
A Systematic Appproach to Compressinga Full Text Retrieval System�A. BooksteinyS.T. KleinzD.A. Zi�yAbstractThis paper reports on a variety of compression algorithms devel-oped in the context of a project to put all the data �les for a full-textretrieval system on a CD-Rom. In the context of inexpensive pre-processing, a text compression algorithm is presented that is basedon Markov-modeled Hu�man coding on an extended alphabet. Datastructures are examined for facilitating random access into the com-pressed text. In addition, new algorithms are presented for compres-sion of word indices, both the dictionaries (word lists), and the textpointers (concordances).1 IntroductionIn this paper we discuss the problems of compressing a large textual data-base, and the auxiliary �les necessary for convenient access, for storage ona CD-Rom. Given the remarkable advances being made in computer massstorage technology, the growing interest in data compression, as evidenced inthe recent spurt of literature in this area, may be surprising (see, for example,�This paper is a revision of [5]yCenter for Information and Language Studies (CILS), University of Chicago, 1100 E.57th St., Chicago, IL 60637zDepartment of Mathematics and Computer Science, Bar Ilan University, Ramat-Gan52900, ISRAEL 1

the reviews [13] and [1]). Of course, part of this interest is associated withrequirements unrelated to storage{for example the need to transmit largeamounts of information over still expensive communication lines. But evenwithin the area of data storage, compression is becoming increasingly impor-tant, ironically, driven by the advent of new storage capability. Data storageis one area where the maxim that supply drives demand is in evidence: theexistence of new storage technologies, coupled with improved data capturetechnology, has greatly increased our appetite to put more data in machinereadable form. Though interest includes pictorial and sound information,our concern has been with text and auxilliary �les.The problem of data storage often takes one of two forms:� The Huge Database Problem. One may have a mammoth database, and for operational e�ciency, wish to distribute the most heav-ily used portion over the customer base in the form of a CD-Rom. Ifthe distributed data were selected e�ectively, most use of the data-base would be satis�ed locally by means of the CD-Rom; only misseswould require more expensive interaction with the complete centralstore. Clearly, the greater the probability of a hit, the more attractivethe CD-Rom would be. Here, designing procedures to identify the itemsthat will be heavily used is critical[4], but even in conjunction with avery e�ective prediction algorithm, the performance will be enhancedif, because of data compression, a larger portion of the database couldbe �t onto the CD-Rom product.� The Large Database Problem. A second motivation, closer to ourown concerns, are situations where it is desirable to put a whole data-base on a CD-Rom, but where the database is somewhat too large to�t on a CD-Rom without compression[12]. Such is the case with theproject described below. But also, we have found, the prospect of cre-ating a database on CD-Rom generates desires that may not have beenanticipated for accompanying the text with auxilliary �les that improveprocessing e�ciency or are convenient for the user. The more e�ectivethe compression algorithms, the more desired, if nonessential, �les canwe include.In this paper we continue the discussion of [12], describing the currentstatus of the project. In particular, we shall discuss in detail our text com-2

pression technique, including some of the implementation problems that hadto be overcome, and which are likely to recur in other realistic projects. Thepaper also describes our strategies for compressing some of the auxiliary �lesneeded for e�ective retrieval. These extra data structures are critical for ef-fective use of the database. They take up an amount of space comparable tothe database itself, yet their storage requirements are often overlooked. Fewother papers have examined these questions; in addition to our presentationat RIAO '91 [5], on which this paper is based, we note Witten, et. al. [14]and [12].2 The ARTFL ProjectThe ARTFL project (American and French Research on the Treasury ofthe French Language), is likely to be a prototype of many future projectsinvolving text distribution. We are dealing with a large corpus of text, hereof interest largely to humanistic scholars. The need to compress the text ismost apparent. But to access the text, auxiliary �les such as dictionaries,concordances, bitmaps, etc., must be included; these are in practice verylarge and separate techniques must be developed to compress them as well.ARTFL is a cooperative project between the University of Chicago andFrance's Centre National de la Recherche Scienti�que (CNRS); its goal is topromote and facilitate research on the North American continent with theTr�esor de la Langue Fran�caise database (TLF). The TLF database consistsof about 680 megabytes of french language material, made up of a variety ofcomplete documents including novels, short stories, poetry and essays, by avariety of authors. The bulk of the texts are from the 17th through 20th cen-turies, although smaller databases include texts from the 16th century andearlier. The database was created by the CNRS for the Tr�esor de la LangueFran�caise dictionary project. The ARTFL project is the North Americanrepository of the database. In conjunction with the TIRA (Textual Infor-mation Retrieval and Analysis) research group at the Center for Informationand Language Studies at the University of Chicago, ARTFL has developedretrieval software to support a dial-up and network-oriented database serviceand has been providing access for researchers at institutions that subscribeto the ARTFL consortium. Recently, ARTFL has considered the feasibilityof limited distribution of the database on CD-Rom to its subscribers. The3

authors have studied the technical aspects of this problem. Data compressionis the primary task, since our initial estimate of the size of the database plusauxilliary indexes was about 1 gigabyte, and our task was to �t this onto aCD-Rom that can store about 550 megabytes of data. If possible, this wasto be done in a way that allowed additional information to be included aswell.Let us consider brie
y the important technical details of the ARTFLdatabase and the CD-Rom medium.2.1 The ARTFL Database2.1.1 The TextThe text consists of about 112,000,000 words. It is represented in ASCII,using only upper-case letters, punctuation, digits, and a small number ofspecial characters. As will often be the case for a database of substantial sizeand history, the coding has qualities convenient for the initial intended usesof the database, but which are awkward when e�cient storage considerationsbecome paramount. For example, accented letters appear in the form <x>y,where x 2 f'; `; ^; "; +g and y 2 fa,e,i,o,u,cg. Thus the phrase \Tr�esorde la Langue Fran�caise" would appear in the database as \TR<'>ESOR DE LALANGUE FRAN<+>CAISE". This makes it easy to detect accented characters,but at the cost of considerably expanding the size of the database.2.1.2 The ConcordanceThe concordance or index exists only for the 48,262,540 non-stop words, wherea stop-word is de�ned to be one of the 100 most frequent words in the data-base. Every occurrence of every word in the database can be uniquely charac-terized by a sequence of numbers that gives its exact position in the text. Inour case, the sequence consists of the collection number c, the author numbera (within the collection), the document number d (for each author), the partnumber p (in the document), the sentence number s (in the part) and theword number w (in the sentence). Thus any occurrence can be representedhierarchically by the hexatuple (c; a; d; p; s; w), which we call a coordinate.
4

2.1.3 The DictionariesThe dictionary is a lexicographically sorted list of the di�erent words in thedatabase. In order to allow the processing of truncated terms, in fact apermuted dictionary[6] is kept. Since, from a �rst estimate, we found thatafter compressing the text, the concordance, and the global dictionary, therewould still be a substantial amount of space left on the CD, and since mostuser queries are author speci�c, we decided to store an additional set ofdictionaries|at least, one for each author. Such dictionaries will be storedas bitmaps, indicating words from the global dictionary. Moreover, we shallalso store statistical information about the distribution of the words relativeto any given author or period.2.1.4 Auxiliary FilesThe coordinates in the concordance are given in logical hierarchical form.To retrieve an item, we need to know the physical location of its coordinatewithin the text on the CD-Rom. The translation from hierarchical coordinateto physical location is done by means of several small tables, as describedbelow.2.1.5 BitmapsThese �les are optional, but could enhance the system by speeding up theretrieval process. The possibilities are:1. storing maps in addition to the concordance for reducing the numberof I/O accesses [7];2. having the maps replace a part of the concordance (or complement it,for example, for the stop-words) [3];3. bitmaps as signature �les [11].2.2 The CD-Rom MediumTechnical details about CD-Roms can be found in [9] and [10]. The relevantdetails for our project are the following. Since a CD-Rom is physically iden-tical to the familiar audio-CD's, it has become the practice to partition the5

information stored on the disk into major units called minutes and seconds.Each second is further subdivided into 75 blocks, each block to 98 frames, andeach frame to 24 bytes. Thus, a block holds 2352 bytes; however, part of itis dedicated to error correction codes, so we can store only 2048 bytes = 2Kof information in a block, or 150K in a second and 9000K per minute. Thestandard CD contains around 60 minutes = 527.34 MB and the maximumpossible is about 74 minutes, corresponding to 650.39 MB.3 Compression of the textThe text is the largest and most complex component of our system. In ourresearch, and here, most e�ort has gone into the text component. Our ap-proach towards text compression is �rst to extend the alphabet in a usefulway and then compress the modi�ed text by means of an extension of Hu�-man encoding. Our �rst task, then, was to de�ne the alphabet. Since theaccented letters always appear in the form <x>y, and the characters < and >appear in no other context, all the strings that correspond to accented letters(there are about ten of them) were incorporated into the alphabet as newsingle letters, yielding immediate substantial savings. We then generatedoccurrence statistics about the distribution of character pairs, which led tothe following observations.3.1 Alphabet De�nition3.1.1 Preliminary AlphabetBefore beginning our formal analysis, we made some obviously requiredchanges to produce a preliminary alphabet. Punctuation signs (periods, com-mas, etc.) were treated in the database in a similar way as words; thus theyare generally not appended to the words they follow, but separated fromthem by white space (blank or newline). Thus, almost all the special signs,which are ! " ' () , - . : ; <i>are virtually always surrounded by spaces. The one major exception is theapostrophe ('), which is followed, but not preceded, by a space.6

There were however individual exceptions. For example, ! (exclama-tion) is followed by space 579042 times, and 3 times by another character; '(apostrophe) is followed by blank more than 7 million times, and about 1000times by one of 30 other characters. These are almost certainly all errors. Wediscovered similar phenomena which were also almost certainly errors: indi-vidual characters which appeared fewer than 10 times in the entire database,and a few non-ASCII characters.Since these odd deviants interfere with the e�cient encoding of the text,we decided �rst to rewrite the database, eliminating several obvious errors.Further, though the algorithms used for extending the alphabet by includ-ing positively correlated strings can automatically take care of the fact thatpunctuation signs are (almost) always followed by blanks or newline (rep-resented hereafter respectively by the underscore and by \n), we decidedto immediately incorporate certain punctuation signs followed by space asprimary elements in the alphabet before the systematic search for new char-acters to expedite processing. The general criterion for doing this is that if acommon character is always or almost always followed or preceded by a sec-ond given character, the two should be encoded as a single unit. Technically,given a pair xy satisfying these criteria, the entropy, Hyjx is very small. Butwe cannot (using Hu�man coding) represent it by less than a single bit. Ifx occurs often, such a discrepancy incurs a signi�cant cost and the pair is acandidate for immediate inclusion into our alphabet. We thus started withan alphabet consisting of the following 82 \characters":a b c d e f g h i j k l m n o p q r s t u v w x y z0 1 2 3 4 5 6 7 8 9 \n <*> <i>\n <i> <+>c ~p ~s<">e <">i <'>e <'>u <^>a <^>e <^>i <^>o <^>u <`>a <`>e <`>u! !\n ! " "\n " ' ' (())\n), ,\n , - -\n -\n . : ; ?The total number of occurrences of the elements of our initial alphabetis 624,045,965, which could be stored in 595.4 MB using a standard ASCIIencoding. Thus we have already saved over 80 megabytes of storage as com-pared to the original database.
7

3.1.2 Cooccurrence AnalysisThe approach we chose for encoding the text is based on [2]. The text willbe modelled as generated by a �rst order Markov process; thus, to encode it,we prepare one Hu�man tree Tx for each character x; given that character xhas just been scanned, the following character is encoded using the tree Tx.This squares the storage requirements for the decoding tables, but we willreduce the space complexity by clustering \similar" character distributions.The next step then was to pass over the database and collect statisticsabout the co-occurrences of these elements. Ambiguities were resolved usinga greedy method, i.e., at each point the algorithm tried to parse the longestpossible string.Co-occurrence information was used in two ways: ultimately it formedthe basis for compression using the Markov model. But �rst, anticipatingits intended use as part of a Markov model, co-occurrence data gave usthe basis for planning further alphabet expansion: our strategy is to locatethose strings whose occurrences deviate most from the Markov predictionand incorporate them into the alphabet. For example, if a trigram occurredsubstantially more often than the Markov model predicted, then we canimprove compression by encoding the trigram trigram as a single character.This di�ers from some commonly used methods that rely on frequency alone.For example, it would not be helpful to encode a frequently occurring bigramas a single character if the frequency of occurrence is predictable from themodel itself.The impact of using a Markov model, even before alphabet expansionwas signi�cant. Applying simple Hu�man coding yields an average code-word length of 4.48434 bits, or 333.60 MB for the entire text. Using theHu�man code derived from bigram distribution, and assuming a �rst orderMarkov process (see below), one gets a total size of 261.68 MB. We see thatthe Markov model gives a substantial improvement over the straightforwardHu�man code. To further improve the compression, we extend the alphabetas indicated above.3.1.3 Identifying Deviant StringsDenote by fS the frequency of occurrence of the string S, where S can beone or more characters long, and by Pyjx the conditional probability of the8

character y, given that we have just scanned the character x. We thus havePyjx = fxy=fx; similarly, Pyzjx, which denotes the probability of yz given x, isfxyz=fx. As an estimate for the length of the codeword assigned to an elementwith probability of occurrence p we use � log p (all logarithms are to base 2),which is the information theoretic lower bound; this bound is achieved forarithmetic coding and usually approached quite well by Hu�man coding.The question now is, is it reasonable to combine two characters, say aand b, into a single character ab. Because of the Markov assumption, wemust consider this question separately for each preceding character x. If wedon't combine a and b, then after x the storage requirement for ab, under theMarkov assumption, is about �fxab log(PajxPbja). On the other hand, if ab istreated as a unit, we expect a storage cost after x of about �fxab logPabjx.Summing over x we getEm([a][b]) � �Xx fxab log(PajxPbja)Em([ab]) � �Xx fxab log(Pabjx) + "(a; b)The function " expresses the fact that including the string ab a�ects notonly the probabilities of mainly the three character a, b and ab, there is alsoin fact an in
uence, though generally a minor one, on the probabilities ofall the other characters as well. To facilitate the computations, we shallhowever assume that "(a; b) is negligible relative to the other terms, so thatour heuristic measure for including the string ab will beDM(a; b) = Em([a][b]) � Em([ab]) ' Xx fxab log PabjxPajx Pbja :Thus we should combine ab into a single character if DM(a; b) � 0. We�rst note that this quantity is always non-negative. To see this, rewritefxab = NPxab as NPab PxabPab ; then the sum, after expanding the conditionalprobabilities, isN Pab Xx PxabPab log PxabPxPxaPx PabPa = N Pab Xx PxabPab log PxabPabPxaPa :But, sincePx PxabPab = 1 andPx PxaPa = 1, both nPxabPab o and nPxaPa o are probabilitydistributions, and the sum is of the form CPi Pi log(Pi=Qi), with fPig and9

fQig probability distributions; this sum is well known to be non-negative [2].Finally, representing the probab�lities in terms of frequencies, we derive themore useful formula DM(a; b) ' Xx fxab log fa fxabfxa fab : (1)In this form, D can be computed from frequency tables, which are moreeasily manipulated than the text itself. The best bigrams to be included asnew elements in the extended alphabet are those with largest DM(a; b).3.1.4 Algorithm for Alphabet ConstructionThe simplest form of the general algorithm, which could be applied to anarbitrary database, is therefore:1. collect frequency statistics; use these to catch errors and to
ag obviouspairs to include in our base alphabet;2. collect statistics on the character, bigram and trigram distribution ofthe base alphabet;3. for each triplet (x; a; b) compute DM(x; a; b) = fxab log fa fxabfxa fab ;4. for triplets for which DM(x; a; b) is greatest:(a) sort by (a; b), getting the set f(x; a; b) : 8xg as adjacent lines;(b) compute for each pair (a; b): DM(a; b) = PxDM(x; a; b);(c) sort by decreasing DM(a; b);(d) select the n bi-grams.In the TLF, the elements with largest DM(a; b) from this list are: e un sue et en r ne t il ll l a ur re i se. While these arefamiliar strings in French, they are hardly the most typical of the language.Note for example the absence of qu which appears only in rank 777 in thislist. The reason is that the Markov model itself takes care of most of theknown dependencies between characters (q is almost always followed by u),so there is no need to incorporate such strings; recall that our formula aims atdetecting those strings which most strongly deviate from the Markov model.10

Resisting the natural impulse to combine frequent bigrams such as qu is oneexample of the bene�ts of using a model based approach.Our next step was to improve the selection of pairs for the extended al-phabet. In our elaboration, we try to be careful of possible overlaps. Sincethe parsing algorithm works on a greedy basis, there is some danger of cre-ating new elements that are never used. For instance, suppose both th andhe are elements in the extended alphabet. The decision to include he as anelement was based on its frequency of appearance in the original text, towhich the word the strongly contributed. However, the word the will alwaysbe parsed as th-e rather than t-he, leaving he unused. There are manyways to take into account this and other higher order overlaps. We decidedon an iterative procedure, of which we present a preliminary outline here.At the �rst stage, we adjoin only non-overlapping pairs to our alphabet.More precisely, we scan the sequence of pairs (a; b) by decreasing DM(a; b),and decide to adjoin a pair (a; b) to the alphabet if and only if a did notappear in a pair that was already selected as (x; a), and b did not yet appearin a pair as (b; y). Strongly correlated pairs which are skipped now haveanother chance to be included in the next iteration.We decided at the �rst stage to extend the character set to about halfagain its initial size. The text was scanned again and parsed using theextended alphabet to produce a new set of frequency tables. If we stoped atthis stage and used Markov model based Hu�man coding on the new bigramdistribution, one gets a total size of 232.34 MB.The above step was now repeated, using (1) to produce the most promis-ing pairs of new elements. Note that such a \meta-pair" may consist of astring of 2, 3 or 4 characters of our original alphabet. The new �ltering ismore complicated, because the overlap of the pairs may now be of 1 or 2characters. The new procedure is thus to scan the list of possible meta-pairsin order of their expected savings as given by (1). In order for the pair (A;B)to be included, the following conditions regarding the pairs already chosenduring this iteration must be satis�ed:1. that no pair (x;A) was already selected;2. if A is a single character, that there was no pair (x; yA); if A is a pairCz, that there was no pair (x; C);3. that there was no pair (B; y); 11

4. if B is a single character, that there was no pair (By; z); if B is a pairzD, that there was no pair (D; y).At the second stage, we decided again to extend the alphabet by about half.Another scan of the text showed that using Hu�man coding on the n-gramsreduces the size of the text to 211.58 MB. Although we stopped here, theiteration could be continued, increasing the alphabet further. This couldbe compensated for by testing whether previously formed pairs could beremoved because of subsequent changes in the statistics.For comparison, we also produced new elements assuming that the textwas created through independent character generation. Since this methodis simpler, it should be considered if the more complex procedure does notproduce a substantial bene�t. Let N denote the total number of characters,and pS the (unconditional) probability of occurrence of the string S. In orderto decide if a bigram ab should be included as a new element in the extendedalphabet, this time we compare the expected number of bits contributed bythe pair ab if it will be kept together, EI([ab]), with the expected number ofbits if the characters appeared separately, EI([a][b]), under the assumptionof independent character generation. As in the previous derivation,EI([a][b]) = �fab(log pa + log pb)EI([ab]) = �fab log pab + "(a; b)Ignoring "(a; b) again, we getDI(a; b) = EI([a][b]) � EI([ab]) ' fab log N fabfa fb : (2)A bigram ab is worth being included in the extended alphabet if D(a; b)� 0.This suggests the following procedure:1. compute the weight DI(a; b) for each pair of characters (a; b);2. sort the list by decreasing Di(a; b).Note that contrary to DM(a; b), Di(a; b) might be negative, that is, ex-tending our alphabet by introducing the wrong pairs might in fact lead toperformance deterioration. 12

The results of applying this procedure on alphabet-0 were quite illu-minating. The strongest candidates for being included were (in decreasingorder): e qu s , d ' ou on , de t nt le es p ai. en l re ch. These are clearly some of the most strongly correlatedbigrams in French and could therefore have been expected. We also see thatthe list is quite di�erent from the one generated with (1). The surprise washowever at the other end of the list. The worst bigrams are: e s a it i n u el r u o rs su nn na tt ni. All these strings havethe following in common: their constituents are frequent characters and theyappear frequently as a pair. The reason for their place at the end of the listis that they are all negatively correlated: that is, although they occur often,they occur less than expected given the frequencies of their component char-acters. Since the frequency fab is a factor of DI(a; b), a very frequent, slightlynegatively correlated pair may be worse than a less frequent, but stronglynegatively correlated one. This shows that the simple minded method ofincluding the most frequent pairs might be a bad idea. For example the paire appears more than 7 million times (rank 12 in the list of bigrams sortedby frequency), and is still the worst possible choice.Comparing this list, which assumes independent character generation,with the one obtained from assuming a Markov model, we see that both startwith e , however the next element is already di�erent: qu for the former andun for the latter. We thus devised the following test. Using only the collectedworks of Emile Zola as test database, we extended the base alphabet withe and qu in one case, and with e and un in the other. The results wereof course very close, since only a single character was substituted, but wasconsistent with our theory: the text would be stored in 6.980 MB in the �rstcase, 6.977 MB in the second (Markov model) case.Extending the alphabet (using DI), to the same size as in the Markovmodel case and taking care not to include overlapping pairs, we got a totalsize of 234.54 MB for the entire database; that is more than 2 MB (or about1%) more than with the extension of the alphabet generated by (1). In asecond iteration, the alphabet was extended to the size of the correspondingiteration of the Markov-based method, yielding a total size of 215.18 MB,that is 3.6 MB more than for the alphabet of identical size based on theMarkov model. Thus we do gain a modest improvement using the Markovbased criterion | for some projects, the extra savings may not justify theadditional complexity of collecting the statistics.13

We did not intend to extend the alphabet further, but we applied formula(2) again to produce new meta-pairs, which could consist of 2 to 8 originalcharacters from our initial alphabet. Here are the strongest pairs: la ilqui les est dans elle un des pour vous ne our, n'pas eur une ement comm ant , et tion con pl lus reass ati c' es. This list is interesting in itself since all its members areeasily recognized as french word fragments, though the list has been compiledby purely statistical methods. This shows that our method is in fact languageindependent. Note also the bigram re which appeared already towards thebeginning of the �rst list, but has not been included in the alphabet extensionbecause of overlaps.The next step is now clustering, which is described in detail in [2] (Section5.3).4 Compression of the concordanceConcordance compression has received some attention [8], but in our opinion,no approach has so far placed itself within the mainstream of compressiontheory. We present here an outline of a new method which we intend tostudy and compare with other methods.We wish to base our coding of a particular concordance entry on computedprobabilities of the entry taking any given value. Thus, we �rst computeprobabilities for possible next entries, then create a Hu�man tree for cod-ing/decoding the entry. Thus the code varies over the concordance, adaptingitself to the changing probabilities. We want the probabilities to take advan-tage of all our most useful knowledge.Thus there are two problems: how to compute the probabilities, and whattree structure to use. For simplicity, suppose that coordinates are of the form(document, part, sentence).4.1 Probabilistic ModelWe model concordance compression and decompression as a sequential pro-cess, and we suppose that at any stage we know:� how many occurrences remain of word;14

� how much space is left in the database itself.The probabilities can be estimated as follows (using independence as-sumption): let the database be divided into units. Suppose there are x unitsleft in the document at the point we are compressing/decompressing the nextcoordinate; and that there are y units left in the database. Further, thereare z more occurrences of the word. Then let � = zx=y be the expectednumber of occurrences of the word in the rest of the document. If so, theprobability of the word not occurring (again) in the document is e��, while1� e�� is the probability that the word does occur again (the condition forpre�x ommission).Similarly, we can compute the probability under this model of a skip of1, 2, 3 or more documents before the word occurs again.4.2 Tree StructureThese probabilities can then be used to construct a Hu�man tree for the doc-ument component of the coordinate, taking into account the pre�x omissioncase and the possibility of various skips. If the word does occur again in thesame document, then we can compute the probabilities of pre�x omission atthe part and sentence level, etc., exactly as before. The Hu�man code wouldexpress these probabilities.4.3 Practical pointIn constructing the Hu�man tree, we at various points have to encode a num-ber (e.g. how many documents are skipped before the next occurrence). In-stead of encoding each possibility, we should encode ranges. Thus we shouldcreate probabilities for skipping m to n documents, where, for e�ciency, rep-resenting the values m to n requires an integral number of bits, and is asclose as possible to .5. (Note: in this case, we encode not m;m + 1; : : : ; nbut 0; 1; 2; : : : ; n�m.)5 Compression of the DictionariesThe design and storage of the permuted dictionary is explained in [6]. Wehere comment only on the additional dictionaries we wish to keep for each15

author. Let n be the number of di�erent words in the global dictionary. Foreach author i, we prepare a bitmap Bi of length n, the j-th bit positionreferring to the j'th word of the global list; the bit in position j of Bi will be1 if and only if word number j of the global list appears also in the wordlistof author i.The bit-vector Bi only shows whether a given word is used by the au-thor, but we would also like to have information about the frequencies ofword occurrences within the sub-databases corresponding to each author. Itis however too costly to store such frequency lists by the straightforwardmanner of representing each word position by a couple of bytes indicating itsfrequency of occurrence. The problem is that, whereas most words occur in-frequently, we would need enough space for each word to represent the mostfrequently occurring word. Instead, we store this information in a hierarchi-cal way by a sequence of tables, starting with a table with a large numberof entries but where each entry is short, up to a short table having relativelylarge entries.More speci�cally, for author i, we consider the bitmap itself to be table F i0,where zero indicates no occurrence and one indicates at least one occurrence.Then, we build a table F i1, for which the number of entries equals the numberof 1-bits in Bi, that is, one entry for each di�erent word used by author i.Each entry in F i1 is of 2 bits. The 4 possible patterns encode the numbers 1,2, 3 or \at least four". We again use here the fact that most of the wordsoccur only rarely in a given context. We then have a table F i2, with oneentry for each element in F i1 which contained \more". The entries in F i2 areof size 1 byte, giving us the possibility to encode frequencies from 4 to 258,in addition to one codeword indicating that the frequency is more than 258.Finally, a table F i3, with one entry for each element in F i2 showing more than258 occurrences, has 2 or 3 bytes per entry.If a query is submitted which restricts the database to author i, Thebitmap Bi is used to �lter out the relevant words from the global dictionary.By ANDing and ORing of these maps, one can easily respond to complexconstraints on the author set, such as words which are used by one author butnot by a certain other author, etc. The encoding and decoding proceduresfor the frequency tables should be obvious.
16

6 Translating hierarchical to physical coordi-natesRecall that a coordinate has the form (c; a; d; p; s; w). For a given coordinate,we must �nd its physical location on the disk. This can be accomplished byhaving a complete translation table for each coordinate component (for ex-ample, a table for all authors; another for documents of an author, etc.).However, this would be equivalent to keeping an additional copy of the con-cordance, and is therefore ruled out on grounds of cost. In our application,we split the access information between RAM and the disk itself.The compressed text will be partitioned into blocks of equal size whichcorrespond to units which can be read in a single read-operation, say of size4K. As we have less than 250 MB, we get about 64,000 blocks, which can beindexed by 2 bytes. We lose about half a codeword at the end of each blockby aligning codewords with the beginning of each block.The text is accessed via a table S which has one entry for each of thesentences in the database. Entry number i in this sequence gives the lengthof (the uncompressed) sentence i in bytes (not in words). The great majority(all but 3%) of the sentences are shorter than 256 bytes. Thus most entriesin S can be just one byte long, and the longer sentences are handled byhaving 2 (or 3) consecutive bytes in S for them, the �rst (or �rst and second)of which is 0. Immediately preceding the entry in S corresponding to the�rst sentence of a part, we store the index of the block in which this partstarts (2 bytes, referred to as I below), and the o�set (OF) in bytes fromthe beginning of the decompressed block (2 bytes). In addition, we haveanother table B, with one entry for each block, B(i) giving the size in bytesof the decompressed block i. There are about 5 million sentences, so thatthe lengths will take: for S, about 5.2 MB, then 4 additional bytes for eachof the 36,000 parts (about 144K); B requires 2 bytes for each entry (about128K). Together, less than 5.5 MB are required.The tables stored in RAM will give us direct access into table S on thedisk. We have a table P with one entry for each part, P (i) pointing tothe beginning of part i in S. P is accessed through a table D, which hasone entry for each document (about 2000), D(i) being the index of the �rstentry in P which belongs to document i. D itself is accessed from A, atable having one entry for each author (about 400), A(j) being the index17

of the �rst entry in D which belongs to author j. For a given coordinateX = (c; a; d; p; s; w), the pointer to the part in S in which X can be found istherefore P (p+D(d+A(a))). In order to save some space, there is anothertable DS, giving for each of the 2000 documents, the pointer to its beginningin S, so that table P does not contain absolute addresses, but rather relativeo�sets within the subtable of S corresponding to a document. Thus the entryin S corresponding to X is given byP (p+D(d+ A(a))) + DS(d+ A(a)): (�)Space in RAM: each entry in P uses 2 bytes; in DS, 3 bytes; and inD andA, 2 bytes. The total is roughly 2� 36000+ (3+ 2)� 2000+2� 400 = 83K.Access procedure: given X = (c; a; d; p; s; w), compute (*) using a, d andp and access the disk at the speci�ed location in S. As noted above, the�rst two entries at this location in S are I (the block index in which the partbegins) and OF , the o�set within the block. Having set these, read the next sentries and add them to OF (taking care of reading additional bytes if a zero-byte is encountered); this gives us the o�set of the sentence. Now comparethis quantity with B(I). If OF � B(I), then this sentence indeed starts inblock number I: access, decompress, and jump to OF . If OF > B(I), thatmeans that though part p starts in block I, sentence s of part p is in one ofthe subsequent blocks. By comparing OF with B(I)+B(I+1)+ � � �, we can�nd the index of the required block.The process of adding the sentence lengths can be sped up by adding oneor more layers of pointers and addresses of sentences (for example, every 20-th, 400-th, etc. sentence). The number of additional bytes would be low, andnow long parts are scanned much more quickly, skipping over large chunksof sentences in a single operation.An important parameter is the access time, which is slow for a CD-Rom.We have one seek into table S, then some local processing, then one access totable B and one to the text itself. It might be worthwhile having the tableB also in RAM. In fact, when a sequence of coordinates is processed, theaccess to S is mostly only a virtual one, since an entire page will already bein core.
18

References[1] T. Bell, I.H. Witten, J.G. Cleary, \Modeling for Text Compression",ACM Computing Surveys, 21 (1989) 557{592.[2] A. Bookstein, S.T. Klein, \Compression, Information Theory and Gram-mars: A Uni�ed Approach", ACM Transactions on Information Sys-tems, 8 (1990) 27{49.[3] A. Bookstein, S.T. Klein, \Using Bitmaps for Medium Sized Informa-tion Retrieval Systems", to appear in Information Processing & Man-agement, 26 (1990).[4] A. Bookstein, J. Handley, \Comparison of Analytic Models and CHRTfor Database Subsettings", OCLC Working Paper, O�ce of Research,OCLC, 1990.[5] A. Bookstein, S.T. Klein, D.A. Zi�, \The ARTFL Data CompressionProject", Proc. RIAO Conf. 1991, Barcelona (1991) 967{985.[6] P. Bratley, Y. Choueka, \Processing truncated terms in document re-trieval systems", Inf. Processing & Management, 18 (1982) 257{266.[7] Y. Choueka, A.S. Fraenkel, S.T. Klein, E. Segal, \Improved techniquesfor processing queries in full-text systems", Proc. 10-th ACM-SIGIRConf., New Orleans (1987) 306{315.[8] Y. Choueka, A.S. Fraenkel, S.T. Klein, \Compression of concordancesin full-text retrieval systems", Proc. 11-th ACM-SIGIR Conf., Grenoble(1988) 597{612.[9] E.M. Cichocki, S.M. Ziemer, \Design considerations for CD-ROM re-trieval software", J. Amer. Soc. Inf. Sc., 39 (1988) 43{46.[10] D.H. Davies, \The CD-ROMmedium", J. Amer. Soc. Inf. Sc., 39 (1988)34{42.[11] C. Faloutsos, S. Christodoulakis, \Signature �les: An access method fordocuments and its analytical performance evaluation", ACM Transac-tions on Information Systems, 2 (1984) 267{288.19

[12] S.T. Klein, A. Bookstein, S. Deerwester, \Storing Text Retrieval Sys-tems on CD-Rom: Compression and Encryption Considerations", ACMTransactions on Information Systems, 7(3) (1989) 230-245.[13] D.A. Lelewer, D.S. Hirschberg, \Data Compression", ACM ComputingSurveys, 19 (1987) 261{296.[14] I.H. Witten, T.C. Bell, C.G. Nevill, \Models for Compression in Full-Text Retrieval Systems", Proc. Data Compression Conference 1991, LosAlamitos, CA: IEEE Computer Society Press (1991), 23-32.

20

