
in Information Processing & Management 28 (1992) 735{748Models of Bitmap Generation:A Systematic Approach to Bitmap Compression�Abraham Bookstein1, Shmuel T. Klein21Center for Information and Language Studies, University of Chicago, Chicago IL 60637, USA2Dept. of Math. & CS and Dept. of Economics & BA, Bar Ilan University, Ramat Gan 52900, IsraelAbstract: In large IR systems, information about word occurrence may be stored in form of abit matrix, with rows corresponding to di�erent words and columns to documents. Such a matrix isgenerally very large and very sparse. New methods for compressing such matrices are presented, whichexploit possible correlations between rows and between columns. The methods are based on partitioningthe matrix into small blocks and predicting the 1-bit distribution within a block by means of variousbit generation models. Each block is then encoded using Hu�man or arithmetic coding. The methodsalso use a new way of enumerating subsets of �xed size from a given superset. Preliminary experimentalresults indicate improvements over previous methods.1. IntroductionThe common approach to processing complex boolean queries in large full-text docu-ment retrieval systems is to use inverted �les: a concordance is accessed via a dictionary,and includes for each di�erent word of the text, the ordered list of exact references to itsoccurrences. To process the query A1 AND A2 AND : : : AND Am, where Ai stands for a dis-junction of keywords Ai � (Ai1 OR Ai2 OR : : : OR Aini), we perform a sequence of unionsand intersections, Tmi=i �Snij=1 L(Aij)�, where L(X) is the list of \coordinates" locatingoccurrences of the keyword X.Alternatively, one could use a set of bitmaps which act as \occurrence maps". For eachdi�erent word X of the text, a vector B(X) is constructed; all the vectors B(X) have thesame length, which is the number of documents (or retrieval units) in the system; the bitin position i of B(X) is turned on (set to 1) if and only if X appears in document numberi. One of the advantages of this approach is that processing complex queries now reducesto performing logical AND and OR operations on bitstrings, which is easily done on mostmachines. For the query above, one evaluates a new bitmap F = Vmi=i �Wnij=1B(Aij)�;the set of indices of the 1-bits of F is then the requested set of relevant documents.The main problem of the bitmap approach is the huge amount of storage required bythe bitmaps. Fortunately, these bitmaps tend to be very sparse, that is, the number of 1-bits is generally substantially smaller than the number of 0-bits. Thus various compressionmethods may be applied. Depending on the density of 1-bits in the maps, compression�This paper combines and extends preliminary versions that were presented at the DCC{91Conference in Snowbird, Utah, and at the SIGIR{91 Conference in Chicago.{ 1 {

rates of up to 95% have been reported. Techniques for compressing bitmaps includevariants of run-length coding [17], [18], Hu�man coding [12], [10], and hierarchical methods[19], [6]. All of these try to compress each bitmap independently from the others. In [3],a new method is introduced that attempts to improve compression e�ciency of a set ofbitmaps by collecting similar maps into clusters.In the current work, we try a di�erent approach to the problem of compressing a setof bitmaps (in fact a bit table). Often, in such bitmap sets, bits in nearby columns arerelated to one another, and similarly for corresponding bits in successive rows. Whileeach row of the table acts as occurrence map for the given word, a column can be viewedas representing a dictionary for the given document. If so, bits in rows correspondingto frequently occurring words are more likely to have been turned on than those in rowscorresponding to rarer words. Similarly, in columns associated with longer documents,the probability of a bit being on is greater than for a shorter document. In this paper,which extends the work in [4] and [5], we are exploring the possibility of exploiting thestructure between as well as within bitmaps to compress the whole bit-table, using simplemodels of bit occurrence. The strategy of separating model construction and compressionmethod continues the now well established practice of basing compression on an explicitmodel of message generation [2].2. Description of the compression techniqueThe basic idea of all the methods described below is to partition the rows of the tableinto blocks of �xed size N bits and to estimate the probabilities of the di�erent bit-blocksby means of the assumed model. Once we have formulated the problem as encoding aset of objects for which the probability of occurrence is known, the use of Shannon-Fano,Hu�man (see [11]) or arithmetic coding [20] is suggested.Basically, our method encodes �xed sized blocks. However, as an elaboration, werecognize that the block containing only zeros might be the most common, and thus oftenwe will have a sequence of zero blocks. If this is the case, then we could encode 00, 000,etc., where multiple zeros denote sequences of null blocks. Note that if this procedure isused, we must modify the probability distribution of the block following the zero-blocksequence, since the zero-block itself cannot appear. In e�ect we are integrating run lengthcoding into the framework of Shannon-Fano or Hu�man codes, o�ering a more e�cientencoding of the run lengths and improving the encoding of non-zero bit segments as well.This can be done for arithmetic encoding as well, but is likely to be more useful for theShannon-Fano and Hu�man approaches, which su�er when probabilities near one appear.Jakobsson [12] has already suggested the use of Hu�man coding for bitmap compres-sion, using empirical counts of patterns rather than a model to de�ne the probabilities.However, his method is limited in terms of the size N of the blocks that can be com-pressed, because codewords for all of the 2N possible bit-patterns are generated. But{ 2 {

given a model of bitmap generation, the following simple argument suggests how largerblocks can be Hu�man encoded. Consider the process by which objects are encoded us-ing Hu�man's algorithm. We �rst arrange the objects in a list by decreasing values ofprobabilities. If we do so, and assume bits are turned on locally independently of oneanother, then all blocks with the same number of bits turned on will appear together inthis list. Then, as we combine objects into clusters for encoding, those objects with thesame number of bits on will tend to remain together. Continuing in this manner, at onepoint we will have a Hu�man tree, where each node represents a set of blocks, and whereall the blocks within a set have the same number of bits turned on. The full Hu�mantree will continue by representing each actual block under the node encoding the set it iscontained in. Since all the blocks within a set have the same number of bits turned on, theare nearly equi-probable, so the within-set representation is e�ectively an enumeration ofthe blocks within the set.Thus to encode a segment, we could �rst create codewords for the numbers k equal 0to N (possibly including 00, 000, etc) based on the probabilities of occurrence of a blockwith k bits on. Then we encode the block by encoding k, the number of bits on, followedby the codeword for the particular pattern of k bits. But there will typically be a verylarge number of blocks for a given value of k. If we are able to provide an enumerationof all such bit patterns, each pattern can be encoded by the binary representation of itslocation in the enumeration. Many such enumerations exist. In the next section, we derivea new enumeration method, specially adapted to our problem by permitting fast decodingwith a small storage overhead. A reader interested only in the modeling component ofour method can skip to Section 4.3. A new enumeration method for subsetsSuppose that our bitmaps are stored as blocks of N bits, of which k bits are turnedon, for k � N . N bits are needed for the most direct way to store a block. Alternatively,for small k we might be better o� by indicating the position of each 1-bit within the blockindividually, using kdlog2Ne bits. But both of these are ine�cient ways of storing sparsebitmaps: there are only �Nk � possible blocks for which k bits are on, so representing thegiven bitmap by its index in an enumeration of all bitmaps with k bits on requires onlydlog �Nk �e bits of storage. If N equals 32 and typically only two bits are turned on, wewould need 2 log2 32 = 10 bits to list the two positions of the 1-bits individually, but onlydlog2 �322 �e = 9 bits by means of an enumeration.There are many ways to enumerate a set of bitmaps [7]. For example, since a block ofN bits with k 1-bits can be interpreted as representing a subset of k elements from a givensuperset of N elements, we can adopt any subset enumeration method. The one reportedby Reingold & al. [15] is both elegant and captures the natural lexicographic ordering ofthe subsets. But in some applications, an enumeration that expresses a di�erent ordering{ 3 {

may be bene�cial. If so, a representation should be developed that reects the needs ofthe problem at hand. For our problem of bitmap storage, we note that often the 1-bitstend to cluster | that is, if a bit is on, the likelihood of the following bit being turnedon is increased. If this is the case, certain k-subsets are more likely to occur than others,and this variability in probability can be exploited to produce a more e�cient represen-tation. For example, if the order induced by our enumeration corresponds to decreasingprobability of occurrence of the bit-blocks, we could use a universal representation of theintegers to encode the index in the enumeration (see for example [8] or [1]). A universalrepresentation assigns shorter codewords to small integers and longer codewords to largeintegers, achieving thereby a more compact encoding than by using a �xed length repre-sentation. But a tendency to cluster is common in sets occurring in many problem areas,so an enumeration that recognizes this can have general applicability. For such problems,we would thus like to enumerate the k-subsets in a manner that brings together subsetshaving a comparable degree of clustering.To procede, we need a measure of bitmap clustering. Suppose then that as we go fromleft to right on the bitmap, we encounter a string (possibly null) of zero-bits, followed bya sequence of bits beginning with the leftmost 1-bit of the bitmap and ending with therightmost 1-bit of the bitmap (we shall refer to this sequence as the pattern, p, of thebitmap), then terminating with a possibly null seuqence of zero-bits. Further, a bitmapcan be de�ned by describing its pattern, then indicating where in the bitmap the patternbegins. Thus the bitmaps 10100 and 01010 are di�erent, but have the same pattern.We shall measure the degree of clustering of a bitmap by the diameter, D(p), of itspattern p: the number of bits between and including its leftmost and rightmost 1-bits.This is the sum of k, the number of bits turned on, and the number of zeros betweenthe extreme 1-bits. Our task, then, is to enumerate the bitmaps in such a manner that ifD(p1) < D(p2) then the bitmap described by p1 appears before that described by p2 inthe enumeration, that is, the bitmap described by p1 has the smaller index.3.1 TheoryThe �rst couple of cases are easy to enumerate. For k equal to zero, it is useful toassign the bitmap the value zero. If k equals one, then the value assigned to the bitmapis the value, between one and N , of the location of the only 1-bit.We thus need consider only patterns of k 1-bits within a bitmap of N bits, for k � 2.We conceptualize such a bitmap as being a pattern of diameter D shifted to its placewithin the bitmap. The pattern consists of k 1's and D � k zeros. To be consistent withour constraint, all bitmaps having patterns with smaller D must have appeared earlier.For D � 2, there are �D�2k�2� di�erent patterns of diameter D, since the D locationsconstituting a pattern must begin and end with a 1-bit; thus, to de�ne the pattern weneed only choose the locations of the remaining k� 2 1-bits from the D� 2 locations still{ 4 {

eligible.Since a pattern of diameter d can occur in any of N � d + 1 positions within thebackground bitmap, we conclude that bitmaps with patterns having diameter D beginwith index Pd<D �d�2k�2�(N � d+ 1) within the enumeration.To continue the de�nition of our enumeration, we now consider the relative order ofbitmaps having equal diameter (that is, whose patterns have the same diameter D). Iftwo bitmaps have diameter D, and in the �rst bitmap the pattern is located to the leftof the pattern in the second bitmap, then we require that the �rst bitmap appear beforethe second in the enumeration. Thus, if in the bitmap whose index we are evaluating,the pattern is shifted s places (where s = 0 if the pattern is at its leftmost location),then we add s� �D�2k�2� to the previous sum to determine the starting index of patternsof diameter D at that location in the set.But we can now continue recursively: the �nal enumeration value of the bitmap isthe sum of the previous two terms plus the enumeration value of a new pattern againsta new background bitmap. The new background is de�ned as the substring between butnot including the �rst and last 1-bits of the previous pattern; the new pattern is made upof the 1-bits and 0-bits between and including the extreme 1-bits of the remaining bits;and the shift value is de�ned as above in terms of the new pattern and background. It isthe position of the new pattern in its enumeration, that is, the enumeration value of theremaining k� 2 members within the set of D� 2 elements, that is added to the previoussum. The process stops once the pattern has zero or one 1-bits.The following example should clarify these concepts. Suppose N = 12 and the initialbitmap with 5 bits turned on is represented by the bit-string 010011010100. The originalpattern is thus 100110101, and is shifted 1 place. In the next step of recursion, thenew bitmap is 0011010, for which the new pattern is 1101, shifted 2 places against abackground of seven bits. In the next and �nal recursion step, the background bitmaphas only two positions, and the pattern has only one 1-bit, which is shifted by zero places.3.2 Simpli�cationsThe above sums can be simpli�ed using standard combinatorial relations. We �rstdecompose the �rst sum into two pieces:Xd<D d� 2k � 2!(N � d+ 1) = N Xd<D d� 2k � 2!� Xd<D d� 2k � 2!(d� 1):But in the second component we can replace �d�2k�2�(d� 1) by �d�1k�1�(k � 1) and take thek � 1 outside of the summation. Both sums are now of the form: Ps<S �sn�, yielding� Sn+1�. Thus our sum becomes: N�D�2k�1� � (k � 1)�D�1k �, and rewriting the secondbinomial coe�cient, �N � (k�1)(D�1)k � �D�2k�1�.{ 5 {

We can now formalize the enumeration. First we represent the bitmap as follows:S = �(N1; k1; d1; s1); (N2; k2; d2; s2); : : : ; (Nn; kn; dn; sn)�, where N1 = N , the size of thebitmap and Ni = di�1 � 2; di is the diameter of the i-th pattern within the Ni potentialbit positions; and si is the amount the i-th pattern is shifted within its background. Ifkn = 1 then dn = 1 as well. The encoding begins with k1 = k 1-bits and at each stagethe number of 1-bits is reduced by 2, so ki = ki�1� 2. For the above example this yieldsS = ((12; 5; 9; 1); (7; 3; 4; 2); (2; 1; 1; 0)). It is easy to see how this sequence can be usedto reconstruct the original bit-vector.In terms of this representation, the value assigned to S is1 + X1�i�n Ni � (ki � 1)(di � 1)ki ! di � 2ki � 1!+ X1�i�n si di � 2ki � 2!:In the above formul�, we de�ne �n0� = 1 if n � 0; ��10 � = 0 and ��1�1� = 1 (which isnot the standard extension of the binomial coe�cients, but is useful for our application;see Appendix for a detailed discussion of this de�nition). As usual, �nm� = 0 if n < m,and � 0m� = 0 for m > 0.As an example, let us evaluate the index of the bit-string 100 � � �01, which correspondsto S = ((N; 2; N; 0), (N � 2; 0; 0; 0)). This is the bitmap with two 1-bits of largestdiameter, and we expect it to have the largest possible index, �N2 �. The value of theindex is indeed1 + �N � (N�1)2 � �N�21 � = 1 + N2�N�22 = N2�N2 = �N2 �:3.3 ImplementationFor encoding, the formul� could be used directly or via tables. In many applications,encoding will be done once, but the reconstruction of the set will be done often andmust be reasonably e�cient. For this reason it is worth examining this component of theimplementation a little more closely.We begin, then, knowing N and k and the index value I of the bit-string within theenumeration. Since if the �rst diameter is d1, all bitmaps with smaller diameters appearearlier, and all with larger diameters appear later; thus, we can �nd the diameter ofour bitmap by �nding the largest value of d for which P�N � (k�1)(d�1)k � �d�2k�1� is stillsmaller than I. Since the values of �d�2k�1� can be tabulated within a N2 table (actuallyonly half that size if zero values are suppressed), this comparison can be done quickly.If further speed improvement is required, two tables can be used, one as above and theother with values of (k�1)(d�1)k �d�2k�1�: this reduces the amount of calculation needed tocompute the factor of the binomial coe�cients. In any case, the storage overhead for{ 6 {

these decoding tables is smaller than that required by standard enumerations, so that thenew method is preferable in an application to data compression.Once d is known, we can procede in a similar way, and with the same table, to computethe shift. Thus the positions of the �rst and last 1-bits of our bitmap are known. If wesubtract the sum associated with these two steps from the index value of the bitmap,this reduces the problem to the case of a bitmap of k � 2 from d� 2 members, with thereduced index value. We continue until zero or one element remains, for which the resultis immediate.4. Choosing the encoding methodSince we have to generate many di�erent codes, the Shannon-Fano method (as de�nedin [11]) seems the most appropriate if we are concerned with processing speed. Thus anelement, which according to the model at hand appears with probability p, will be encodedby d� log2 pe bits. Once the length of the codeword is determined, the actual codewordis easily generated. But Shannon-Fano codes are not optimal and might in fact be quitewasteful, especially for the very low probabilities.While Shannon-Fano coding is fast, when high precision is required Hu�man codesare a good alternative. Under the constraint that every codeword consists of an integralnumber of bits, they are optimal; however their computation is much more involved thanthat of Shannon-Fano codes, because here every codeword depends on the whole set ofprobabilities. Thus more processing time is needed, but compression is improved. Onthe other hand, Hu�man codes are not e�ective in the presence of very high probabilities.Elements occurring with high probability have low information content, yet their Hu�mancodeword cannot be shorter than one bit. If this is a prominent feature, arithmetic codingmust be considered.Arithmetic coding more directly uses the probabilities derived from the model de-scribed above, and overcomes the problem of high probability elements by encoding entiremessages, not just codewords. E�ectively, an element with probability p is encoded byexactly � log2 p bits, which is the information theoretic minimum. While in many con-texts arithmetic codes might not improve much on Hu�man codes, their superiority heremight be substantial, because the model may generate many high probabilities. Thereis of course a time/space tradeo�, as the computation of arithmetic codes is generallymore expensive than that of Hu�man codes. On the other hand, as can be seen fromour experimental results, arithmetic codes may perform worse than Hu�man codes whenencoding is based on estimated probabilities, as in our case, and when these estimates arenot precisely describing the true values.For arithmetic coding we have to enumerate the bit patterns and assign a cumulativeprobability to each element. We could e.g., use the enumeration developed in Section 3.{ 7 {

If k of the N bits are on, then the cumulative probability would be24k�1Xr=0 Nr !P r(1� P)N�r35+�P k(1� P)N�k;where P is the probability of a bit being turned on and is computed as described in thenext section; � is the index of the given N -bit pattern with k bits on, in the enumerationof all the N -bit patterns with k bits on, so � � �Nk �. This approach is direct and accurate.The Hu�man encoding procedure encourages a method that is less exact, but perhapsmore intuitive.4.1 Estimating the model parametersGiven the bitmap table, we would like to compute the probability of any given bitpattern for each N -bit block. To do this we must �rst use our model to estimate theprobability Pij that the bit in row i and column j is set to 1. Using P = Pij, i.e.,assuming that the probabilities are constant within a block, the probability that k bitshave been turned on, irrespective of which of the N bits in the block they are, is given bythe binomial distribution, Pr(k bits on) = �Nk �P k(1� P)N�k.We noted above that run lengths can usefully be taken into account. The modi�cationof probabilities is immediate. Our primary set of elements to encode is now N;N �1; : : : ; 1; 0; 02; : : : ; 0m, where 0i denotes the run of i 0-blocks, so that runs of length up tom are represented. The probabilities for N; : : : ; 1 are given by the binomial distributionas before. But if we denote (1 � P)N by Z, then Pr(0) is now given by Z(1 � Z), theprobability of a zero block followed by a non-zero block. Similarly, the probability of 0ifor i < m is given by Zi(1 � Z), and Pr(0m) is Zm. It is easy to see that these termssum to one. This however assumes the probability P is constant over the length of therun. When this cannot be reasonably assumed, we would use a probability Pj for column-block j: denoting (1� Pj)N by Zj , the probability of 0ij, a run of i zero-blocks startingin column-block j is thenPr(0ij) = (1� Zj+i) i�1Yr=0Zj+r for i < m; and Pr(0mj) = m�1Yr=0 Zj+r:If m is large enough to include all runs of 0, we must modify the probabilities of the blocksfollowing a run of zero-blocks, to indicate that a zero-block is impossible.The next idea is to reorganize of the entire bitmap. The original ordering of columnsis induced by the nature of the database at hand. For a column corresponding to adocument, the order is usually either chronological or classi�ed by author or subject. Therows are mostly stored in the lexicographic order of the corresponding words. There is,however, little or no interaction between the number of di�erent words in a document (that{ 8 {

is, the number of 1-bits in a column) and the time the document has been produced; asimilar remark is true for the rows. It follows that clusters of 1-bits of various sizesappear anywhere in the bit table, so that assigning a single probability to a block of rowsor columns may result in biased estimates.We therefore reorganize the rows and columns of the table so as to get monotonicallynon-increasing 1-bit density in both dimensions. Now considering the probability that a1-bit is constant within an N -bit block will imply a smaller error. Thus relatively fewparameters de�ne the model. If further economy is desired, we could estimate the row andcolumn probabilities by means of a bit generation model, thereby reducing the model totwo or three parameters for the rows and two or three for the columns. This possibility isdiscussed in the following section. For decompression we have of course to remember thetwo inverse permutations, but since these are constant, the space overhead of reorganizingthe table may be substantially smaller than the additional compression savings.4.2 Bit generation models4.2.1 Independent bit generationLet us assume that we have an R� C table of bits, of which B have been turned on.We envision the table as having been generated as follows: beginning with all bits set tozero, each of the B 1-bits is randomly tossed onto the table; if it lands in a cell, the bitassociated with the cell is turned on. Since we are dealing with sparse tables, we can, asa �rst approximation, ignore the possibility that two 1-bits will land in the same cell.In de�ning the probabilities governing the random process described above, we mustdistinguish between the probability pij that, if one more 1-bit were generated, it wouldgo to cell ij; and the probability, Pij, that after all B bits have been generated, at leastone has landed in cell ij|that is, that the bit in cell ij has indeed been turned on. Thelatter will then be used to compute the probability of any block pattern.Let us model pij �rst. In our independence model of bit generation, each row has aprobability pi associated with it and each column a probability qj . Then the probabilitythat the next 1-bit generated will go to cell ij is assumed, by the independence model, tobe given by pij = pi � qj . The probabilities pi and qj can be estimated by the row andcolumn density of bits: if ni� bits arrived in row i, and n�j bits arrived in col j, then weestimate pi by ni�B and pj by n�jB . Thus, at most only R + C parameters need be storedand transmitted to the decompression module. As will be elaborated on below, this maybe reduced further if we can model the variation in n�j and ni�.We can now estimate the probability that any given bit has in fact been turned on,since we know the probability of any 1-bit landing in the cell containing that bit, and weknow how many bits were generated. Speci�cally, if B bits are generated, the probability{ 9 {

that at least one of these land in cell ij is given by Pij = 1 � (1 � pij)B. This, then, isthe probability that the ij-th bit has been turned on. Since ni�n�j=B is small and B islarge, we can approximate this as Pij � 1� exp(�ni�n�j=B).4.2.2 Independent generation for denser mapsThe �rst model assumed that the pij were small enough so that we could ignore bitsbeing turned on more than once. A more complex model must take this possibility intoaccount, both when estimating the initial probabilities pi and qj , and computing the �nalprobabilities on which compression is based.Although the table has B bits turned on, let us assume that B0 bits were initially sentto the table, the di�erence being accounted for by multiple landings. Thus, for any givenbit, the probability of its landing in cell ij is piqj and the expected number of bits landingin that cell is B0piqj . We may assume that the actual number of bits coming to cell ij isapproximately Poisson governed. Then the probability that no 1-bit arrives at the cell isexp(�B0piqj), and thus the probability that at least one 1-bit arrives is 1�exp(�B0piqj).This is the probability that the bit in cell ij is actually on. Summing over the columns,we get as the expected number of bits on in row i, PCj=1(1�exp(�B0piqj)), and summingover the rows, we get the expected number of bits on in column j,PRi=1(1�exp(�B0piqj)).We wish to estimate the parameters B0, pi and qj from the data. To do this we equate theexpected number of 1-bits to the actual number of 1-bits: PCj=1(1� exp(�B0piqj)) = ni�and PRi=1(1� exp(�B0piqj)) = n�j .Such a set of equations can be solved iteratively. More simply, let us estimate qj by1=C when estimating pi, and pi by 1=R when estimating qj . If we do so, the equationssimplify greatly: C(1� exp(�piB0=C)) = ni�, or piB0 = �C ln(1� ni�=C), and similarlyqjB0 = �R ln(1� n�j=R). Since both the pi and the qj must sum to one we conclude:B0p = �Xi C ln�1� ni�C � pi = � CB0p ln�1� ni�C �B0q = �Xj R ln�1� n�jR � qj = � RB0q ln�1� n�jR � :We take as our estimate for B0 the average value (B0p+B0q)=2. (These values can be usedas the initial estimates of the more precise iteration process.)We now have estimated pi, qj and B0. Thus the probability that bit ij is on isPij = 1� exp(�piqjB0) and we can procede as before, using the binomial distribution toestablish the compressed representation of the block.Note that if R and C are large and ni� and n�j are relatively small, B0p and B0q are{ 10 {

both close to B, sinceB0p = �Xi ln�1� ni�C �C ' �Xi ln(e�ni�) =Xi ni� = B =Xj n�j ' B0q:Similarly, we get pi ' ni�=B and qj ' n�j=B, so that this model reduces to the simplemodel for sparse tables of Section 4.2.1.4.2.3 Generalizing uniform column densityThe assumption of bits being generated independently might not be realistic in real-lifeapplications. In fact, there is strong evidence that bit-positions sometimes interact. Sincerows correspond to words in the database and columns to documents, the occurrence of aword in a given document often implies its occurrence also in adjacent documents, whichmight treat the same topic; such a row-cluster e�ect has been exploited in hierarchicalbit-vector compression [6]. Similarly, if two words are semantically related, they will tendto appear in more or less the same documents, which leads to the appearance of 1-bitclusters in certain columns; this is the idea behind the compression method in [3]. Wetherefore consider now the following model.If the column densities were known to be uniform, we would clearly use Pi, the densityof the 1-bits in row i, as our estimate for all Pij in row i. Here Pi = ni�C , is the numberof 1-bits in row i divided by the length of the rows, which is the number of columns C.Now if the column densities are not uniform, we want to change the probabilities for eachcolumn in row i accordingly.The density of column j is measured by Qj = n�jR , the number of 1-bits in column jdivided by the length of the columns, which is the number of rows R, so that the relativeweight of column j should be proportional to Qj=PCr=1Qr = n�jB , where B is the totalnumber of 1-bits in the table. But in the uniform case, the vector of probabilities associ-ated with the bit-positions in row i would be (Pi; Pi; : : : ; Pi), with the elements summingtoMPi. Similarly, in the non-uniform case, we want the elements of the probability vectorto sum to MPi, so we �nally get as our estimate for Pij :Pij = Pi QjPrQr M = ni�n�jB :Since in some extreme cases, this value for Pij might be larger than 1, we would then takePij = 1, i.e., the model would assume that bit-position ij is occupied by a 1-bit. Notethat if ni�n�j=B is small, this value of Pij is very close to the one derived in Section 2.4.1.We noted however in our tests that many probabilities were not estimated accurately.While overestimating a probability only results in a shorter codeword (which ultimatelyyields a sub-optimal, but perhaps still close to optimal, code), signi�cantly underestimat-ing some probabilities may result in very long codewords, which can seriously a�ect the{ 11 {

average codeword length if the true probabilities are much higher. The problem is par-ticularly severe for arithmetic and Shannon-Fano coding, where the codeword length isbased only on the estimated probabilities. In contrast, the codeword lengths for Hu�mancodes depend also on the number of codewords, and minor changes in the probabilitiesdo generally not change the code. In [14] an upper bound is given on a \pseudo-distance"between two probability distributions which still yield the same Hu�man tree.The possibility of having underestimated the probabilities in certain columns leads toa model in which the weight for column j is chosen proportionally to qQj , rather thanto Qj , or more generally to Q1=kj , for k = 2; 3; : : :.4.2.4 Linear regression modelsFor our next model, we assume that the density changes regularly over rows andcolumns, and accept the possibility that there may be an interaction between rows andcolumns. We now directly estimate the expected number of bits in a block by means of aregression equation. That is, suppose that in our actual table, there are nij bits turnedon in block ij. Then we solve the linear regression equation:nij = b0 + b1 i + b2 j + b12 (i � j):We next use the parameters b0, b1, b2 and b12 just evaluated to compute the expectednumber of bits turned on in block ij: if we expect E of the N bits in a block to be turnedon, then we use E=N to estimate the binomial probability parameter, and the binomialdistribution to estimate the actual probabilities. Note that the decoder needs only theregression coe�cients and the parameters de�ning the table to reproduce this process,i.e., only 4 numbers have to be stored. Since nij is a non-increasing function in bothdimensions, we expect b1 and b2 to be negative. However, the rate of decrease is notnecessarily linear, which leads to our next model, corresponding to hyperbolic decreaserate: nij = b0 + b1 1i + b2 1j + b12 1i � j :5. Experimental resultsThe database we chose for testing some of the above methods is the Hebrew Bible,consisting of 305514 words, which are partitioned into 929 chapters. We chose eachdocument to be one chapter, so the length of each bitmap was C = 929. Restrictingourselves to the words appearing in at least 20 chapters, we got R = 1478 bitmaps. Thetotal number of 1-bits was B = 95472. The size N of a block of columns was chosen as 32bits, a block of rows consisted of 16 maps and run-lengths were generated up to m = 10.{ 12 {

We produced a new bit-table in which both row densities and column densities de-creased monotonically. For comparison, all the procedures were also applied to the non-permuted, original bitmaps. We have not yet implemented the improvement in the en-coding based on the new enumeration method of Section 3, for which the �Nk � indices arethemselves encoded by some variable length code, but assumed that dlog2 �Nk �e bits areneeded to encode any N -bit block with k 1-bits. In order to give a fair estimate of thecompression savings, we do not compare the sizes of the compressed �les to the size ofthe full bit-table of RC = 1478 � 929 = 1; 373; 062 bits, but rather to the informationtheoretic lower bound of the compressed �le which we get when all bit-positions are as-sumed independent. The latter is calculated as follows: the overall 1-bit probability isp = B=RC = 0:06953; thus the entropy per bit is
H = �p log2 p� (1� p) log2(1� p) = 0:36418;

yielding a �le size of HRC = 500; 035 bits. This value could be approached very closelyby using arithmetic coding on individual bits. The methods of the present work take rowand column interaction into account, so that this lower bound can be improved upon.Table 1 summarizes the experimental results. The compression values are the improve-ment in percent relative to the benchmark HRC, that is 100� (1� size of compressed�le =500035). A negative value thus indicates that the compressed �le was larger thanHRC.The �rst block of two lines corresponds to the model of independent generation ofSection 4.2.1 and the second block to the model of denser maps of Section 4.2.2. Thethird and fourth blocks correspond to the models of Section 4.2.3, with column weightproportional to Qj andqQj respectively. The last two blocks correspond to the regressionmodels of Section 4.2.4, taking as parameters the row and column numbers, or theirinverses, respectively. { 13 {

bit-table Shannon-Fano Arithmetic Hu�manindependent generation permuted 5.63 11.32 15.49Pij = 1� exp(�piqjB) original 5.95 10.45 14.25indep. on denser maps permuted 5.68 11.37 15.64Pij = 1� exp(�piqjB0) original 5.83 10.33 14.09column weight permuted 5.36 11.04 15.28prop. to Qj original 5.77 10.27 13.97column weight permuted 7.70 13.49 16.33prop. to qQj original 5.70 10.11 13.62linear regression on permuted -6.40 -1.30 -4.70row and column original 5.34 9.61 12.86linear regression on permuted 7.18 12.70 15.10row and column inverses original 5.13 9.28 12.77Table 1: Experimental resultsWe note that permuting the maps indeed gave improved results, except for the �rstlinear regression model (�fth block). It might be surprising that in our tests, Hu�mancoding consistently yields better compression than arithmetic coding (except again forthe �rst regression model on the permuted maps). We explain this by the fact that webase the construction of the codes on estimated probabilities, and that these estimatesare not very accurate, as mentioned earlier.For the independent generation model on denser maps (second block), the estimatednumber of 1-bits B0 is 100230 for the original maps and 102344 for the permuted ones,i.e., 5{7% higher than the actual number B. The results, however, are very close, withthe second model performing better on the permuted maps, and the �rst model on theoriginal ones.When generalizing the model of the third and fourth block to have the weight incolumn j proportional to Q1=kj , for k = 3; 4; 5; 6, we get for the Hu�man coding on thepermuted maps the compression values 16.53, 16.563, 16.565 and 16.51 respectively. Forarithmetic coding the optimum was obtained for k = 4 with 13.95.It is interesting to note that the models based on regression gave results which areonly slightly inferior to those obtained from the more complex models. The regressioncoe�cients appear in Table 2. The �rst block corresponds to the regression on row,{ 14 {

column and row � column, the second block to regression on their inverses. We seethat for the �rst model, the coe�cients of row, column and row � column are very closeto zero, i.e., the best linear approximation was an almost constant function. For thesecond model, the coe�cients seem more signi�cant. Note also that the sum of squaredresiduals (last column, entitled SSR), which gives a quantitative measure of the goodnessof the approximation, are negatively correlated to the compression savings: the betterthe approximation (lower SSR), the better the compression, for all three of Hu�man,arithmetic and Shannon-Fano codings.
bit-table intercept X1 X2 X3 SSR(X1; X2; X3) = permuted 6.585 -0.084 -0.087 0.001 14430(r; c; r � c) original 3.412 -0.008 -0.700 0.000 4308(X1; X2; X3) = permuted 0.884 21.45 0.202 7.138 3132(1r ; 1c ; 1r�c) original 1.996 -0.247 1.255 0.102 4866Table 2: Linear regression coe�cientsComparing the compression results with other methods that have been suggested: thehierarchical method of [19], with a block size of 6 bits, yields -7.61% and the improvedversion in [6] 0.30%. Jakobsson's [12] method yields 7.42%, and the method in [3] basedon XORing bitmaps with similar structure gives -1.97%.An interesting fact to note is that by using lower precision for the probabilities, weactually improved compression by arithmetic and Shannon-Fano coding! This is becauseof the existence of bit-blocks of very low probability in the models, which would have beenassigned long codewords. However, by the very fact that these bit-blocks appear in thetable, their probability is higher than predicted, so shorter codewords are appropriate.Speci�cally, the probability of no block is less than "0 = 1T , where T = RC=m is thetotal number of blocks, so we used this value as threshold. When the model predicted aprobability smaller than "0 for a certain block, we used d� log2 "0e as the correspondingcodeword length for arithmetic and Shannon-Fano codes, which is consistent with thecondition of unique decipherability. For Hu�man codes, there was no problem, since thealgorithm works even in the presence of probabilities equal to zero.In summary, the model based techniques of this paper seem to yield a signi�cantimprovement. { 15 {

6. Concluding remarksThe purpose of this paper is to push further the concept of basing compression on adetailed model of object generation|in this case, bits in a set of bitmaps. Our resultsare for an ideal case, which tests the limits of improvement possible with this approach.In practice several additional considerations must be taken into account. For example,we assumed that the row and column bitmaps are ordered. In some cases, these maybe approximately ordered naturally; otherwise we have to store additional information torelate the original bitmaps to the ordered set (for our example, this incurs an additionalcost only for the columns, since pointers to the rows must be stored in any case if arbitraryrows are to be retrieved).We are also concerned about the cost of creating codes for each block. Most likely, anadaptive method for producing them would be used, since the probabilities change slowlyand regularly over the blocks making up one row. Alternatively, a set of codes could becreated preliminary to decoding, and the most appropriate used for each block. Since eachblock is de�ned by a single parameter, P , an optimal set of intervals could be constructed.It might seem that having to store these codes is costly in space, defeating the purposeof compression. But it must be kept in mind that the only information that must bestored with the data are the parameters de�ning the model, for example, the regressioncoe�cients. All tables or trees can then be constructed given only this information. Forsituations where space is costly, but time and computing power less so, such a tradeo�may well be acceptable.A �nal concern is the occurrence of probabilities near one for zero blocks in someregions of the table. This might yield inne�cient Hu�man codes. A possibility, withinthe Hu�man framework, is to use variable length blocks as in [10], but with the blocklength being calculated from the model's parameters.Appendix: Comment on binomial coe�cientsSome readers may be struck by the deviation of our formula for �mk � from other,more customary ones when k < 0. But there is justi�cation for this deviation beyondthe fact that it is convenient for our derivation. To argue this, we review the argumentsupporting the most commonly used de�nition and indicate an alternative that also hasgood properties.One common approach to developing the binomial coe�cients is as follows [9], [13],[16]: we �rst recognize that the binomial coe�cients arise usually out of combinatorialconsiderations. Thus combinatorial arguments can be used to de�ne �mn� when m;n > 0(integer values are always understood here). This yields the familiar formula �mn� =m(m�1):::(m�n+1)n(n�1):::1 . But this formula makes sense even if m � 0, so we next extend the{ 16 {

de�nition to this domain. Thus we have de�ned �mn� for all values of m, for n > 0. Nowwe notice that these values satisfy the Pascal Triangle rule, and by demanding that thisappealing property be true generally, we are �nally able to �ll in the table for n � 0. Thisyields Table 3.But the binomial coe�cients have many other nice properties. One of the most heavilyused is the symmetry property, �mn� = � mm�n�, though this unfortunately holds only forpositive m. Another is its role in the binomial expansion: (1 + x)m = Pn �mn�xn; thissum typically is taken over n � 0, but can be extended to n < 0 if for such n the binomialcoe�cient is de�ned as zero. We will assume the sum to go over all integer values.Table 3: �mn�nm -4 -3 -2 -1 0 1 2 3 4 5 6-4 0 0 0 0 1 -4 10 -20 35 -56 84-3 0 0 0 0 1 -3 6 -10 15 -21 28-2 0 0 0 0 1 -2 3 -4 5 -6 7-1 0 0 0 0 1 -1 1 -1 1 -1 10 0 0 0 0 1 0 0 0 0 0 01 0 0 0 0 1 1 0 0 0 0 02 0 0 0 0 1 2 1 0 0 0 03 0 0 0 0 1 3 3 1 0 0 04 0 0 0 0 1 4 6 4 1 0 0The last result is particularly appealing, since it o�ers a unifying view of the table: ifwe de�ne the value of �mn� as above, we immediately get the whole table without havingto build it in stages. For example, (1 + x)0 = 1, so �00� = 1, and for n 6= 0, �0n� = 0.Similarly, �mn� = 0 for all n < 0.But de�ning the binomial coe�cients in this ways leads to a striking alternativede�nition of the table, which we call �mn��, since the expansion, taken over all n, is notunique. For consider the expansion(1 + x)m = xm �1 + 1x�m = xm Xn mn! 1xn! =Xn mn!xm�n =Xr mm� r!xr;where we use the conventional binomial expansion (over 1x) to get the second equality, andthe substitution r = m�n to get the last equality. If we now de�ne �mn�� by means of theequation (1 + x)m = Pn �mn��xn in the second expansion, we get �mn�� = � mm�n�, validfor both m and n positive, negative or zero. This relation simply expresses the symmetryproperty of the binomial coe�cients for positivem, but de�nes a distinct entity form < 0.This yields Table 4. { 17 {

Table 4: �mn��nm -6 -5 -4 -3 -2 -1 0 1 2 3 4-4 10 -4 1 0 0 0 0 0 0 0 0-3 -10 6 -3 1 0 0 0 0 0 0 0-2 5 -4 3 -2 1 0 0 0 0 0 0-1 -1 1 -1 1 -1 1 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 01 0 0 0 0 0 0 1 1 0 0 02 0 0 0 0 0 0 1 2 1 0 03 0 0 0 0 0 0 1 3 3 1 04 0 0 0 0 0 0 1 4 6 4 1The dual character of these tables is made clear from the following more generalrelation: (x+ y)m = Pn �mn�xnym�n. If we set x = 1, we get one set of values; if we sety = 1 we get the dual set. They are also related by their convergence properties as Taylorseries: the �rst expansion is well de�ned for jxj < 1, the second for jxj > 1.A �nal observation on the relationship between the two coe�cients may be helpful.Note that the values for m;n � 0 are determined by the vertical half-column of ones(n = 0, m � 0) and the positive diagonal of ones (m = n � 0) in conjunction with thePascal Triangle rule. Continued application of this rule permits a further extension of thecoe�cients for n < 0, thereby de�ning the table for all n, if m � 0. To extend the table tovalues m < 0, we can continue the vertical column of ones into the domain m < 0 (thatis, �m0� = 1 for all m) and then use the Pascal Triangle rule to get �mn� and Table 3; orwe can continue the diagonal of ones into this region (so �mm� = 1 for all m) and use thePascal Triangle rule to get �mn�� and Table 4.Several comments are in order:1. Table 4 is consistent with the de�nitions used in this paper|thus our equationsare really in terms of �mn��.2. There are several properties we would hate to lose in a rede�nition of the binomialcoe�cients. These are(a) They should be the same as the original for the positive values of m;n withwhich we are very familiar. Equivalently, for the cases where this makes sense,we should get values that apply to combinatorial arguments.Then, the most heavily used and familiar relations should hold. For us, theseinclude the following, which we append as additional requirements:(b) the symmetry property, �mn� = � mm�n�;{ 18 {

(c) the Pascal Triangle Rule; and,(d) the binomial expansion.For us, property (d) holds by de�nition. And since the tables are identical for positivem;n, property (a) holds as well. Checking the tables suggests that property (c) holds,and this is easily veri�ed from the de�ning property. Indeed, any relationship implied bythe generating function applies to the dual table.Property (b) is particularly interesting, for our derivation suggests a new interpre-tation. We now assert the symmetry property as follows: �mn�� = � mm�n�, that is, them � n value is the same as the n value of the dual table; we can describe this as theweak-symmetry property. Since the tables are identical for positive m;n, this identity istrue in the strong form for these values. But in the form given here, it is true for allintegers. References[1] Apostolico A., Fraenkel A.S., Robust transmission of unbounded strings usingFibonacci representations, IEEE Trans. on Inf. Th. IT{33 (1987) 238{245.[2] Bell T., Witten I.H., Cleary J.G., Modeling for text compression, ACM Com-puting Surveys 21 (1989) 557{591.[3] Bookstein A., Klein S.T., Optimal graphs for bit-vector compression, Proc. 13-thACM-SIGIR Conf., Brussels, Belgium (1990) 327{342.[4] Bookstein A., Klein S.T., Flexible compression for bitmap sets, Proc. DataCompression Conference, Snowbird, Utah (1991) 402{410.[5] Bookstein A., Klein S.T., Generative models for bitmap sets with compressionapplications, Proc. 14-th ACM-SIGIR Conf., Chicago; ACM, Baltimore, MD (1991)63{71.[6] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved hierarchical bit-vector compression in document retrieval systems, Proc. 9-th ACM-SIGIR Conf.,Pisa; ACM, Baltimore, MD (1986) 88{97.[7] Cover T., Enumerative Source Encoding, IEEE Trans. on Inf. Th. IT{19 (1973)73{77.[8] Elias P., Universal codeword sets and representations of integers, IEEE Trans. onInf. Th. IT{21 (1975) 194{203.[9] W. Feller, An Introduction to Probability Theory and its Applications, (2nd Ed.),Vol. I, (Wiley, NY, 1950). { 19 {

[10] Fraenkel A.S., Klein S.T., Novel compression of sparse bit-strings, in Combi-natorial Algorithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin(1985) 169{183.[11] Hamming R.W., Coding and Information Theory, Prentice-Hall, EnglewoodCli�s, NJ (1980).[12] Jakobsson M., Hu�man coding in bit-vector compression, Inf. Processing Letters7 (1978) 304{307.[13] D.E. Knuth, The Art of Computer Programming, Vol I, Fundamental algorithms,(Addison-Wesley, Reading, MA, 1973).[14] Longo G., Galasso G., An application of informational divergence to Hu�mancodes, IEEE Trans. on Inf. Th. IT{28 (1982) 36{43.[15] Reingold E., Nievergelt J., Deo N., Combinatorial Algorithms: Theory andPractice, Prentice-Hall, Englewood Cli�s, NJ (1977).[16] J. Riordan, An Introduction to Combinatorial Analysis, (Princeton UniversityPress, Princeton, NJ, 1978).[17] Schuegraf E.J., Compression of large inverted �les with hyperbolic term distribu-tion, Inf. Proc. and Management 12 (1976) 377{384.[18] Teuhola J., A compression method for clustered bit-vectors, Inf. Processing Letters7 (1978) 308{311.[19] Wedekind H., H�arder T., Datenbanksysteme II, B.-I. Wissenschaftsverlag, Mann-heim (1976).[20] Witten I.H., Neal R.M., Cleary J.G., Arithmetic coding for data compression,Communications of the ACM 30 (1987) 520{540.

{ 20 {

