forthe probabilities for arithmetic codes. From Table 1 we know that the average loss percharacter by using Hu�man instead of arithmetic codes is 0.0251 bits, so the text has tobe at least of length 12431 characters to justify the excess of these 39 bytes for methodsB, C and D. For a larger alphabet, the di�erence is even more striking. Referring tothe 371 English bigrams, the excess of arithmetic over Hu�man codes for the last threemethods would be of 556.5 bytes, justi�ed only by a text of at least 309167 characters.Methods C and D might be less e�cient for bigrams, but if all character pairs haveto be listed, one can list them in non-increasing order of frequency, so that MethodA could be used with Hu�man codes, adding to the list of character pairs just the 14bytes to represent the quantized source h0; 0; 0; 0; 3; 14; 31; 59; 58; 70; 32; 40; 64i. Thusthe excess would be of 728 bytes, which are amortized only by texts of length exceeding404444 bytes! If the coding is based on a Markov chain, i.e., there is a di�erent codefor the set of successors of each character [4], many codes must be represented, so thatthe di�erence between Hu�man codes and arithmetic codes might be considerable. Weagain conclude that the compression gain of arithmetic codes might easily be lost inmost applications.6. Robustness against errorsIn many situations, especially when an encoding method is chosen to cut downtransmission costs in a communication system, an important criterion is the abilityof the code to recover from minor errors. It is well known that static Hu�man codesgenerally tend to resynchronize quickly after a transmission error [32]. There are ofcourse exceptions: if all the codewords are of even length and a bit is lost or anextraneous bit is picked up, synchronization is lost forever.More generally, suppose an error has occurred and that x is the last codeword,following the location of the error, that is not correctly decoded before synchronizationis regained; then there exists a codeword y such that either x is a proper su�x of y orvice versa. It follows that if a Hu�man code has the a�x property [17], i.e., no codewordis the pre�x or the su�x of any other codeword, it will be never-self-synchronizing after{ 17 {



an error [21]. But such a�x codes are extremely rare. There are more than 120 milliondi�erent Hu�man codes for the quantized source of English h0; 0; 2; 7; 7; 5; 1; 1; 1; 2i,none of which has the a�x property. In fact, the only quantized source for n = 26,with up to 11 levels, for which an a�x code exists, is h0; 1; 1; 3; 9; 8; 4i [17].The following experiment should illustrate the ability of Hu�man codes to recoverafter errors. Using again the routines supplied in [35] to encode the beginning ofGadsby, we complemented a single bit in the encoded �le, and tried to decode theresulting string. Line (n) below, n = 0; 1; : : : ; 5, is the decoding of the �le in which bitnumber 80n + 1 has been complemented. For clarity, blanks are replaced by dashes,and garbeled characters appear in bold-face.(0) -dniaaoouth,-throughout-all-history,-had-had-a-champion-to-stand-up-for-it;- : : :(1) If-Youth,-throumout-all-history,-had-had-a-champion-to-stand-up-for-it;- : : :(2) If-Youth,-throughout-all-history,-i-c{dhl-lchampion-to-stand-up-for-it;-to-show- : : :(3) If-Youth,-throughout-all-history,-had-had-a-champion--ovniwlio-yfor-it;-to-show- : : :(4) : : :a-champion-to-stand-up-for-itrlto-show-a-doubting-world-that-a-child-can-think;- : : :(5) : : :a-champion-to-stand-up-for-it;-to-show-a-doubtinhprcyh{wM-a-child-can-think;- : : :As can be seen, synchronization is always regained after only a few wrong charac-ters. For arithmetic codes, on the other hand, the characters are not encoded individ-ually, but the whole message is represented by a single real number. Changing a bitmeans changing the number, which generally will produce a completely di�erent mes-sage. Repeating the experiment above with the arithmetic encoding of the beginningof Gadsby, synchronization was never regained, for all values of n tested. As example,the following string has been produced by decoding the �le in which bit number 161was complemented:If-Youth,-throughout-all-history,-ghaiolsne;-a-iaicatfmi-aU-wml-b-hootdltr-ko : : :If adaptive Hu�man codes are to be used, we are more vulnerable to errors. Itmight well be that the decoder resynchronizes after an error, but unlike with the staticcase, this does not mean that the tail will be correctly decoded. Adaptive codes relyon the assumption that encoder and decoder gradually build identical codes. If somecharacters have been garbeled, the decoder's Hu�man tree might be di�erent enoughto trigger more errors, changing the tree even further, etc. But adaptive Hu�mancodes may give considerable savings in certain applications, sometimes even justifying{ 18 {



the use of error-correcting codes. Using such codes is rarely appropriate in connectionwith arithmetic codes, whose primary justi�cation is precisely the savings lost by usingan error correcting code.7. ConclusionFor many compression projects, a clearcut division between model building andcoding is possible, with Hu�man codes traditionally dominating the �eld with regard tothe coding phase. More recently, arithmetic coding has risen as a serious alternative |indeed, for a period of time it seemed that Hu�man codes would be supplanted by thenewer technique. We now have had considerable practical and theoretical experiencewith both methods, and a judicious statement of the relative advantages of both ispossible. This was the objective of this paper, resulting in the conclusion that for asubstantial portion of compression applications, Hu�man coding, because of its speed,simplicity and e�ectiveness, is likely to be the preferred choice. On the other hand,for adaptive coding, or when dealing with highly skewed alphabets that cannot berede�ned, arithmetic coding may well be the better of the two.However, when adaptive coding is appropriate, a comparison limited to Hu�mancodes and arithmetic codes may not be adequate. Our comments are intended forapplications, such as the preparation of a CD-Rom, in which preliminary statisticalanalyses and code de�nition are possible. For other situations, another large class ofwidespread compression techniques: those derived from the work of Ziv and Lempel,become attractive. Their two algorithms LZ77 [44] and LZ78 [45] are the basis ofmany popular methods, such as the Unix compress command, PKZIP, ARJ, and manyothers. They are fast and often achieve better compression than simple static Hu�mancoding. But they have a somewhat di�erent �eld of application, and do not compareas directly to Hu�man codes as arithmetic codes do. We therefore leave a comparisonof Hu�man codes with Lempel-Ziv type encoding to a subsequent paper.References[1] Abramson N., Information Theory and Coding, McGraw-Hill, New York (1965).[2] Bauer F.L., Goos G., Informatik, Eine einf�uhrende �Ubersicht, Erster Teil,Springer Verlag, Berlin (1973). { 19 {



[3] Bell T.C., Mo�at A., Nevill C.G., Witten I.H., Zobel J., Data compres-sion in full text retrieval systems, to appear in J. ASIS.[4] Bookstein A., Klein S.T., Compression, Information Theory and Grammars:A Uni�ed Approach, ACM Trans. on Information Systems 8 (1990) 27{49.[5] Bookstein A., Klein S.T., Models of Bitmap Generation: A Systematic Ap-proach to Bitmap Compression, Information Processing & Management 28 (1992)735{748.[6] Bookstein A., Klein S.T., Zi� D.A., A systematic approach to compressinga full text retrieval system, Information Processing & Management 28 (1992)795{806.[7] Bookstein A., Klein S.T., Raita T., Ravichandra Rao I.K., Patil M.D.,Can random 
uctuations be exploited in data compression, Proc. DCC'93 (1993).[8] Capocelli R.M., Giancarlo R., Taneja I.J., Bounds on the redundancy ofHu�man codes, IEEE Trans. on Inf. Th., IT{32 (1986) 854{857.[9] Capocelli R.M., DeSantis A., New bounds on the redundancy of Hu�mancodes, IEEE Trans. on Inf. Th., IT{37 (1991) 1095{1104.[10] Chevion D., Karnin E.D., Walach A.C., High e�ciency, multiplication freeapproximation of arithmetic coding, Proc. DCC'91 (1991) 43{52.[11] Choueka Y., Klein S.T., Perl Y., E�cient variants of Hu�man codes in highlevel languages, Proc. 8-th ACM-SIGIR Conf., Montreal (1985) 122{130.[12] Elias P., Universal codeword sets and representation of the integers, IEEE Trans.on Inf. Th., IT{12 (1975) 194{203.[13] Ferguson T. J., Rabinowitz J. H., Self-synchronizing Hu�man codes, IEEETrans. on Inf. Th. IT{30 (1984) 687{693.[14] Fraenkel A.S., All about the Responsa Retrieval Project you always wantedto know but were afraid to ask, Expanded Summary, Jurimetrics J. 16 (1976)149{156.[15] Fraenkel A.S., Klein S.T., Novel compression of sparse bit-strings, Combina-torial Algorithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin(1985) 169{183.[16] Fraenkel A.S., Klein S.T., Bounding the depth of search trees, to appear inThe Computer Journal (1993).[17] Fraenkel A.S., Klein S.T., Bidirectional Hu�man coding, The Computer Jour-nal 33 (1990) 296{307.[18] Gaines H.F., Cryptanalysis, A Study of Ciphers and their solution, Dover Publ.Inc., New York (1956). { 20 {



[19] Gallager R.G., Variations on a theme by Hu�man, IEEE Trans. on Inf. Th.,IT{24 (1978) 668{674.[20] Gilbert E.N., Codes based on inaccurate source probabilities, IEEE Trans. onInf. Th. IT{17 (1971) 304{314.[21] Gilbert E.N., Moore E.F., Variable-length binary encodings, The Bell SystemTechnical Journal 38 (1959) 933{968.[22] Heaps H.S., Information Retrieval, Computational and Theoretical Aspects,Academic Press, New York (1978).[23] Herdan G., The Advanced Theory of Language as Choice and Chance, Springer-Verlag, New York (1966).[24] Hirschberg D.S., Lelewer, D.A., E�cient decoding of pre�x codes, Comm.ACM 33 (1990) 449{459.[25] Howard P.G., Vitter J.S., Practical implementations of arithmetic coding,Tech. Rep. CS-92{18, Dept. of CS, Brown University (1992).[26] Hu�man D., A method for the construction of minimum redundancy codes,Proc. of the IRE 40 (1952) 1098{1101.[27] Jakobsson M., Hu�man coding in bit-vector compression, Inf. Proc. Letters 7(1978) 304{307.[28] Klein S.T., Bookstein A., Deerwester S., Storing Text Retrieval Systemson CD-ROM: Compression and Encryption Considerations, ACM Trans. on Infor-mation Systems 7 (1989) 230{245.[29] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental Algo-rithms, Addison-Wesley, Reading, Mass. (1973).[30] Knuth D.E., Dynamic Hu�man coding, J. of Algorithms 6 (1985) 163{180.[31] Larmore L.L., Hirschberg D.S., A fast algorithm for optimal length limitedHu�man codes, Journal ACM 37 (1990) 464{473.[32] Lelewer D.A., Hirschberg D.S., Data compression, ACM Computing Surveys19 (1987) 261{296.[33] Mo�at A., Sharman N., Witten I.H., Bell T.C., An Empirical evaluationof coding methods for multi-symbol alphabets, Proc. DCC'93 (1993).[34] Mo�at A., Zobel J., Coding for compression in full-text retrieval systems,Proc. DCC'92 (1992) 72{81.[35] Nelson M., The Data Compression Book, M & T Publishing, Inc., (1991).{ 21 {



[36] Pesonen J., Word in
exions and their letter and syllable structure in Finnishnewspaper text, Research Rep. 6/1971, Dept. of Special Education, University ofJyr�askyl�a, Finland (in Finnish, with English summary).[37] Rissanen J.J., Generalized Kraft inequality and arithmetic coding, IBM J. Res.Dev. 20 (1976) 198{203.[38] Rissanen J.J., Langdon G.G., Arithmetic coding, IBM J. Res. Dev. 23(1979) 149{162.[39] Schwartz E.S., Kallik B., Generating a canonical pre�x encoding, Comm.ACM 7 (1964) 166{169.[40] Teuhola J., Raita T., Piecewise arithmetic coding, Proc. DCC'91 (1991) 33{42.[41] Van Leeuwen J., On the construction of Hu�man trees, Proc. 3rd ICALPConference, Edinburgh University Press (1976) 382{410.[42] Vitter J.S., Design and analysis of dynamic Hu�man codes, Journal ACM 34(1987) 825{845.[43] Witten I.H, Neal R.M., Cleary J.G., Arithmetic coding for data compres-sion, Comm. ACM 30 (1987) 520{540.[44] Ziv J., Lempel A., A universal algorithm for sequential data compression,IEEE Trans. on Inf. Th. IT{23 (1977) 337{343.[45] Ziv J., Lempel A., Compression of individual sequences via variable-rate cod-ing, IEEE Trans. on Inf. Th. IT{24 (1978) 530{536.
Prof. Abraham Bookstein Dr. Shmuel T. KleinCenter for Information Department of Mathematicsand Language Studies and Computer ScienceUniversity of Chicago Bar-Ilan University1100 E. 57-th Str. Ramat-Gan 52900Chicago, IL 60637 IsraelUSA

{ 22 {


