
Pattern Matching inHu�man Encoded Texts�Shmuel T. KleinDept. of Math. & CSBar Ilan UniversityRamat-Gan 52900IsraelTel: (972{3) 531 8865Fax: (972{3) 736 0498tomi@cs.biu.ac.il
Dana ShapiraDept. of Computer ScienceBrandeis UniversityWaltham, MA 02254USATel: (781) 736 2707Fax: (781) 736 2741shapird@cs.brandeis.edu

�This is an extended version of a paper that has been presented at the Data CompressionConference DCC'01, Snowbird, Utah (2001) and appeared in its Proceedings, pp. 449{458.{ 1 {

Abstract: For a given text which has been encoded by a static Hu�man code, thepossibility of locating a given pattern directly in the compressed text is investigated.The main problem is one of synchronization, as an occurrence of the encoded patternin the encoded text does not necessarily correspond to an occurrence of the patternin the text. A simple algorithm is suggested which reduces the number of erroneouslydeclared matches. The probability of such false matches is analyzed and empiricallytested.Keywords: Data compression, Hu�man codes, Pattern matching, compressed match-ing.

{ 2 {

1. IntroductionThe general approach for looking for a pattern in a �le that is stored in its compressedform, is �rst decompressing and then applying one of the known pattern matchingalgorithms to the decoded �le. In many cases, however, in particular on the Internet,�les are stored in their original form, for if they were compressed, the host computerwould have to provide either memory space for each user in order to store the decoded�le, or appropriate software to support on the y decoding and matching. Bothrequirements are not reasonable, as many users can simultaneously quest the sameinformation reservoir which will either demand a large quantity of free memory, or puta great burden on the host CPU. Another possibility is transferring the compressed�les to the personal computer of the user, and then decoding the �les. However, wethen assume that the user knows the exact location of the information she or he islooking for; if this is not the case, much unneeded information will be transferred.There is therefore a need to develop methods for directly searching within acompressed �le. This so-called compressed matching problem has been introduced byAmir and Benson (1992), and has recently got a lot of attention (Amir, Benson andFarach, 1996; G�asieniec and Rytter, 1999; Farach and Thorup, 1995; K�arkk�ainen,Navarro and Ukkonen, 2000; Kida et al., 1999; deMoura et al., 1998; Navarro andRa�not, 1999; Shibata et al., 2000). It is a variant of the classical pattern matchingproblem, in which one is given a pattern P and a (usually much larger) text T , andone tries to locate the �rst or all occurrences of P in T . In the compressed versionof this problem, the text is supposed to be stored in some compressed form.For complementary encoding and decoding functions E and D, that is, functionssuch that for any text T , one gets D(E(T)) = T , our aim is to search for E(P) in E(T),rather than the usual approach which searches for the pattern P in the decompressedtext D(E(T)). A necessary condition is then that the pattern P should be encoded inthe same way throughout the text, which is not the case for arithmetic coding and fordynamic methods such as adaptive Hu�man coding. The various Lempel-Ziv variantsare also dynamic methods, but for them compressed matching is possible: all of thefragments of the pattern P appear in the compressed text, though not necessarilycontiguously and not necessarily in the same order as in the pattern, since parts ofthe compressed text are pointers to an external dictionary or to previous locationsin the given text itself. Much of the previous work on compressed pattern matchingconcentrates on Lempel-Ziv encodings. A di�erent approach is not to adhere to aknown compression scheme, but to devise a new one that is specially adapted to allowe�cient searches directly in the compressed �le (Manber, 1997; Klein and Shapira,2000).Fukamachi et al. (1992) propose a pattern matching algorithm for Hu�man en-coded strings, based on the Aho-Corasick algorithm. In order to reduce the processingtime due to bit per bit state transitions, they use a special code in which the lengthsof the codewords are multiples of four bits and present an algorithm for patternmatching in this kind of compressed �les. Shibata et al. (2000) present an e�cient{ 3 {

realization of pattern matching for Hu�man encoded text, substituting t consecutivestate transitions of the original machine by a single one. When t is a multiple of 4,this results in a speedup. Takeda et al. (2002) build a pattern matching machine byembedding a DFA that recognizes a set of codewords into an ordinary Aho-Corasickmachine, and then make it run over a text byte after byte. Their technique canhandle any pre�x code including Hu�man codes.DeMoura et al. (2000) propose a compression scheme that uses a word based byteoriented Hu�man encoding. The �rst bit of each byte is used to mark the beginningof a word. Exact and approximate pattern matching can be done on the encodedtext without decoding. Their algorithm runs twice as fast as agrep, but compressionperformance is slightly hurt. Moreover, the compression method is not applicable totexts like DNA sequences, which cannot be segmented into words.In the present work, we are interested in searching within the original Hu�manencoded text without any modi�cation. We concentrate on static Hu�man coding,for which the problem might at �rst sight seem trivial. It is, however, not alwaysstraightforward, since an instance of E(P) in the compressed text is not necessarilythe encoding of an instance of P in the original text T , and might be crossing code-word boundaries. Consider for example the Hu�man code f00, 010, 011, 100, 101,1100, 1101, 111g for the characters T, N, A, O, W, E, B and C respectively. Thebinary string 1000101100 is the encoding of the string one. Suppose, however, thatwe are searching for the pattern two: we could �nd E(two) starting at the third bitand extending to the end of E(one), as shown in Figure 1.o n ez }| { z }| { z }| {1 0 0 0 1 0 1 1 0 0| {z } | {z } | {z }t w oFigure 1: Example of a false matchThe problem is thus one of verifying that the occurrence detected by the pat-tern matching algorithm is aligned on a codeword boundary. In the next section,we suggest an algorithm for compressed matching in Hu�man encoded �les. Sec-tion 3 analyses the probability of getting false matches and experimental results arepresented in Section 4.2. Compressed Pattern Matching for Hu�man codesFor a given text T over some alphabet �, we consider the Hu�man encoded textE(T). In order to locate a pattern P in T , we start by encoding the pattern and thenapply one of the known pattern matching techniques to �nd E(P) in E(T). Note{ 4 {

that Boyer and Moore's (1977) algorithm, with its sub-linear performance might notbe the best choice here, as we deal with the binary alphabet f0,1g. An attractivealternative in our case is Karp and Rabin's (1987) probabilistic pattern matching,speci�cally because our suggested solution is also probabilistic in nature.If the algorithm does not �nd any occurrence, we know that P does not occurin T . On the other hand, if an occurrence of E(P) is detected, we cannot be surethat it corresponds to an occurrence of P in T , unless we scan the encoded text fromits beginning to locate all the codeword boundaries. This means that we e�ectivelydecode the text, which is what we wanted to avoid.No decoding is necessary, if we also keep the list I of the indices fi1; i2; : : :g ofthe �rst bit of each codeword. Once the compressed pattern has been located, theindex of its location can be searched for in I. This would just take O(log jT j) timeusing binary search, but keeping the list I might sometimes more than double thesize of the compressed �le. Consider, for example, a �le E(T) of one KB, consistingof about a thousand codewords of average length 8 bits. The corresponding list Iwould have about a thousand entries, each requiring 13 bits! It would not reallyhelp to record, instead of the list I, the sequence L of codeword lengths , which arethe di�erences between the codeword starting points fi2 � i1; i3 � i2; : : :g, ratherthan the absolute indices; logm bits are then necessary for each length, where m isthe maximum codeword length, so that the size of the list L would still be O(jT j).For the above example, if m = 16, the size of L would be 12KB. Even though thespace overhead is reduced, the required time can be just as bad as for the sequentialdecompression from scratch: instead of decoding the text, it is the list L that hasto be processed from its beginning. In fact, if already one agrees to double the sizeof the �le, a simpler solution avoiding the necessity for binary search would be tokeep a bit-string B of size identical to that of the compressed �le; a bit in a positioncorresponding to the beginning of a codeword would be set to 1 in B, and all theothers to 0.A possible simple solution would be some tradeo� between recording all codewordboundaries or none of them by preparing a small list of possible entry points into thecompressed text. Choose a parameter b and partition the compressed �le into blocksof b bits; then move, when necessary, each partition point to the closest precedingcodeword boundary, and record the index of the �rst bit in each such block in a listD. Once the pattern E(P) is found in E(T) at location `, the list D provides thestarting point of the block containing the compressed pattern, so this block can bedecompressed. The additional required space is thus O(jT j=b) and decoding time isreduced toO(b). No binary search withinD is needed, as the required starting point isstored in the b`=bcth entry ofD. For certain values of b, this may be a recommendablesolution, with small storage overhead and fast performance. However, the more wewish to reduce the size of D, the larger b will be, implying longer processing. If oneagrees to change the encoded �le slightly, one can get rid of the list D and forcealignment on block boundaries. The total number of additional bits, less than onecodeword per block, could be kept very low.{ 5 {

As alternative we suggest a solution that does not alter the compressed �le byexploiting the tendency of Hu�man codes to resynchronize quickly after errors (Kleinand Wiseman, 2000): if the pattern has been found at index i, jump back by someconstant number of bits K and start decoding from there. It might well be that thebit indexed i�K is not the beginning of a codeword in E(T), so that the decoding willbe erroneous at the beginning. However, if K is chosen large enough, the decodingof the last bits preceding bit i will generally be correct, regardless of possible errorsbefore. One can therefore decide, with a small error probability, whether to announcea match at location i or not, depending on whether bit i is the beginning of a newcodeword in the decoding that started at i � K. The formal algorithm for �ndingthe occurrences of pattern P in T is given below in Figure 2. It uses the Hu�mantree of the given alphabet �, and refers to its root as root. It also uses a proceduresearch(x; y), which returns the smallest index i such that the string x matches thesubstring of y that starts at its i-th position. If no such index exists (x does not occuras substring of y), the procedure returns 1. The decoding then starts at positioni�K, or at the beginning of the string in case K > i�1. The procedure search can beimplemented using any of the known pattern matching algorithms | we shall referspeci�cally to the Karp Rabin algorithm in Section 3.2 below | but the details havebeen omitted here to keep the focus on the solution of the synchronization problem.encode P and generate the vector E(P)while E(T) is not emptyi search(E(P); E(T))if i =1 STOPnode rootfor j max(1; i�K) to i� 1if j-th bit of E(T) = 1node left (node)else node right (node)if current node is a leafnode rootif node = rootdeclare match at address idelete the �rst i bits of E(T)Figure 2: The compressed matching algorithmThere are codes for which this algorithm does not work better than withoutthe backward jump of K bits. Indeed, suppose we start the decoding of a givencompressed string at two di�erent points, yet according to the same Hu�man tree,and suppose that at some point, these two decodings synchronize. Let x and y denotethe last codewords for the two decodings before reaching the synchronization point.{ 6 {

Then either x is a su�x of y or y is a su�x of x. In any case, the underlying Hu�mancode cannot have the so-called su�x-property , asserting that no codeword can be thesu�x of any other, similarly to the well-known pre�x-property of all Hu�man codes.Accordingly, codes having both the pre�x and the su�x property have been callednever-self-synchronizing in Gilbert and Moore (1959); they are called a�x codes inFraenkel, Mor and Perl (1983). There are in�nitely many di�erent complete variable-length a�x codes, e.g., f01; 000; 100; 110; 111; 0010; 0011; 1010; 1011g, but they arenonetheless extremely rare (Fraenkel and Klein, 1990). In particular, the code usedin Figure 1 is not a�x, since the codeword for o is a su�x of the codeword for e.Returning now to our compressed matching algorithm, if the code is an a�x codeand bit i�K does not happen to be the �rst of a codeword, the erroneous decodingwill extend to the end of the �le, for any size of K.In practice, however, synchronization is often achieved after a small number ofbits, typically less than 100. It seems therefore that by choosing K as a few hundredshould generally be enough to avoid errors like declaring a match when in fact thereis none, or failing to declare a match even though there actually is one. We bringsome experimental results below.3. Estimating the number of errors3.1 False matches in the pattern matching processWe shall compute an estimated number of false matches using two di�erent models ofthe probabilistic process underlying the text creation. Both models assume that thetext has been generated by choosing repeatedly, and independently from each other,characters from � according to their probability of occurrence p1; : : : ; pn in the text.Such an independence assumption is of course an approximation in many cases, inparticular for natural language texts which generally exhibit many dependencies. Onecould even argue that due to the independence of symbols, regular patterns shouldnot exist and therefore there is no basis for any pattern matching. We consider,however, also very large alphabets, the elements of which are not necessarily singlecharacters, but rather words or even phrases. Such models are frequently used inlarge Information Retrieval systems (Witten, Mo�at and Bell, 1994).We refer in this section to the number of false matches caused by the searchfunction only, as if the algorithm of Figure 2 were used with backskip parameterK = 0. The experiments below suggest that for large enough K, the number of falsematches generally decreases to zero.The �rst model relies on the fact that the string E(T) is the result of a Hu�manencoding process, but ignores the speci�c probabilities p1; : : : ; pn. Rather, it usesthe corresponding codeword lengths `1; : : : ; `n, respectively, and assumes that theprobabilities of the occurrence of the characters in the text are 2�`1; : : : ; 2�`n , andthat the characters occur independently of each other. Such a distribution is called{ 7 {

dyadic. The resulting approximation may be justi�ed by the fact that since theoriginal and the corresponding dyadic distributions yield the same Hu�man code,they must be quite similar. A formal de�nition of this similarity can be found inLongo and Galasso (1982), in which the set of probability distributions is given apseudo-metric, and an upper bound is derived for the distance of any probabilitydistribution to the dyadic distribution giving the same Hu�man tree.One can then use a theorem shown in Klein, Bookstein and Deerwester (1989),stating that with these assumptions, the output of Hu�man decoding is indistinguish-able from a random binary string with probability of occurrence of a 1-bit being equalto 12 . For an in�nite sequence this would then imply that any binary pattern of lengthk, with k � 1, occurs with probability 2�k. We shall use this approximation eventhough E(T) is �nite and the occurrences of characters are not really independent ofeach other.To estimate the number of false matches, we proceed as follows: let m = jE(P)jbe the length in bits of the encoding of the pattern, and assume P occurs t times inT . Consider a text string T 0, obtained from T by purging all occurrences of P . TheHu�man encoding of T 0, E(T 0), is a binary sequence of length jE(T)j� tm (assumingthat there are no overlaps of su�xes of P with pre�xes of P). Since this too is aHu�man encoded string, the probability of occurrence of E(P) is 2�m. No occurrenceof E(P) in E(T 0) corresponds to a true match of P in T 0, so we get as estimate forthe number of false matches 2�m (jE(T)j � t m): (1)In fact, we have used here two more approximations: by eliminating all the oc-currences of P , the original probabilities may have been changed, which could a�ectthe lengths of the corresponding Hu�man codewords. If t and m are small relative tothe size of the encoded text, the change in the probabilities might be small enoughto yield the same Hu�man tree (Longo and Galasso, 1982), and even if the tree isaltered, the change of the average codeword length will often be negligible. Thesecond approximation is that by removing a true match, a new false match mightappear that spans over the gap.The second model takes the probabilities p1; : : : ; pn into account and assumes acomplete pre�x code, though not necessarily one derived from Hu�man's algorithm.For convenience, we shall still use the terminology of Hu�man codes, but the analysisis also valid for any other complete pre�x code with associated probabilities. Thefollowing notations will be used below. Let T denote the Hu�man tree correspondingto a given Hu�man code. The elements which are encoded appear with probabilitiesp1; : : : ; pn in the text, and the lengths of the corresponding Hu�man codewords are`1; : : : ; `n, respectively. We shall also use the notation py for the probability of theelement corresponding to the leaf y. Denote by L the set of the leaves of T , and byI the set of its internal nodes. For each x 2 I, we de�ne Tx as the subtree of Trooted at x, and we denote by Lx = L \ Tx the set of its leaves. The internal nodesI correspond to the possible positions within a codeword at which a match of the{ 8 {

pattern P can be found. In particular, the root r of the tree, which belongs to I,corresponds to the special case where position i, returned by the procedure search inthe algorithm, is the beginning of a codeword, i.e., a true match has been found.Consider the fact of having a possible match in a certain position as if it weregenerated by the following random process: the compressed text consisting of a givensequence of zeros and ones, we pick randomly bit positions which shall act as thestarting position of the matches. In this sense, we can speak about the probabilityof having a possible match in a certain position.We thus assume that the position i returned by the procedure search occurs atrandom in any possible location, that is, at any internal node of T . For a giveninternal node x 2 I, the probability P (x) of the position corresponding to x beingreturned by the algorithm will be proportional to pi`i, and not just to pi, since wedeal with a random process on the compressed text and not on the original one.Each leaf of the Hu�man tree is associated with a probability pi, and the probabilityassociated with an internal node y is the sum of the probabilities associated withthe two children of y. Thus, when adding the probabilities associated with all theinternal nodes, we get W = Pni=1 pi`i, the weighted average codeword length, andthe probability P (x) is given by P (x) = Py2Lx pyW :This is indeed a probability distribution, as Px2I P (x) = 1.Similarly, for a leaf y 2 L, the probability of seeing the codeword correspondingto y in the compressed text, which we shall denote by P(y) to di�erentiate it fromthe above probabilities de�ned for internal nodes, will be proportional to pi`i, ratherthan just to pi, so that this probability will beP(y) = py `yW ;and again Py2LP(y) = 1.As an example for these de�nitions, consider again the Hu�man code mentionedin the introduction for the characters T, N, A, O, W, E, B and C, and suppose they occurwith probabilities 0.28, 0.19, 0.12, 0.11, 0.11, 0.06, 0.05 and 0.08, respectively. Thecorresponding Hu�man tree is depicted in Figure 3. The probability associated withany node v of L [I appears underneath v, the probabilities P (x) for x 2 I appearin grey ellipses to the right of the internal (black) nodes, and the probabilities P(y)for y 2 L appear in white boxes to the left of the leaves.Let F denote the event of getting a false match at a given position. We eval-uate the probability P (F) by conditioning on the position x 2 I returned by thealgorithm: P (F) = Xx2I P (F j algorithm returned x) P (x):{ 9 {

A O W

E B

N

T
0.28

0.19 0.11 0.11

0.06 0.05

0.12

0.31

0.11

0.22

0.59 0.41

1.00

0.078 0.067

0.039 C
0.08

0.19

0.198

0.201 0.127 0.117 0.117

0.0710.085

0.085

0.145

0.353

0.208

0.110

Figure 3: Probabilities P (x) and P(y) for the nodes of the example Hu�man treeIf x is the root, P (F j algorithm returned x) = 0, because of the pre�x property ofthe Hu�man codes. If x is some other internal node, we have to consider severalpossibilities, which are schematically displayed in Figure 4.
x

x
x

y
y

y(a) (b) (c)Figure 4: Schematic view of Hu�man tree traversal with E(P)Since we deal with a complete code, any binary sequence such as E(P) we tryto locate, can be decoded (i.e., mapped into a sequence of codewords), even if thetraversal of the tree T does not start at its root. One possibility is that E(P) isa substring of a codeword, without being its pre�x or su�x. This corresponds toa path in T starting at an internal node x and ending at another internal node y(Figure 4(a)). Another possibility is that E(P) is a su�x of a codeword (Figure 4(b)),or it could be such a su�x followed by several other codewords. The most generalcase is given in Figure 4(c): E(P) consists of the su�x of some codeword, followedby (zero or more) codewords and ending with the proper pre�x of some codeword.Denote by y(x; 1); : : : ; y(x; t�1) the sequence of leaves encountered when travers-ing the tree T , starting at the internal node x, and proceeding to left or right children{ 10 {

as directed by the binary string E(P). Let y0(x; t) be the internal node at which thistraversal �nishes. The case of Figure 4(a) corresponds to t = 1, and if the decodinghappens to �nish at the end of a codeword (as in the case of Figure 4(b)), we de�ney0(x; t) as being the root. For each of the leaves y(x; i), the probability of seeing itin the encoded text is P(y(x; i)), and the probability of seeing the pre�x correspond-ing to y0(x; t) is the sum of the probabilities of the leaves in the subtree rooted byy0(x; t). For the special case y0(x; t) = root, this sum is 1. Assuming independence ofthe events, we getP (F j algorithm returned x) = t�1Yi=1P(y(x; i)) � Xj2Ly0(x;t)P(j) � :We can therefore derive the estimated number of false matches jE(T)jP (F) asjE(T)j Xx2I0@t�1Yi=1 py(x;i) `y(x;i)W � Xj2Ly0(x;t) pj `jW �1A�Pz2Lx pzW � : (2)In any case, we see that the probability of a false match decreases sharply whenthe length m = jE(P)j increases. We bring below experimental results comparing theformulas with empiric data. It should be noted that one can argue that similarly, theexpected number of true matches can be evaluated; but true matches of E(P) in E(T)correspond to matches of P in T , and these are given since P and T are �xed. Thereis therefore no probabilistic scenario on which calculating this probability could bebased. For the false matches, however, our assumption of random occurrence seemsreasonable, yielding the above analysis.3.2 False matches resulting from probabilistic pattern matchingWe stated above that if x, the node of the Hu�man tree corresponding to the posi-tion returned by the algorithm, is the root, then P (F j algorithm returned x) = 0,i.e., there cannot be a false match, because the encoded pattern has been found at acodeword boundary and a false match would imply a violation of the pre�x property.However, this assumes that we can assure that if the pattern matching algorithmdeclares a match at position i, there is indeed a match at that position. This istrue for deterministic algorithms, but not necessarily for probabilistic ones. For in-stance, Karp and Rabin's (1987) algorithm searches for E(P) in E(T) by scanningsubstrings Zi of E(T), each of the same length m as the encoded pattern, and in-stead of comparing Zi with E(P), it compares Zi mod Q with E(P) mod Q, whereQ is a large randomly chosen prime number. If the moduli are equal, a match isdeclared, even though obviously there are many numbers a and b such that a 6= bbut a mod Q = b mod Q. Two probabilities have thus to be dealt with:1. the probability R1 that the match declared by the probabilistic pattern matchermight be an erroneous one; { 11 {

2. the probability R2 that even if there is a true match of E(P) at the declaredposition within E(T), it might not correspond to a match of P in T .The second probability R2 has been evaluated in the previous section. As to R1,note that one can easily turn the probabilistic algorithm into a deterministic one,by checking at the declared position if it indeed holds a match. Moreover, such acheck is generally not really needed. The probability to get a false match by theKarp Rabin algorithm is bounded by mn=2q, where m and n are the sizes of thepattern and the scanned text, respectively, and q = dlog2Qe is the number of bitsof the prime number Q. One can therefore choose q large enough (since m and nare given) to make this probability negligible relative to R2. Summarizing, we maysafely ignore R1: if the pattern E(P) is shorter than q, then working modulo Q is infact a real comparison and not a probabilistic one, so R1 = 0; if on the other hand,m is larger than q, then R2 will probably be extremely small.3.3 Erroneous decisions of the algorithmWhen running the pattern matching algorithm with the backskips, a correct perfor-mance identi�es the true and false matches for each of the occurrences of E(P) inE(T). These matches are called below true positives and negatives. The algorithmcan, however, also fail in two quite di�erent ways:1. It could announce a match, while in reality the occurrence of E(P) in E(T)does not correspond to an occurrence of P in T (false positives);2. It could fail to announce a match, while in reality the occurrence of E(P) inE(T) does correspond to an occurrence of P in T (false negatives).In an analogy to Information Retrieval literature, we wish to retrieve all, andonly, occurrences of P in T . The �rst type of error reduces then precision (the ratioof relevant retrieved items to all retrieved items), since it retrieves also elementswhich are not occurrences of P in T ; the second type of error reduces recall (theratio of relevant retrieved items to all relevant items), since it does not retrieve alloccurrences of P in T . The following table summarizes the four possibilities for agiven occurrence of E(P) in E(T): the columns correspond to the actual situation(match or non-match of P in T), the rows to what is announced by the algorithm.actual match actual non-matchdeclare match true positives false positivesdeclare non-match false negatives true negativesIf the algorithm does not skip backwards (K = 0), every occurrence of E(P) inE(T) would be declared as a match, so there are no false negatives, but possibly{ 12 {

many false positives. For small values of K, it is probable that synchronizationwith the true decoding is not achieved before the K bits are used up, which couldimply a large number of false decisions; but by increasing K, the probability ofsynchronization, regardless of the starting point, increases, and the number of falsepositives or negatives will decrease.4. Experimental resultsThe algorithm was tested on several �les of di�erent nature. The �rst one was paper1from the Calgary corpus, an English text with editing instructions. The second wasa DNA �le (of the Tobacco chloroplast genome), including also blanks and newlinesfor clarity; the alphabet thus consisted of 6 characters. Finally, to cancel the biasintroduced by the independence assumption, a new text was created based on thedistribution of characters in paper1, but with each character generated independentlyfrom the others.The �rst set of tests was performed on paper1, searching for arbitrary patternswhich were chosen randomly within the �le. We used a canonical Hu�man encodingand considered patterns of lengths 3 to 50, four of each. The compressed forms ofthese 192 patterns occurred in total 1077 times in the compressed text. Of theseoccurrences, 1040 corresponded to appearances of P in T , and 37 were false matches,all of which occurred for the shorter patterns up to length 5. For example, whensearching for P = fro, for which E(P) = 110010-10001-0011, the pattern P 0 =kth was retrieved (t denoting a blank), for which E(P 0) = 111100101-000-10011,including E(P) as su�x.The algorithm was then applied several times, each time with a di�erent size ofthe backward skip, which was chosen as an integral number of bytes. The �rst columnof Table 1 gives the size K of the backward skip in bits, the following columns listthe number of occurrences of true and false positives and negatives.Obviously, true positives and false negatives add up to the number of actualmatches, while true negatives and false positives add up to the number of non-matches. One sees that false positives (wrongly announced matches) are rare, inde-pendently of the algorithm, and that already for small backskips (less than 12 bytesfor all our examples), both types of errors may be corrected.Table 2 brings some example patterns P , comparing for each the actual number ofwrong matches (occurrences of E(P) in E(T) which do not correspond to occurrencesof P in T) with the expected number on the basis of formulas (1) and (2).We see that there is generally a good �t, with no formula consistently outper-forming the other. Interestingly, on the random �le, the number of wrong matcheswas much higher than the number of true matches for many of the examples.{ 13 {

K true true false falsein bits positives negatives positives negatives8 415 35 2 62516 670 33 4 37024 825 36 1 21532 917 35 2 12340 974 35 2 6648 1013 37 0 2756 1018 36 1 2264 1036 37 0 472 1038 36 1 280 1036 36 1 488 1039 37 0 196 1040 37 0 0� � �start of �le 1040 37 0 0Table 1: Number of matches and false matches as a function of backward skip
File Pattern jE(P)j # wrong estimate estimatematches (1) (2)paper1 in 8 621 1018 624cl 10 186 260 192ies 13 36 32 33lose 18 0 1 1Incre 26 0 0.004 0.004dna tcg 8 1783 1797 2483atct 9 1205 909 1094aaagta 14 35 29 34gatactc 17 5 4 4random et 8 858 1030 603ut 9 426 518 547fto 13 31 32 14eo,e 19 0 0.5 0.6Table 2 Empiric and expected number of false matches{ 14 {

5. Concluding remarksSearching for a pattern directly in a Hu�man encoded �le seems to be an easy taskbecause of the static nature of the compression scheme. There are however synchro-nization problems, which we tried to overcome in this work. If the pattern is longenough, the probability of �nding a wrong match is often very low, independentlyof the algorithm. For the other patterns, a proper choice of the backskip parameterlets us control the error.Acknowledgment: The authors would like to thank two anonymous referees for theirhelpful comments. ReferencesAmir, A. & Benson, G. (1992). E�cient two-dimensional compressed matching,Proc. Data Compression Conference DCC{92 , Snowbird, Utah, 279{288.Amir, A., Benson, G. & Farach, M. (1996). Let Sleeping Files Lie: PatternMatching in Z-compressed Files, Journal of Computer and System Sciences 52, 299-307.Boyer, R. & Moore, S. (1977). A fast String Searching Algorithm, Communica-tions of the ACM , 20, 762-772.Ga�sieniec, L. & Rytter, W. (1999). Almost optimal fully LZW-compressedpattern matching, Proc. Data Compression Conference DCC{99 , Snowbird, Utah,316{325.Gilbert, E.N. & Moore, E.F. (1959). Variable-length binary encodings, TheBell System Technical Journal 38, 933{968.Farach, M. & Thorup, M. (1995). String Matching in Lempel-Ziv CompressedStrings, Proc. 27th Annual ACM Symposium on the Theory of Computing , 703{712.Fraenkel, A.S., Mor, M. & Perl, Y. (1983). Is text compression by pre�xesand su�xes practical? Acta Informatica 20, 371{389.{ 15 {

Fraenkel, A.S. & Klein, S.T. (1990). Bidirectional Hu�man Coding, The Com-puter Journal 33, 296{307.Fukamachi, S., Shinohara, T. & Takeda, M. (1992). String pattern match-ing for compressed data using variable length code, E�cient retrieval of Genomeinformation. Proc. of Symposium on Informatics , 95{103.K�arkk�ainen, J., Navarro, G. & Ukkonen, E. (2000). Approximate stringmatching over Ziv-Lempel compressed text, Proc. 11th Annual Symposium on Com-binatorial Pattern Matching CPM{00, LNCS 1848, Springer Verlag, 195{209.Karp, R. & Rabin, M. (1987). E�cient randomized pattern matching algorithms,IBM J. Res. Development 31, 249{260.Kida, T., Takeda, M., Shinohara, A. & Arikawa, S. (1999), Shift-And ap-proach to pattern matching in LZW compressed text, Proc. 10th Annual Symposiumon Combinatorial Pattern Matching CPM{99, LNCS 1645, Springer Verlag, 1{13.Klein, S.T., Bookstein, A. & Deerwester, S. (1989), Storing Text RetrievalSystems on CD-ROM: Compression and Encryption Considerations, ACM Trans. onInformation Systems 7, 230{245.Klein, S.T. & Shapira, D. (2000). A new compression method for compressedmatching, Proc. Data Compression Conference DCC{2000, Snowbird, Utah, 400{409.Klein, S.T. & Wiseman, Y. (2000). Parallel Hu�man Decoding, Proc. DataCompression Conference DCC{2000, Snowbird, Utah, 383{392.Longo, G. & Galasso, G. (1982). An application of informational divergence toHu�man codes, IEEE Trans. on Inf. Th. IT{28, 36{43.Manber, U. (1997). A Text Compression Scheme That allows Fast Searching Di-rectly in the compressed File, ACM Transactions on Information Systems (TOIS)15, 124{136.deMoura, E.S., Navarro, G., Ziviani, N. & Baeza-Yates R. (1998). Directpattern matching on compressed text, Proc. of String Processing and InformationRetrieval (SPIRE{98), IEEE CS Press, 90{95.deMoura, E.S., Navarro, G., Ziviani, N. & Baeza-Yates R. (2000) . Fastand Flexible Word Searching on Compressed Text, ACM Transactions on Informa-{ 16 {

tion Systems (TOIS) 18(2), 113{139.Navarro, G. & Raffinot, M. (1999). A general practical approach to patternmatching over Ziv-Lempel compressed text, Proc. 10th Annual Symposium on Com-binatorial Pattern Matching CPM{99, LNCS 1645, Springer Verlag, 14{36.Shibata, Y., Kida, T., Takeda, M., Shinohara, T. & Arikawa, S. (2000).Speeding up pattern matching by text compression, Proceedings of the 4th ItalianConference on Algorithms and Complexity LNCS 1767, Springer Verlag, 306{315.Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A. & Arikawa,S. (2000). A Boyer-Moore type algorithm for compressed pattern matching, Proc.11th Annual Symposium on Combinatorial Pattern Matching CPM{00, LNCS 1848,Springer Verlag, 181{194.Takeda, M., Miyamoto, S., Kida, T., Shinohara, A., Fukamachi, S., Shi-nohara, T. & Arikawa, S. (2002). Processing Text Files as Is: Pattern Matchingover Compressed Texts, Multi-Byte character Texts, and Semi-Structured Texts,Proc. of String Processing and Information Retrieval (SPIRE{02), 170{186.Witten, I.H., Moffat, A. & Bell T.C. (1994). Managing Gigabytes, Com-pressing and Indexing Documents and Images . London: International Thomson Pub-lishing.

{ 17 {

