Pattern Matching in
Huffman Encoded Texts*

Shmuel T. Klein Dana Shapira
Dept. of Math. & CS Dept. of Computer Science
Bar Ilan University Brandeis University
Ramat-Gan 52900 Waltham, MA 02254
Israel USA
Tel: (972-3) 531 8865 Tel: (781) 736 2707
Fax: (972-3) 736 0498 Fax: (781) 736 2741
tomi@cs.biu.ac.il shapird@cs.brandeis.edu

*This is an extended version of a paper that has been presented at the Data Compression
Conference DCC’01, Snowbird, Utah (2001) and appeared in its Proceedings, pp. 449 458.

-1 -

Abstract: For a given text which has been encoded by a static Huffman code, the
possibility of locating a given pattern directly in the compressed text is investigated.
The main problem is one of synchronization, as an occurrence of the encoded pattern
in the encoded text does not necessarily correspond to an occurrence of the pattern
in the text. A simple algorithm is suggested which reduces the number of erroneously
declared matches. The probability of such false matches is analyzed and empirically
tested.

Keywords: Data compression, Huffman codes, Pattern matching, compressed match-
ing.

1. Introduction

The general approach for looking for a pattern in a file that is stored in its compressed
form, is first decompressing and then applying one of the known pattern matching
algorithms to the decoded file. In many cases, however, in particular on the Internet,
files are stored in their original form, for if they were compressed, the host computer
would have to provide either memory space for each user in order to store the decoded
file, or appropriate software to support on the fly decoding and matching. Both
requirements are not reasonable, as many users can simultaneously quest the same
information reservoir which will either demand a large quantity of free memory, or put
a great burden on the host CPU. Another possibility is transferring the compressed
files to the personal computer of the user, and then decoding the files. However, we
then assume that the user knows the exact location of the information she or he is
looking for; if this is not the case, much unneeded information will be transferred.

There is therefore a need to develop methods for directly searching within a
compressed file. This so-called compressed matching problem has been introduced by
Amir and Benson (1992), and has recently got a lot of attention (Amir, Benson and
Farach, 1996; Gasieniec and Rytter, 1999; Farach and Thorup, 1995; Karkkainen,
Navarro and Ukkonen, 2000; Kida et al., 1999; deMoura et al., 1998; Navarro and
Raffinot, 1999; Shibata et al., 2000). It is a variant of the classical pattern matching
problem, in which one is given a pattern P and a (usually much larger) text 7', and
one tries to locate the first or all occurrences of P in T'. In the compressed version
of this problem, the text is supposed to be stored in some compressed form.

For complementary encoding and decoding functions £ and D, that is, functions
such that for any text T, one gets D(E(1")) = T’ our aim is to search for £(P) in E(T),
rather than the usual approach which searches for the pattern P in the decompressed
text D(E(T)). A necessary condition is then that the pattern P should be encoded in
the same way throughout the text, which is not the case for arithmetic coding and for
dynamic methods such as adaptive Huffman coding. The various Lempel-Ziv variants
are also dynamic methods, but for them compressed matching is possible: all of the
fragments of the pattern P appear in the compressed text, though not necessarily
contiguously and not necessarily in the same order as in the pattern, since parts of
the compressed text are pointers to an external dictionary or to previous locations
in the given text itself. Much of the previous work on compressed pattern matching
concentrates on Lempel-Ziv encodings. A different approach is not to adhere to a
known compression scheme, but to devise a new one that is specially adapted to allow
efficient searches directly in the compressed file (Manber, 1997; Klein and Shapira,
2000).

Fukamachi et al. (1992) propose a pattern matching algorithm for Huffman en-
coded strings, based on the Aho-Corasick algorithm. In order to reduce the processing
time due to bit per bit state transitions, they use a special code in which the lengths
of the codewords are multiples of four bits and present an algorithm for pattern
matching in this kind of compressed files. Shibata et al. (2000) present an efficient

realization of pattern matching for Huffman encoded text, substituting ¢ consecutive
state transitions of the original machine by a single one. When ¢ is a multiple of 4,
this results in a speedup. Takeda et al. (2002) build a pattern matching machine by
embedding a DFA that recognizes a set of codewords into an ordinary Aho-Corasick
machine, and then make it run over a text byte after byte. Their technique can
handle any prefix code including Huffman codes.

DeMoura et al. (2000) propose a compression scheme that uses a word based byte
oriented Huffman encoding. The first bit of each byte 1s used to mark the beginning
of a word. Exact and approximate pattern matching can be done on the encoded
text without decoding. Their algorithm runs twice as fast as agrep, but compression
performance is slightly hurt. Moreover, the compression method is not applicable to
texts like DNA sequences, which cannot be segmented into words.

In the present work, we are interested in searching within the original Huffman
encoded text without any modification. We concentrate on static Huffman coding,
for which the problem might at first sight seem trivial. It is, however, not always
straightforward, since an instance of £(P) in the compressed text is not necessarily
the encoding of an instance of P in the original text 7', and might be crossing code-
word boundaries. Consider for example the Huffman code {00, 010, 011, 100, 101,
1100, 1101, 111} for the characters T, N, A, 0, W, E, B and C respectively. The
binary string 1000101100 is the encoding of the string one. Suppose, however, that
we are searching for the pattern two: we could find £(two) starting at the third bit
and extending to the end of £(one), as shown in Figure 1.

[¢) n e
—_——— —— —~

[L[ofoJoftfoftt]ofo]

N—— N — N ——
t W o

FiGURE 1: Example of a false match

The problem is thus one of verifying that the occurrence detected by the pat-
tern matching algorithm is aligned on a codeword boundary. In the next section,
we suggest an algorithm for compressed matching in Huffman encoded files. Sec-
tion 3 analyses the probability of getting false matches and experimental results are
presented in Section 4.

2. Compressed Pattern Matching for Huffman codes

For a given text T over some alphabet ¥, we consider the Huffman encoded text
E(T). In order to locate a pattern P in T', we start by encoding the pattern and then
apply one of the known pattern matching techniques to find £(P) in £(T"). Note

,4,

that Boyer and Moore’s (1977) algorithm, with its sub-linear performance might not
be the best choice here, as we deal with the binary alphabet {0,1}. An attractive
alternative in our case is Karp and Rabin’s (1987) probabilistic pattern matching,
specifically because our suggested solution is also probabilistic in nature.

If the algorithm does not find any occurrence, we know that P does not occur
in 7. On the other hand, if an occurrence of £(P) is detected, we cannot be sure
that it corresponds to an occurrence of P in T, unless we scan the encoded text from
its beginning to locate all the codeword boundaries. This means that we effectively
decode the text, which is what we wanted to avoid.

No decoding is necessary, if we also keep the list I of the indices {i1,42,...} of
the first bit of each codeword. Once the compressed pattern has been located, the
index of its location can be searched for in I. This would just take O(log|T"|) time
using binary search, but keeping the list I might sometimes more than double the
size of the compressed file. Consider, for example, a file £(7") of one KB, consisting
of about a thousand codewords of average length 8 bits. The corresponding list [
would have about a thousand entries, each requiring 13 bits! It would not really
help to record, instead of the list I, the sequence L of codeword lengths, which are
the differences between the codeword starting points {iz — 71,13 — is,...}, rather
than the absolute indices; log m bits are then necessary for each length, where m is
the maximum codeword length, so that the size of the list L would still be O(|7]).
For the above example, if m = 16, the size of L would be %KB. Even though the
space overhead is reduced, the required time can be just as bad as for the sequential
decompression from scratch: instead of decoding the text, it is the list L that has
to be processed from its beginning. In fact, if already one agrees to double the size
of the file, a simpler solution avoiding the necessity for binary search would be to
keep a bit-string B of size identical to that of the compressed file; a bit in a position
corresponding to the beginning of a codeword would be set to 1 in B, and all the
others to 0.

A possible simple solution would be some tradeoff between recording all codeword
boundaries or none of them by preparing a small list of possible entry points into the
compressed text. Choose a parameter b and partition the compressed file into blocks
of b bits; then move, when necessary, each partition point to the closest preceding
codeword boundary, and record the index of the first bit in each such block in a list
D. Once the pattern £(P) is found in E(T) at location ¢, the list D provides the
starting point of the block containing the compressed pattern, so this block can be
decompressed. The additional required space is thus O(|T'|/b) and decoding time is
reduced to O(b). No binary search within D is needed, as the required starting point is
stored in the |£/b|th entry of D. For certain values of b, this may be a recommendable
solution, with small storage overhead and fast performance. However, the more we
wish to reduce the size of D, the larger b will be, implying longer processing. If one
agrees to change the encoded file slightly, one can get rid of the list D and force
alignment on block boundaries. The total number of additional bits, less than one
codeword per block, could be kept very low.

As alternative we suggest a solution that does not alter the compressed file by
exploiting the tendency of Huffman codes to resynchronize quickly after errors (Klein
and Wiseman, 2000): if the pattern has been found at index 4, jump back by some
constant number of bits K and start decoding from there. It might well be that the
bit indexed i — K is not the beginning of a codeword in £(T"), so that the decoding will
be erroneous at the beginning. However, if K is chosen large enough, the decoding
of the last bits preceding bit ¢ will generally be correct, regardless of possible errors
before. One can therefore decide, with a small error probability, whether to announce
a match at location ¢ or not, depending on whether bit ¢ is the beginning of a new
codeword in the decoding that started at + — K. The formal algorithm for finding
the occurrences of pattern P in T is given below in Figure 2. It uses the Huffman
tree of the given alphabet X, and refers to its root as root. It also uses a procedure
search(z,y), which returns the smallest index ¢ such that the string z matches the
substring of y that starts at its i-th position. If no such index exists (z does not occur
as substring of y), the procedure returns co. The decoding then starts at position
t— K, or at the beginning of the string in case K > i—1. The procedure search can be
implemented using any of the known pattern matching algorithms — we shall refer
specifically to the Karp Rabin algorithm in Section 3.2 below — but the details have
been omitted here to keep the focus on the solution of the synchronization problem.

encode P and generate the vector £(P)
while £(T) is not empty
1 « search(E(P),E(T))
if i =00 STOP
node < root
for j « max(l,i— K) to i—1
if j-th bitof E(T) =1
node < left (node)
else
node < right (node)
if current node is a leaf
node < root
if node = root
declare match at address ¢
delete the first ¢ bits of £(T)

FIGURE 2: The compressed matching algorithm

There are codes for which this algorithm does not work better than without
the backward jump of K bits. Indeed, suppose we start the decoding of a given
compressed string at two different points, yet according to the same Huffman tree,
and suppose that at some point, these two decodings synchronize. Let x and y denote
the last codewords for the two decodings before reaching the synchronization point.

-6 —

Then either z is a suffix of y or y is a suffix of z. In any case, the underlying Huffman
code cannot have the so-called suffiz-property, asserting that no codeword can be the
suffix of any other, similarly to the well-known prefiz-property of all Huffman codes.
Accordingly, codes having both the prefix and the suffix property have been called
never-self-synchronizing in Gilbert and Moore (1959); they are called affiz codes in
Fraenkel, Mor and Perl (1983). There are infinitely many different complete variable-
length affix codes, e.g., {01,000,100,110,111,0010,0011,1010,1011}, but they are
nonetheless extremely rare (Fraenkel and Klein, 1990). In particular, the code used
in Figure 1 is not affix, since the codeword for o is a suffix of the codeword for e.
Returning now to our compressed matching algorithm, if the code is an affix code
and bit ¢ — K does not happen to be the first of a codeword, the erroneous decoding
will extend to the end of the file, for any size of K.

In practice, however, synchronization is often achieved after a small number of
bits, typically less than 100. It seems therefore that by choosing K as a few hundred
should generally be enough to avoid errors like declaring a match when in fact there
is none, or failing to declare a match even though there actually is one. We bring
some experimental results below.

3. Estimating the number of errors

3.1 False matches in the pattern matching process

We shall compute an estimated number of false matches using two different models of
the probabilistic process underlying the text creation. Both models assume that the
text has been generated by choosing repeatedly, and independently from each other,
characters from ¥ according to their probability of occurrence py,...,p, in the text.
Such an independence assumption is of course an approximation in many cases, in
particular for natural language texts which generally exhibit many dependencies. One
could even argue that due to the independence of symbols, regular patterns should
not exist and therefore there is no basis for any pattern matching. We consider,
however, also very large alphabets, the elements of which are not necessarily single
characters, but rather words or even phrases. Such models are frequently used in
large Information Retrieval systems (Witten, Moffat and Bell, 1994).

We refer in this section to the number of false matches caused by the search
function only, as if the algorithm of Figure 2 were used with backskip parameter
K = 0. The experiments below suggest that for large enough K, the number of false
matches generally decreases to zero.

The first model relies on the fact that the string £(T) is the result of a Huffman
encoding process, but ignores the specific probabilities py,...,p,. Rather, it uses
the corresponding codeword lengths ¢4,...,4,, respectively, and assumes that the
probabilities of the occurrence of the characters in the text are 27%,...,27% and
that the characters occur independently of each other. Such a distribution is called

-

dyadic. The resulting approximation may be justified by the fact that since the
original and the corresponding dyadic distributions yield the same Huffman code,
they must be quite similar. A formal definition of this similarity can be found in
Longo and Galasso (1982), in which the set of probability distributions is given a
pseudo-metric, and an upper bound is derived for the distance of any probability
distribution to the dyadic distribution giving the same Huffman tree.

One can then use a theorem shown in Klein, Bookstein and Deerwester (1989),
stating that with these assumptions, the output of Huffman decoding is indistinguish-
able from a random binary string with probability of occurrence of a 1-bit being equal
to % For an infinite sequence this would then imply that any binary pattern of length
k, with & > 1, occurs with probability 27%. We shall use this approximation even
though £(7) is finite and the occurrences of characters are not really independent of
each other.

To estimate the number of false matches, we proceed as follows: let m = |E(P)]
be the length in bits of the encoding of the pattern, and assume P occurs ¢ times in
T. Consider a text string 7", obtained from 7" by purging all occurrences of P. The
Huffman encoding of 77, £(1"), is a binary sequence of length |E(7")| —tm (assuming
that there are no overlaps of suffixes of P with prefixes of P). Since this too is a
Huffman encoded string, the probability of occurrence of £(P) is 27™. No occurrence
of £(P) in E(T") corresponds to a true match of P in 7", so we get as estimate for
the number of false matches

27" (|E(T)| = t m). (1)

In fact, we have used here two more approximations: by eliminating all the oc-
currences of P, the original probabilities may have been changed, which could affect
the lengths of the corresponding Huffman codewords. If ¢ and m are small relative to
the size of the encoded text, the change in the probabilities might be small enough
to yield the same Huffman tree (Longo and Galasso, 1982), and even if the tree is
altered, the change of the average codeword length will often be negligible. The
second approximation is that by removing a true match, a new false match might
appear that spans over the gap.

The second model takes the probabilities pq,...,p, into account and assumes a
complete prefix code, though not necessarily one derived from Huffman’s algorithm.
For convenience, we shall still use the terminology of Huffman codes, but the analysis
is also valid for any other complete prefix code with associated probabilities. The
following notations will be used below. Let 7 denote the Huffman tree corresponding
to a given Huffman code. The elements which are encoded appear with probabilities
P1,-..,Pn in the text, and the lengths of the corresponding Huffman codewords are
l1,..., Ly, respectively. We shall also use the notation p, for the probability of the
element corresponding to the leaf y. Denote by L the set of the leaves of T, and by
7T the set of its internal nodes. For each x € Z, we define 7T, as the subtree of T
rooted at x, and we denote by £, = £ N T, the set of its leaves. The internal nodes
7T correspond to the possible positions within a codeword at which a match of the

-8 —

pattern P can be found. In particular, the root r of the tree, which belongs to Z,
corresponds to the special case where position ¢, returned by the procedure search in
the algorithm, is the beginning of a codeword, i.e., a true match has been found.

Consider the fact of having a possible match in a certain position as if it were
generated by the following random process: the compressed text consisting of a given
sequence of zeros and ones, we pick randomly bit positions which shall act as the
starting position of the matches. In this sense, we can speak about the probability
of having a possible match in a certain position.

We thus assume that the position ¢ returned by the procedure search occurs at
random in any possible location, that is, at any internal node of 7. For a given
internal node = € Z, the probability P(z) of the position corresponding to z being
returned by the algorithm will be proportional to p;¢;, and not just to p;, since we
deal with a random process on the compressed text and not on the original one.
Each leaf of the Huffman tree is associated with a probability p,;, and the probability
associated with an internal node y is the sum of the probabilities associated with
the two children of y. Thus, when adding the probabilities associated with all the
internal nodes, we get W = Y , p;{;, the weighted average codeword length, and
the probability P(z) is given by

ZyELL Py
—w

This is indeed a probability distribution, as >,z P(z) = 1.

P(z) =

Similarly, for a leaf y € £, the probability of seeing the codeword corresponding
to y in the compressed text, which we shall denote by P(y) to differentiate it from
the above probabilities defined for internal nodes, will be proportional to p;¢;, rather
than just to p,, so that this probability will be

and again Y., P(y) = 1.

As an example for these definitions, consider again the Huffman code mentioned
in the introduction for the characters T, N, A, 0, W, E, B and C, and suppose they occur
with probabilities 0.28, 0.19, 0.12, 0.11, 0.11, 0.06, 0.05 and 0.08, respectively. The
corresponding Huffman tree is depicted in Figure 3. The probability associated with
any node v of £ UZ appears underneath v, the probabilities P(z) for z € Z appear
in grey ellipses to the right of the internal (black) nodes, and the probabilities P(y)
for y € £ appear in white boxes to the left of the leaves.

Let F denote the event of getting a false match at a given position. We eval-
uate the probability P(F) by conditioning on the position z € Z returned by the
algorithm:

P(F) =Y P(F | algorithm returned z) P(z).

r€T

0.06 0.05
FIGURE 3: Probabilities P(z) and P(y) for the nodes of the example Huffman tree

If z is the root, P(F | algorithm returned z) = 0, because of the prefix property of
the Huffman codes. If z is some other internal node, we have to consider several
possibilities, which are schematically displayed in Figure 4.

WAV

(a) (b) (c)

FIGURE 4: Schematic view of Huffman tree traversal with E(P)

Since we deal with a complete code, any binary sequence such as £(P) we try
to locate, can be decoded (i.e., mapped into a sequence of codewords), even if the
traversal of the tree 7 does not start at its root. One possibility is that £(P) is
a substring of a codeword, without being its prefix or suffix. This corresponds to
a path in 7 starting at an internal node z and ending at another internal node y
(Figure 4(a)). Another possibility is that £(P) is a suffix of a codeword (Figure 4(b)),
or it could be such a suffix followed by several other codewords. The most general
case is given in Figure 4(c): £(P) consists of the suffix of some codeword, followed
by (zero or more) codewords and ending with the proper prefix of some codeword.

Denote by y(z,1),...,y(x,t—1) the sequence of leaves encountered when travers-
ing the tree T, starting at the internal node z, and proceeding to left or right children

~ 10 -

as directed by the binary string £(P). Let y/(z,t) be the internal node at which this
traversal finishes. The case of Figure 4(a) corresponds to ¢t = 1, and if the decoding
happens to finish at the end of a codeword (as in the case of Figure 4(b)), we define
y'(z,t) as being the root. For each of the leaves y(x,7), the probability of seeing it
in the encoded text is P(y(z,7)), and the probability of seeing the prefix correspond-
ing to y'(z,t) is the sum of the probabilities of the leaves in the subtree rooted by
y'(z,t). For the special case y/(z,t) = root, this sum is 1. Assuming independence of
the events, we get

t—1
P(F | algorithm returned z) = [] P(y(=,1)) (> PG)))
=1 jEﬁyl(I.t)
We can therefore derive the estimated number of false matches |£(1)|P(F) as

ey Lyes i 2seL, P
(1) Z(H%(>))<) 2

€L =1 7€£y’(r,1)

In any case, we see that the probability of a false match decreases sharply when
the length m = |E(P)| increases. We bring below experimental results comparing the
formulas with empiric data. It should be noted that one can argue that similarly, the
expected number of true matches can be evaluated; but true matches of £(P) in £(T)
correspond to matches of P in 1", and these are given since P and 7" are fixed. There
is therefore no probabilistic scenario on which calculating this probability could be
based. For the false matches, however, our assumption of random occurrence seems
reasonable, yielding the above analysis.

3.2 False matches resulting from probabilistic pattern matching

We stated above that if z, the node of the Huffman tree corresponding to the posi-
tion returned by the algorithm, is the root, then P(F | algorithm returned z) = 0,
1.e., there cannot be a false match, because the encoded pattern has been found at a
codeword boundary and a false match would imply a violation of the prefix property.
However, this assumes that we can assure that if the pattern matching algorithm
declares a match at position 7, there is indeed a match at that position. This is
true for deterministic algorithms, but not necessarily for probabilistic ones. For in-
stance, Karp and Rabin’s (1987) algorithm searches for £(P) in £(T') by scanning
substrings Z; of £(T'), each of the same length m as the encoded pattern, and in-
stead of comparing Z; with £(P), it compares Z; mod @ with £(P) mod @, where
Q@ is a large randomly chosen prime number. If the moduli are equal, a match is
declared, even though obviously there are many numbers a and b such that a # b
but ¢ mod Q = b mod). Two probabilities have thus to be dealt with:

1. the probability R; that the match declared by the probabilistic pattern matcher
might be an erroneous one;

— 11 —

2. the probability R, that even if there is a true match of £(P) at the declared
position within £(7T’), it might not correspond to a match of P in 7.

The second probability R, has been evaluated in the previous section. As to Ry,
note that one can easily turn the probabilistic algorithm into a deterministic one,
by checking at the declared position if it indeed holds a match. Moreover, such a
check is generally not really needed. The probability to get a false match by the
Karp Rabin algorithm is bounded by mn/29, where m and n are the sizes of the
pattern and the scanned text, respectively, and ¢ = [log, @] is the number of bits
of the prime number). One can therefore choose ¢ large enough (since m and n
are given) to make this probability negligible relative to R;. Summarizing, we may
safely ignore R;: if the pattern £(P) is shorter than ¢, then working modulo @ is in
fact a real comparison and not a probabilistic one, so R; = 0; if on the other hand,
m is larger than ¢, then R, will probably be extremely small.

3.3 Erroneous decisions of the algorithm

When running the pattern matching algorithm with the backskips, a correct perfor-
mance identifies the true and false matches for each of the occurrences of £(P) in
E(T). These matches are called below true positives and negatives. The algorithm
can, however, also fail in two quite different ways:

1. It could announce a match, while in reality the occurrence of £(P) in E(T")
does not correspond to an occurrence of P in T (false positives);

2. It could fail to announce a match, while in reality the occurrence of £(P) in
E(T) does correspond to an occurrence of P in T (false negatives).

In an analogy to Information Retrieval literature, we wish to retrieve all, and
only, occurrences of P in T. The first type of error reduces then precision (the ratio
of relevant retrieved items to all retrieved items), since it retrieves also elements
which are not occurrences of P in T the second type of error reduces recall (the
ratio of relevant retrieved items to all relevant items), since it does not retrieve all
occurrences of P in T'. The following table summarizes the four possibilities for a
given occurrence of £(P) in £(T): the columns correspond to the actual situation
(match or non-match of P in T'), the rows to what is announced by the algorithm.

actual match actual non-match
declare match true positives false positives
declare non-match false negatives true negatives

If the algorithm does not skip backwards (K = 0), every occurrence of £(P) in
E(T) would be declared as a match, so there are no false negatives, but possibly

19 —

many false positives. For small values of K, it is probable that synchronization
with the true decoding is not achieved before the K bits are used up, which could
imply a large number of false decisions; but by increasing K, the probability of
synchronization, regardless of the starting point, increases, and the number of false
positives or negatives will decrease.

4. Experimental results

The algorithm was tested on several files of different nature. The first one was paper1
from the Calgary corpus, an English text with editing instructions. The second was
a DNA file (of the Tobacco chloroplast genome), including also blanks and newlines
for clarity; the alphabet thus consisted of 6 characters. Finally, to cancel the bias
introduced by the independence assumption, a new text was created based on the
distribution of characters in paper1, but with each character generated independently
from the others.

The first set of tests was performed on paperl, searching for arbitrary patterns
which were chosen randomly within the file. We used a canonical Huffman encoding
and considered patterns of lengths 3 to 50, four of each. The compressed forms of
these 192 patterns occurred in total 1077 times in the compressed text. Of these
occurrences, 1040 corresponded to appearances of P in 7', and 37 were false matches,
all of which occurred for the shorter patterns up to length 5. For example, when
searching for P = fro, for which £(P) = 110010-10001-0011, the pattern P’ =
kLh was retrieved (U denoting a blank), for which £(P’) = 111100101-000-10011,
including &£(P) as suffix.

The algorithm was then applied several times, each time with a different size of
the backward skip, which was chosen as an integral number of bytes. The first column
of Table 1 gives the size K of the backward skip in bits, the following columns list
the number of occurrences of true and false positives and negatives.

Obviously, true positives and false negatives add up to the number of actual
matches, while true negatives and false positives add up to the number of non-
matches. One sees that false positives (wrongly announced matches) are rare, inde-
pendently of the algorithm, and that already for small backskips (less than 12 bytes
for all our examples), both types of errors may be corrected.

Table 2 brings some example patterns P, comparing for each the actual number of
wrong matches (occurrences of £(P) in £(T') which do not correspond to occurrences
of P in T') with the expected number on the basis of formulas (1) and (2).

We see that there is generally a good fit, with no formula consistently outper-
forming the other. Interestingly, on the random file, the number of wrong matches
was much higher than the number of true matches for many of the examples.

19 —

K true true false false

in bits positives negatives positives negatives
8 415 35 2 625
16 670 33 4 370
24 825 36 1 215
32 917 35 2 123
40 974 35 2 66
48 1013 37 0 27
56 1018 36 1 22
64 1036 37 0 4
72 1038 36 1 2
80 1036 36 1 4
88 1039 37 0 1
96 1040 37 0 0
start of file 1040 37 0 0
TABLE 1: Number of matches and false matches as a function of backward skip
File Pattern |5(P) | ﬁ;iizsg eStl(l;l)ate estl(l;)ate
paperl in 8 621 1018 624
cl 10 186 260 192
ies 13 36 32 33
lose 18 0 1 1
Incre 26 0 0.004 0.004
dna tecg 8 1783 1797 2483
atct 9 1205 909 1094
aaaglla 14 35 29 34
gatactc 17 5 4 4
random et 8 858 1030 603
ull 9 426 518 547
fllo 13 31 32 14
eo,e 19 0 0.5 0.6

TABLE 2 Empiric and expected number of false matches

— 14 -

5. Concluding remarks

Searching for a pattern directly in a Huffman encoded file seems to be an easy task
because of the static nature of the compression scheme. There are however synchro-
nization problems, which we tried to overcome in this work. If the pattern is long
enough, the probability of finding a wrong match is often very low, independently
of the algorithm. For the other patterns, a proper choice of the backskip parameter
lets us control the error.

Acknowledgment: The authors would like to thank two anonymous referees for their
helpful comments.

References

AMIR, A. & BENSON, G. (1992). Efficient two-dimensional compressed matching,
Proc. Data Compression Conference DCC-92, Snowbird, Utah, 279-288.

AMIR, A., BENSON, G. & FaracH, M. (1996). Let Sleeping Files Lie: Pattern
Matching in Z-compressed Files, Journal of Computer and System Sciences 52, 299-
307.

BOYER, R. & MOORE, S. (1977). A fast String Searching Algorithm, Communica-
tions of the ACM, 20, 762-772.

GASIENIEC, L. & RyYTTER, W. (1999). Almost optimal fully LZW-compressed
pattern matching, Proc. Data Compression Conference DC'C-99, Snowbird, Utah,
316-325.

GILBERT, E.N. & MOORE, E.F. (1959). Variable-length binary encodings, The
Bell System Technical Journal 38, 933-968.

FArACH, M. & THORUP, M. (1995). String Matching in Lempel-Ziv Compressed
Strings, Proc. 27th Annual ACM Symposium on the Theory of Computing, 703-712.

FRAENKEL, A.S., MoOR, M. & PERL, Y. (1983). Is text compression by prefixes
and suffixes practical? Acta Informatica 20, 371-389.

FRAENKEL, A.S. & KLEIN, S.T. (1990). Bidirectional Huffman Coding, The Com-
puter Journal 33, 296-307.

FUKAMACHI, S., SHINOHARA, T. & TAKEDA, M. (1992). String pattern match-
ing for compressed data using variable length code, Efficient retrieval of Genome
information. Proc. of Symposium on Informatics, 95-103.

KARKKAINEN, J., NAVARRO, G. & UKKONEN, E. (2000). Approximate string
matching over Ziv-Lempel compressed text, Proc. 11th Annual Symposium on Com-
binatorial Pattern Matching CPM—-00, LNCS 1848, Springer Verlag, 195-209.

KArP, R. & RABIN, M. (1987). Efficient randomized pattern matching algorithms,
IBM J. Res. Development 31, 249-260.

Kipa, T., TAKEDA, M., SHINOHARA, A. & ARIKAWA, S. (1999), Shift-And ap-
proach to pattern matching in LZW compressed text, Proc. 10th Annual Symposium
on Combinatorial Pattern Matching CPM-99, LNCS 1645, Springer Verlag, 1-13.

KLEIN, S.T., BOOKSTEIN, A. & DEERWESTER, S. (1989), Storing Text Retrieval
Systems on CD-ROM: Compression and Encryption Considerations, ACM Trans. on
Information Systems 7, 230-245.

KLEIN, S.T. & SHAPIRA, D. (2000). A new compression method for compressed
matching, Proc. Data Compression Conference DCC-2000, Snowbird, Utah, 400-
400.

KLEIN, S.T. & WISEMAN, Y. (2000). Parallel Huffman Decoding, Proc. Data
Compression Conference DCC-2000, Snowbird, Utah, 383-392.

LoNGO, G. & GALASSO, G. (1982). An application of informational divergence to
Huffman codes, IEEE Trans. on Inf. Th. IT—-28, 36—43.

MANBER, U. (1997). A Text Compression Scheme That allows Fast Searching Di-
rectly in the compressed File, ACM Transactions on Information Systems (TOIS)
15, 124-136.

DEMOURA, E.S., NAVARRO, G., ZIVIANI, N. & BAEzA-YATES R. (1998). Direct

pattern matching on compressed text, Proc. of String Processing and Information
Retrieval (SPIRE-98), IEEE CS Press, 90-95.

DEMOURA, E.S., NAVARRO, G., Z1VIANI, N. & BaEzA-YATES R. (2000) . Fast
and Flexible Word Searching on Compressed Text, ACM Transactions on Informa-

16 -

tion Systems (TOIS) 18(2), 113-139.

NaAvARRO, G. & RAFFINOT, M. (1999). A general practical approach to pattern

matching over Ziv-Lempel compressed text, Proc. 10th Annual Symposium on Com-
binatorial Pattern Matching CPM-99, LNCS 1645, Springer Verlag, 14-36.

SHIBATA, Y., Kiba, T., TAKEDA, M., SHINOHARA, T. & ARIKAWA, S. (2000).
Speeding up pattern matching by text compression, Proceedings of the 4th Italian

Conference on Algorithms and Complexity LNCS 1767, Springer Verlag, 306-315.

SHIBATA, Y., MaAaTsumMoTO, T., TAKEDA, M., SHINOHARA, A. & ARIKAWA,
S. (2000). A Boyer-Moore type algorithm for compressed pattern matching, Proc.
11th Annual Symposium on Combinatorial Pattern Matching CPM—-00, LNCS 1848,
Springer Verlag, 181-194.

TAKEDA, M., MIYAMOTO, S., KIDA, T., SHINOHARA, A., FUKAMACHI, S., SHI-
NOHARA, T. & ARIKAWA, S. (2002). Processing Text Files as Is: Pattern Matching
over Compressed Texts, Multi-Byte character Texts, and Semi-Structured Texts,

Proc. of String Processing and Information Retrieval (SPIRE-02), 170-186.

WITTEN, I.H., MOFFAT, A. & BELL T.C. (1994). Managing Gigabytes, Com-
pressing and Indexing Documents and Images. London: International Thomson Pub-
lishing.

17 -

