A Systematic Appproach to Compressing
a Full Text Retrieval System*

A. Bookstein'
S.T. Klein?
D.A. Zifff

Abstract

This paper reports on a variety of compression algorithms devel-
oped in the context of a project to put all the data files for a full-text
retrieval system on a CD-Rom. In the context of inexpensive pre-
processing, a text compression algorithm is presented that is based
on Markov-modeled Huffman coding on an extended alphabet. Data
structures are examined for facilitating random access into the com-
pressed text. In addition, new algorithms are presented for compres-
sion of word indices, both the dictionaries (word lists), and the text
pointers (concordances).

1 Introduction

In this paper we discuss the problems of compressing a large textual data-
base, and the auxiliary files necessary for convenient access, for storage on
a CD-Rom. Given the remarkable advances being made in computer mass
storage technology, the growing interest in data compression, as evidenced in
the recent spurt of literature in this area, may be surprising (see, for example,

*This paper is a revision of [5]

tCenter for Information and Language Studies (CILS), University of Chicago, 1100 E.
57th St., Chicago, IL 60637

'Department of Mathematics and Computer Science, Bar Ilan University, Ramat-Gan
52900, ISRAEL

the reviews [13] and [1]). Of course, part of this interest is associated with
requirements unrelated to storage—for example the need to transmit large
amounts of information over still expensive communication lines. But even
within the area of data storage, compression is becoming increasingly impor-
tant, ironically, driven by the advent of new storage capability. Data storage
is one area where the maxim that supply drives demand is in evidence: the
existence of new storage technologies, coupled with improved data capture
technology, has greatly increased our appetite to put more data in machine
readable form. Though interest includes pictorial and sound information,
our concern has been with text and auxilliary files.
The problem of data storage often takes one of two forms:

e The Huge Database Problem. One may have a mammoth data
base, and for operational efficiency, wish to distribute the most heav-
ily used portion over the customer base in the form of a CD-Rom. If
the distributed data were selected effectively, most use of the data-
base would be satisfied locally by means of the CD-Rom; only misses
would require more expensive interaction with the complete central
store. Clearly, the greater the probability of a hit, the more attractive
the CD-Rom would be. Here, designing procedures to identify the items
that will be heavily used is critical[4], but even in conjunction with a
very effective prediction algorithm, the performance will be enhanced
if, because of data compression, a larger portion of the database could
be fit onto the CD-Rom product.

e The Large Database Problem. A second motivation, closer to our
own concerns, are situations where it is desirable to put a whole data-
base on a CD-Rom, but where the database is somewhat too large to
fit on a CD-Rom without compression[12]. Such is the case with the
project described below. But also, we have found, the prospect of cre-
ating a database on CD-Rom generates desires that may not have been
anticipated for accompanying the text with auxilliary files that improve
processing efficiency or are convenient for the user. The more effective
the compression algorithms, the more desired, if nonessential, files can
we include.

In this paper we continue the discussion of [12], describing the current
status of the project. In particular, we shall discuss in detail our text com-

pression technique, including some of the implementation problems that had
to be overcome, and which are likely to recur in other realistic projects. The
paper also describes our strategies for compressing some of the auxiliary files
needed for effective retrieval. These extra data structures are critical for ef-
fective use of the database. They take up an amount of space comparable to
the database itself, yet their storage requirements are often overlooked. Few
other papers have examined these questions; in addition to our presentation
at RIAO ’91 [5], on which this paper is based, we note Witten, et. al. [14]
and [12].

2 The ARTFL Project

The ARTFL project (American and French Research on the Treasury of
the French Language), is likely to be a prototype of many future projects
involving text distribution. We are dealing with a large corpus of text, here
of interest largely to humanistic scholars. The need to compress the text is
most apparent. But to access the text, auxiliary files such as dictionaries,
concordances, bitmaps, etc., must be included; these are in practice very
large and separate techniques must be developed to compress them as well.

ARTFL is a cooperative project between the University of Chicago and
France’s Centre National de la Recherche Scientifique (CNRS); its goal is to
promote and facilitate research on the North American continent with the
Trésor de la Langue Francaise database (TLF). The TLF database consists
of about 680 megabytes of french language material, made up of a variety of
complete documents including novels, short stories, poetry and essays, by a
variety of authors. The bulk of the texts are from the 17th through 20th cen-
turies, although smaller databases include texts from the 16th century and
earlier. The database was created by the CNRS for the Trésor de la Langue
Francaise dictionary project. The ARTFL project is the North American
repository of the database. In conjunction with the TIRA (Textual Infor-
mation Retrieval and Analysis) research group at the Center for Information
and Language Studies at the University of Chicago, ARTFL has developed
retrieval software to support a dial-up and network-oriented database service
and has been providing access for researchers at institutions that subscribe
to the ARTFL consortium. Recently, ARTFL has considered the feasibility
of limited distribution of the database on CD-Rom to its subscribers. The

authors have studied the technical aspects of this problem. Data compression
is the primary task, since our initial estimate of the size of the database plus
auxilliary indexes was about 1 gigabyte, and our task was to fit this onto a
CD-Rom that can store about 550 megabytes of data. If possible, this was
to be done in a way that allowed additional information to be included as
well.

Let us consider briefly the important technical details of the ARTFL
database and the CD-Rom medium.

2.1 The ARTFL Database
2.1.1 The Text

The text consists of about 112,000,000 words. It is represented in ASCII,
using only upper-case letters, punctuation, digits, and a small number of
special characters. As will often be the case for a database of substantial size
and history, the coding has qualities convenient for the initial intended uses
of the database, but which are awkward when efficient storage considerations
become paramount. For example, accented letters appear in the form <z>y,
where z € {’,¢,~,",+} and y € {a,e,i,0,u,c}. Thus the phrase “Trésor
de la Langue Francaise” would appear in the database as “TR<’>ESOR DE LA
LANGUE FRAN<+>CAISE”. This makes it easy to detect accented characters,

but at the cost of considerably expanding the size of the database.

2.1.2 The Concordance

The concordance or index exists only for the 48,262,540 non-stop words, where
a stop-word is defined to be one of the 100 most frequent words in the data-
base. Every occurrence of every word in the database can be uniquely charac-
terized by a sequence of numbers that gives its exact position in the text. In
our case, the sequence consists of the collection number ¢, the author number
a (within the collection), the document number d (for each author), the part
number p (in the document), the sentence number s (in the part) and the
word number w (in the sentence). Thus any occurrence can be represented
hierarchically by the hexatuple (¢, a,d, p, s, w), which we call a coordinate.

2.1.3 The Dictionaries

The dictionary is a lexicographically sorted list of the different words in the
database. In order to allow the processing of truncated terms, in fact a
permuted dictionary[6] is kept. Since, from a first estimate, we found that
after compressing the text, the concordance, and the global dictionary, there
would still be a substantial amount of space left on the CD, and since most
user queries are author specific, we decided to store an additional set of
dictionaries—at least, one for each author. Such dictionaries will be stored
as bitmaps, indicating words from the global dictionary. Moreover, we shall
also store statistical information about the distribution of the words relative
to any given author or period.

2.1.4 Auxiliary Files

The coordinates in the concordance are given in logical hierarchical form.
To retrieve an item, we need to know the physical location of its coordinate
within the text on the CD-Rom. The translation from hierarchical coordinate
to physical location is done by means of several small tables, as described
below.

2.1.5 Bitmaps

These files are optional, but could enhance the system by speeding up the
retrieval process. The possibilities are:

1. storing maps in addition to the concordance for reducing the number
of 1/O accesses [7];

2. having the maps replace a part of the concordance (or complement it,
for example, for the stop-words) [3];

3. bitmaps as signature files [11].

2.2 The CD-Rom Medium

Technical details about CD-Roms can be found in [9] and [10]. The relevant
details for our project are the following. Since a CD-Rom is physically iden-
tical to the familiar audio-CD’s, it has become the practice to partition the

information stored on the disk into major units called minutes and seconds.
Each second is further subdivided into 75 blocks, each block to 98 frames, and
each frame to 24 bytes. Thus, a block holds 2352 bytes; however, part of it
is dedicated to error correction codes, so we can store only 2048 bytes = 2K
of information in a block, or 150K in a second and 9000K per minute. The
standard CD contains around 60 minutes = 527.34 MB and the maximum
possible is about 74 minutes, corresponding to 650.39 MB.

3 Compression of the text

The text is the largest and most complex component of our system. In our
research, and here, most effort has gone into the text component. Our ap-
proach towards text compression is first to extend the alphabet in a useful
way and then compress the modified text by means of an extension of Huff-
man encoding. Our first task, then, was to define the alphabet. Since the
accented letters always appear in the form <x>y, and the characters < and >
appear in no other context, all the strings that correspond to accented letters
(there are about ten of them) were incorporated into the alphabet as new
single letters, yielding immediate substantial savings. We then generated
occurrence statistics about the distribution of character pairs, which led to
the following observations.

3.1 Alphabet Definition
3.1.1 Preliminary Alphabet

Before beginning our formal analysis, we made some obviously required
changes to produce a preliminary alphabet. Punctuation signs (periods, com-
mas, etc.) were treated in the database in a similar way as words; thus they
are generally not appended to the words they follow, but separated from
them by white space (blank or newline). Thus, almost all the special signs,
which are

L), -0 <1

are virtually always surrounded by spaces. The one major exception is the
apostrophe (’), which is followed, but not preceded, by a space.

There were however individual exceptions. For example, ! (exclama-
tion) is followed by space 579042 times, and 3 times by another character; °
(apostrophe) is followed by blank more than 7 million times, and about 1000
times by one of 30 other characters. These are almost certainly all errors. We
discovered similar phenomena which were also almost certainly errors: indi-
vidual characters which appeared fewer than 10 times in the entire database,
and a few non-ASCII characters.

Since these odd deviants interfere with the efficient encoding of the text,
we decided first to rewrite the database, eliminating several obvious errors.
Further, though the algorithms used for extending the alphabet by includ-
ing positively correlated strings can automatically take care of the fact that
punctuation signs are (almost) always followed by blanks or newline (rep-
resented hereafter respectively by the underscore _ and by \n), we decided
to immediately incorporate certain punctuation signs followed by space as
primary elements in the alphabet before the systematic search for new char-
acters to expedite processing. The general criterion for doing this is that if a
common character is always or almost always followed or preceded by a sec-
ond given character, the two should be encoded as a single unit. Technically,
given a pair xy satisfying these criteria, the entropy, H,, is very small. But
we cannot (using Huffman coding) represent it by less than a single bit. If
x occurs often, such a discrepancy incurs a significant cost and the pair is a
candidate for immediate inclusion into our alphabet. We thus started with
an alphabet consisting of the following 82 “characters”:

abcdefghijklmnopqrstuvwzxxyz
0123456789 _\n <x><i>\n <i>_ <+>c “p s
<">e <">1 <’>e <’>u <">a <™>e <™>1i <™>0 <™>u <>a <>e <>u
PN\n " "™\n "2 2 ())\n)_

, o ,_ - -\n -_ . .. \mn ._ : ; 7

The total number of occurrences of the elements of our initial alphabet
is 624,045,965, which could be stored in 595.4 MB using a standard ASCII
encoding. Thus we have already saved over 80 megabytes of storage as com-
pared to the original database.

3.1.2 Cooccurrence Analysis

The approach we chose for encoding the text is based on [2]. The text will
be modelled as generated by a first order Markov process; thus, to encode it,
we prepare one Huffman tree T, for each character z; given that character x
has just been scanned, the following character is encoded using the tree T,.
This squares the storage requirements for the decoding tables, but we will
reduce the space complexity by clustering “similar” character distributions.

The next step then was to pass over the database and collect statistics
about the co-occurrences of these elements. Ambiguities were resolved using
a greedy method, i.e., at each point the algorithm tried to parse the longest
possible string.

Co-occurrence information was used in two ways: ultimately it formed
the basis for compression using the Markov model. But first, anticipating
its intended use as part of a Markov model, co-occurrence data gave us
the basis for planning further alphabet expansion: our strategy is to locate
those strings whose occurrences deviate most from the Markov prediction
and incorporate them into the alphabet. For example, if a trigram occurred
substantially more often than the Markov model predicted, then we can
improve compression by encoding the trigram trigram as a single character.
This differs from some commonly used methods that rely on frequency alone.
For example, it would not be helpful to encode a frequently occurring bigram
as a single character if the frequency of occurrence is predictable from the
model itself.

The impact of using a Markov model, even before alphabet expansion
was significant. Applying simple Huffman coding yields an average code-
word length of 4.48434 bits, or 333.60 MB for the entire text. Using the
Huffman code derived from bigram distribution, and assuming a first order
Markov process (see below), one gets a total size of 261.68 MB. We see that
the Markov model gives a substantial improvement over the straightforward
Huffman code. To further improve the compression, we extend the alphabet
as indicated above.

3.1.3 Identifying Deviant Strings

Denote by fg the frequency of occurrence of the string S, where S can be
one or more characters long, and by P, the conditional probability of the

character y, given that we have just scanned the character x. We thus have
Pyu = foy/ fo; similarly, P,.|,, which denotes the probability of yz given z, is
foyz/ fz- As an estimate for the length of the codeword assigned to an element
with probability of occurrence p we use — log p (all logarithms are to base 2),
which is the information theoretic lower bound; this bound is achieved for
arithmetic coding and usually approached quite well by Huffman coding.
The question now is, is it reasonable to combine two characters, say a
and b, into a single character ab. Because of the Markov assumption, we
must consider this question separately for each preceding character x. If we
don’t combine a and b, then after z the storage requirement for ab, under the
Markov assumption, is about — fzqp 10g(Py Phje). On the other hand, if ab is
treated as a unit, we expect a storage cost after x of about — fyq log Py
Summing over x we get

En([a]lb]) = =2 foar10g(PajsPoja)
En([ab]) = = foar108(Pusjz) +2(a,)

The function ¢ expresses the fact that including the string ab affects not
only the probabilities of mainly the three character a, b and ab, there is also
in fact an influence, though generally a minor one, on the probabilities of
all the other characters as well. To facilitate the computations, we shall
however assume that £(a, b) is negligible relative to the other terms, so that
our heuristic measure for including the string ab will be

Pab\

Dy(a,b) = En([a][t]) — = 2 o o8 T

Thus we should combine ab into a single character if Dy (a,b) > 0. We
first note that this quantity is always non-negative. To see this, rewrite
Jeab = NPpap a8 NPy Prab. then the sum, after expanding the conditional
probabilities, is

b Prab b ng‘lz

xa P, o :ra Py

N‘Dabz log 5P = N‘Dabz log -
x (lb Pz Pa, x ab Pa,

But, since), “’a” =land}, P“ =1, both { Mb”} and {P“} are probability
distributions, and the sum is of the form C'Y; P;log(P;/Q;), with {P;} and

9

{Q;} probability distributions; this sum is well known to be non-negative [2].
Finally, representing the probabfilities in terms of frequencies, we derive the
more useful formula

fa facab
fxa fab.

In this form, D can be computed from frequency tables, which are more
easily manipulated than the text itself. The best bigrams to be included as
new elements in the extended alphabet are those with largest Dy (a, b).

DM(aab) ~ Zfzab IOg (1)

3.1.4 Algorithm for Alphabet Construction

The simplest form of the general algorithm, which could be applied to an
arbitrary database, is therefore:

1. collect frequency statistics; use these to catch errors and to flag obvious
pairs to include in our base alphabet;

2. collect statistics on the character, bigram and trigram distribution of
the base alphabet;

3. for each triplet (z,a,b) compute Dy (z,a,b) = frap log %;

4. for triplets for which Dy(z,a,b) is greatest:

sort by (a,b), getting the set {(z,a,b) : Yz} as adjacent lines;

(a)
(b) compute for each pair (a,b): Dy(a,b) =X, Dy(z,a,b);
(c)

(d) select the n bi-grams.

sort by decreasing Dy;(a, b);

In the TLF, the elements with largest Dy (a,b) from this list are: e un s_
ue et en r. ne t. il 11 1. a_ ur re i_ se. While these are
familiar strings in French, they are hardly the most typical of the language.
Note for example the absence of qu which appears only in rank 777 in this
list. The reason is that the Markov model itself takes care of most of the
known dependencies between characters (q is almost always followed by u),
so there is no need to incorporate such strings; recall that our formula aims at
detecting those strings which most strongly deviate from the Markov model.

10

Resisting the natural impulse to combine frequent bigrams such as qu is one
example of the benefits of using a model based approach.

Our next step was to improve the selection of pairs for the extended al-
phabet. In our elaboration, we try to be careful of possible overlaps. Since
the parsing algorithm works on a greedy basis, there is some danger of cre-
ating new elements that are never used. For instance, suppose both th and
he are elements in the extended alphabet. The decision to include he as an
element was based on its frequency of appearance in the original text, to
which the word the strongly contributed. However, the word the will always
be parsed as th-e rather than t-he, leaving he unused. There are many
ways to take into account this and other higher order overlaps. We decided
on an iterative procedure, of which we present a preliminary outline here.

At the first stage, we adjoin only non-overlapping pairs to our alphabet.
More precisely, we scan the sequence of pairs (a,b) by decreasing Dy, (a,b),
and decide to adjoin a pair (a,b) to the alphabet if and only if a did not
appear in a pair that was already selected as (z,a), and b did not yet appear
in a pair as (b,y). Strongly correlated pairs which are skipped now have
another chance to be included in the next iteration.

We decided at the first stage to extend the character set to about half
again its initial size. The text was scanned again and parsed using the
extended alphabet to produce a new set of frequency tables. If we stoped at
this stage and used Markov model based Huffman coding on the new bigram
distribution, one gets a total size of 232.34 MB.

The above step was now repeated, using (1) to produce the most promis-
ing pairs of new elements. Note that such a “meta-pair” may consist of a
string of 2, 3 or 4 characters of our original alphabet. The new filtering is
more complicated, because the overlap of the pairs may now be of 1 or 2
characters. The new procedure is thus to scan the list of possible meta-pairs
in order of their expected savings as given by (1). In order for the pair (A, B)
to be included, the following conditions regarding the pairs already chosen
during this iteration must be satisfied:

1. that no pair (z, A) was already selected,;

2. if A is a single character, that there was no pair (z,yA); if A is a pair
C'z, that there was no pair (z,C);

3. that there was no pair (B, y);

11

4. if B is a single character, that there was no pair (By, z); if B is a pair
2D, that there was no pair (D, y).

At the second stage, we decided again to extend the alphabet by about half.
Another scan of the text showed that using Huffman coding on the n-grams
reduces the size of the text to 211.58 MB. Although we stopped here, the
iteration could be continued, increasing the alphabet further. This could
be compensated for by testing whether previously formed pairs could be
removed because of subsequent changes in the statistics.

For comparison, we also produced new elements assuming that the text
was created through independent character generation. Since this method
is simpler, it should be considered if the more complex procedure does not
produce a substantial benefit. Let N denote the total number of characters,
and pg the (unconditional) probability of occurrence of the string S. In order
to decide if a bigram ab should be included as a new element in the extended
alphabet, this time we compare the expected number of bits contributed by
the pair ab if it will be kept together, E([ab]), with the expected number of
bits if the characters appeared separately, F;([a][b]), under the assumption
of independent character generation. As in the previous derivation,

Ei([a][b]) = —fa(logp, + logps)
Er([ab]) = —fawlogpa +<(a,b)

Ignoring £(a, b) again, we get

Nfab
fa fb -

A bigram ab is worth being included in the extended alphabet if D(a,b) > 0.
This suggests the following procedure:

Di(a,b) = Ei([allb]) — Ei(lab]) = fu log (2)

1. compute the weight Dy (a,b) for each pair of characters (a, b);
2. sort the list by decreasing D;(a,b).

Note that contrary to Dys(a,b), D;(a,b) might be negative, that is, ex-
tending our alphabet by introducing the wrong pairs might in fact lead to
performance deterioration.

12

The results of applying this procedure on alphabet-0 were quite illu-
minating. The strongest candidates for being included were (in decreasing
order): e qu s -, d’ ou on ,. de t. nt le es _p ai
_. en _1 re ch. These are clearly some of the most strongly correlated
bigrams in French and could therefore have been expected. We also see that
the list is quite different from the one generated with (1). The surprise was
however at the other end of the list. The worst bigrams are: e _sa_ i_
t dimn u el r wu o rs su nn na tt ni. All these strings have
the following in common: their constituents are frequent characters and they
appear frequently as a pair. The reason for their place at the end of the list
is that they are all negatively correlated: that is, although they occur often,
they occur less than expected given the frequencies of their component char-
acters. Since the frequency f,, is a factor of Dy (a, b), a very frequent, slightly
negatively correlated pair may be worse than a less frequent, but strongly
negatively correlated one. This shows that the simple minded method of
including the most frequent pairs might be a bad idea. For example the pair
_e appears more than 7 million times (rank 12 in the list of bigrams sorted
by frequency), and is still the worst possible choice.

Comparing this list, which assumes independent character generation,
with the one obtained from assuming a Markov model, we see that both start
with e_, however the next element is already different: qu for the former and
un for the latter. We thus devised the following test. Using only the collected
works of Emile Zola as test database, we extended the base alphabet with
e_ and qu in one case, and with e_ and un in the other. The results were
of course very close, since only a single character was substituted, but was
consistent with our theory: the text would be stored in 6.980 MB in the first
case, 6.977 MB in the second (Markov model) case.

Extending the alphabet (using D), to the same size as in the Markov
model case and taking care not to include overlapping pairs, we got a total
size of 234.54 MB for the entire database; that is more than 2 MB (or about
1%) more than with the extension of the alphabet generated by (1). In a
second iteration, the alphabet was extended to the size of the corresponding
iteration of the Markov-based method, yielding a total size of 215.18 MB,
that is 3.6 MB more than for the alphabet of identical size based on the
Markov model. Thus we do gain a modest improvement using the Markov
based criterion — for some projects, the extra savings may not justify the
additional complexity of collecting the statistics.

13

We did not intend to extend the alphabet further, but we applied formula
(2) again to produce new meta-pairs, which could consist of 2 to 8 original
characters from our initial alphabet. Here are the strongest pairs: la. il_
qui- les_ est_ dans_ elle. un_ des_. pour vous. ne_ our,_. n’_
pas_. eur_ une_ ement_ comm ant_. ,_et. tion. con pl lus_ re
ass ati c’_es. This list is interesting in itself since all its members are
easily recognized as french word fragments, though the list has been compiled
by purely statistical methods. This shows that our method is in fact language
independent. Note also the bigram re which appeared already towards the
beginning of the first list, but has not been included in the alphabet extension
because of overlaps.

The next step is now clustering, which is described in detail in [2] (Section
5.3).

4 Compression of the concordance

Concordance compression has received some attention [8], but in our opinion,
no approach has so far placed itself within the mainstream of compression
theory. We present here an outline of a new method which we intend to
study and compare with other methods.

We wish to base our coding of a particular concordance entry on computed
probabilities of the entry taking any given value. Thus, we first compute
probabilities for possible next entries, then create a Huffman tree for cod-
ing/decoding the entry. Thus the code varies over the concordance, adapting
itself to the changing probabilities. We want the probabilities to take advan-
tage of all our most useful knowledge.

Thus there are two problems: how to compute the probabilities, and what
tree structure to use. For simplicity, suppose that coordinates are of the form
(document, part, sentence).

4.1 Probabilistic Model

We model concordance compression and decompression as a sequential pro-
cess, and we suppose that at any stage we know:

e how many occurrences remain of word;

14

e how much space is left in the database itself.

The probabilities can be estimated as follows (using independence as-
sumption): let the database be divided into units. Suppose there are x units
left in the document at the point we are compressing/decompressing the next
coordinate; and that there are y units left in the database. Further, there
are z more occurrences of the word. Then let A\ = zz/y be the expected
number of occurrences of the word in the rest of the document. If so, the
probability of the word not occurring (again) in the document is e *, while
1 — e is the probability that the word does occur again (the condition for
prefix ommission).

Similarly, we can compute the probability under this model of a skip of
1, 2, 3 or more documents before the word occurs again.

4.2 Tree Structure

These probabilities can then be used to construct a Huffman tree for the doc-
ument component of the coordinate, taking into account the prefix omission
case and the possibility of various skips. If the word does occur again in the
same document, then we can compute the probabilities of prefix omission at
the part and sentence level, etc., exactly as before. The Huffman code would
express these probabilities.

4.3 Practical point

In constructing the Huffman tree, we at various points have to encode a num-
ber (e.g. how many documents are skipped before the next occurrence). In-
stead of encoding each possibility, we should encode ranges. Thus we should
create probabilities for skipping m to n documents, where, for efficiency, rep-
resenting the values m to n requires an integral number of bits, and is as
close as possible to .5. (Note: in this case, we encode not m,m +1,...,n
but 0,1,2,...,n —m.)

5 Compression of the Dictionaries

The design and storage of the permuted dictionary is explained in [6]. We
here comment only on the additional dictionaries we wish to keep for each

15

author. Let n be the number of different words in the global dictionary. For
each author 7, we prepare a bitmap B; of length n, the j-th bit position
referring to the j'th word of the global list; the bit in position j of B; will be
1 if and only if word number j of the global list appears also in the wordlist
of author 7.

The bit-vector B; only shows whether a given word is used by the au-
thor, but we would also like to have information about the frequencies of
word occurrences within the sub-databases corresponding to each author. It
is however too costly to store such frequency lists by the straightforward
manner of representing each word position by a couple of bytes indicating its
frequency of occurrence. The problem is that, whereas most words occur in-
frequently, we would need enough space for each word to represent the most
frequently occurring word. Instead, we store this information in a hierarchi-
cal way by a sequence of tables, starting with a table with a large number
of entries but where each entry is short, up to a short table having relatively
large entries.

More specifically, for author i, we consider the bitmap itself to be table F{,
where zero indicates no occurrence and one indicates at least one occurrence.
Then, we build a table F}, for which the number of entries equals the number
of 1-bits in B;, that is, one entry for each different word used by author .
Each entry in F} is of 2 bits. The 4 possible patterns encode the numbers 1,
2, 3 or “at least four”. We again use here the fact that most of the words
occur only rarely in a given context. We then have a table F%, with one
entry for each element in F} which contained “more”. The entries in Fi are
of size 1 byte, giving us the possibility to encode frequencies from 4 to 258,
in addition to one codeword indicating that the frequency is more than 258.
Finally, a table Fi, with one entry for each element in Fi showing more than
258 occurrences, has 2 or 3 bytes per entry.

If a query is submitted which restricts the database to author i, The
bitmap B; is used to filter out the relevant words from the global dictionary.
By ANDing and ORing of these maps, one can easily respond to complex
constraints on the author set, such as words which are used by one author but
not by a certain other author, etc. The encoding and decoding procedures
for the frequency tables should be obvious.

16

6 Translating hierarchical to physical coordi-
nates

Recall that a coordinate has the form (¢, a, d, p, s, w). For a given coordinate,
we must find its physical location on the disk. This can be accomplished by
having a complete translation table for each coordinate component (for ex-
ample, a table for all authors; another for documents of an author, etc.).
However, this would be equivalent to keeping an additional copy of the con-
cordance, and is therefore ruled out on grounds of cost. In our application,
we split the access information between RAM and the disk itself.

The compressed text will be partitioned into blocks of equal size which
correspond to units which can be read in a single read-operation, say of size
4K. As we have less than 250 MB, we get about 64,000 blocks, which can be
indexed by 2 bytes. We lose about half a codeword at the end of each block
by aligning codewords with the beginning of each block.

The text is accessed via a table S which has one entry for each of the
sentences in the database. Entry number ¢ in this sequence gives the length
of (the uncompressed) sentence i in bytes (not in words). The great majority
(all but 3%) of the sentences are shorter than 256 bytes. Thus most entries
in S can be just one byte long, and the longer sentences are handled by
having 2 (or 3) consecutive bytes in S for them, the first (or first and second)
of which is 0. Immediately preceding the entry in S corresponding to the
first sentence of a part, we store the index of the block in which this part
starts (2 bytes, referred to as I below), and the offset (OF) in bytes from
the beginning of the decompressed block (2 bytes). In addition, we have
another table B, with one entry for each block, B(i) giving the size in bytes
of the decompressed block i. There are about 5 million sentences, so that
the lengths will take: for S, about 5.2 MB, then 4 additional bytes for each
of the 36,000 parts (about 144K); B requires 2 bytes for each entry (about
128K). Together, less than 5.5 MB are required.

The tables stored in RAM will give us direct access into table S on the
disk. We have a table P with one entry for each part, P(i) pointing to
the beginning of part ¢ in S. P is accessed through a table D, which has
one entry for each document (about 2000), D(i) being the index of the first
entry in P which belongs to document 7. D itself is accessed from A, a
table having one entry for each author (about 400), A(j) being the index

17

of the first entry in D which belongs to author j. For a given coordinate
X = (¢,a,d,p, s,w), the pointer to the part in S in which X can be found is
therefore P(p+ D(d + A(a))). In order to save some space, there is another
table DS, giving for each of the 2000 documents, the pointer to its beginning
in S, so that table P does not contain absolute addresses, but rather relative
offsets within the subtable of S corresponding to a document. Thus the entry
in S corresponding to X is given by

P(p+ D(d+ A(a))) + DS(d+ A(a)). (%)

Space in RAM: each entry in P uses 2 bytes; in DS, 3 bytes; and in D and
A, 2 bytes. The total is roughly 2 x 36000 + (3 4 2) x 2000 + 2 x 400 = 83K..

Access procedure: given X = (¢, a,d,p, s, w), compute (*) using a, d and
p and access the disk at the specified location in S. As noted above, the
first two entries at this location in S are I (the block index in which the part
begins) and OF, the offset within the block. Having set these, read the next s
entries and add them to OF (taking care of reading additional bytes if a zero-
byte is encountered); this gives us the offset of the sentence. Now compare
this quantity with B(I). If OF < B([I), then this sentence indeed starts in
block number I: access, decompress, and jump to OF. If OF > B(I), that
means that though part p starts in block I, sentence s of part p is in one of
the subsequent blocks. By comparing OF with B(I)+ B(I +1)+---, we can
find the index of the required block.

The process of adding the sentence lengths can be sped up by adding one
or more layers of pointers and addresses of sentences (for example, every 20-
th, 400-th, etc. sentence). The number of additional bytes would be low, and
now long parts are scanned much more quickly, skipping over large chunks
of sentences in a single operation.

An important parameter is the access time, which is slow for a CD-Rom.
We have one seek into table S, then some local processing, then one access to
table B and one to the text itself. It might be worthwhile having the table
B also in RAM. In fact, when a sequence of coordinates is processed, the
access to S is mostly only a virtual one, since an entire page will already be
in core.

18

References

1]

2]

[5]

(6]

7]

8]

9]

[10]

[11]

T. Bell, I.H. Witten, J.G. Cleary, “Modeling for Text Compression”,
ACM Computing Surveys, 21 (1989) 557-592.

A. Bookstein, S.T. Klein, “Compression, Information Theory and Gram-
mars: A Unified Approach”, ACM Transactions on Information Sys-
tems, 8 (1990) 27-49.

A. Bookstein, S.T. Klein, “Using Bitmaps for Medium Sized Informa-
tion Retrieval Systems”, to appear in Information Processing ¢ Man-
agement, 26 (1990).

A. Bookstein, J. Handley, “Comparison of Analytic Models and CHRT
for Database Subsettings”, OCLC Working Paper, Office of Research,
OCLC, 1990.

A. Bookstein, S.T. Klein, D.A. Ziff, “The ARTFL Data Compression
Project”, Proc. RIAO Conf. 1991, Barcelona (1991) 967-985.

P. Bratley, Y. Choueka, “Processing truncated terms in document re-
trieval systems”, Inf. Processing €& Management, 18 (1982) 257-266.

Y. Choueka, A.S. Fraenkel, S.T. Klein, E. Segal, “Improved techniques
for processing queries in full-text systems”, Proc. 10-th ACM-SIGIR
Conf., New Orleans (1987) 306-315.

Y. Choueka, A.S. Fraenkel, S.T. Klein, “Compression of concordances
in full-text retrieval systems”, Proc. 11-th ACM-SIGIR Conf., Grenoble
(1988) 597-612.

E.M. Cichocki, S.M. Ziemer, “Design considerations for CD-ROM re-
trieval software”, J. Amer. Soc. Inf. Sc., 39 (1988) 43—46.

D.H. Davies, “The CD-ROM medium”, J. Amer. Soc. Inf. Sc., 39 (1988)
34-42.

C. Faloutsos, S. Christodoulakis, “Signature files: An access method for
documents and its analytical performance evaluation”, ACM Transac-
tions on Information Systems, 2 (1984) 267-288.

19

[12] S.T. Klein, A. Bookstein, S. Deerwester, “Storing Text Retrieval Sys-
tems on CD-Rom: Compression and Encryption Considerations”, ACM
Transactions on Information Systems, 7(3) (1989) 230-245.

[13] D.A. Lelewer, D.S. Hirschberg, “Data Compression”, ACM Computing
Surveys, 19 (1987) 261-296.

[14] T.H. Witten, T.C. Bell, C.G. Nevill, “Models for Compression in Full-
Text Retrieval Systems”, Proc. Data Compression Conference 1991, Los
Alamitos, CA: IEEE Computer Society Press (1991), 23-32.

20

