
Compression of Correlated Bit-Vectors �A. Bookstein and S.T. KleinCenter for Information and Language StudiesUniversity of Chicago, 1100 East 57-th StreetChicago, IL 60637July 1990Abstract:Bitmaps are data structures occurring often in information retrieval. They are useful; they arealso large and expensive to store. For this reason, considerable e�ort has been devoted to �ndingtechniques for compressing them. These techniques are most e�ective for sparse bitmaps. We proposea preprocessing stage, in which bitmaps are �rst clustered and the clusters used to transform theirmember bitmaps into sparser ones, that can be more e�ectively compressed. The clustering methode�ciently generates a graph structure on the bitmaps. In some situations, it is desired to imposerestrictions on the graph; �nding the optimal graph satisfying these restrictions is shown to be NP-complete. The results of applying our algorithm to the Bible is presented: for some sets of bitmaps,our method almost doubled the compression savings.1. IntroductionTextual Information Retrieval Systems (IRS) are voracious consumers of computerstorage resources. Most conspicuous, of course, is the text itself, which constitutesthe content of the database. But, to e�ciently use the database, auxiliary structuresmust be created that themselves require a substantial ammount of space. Thus,mecanisms for compressing a wide range of data structures must be sought for thee�cient operation of such systems [10]. To date, most attention has been given to,and progress made in, the area of text compression ([2], [13], [16]). In this paper, weshall describe and examine the possibilities of compressing bitmaps, a data structureoften proposed for improving the performance of retrieval systems ([6], [18]).Bitmaps occur often in information retrieval. They can represent the occurrencesof a word in the sentences or paragraphs making up a text; they can indicate thedocuments associated with an index term; they appear as bit slices of a matrix ofsignatures; they might represent pixels in rows of a raster graphics display. They areuseful; they are also large and expensive to store. Much work has been carried out on� This paper extends the work presented at the 13-th ACM{SIGIR Conference (Brussels,September 1990) under the title Construction of Optimal Graphs for Bit-Vector Compression.{ 1 {

the compression of bitmaps, and this has been especially successful for those that arevery sparse. But not all bitmaps are sparse, and even sparse bitmaps could bene�tfrom further compression. This paper describes a method that complements existingcompression techniques and improves their performance, at least for certain categoriesof bitmaps.We concentrate on sets of bitmaps such as are generally found in informationretrieval (IR) systems. How such bitmaps can be used to enhance the system isdiscussed in [5] and [3]. Each bit-position corresponds to a speci�ed sub-unit ofthe database, henceforth referred to as a segment; below, a segment will refer toa paragraph of text, though, in other contexts, a full document (or even a set ofdocuments) may be the preferred unit. For each di�erent word (or index term) W inthe database, there is a map B(W), such that the i-th bit of B(W) is 1 if and onlyif W appears in (or is assigned to) segment i. Such bitmaps can be compressed verye�ciently. In part this is because they tend to be very sparse. That bitmaps compressbetter as they become sparser is expected theoretically. For suppose a bitmap can beconsidered as having been produced by a random bit generator, with the probabilityof a one bit being p (the theory can easily be extended to encompass more complexmodels of bitmap generation). Then the information content of a bit is given by:H = �p log p� (1� p) log(1� p);and, for a bitmap of ` bits, the quantity `H forms a lower bound on the number ofbits needed to represent the bitmap. As is well known, H increases monotonically asp increases from 0 to .5, and then decreases monotonically as p continues growing.Since almost all of our bitmaps have p less than .5, we expect compression to improveas p decreases, that is, as the map becomes sparser. (For p > :5, we could complementthe bitmap before proceding.) Thus we wish to be alert to opportunities for reducingthe density of our bitmaps; this is the essence of the approach described in this paper.Other factors also contribute to our ability to compress bitmaps e�ectively, asevidenced by the fact that actual IR bitmaps are more compressible than randomlygenerated bitmaps with the same density of 1-bits [4]. The reason for the better resultsis a cluster-e�ect: since the segment positions in the bitmaps are usually orderedby topic or chronologically, adjacent bits often correspond to segments treating thesame or related subjects. Thus the appearance of a word in a given segment oftenimplies that it also appears in neighboring segments. This e�ect is exploited by manycompression methods, resulting in excellent reduction in storage requirements.There is, however, another clustering possibility that has hitherto been overlooked,one involving sets of bitmaps (words), rather than sets of bits (segments) within asingle bitmap. The occurrences of certain words, especially those taking part in wellknown phrases like Security Council or Curriculum vitae, are sometimes strongly{ 2 {

correlated accross segments in the sense that if one word appears in a certain segment,the other is also very likely to do so. Such pairs of bitmaps are likely to be quitesimilar. But identifying clusters of such highly associated words is not as direct asit was for bit clusters within a bitmap, because words and their associated bitmapsare generally arranged in lexicographical order, not in order of logical proximity. Inthis respect, IR bitmaps di�er from self-clustered graphic bitmaps, in which adjacent(raster) rows are often similar. The objective of this paper is to show how to usefullyidentify clusters of correlated words, and then take advantage of these associations tosqueeze out some additional compression.In Section 2, we brie
y review some known bitmap compression techniques andpropose a new one that is simple and easy to implement; it will then be used as thecompression component of a two-stage compression process described in Section 3.The �rst stage of the two stage process is to partition the bitmaps of our IR systeminto clusters of correlated bitmaps; the resulting clusters are then used to transformthe original bitmaps into another set of bitmaps that are sparser and more e�ectivelycompressed in stage 2 of the process. In Section 4 we report on experiments testingthe new method; the database we chose to study was the Hebrew Bible. We thenconsider in Section 5 variants that address some problems raised by the example,and would on occasion be useful; a couple of related problems are then shown to beNP-complete.2. Bit-vector compression techniques2.1 Overview of some known methodsSuppose we are given a bitmap v of length ` bits, of which s are ones and ` � sare zeros. In our applications, the maps are usually sparse, i.e., s� `. The simplestway to store v compactly for very small n is to enumerate the positions of the1-bits. As one needs d = dlog2 `e bits to identify any position, this method wouldneed sd bits for each map, which may well be much smaller than the ` bits requiredfor the uncompressed original map. Alternatively, one could record the distancesbetween successive 1-bits, that is, give the position of a 1-bit relative to the preceding1-bit position rather than relative to the beginning of the vector. This is known asrun-length coding (Schuegraf [14]). In its simplest form, the length of every run isencoded by a �xed length codeword; since this codeword must be large enough toaccommodate the theoretical maximum run length, this is equivalent to the previousmethod.Since, in simple run length coding, the space allocated for each run must beadequate for the largest possible run, such codes can be ine�cient if many of theruns are of small or moderate length. The following variant, due to Teuhola [17],improves on simple run length coding by having a variable length representation of{ 3 {

a run length. A run of r zeros is �rst broken up into successive blocks of zeros ofexponentially increasing size; the �rst block is of size 2k (for k a parameter selected tooptimize this procedure), the second of size 2k+1, etc., until a block is produced thatextends beyond the run, i.e., is partially �lled. The length of the run, r, can then berepresented as follows: (a) each block in the sequence that is completely �lled withzeros is represented in turn by a one, and (b) a zero is appended to the string of onesas delimiter. If t ones are present, then we know 2k + 2k+1 + � � � + 2k+t�1 � r <2k + � � �+ 2k+t�1 + 2k+t, that is: the �rst t blocks are �lled with zeros, but the lastpotential block of 2k+t zeros is either empty or partially �lled. So, �nally, (c) we canexplicitly represent the number of zeros in the last block as a binary integer with k+ tbits. Thus a run of length r is encoded by O(log r) bits instead of O(log(max length)).Jakobsson [9] suggests the use of Hu�man coding for bitmaps. The bit-vectoris partitioned into blocks of �xed size k, and statistics are collected on the frequencyof occurrence of the 2k bit patterns. Based on these statistics, the set of blocks isHu�man encoded, and the bitmap itself is encoded as a sequence of such codewords.For sparse vectors, the k-bit block consisting of zeros only, and blocks with only asingle 1-bit, have much higher probabilities than the other blocks, so the averagecodeword length of the Hu�man code will be smaller than k.Fraenkel & Klein [7] combine Hu�man coding with run-length coding. Onceagain, a parameter k is chosen as a block size. However, since for very sparse vectorsthe probability of a block of k zeros is high, runs of blocks of k zeros receive specialtreatment. We �rst represent the succession of k-bit blocks comprising a bitmapas a sequence of two categories of symbols: beginning with the �rst block, if a k-bitblock includes 1-bits, then we represent it by its own special symbol, as in the previousmethod. If it is a zero-block, then instead of representing the block itself, we representthe entire run of zero blocks which it starts by a string of integers as follows: supposethe run consists of r zero-blocks, with r represented in binary form as r = Pi�0 ai2i,for ai zero or one. Then the run is represented in the symbol sequence by the string ofintegers n0; n1; : : :, where each ni is a power of 2 in the representation of r for whichani = 1; this in e�ect encodes the run lengths. Next, the frequency of occurrencethroughout the bitmap �le of each special and integer symbol is recorded, permittinga Hu�man tree to be constructed for the 2k � 1 special symbols together with theinteger symbols. Finally, the bitmap is Hu�man encoded using this tree.A hierarchical method for compressing a sparse bitmap was proposed by Wede-kind & H�arder [19]. The original bit-vector v0 of length `0 bits is partitioned intor0 equal blocks of k0 bits each (r0 � k0 = `0), and the blocks consisting only of zerosare dropped. The resulting sequence of non-zero blocks does not by itself allow thereconstruction of v0; we can, however, append a list of the indices indicating wherethese non-zero blocks occur in the original vector. This list of up to r0 indices is itself{ 4 {

kept as a bit-vector v1 of `1 = r0 bits; there is a 1 in position i of v1 if and only ifthe i-th block of v0 is not all zeros. Now v1 can be further compressed by the samemethod. In other words, a sequence of bit-vectors vj is constructed, each bit in vjbeing the result of ORing the bits in the corresponding block in vj�1. The procedureis repeated recursively until a level is reached where the vector length reduces to afew bytes. The compressed form of v0 is then obtained by concatenating, in order ofdecreasing i, all the nonzero blocks of the various vi. The same method appears inVallarino [18], who used it for two-dimensional bitmaps, but with only one level ofcompression.The hierarchical method is re�ned by Choueka & al. [4], by adding a pruningalgorithm that removes from the hierarchy-tree, branches pointing to very few seg-ments. The algorithm partitions the set of 1-bits in v0 into two subsets: the class of1-bits which are e�ciently handled by the hierarchical method; and the complemen-tary class, consisting of more or less isolated 1-bits whose inclusion in the hierarchicaltree structure would have been more expensive than their enumeration in an appendedlist. Either of these two classes may be empty. If the list is long enough, it is fur-ther compressed by a variant of pre�x omission, to be decribed in more detail in thefollowing sub-section.It should be noted that since, for each map, the number of runs of zeros is equalto the number of 1-bits plus 1, the size of the compressed �le obtained by the �rst fewmethods is clearly linearly related to the number of 1-bits in the original �le. For thehierarchical and Hu�man coding methods this relation is less evident, but has beenempirically established. This observation is consistent with the theoretical argumentpresented in the introduction, and reinforces our intention to design a preprocessingstage that reduces the number of bits in a bitmap.2.2 A simple new methodThe following technique is a simple generalization of the pre�x omission methodsuggested in [4] for the secondary compression of the list of 1-bits which were prunedfrom the tree. It can also be viewed as a variant of the hierarchical method, usingonly a single level of compression.Choose an integer parameter k and partition the original vector v0 of length `0into blocks of 2k bits. We shall assume that the number of 1-bits in the bitmap is s.As in the hierarchical method, construct a new vector v1 of length d`0=2ke, in whichbit i is zero if and only if block i of v0 contains only zeros. However, now, instead ofstoring the non-zero blocks of v0 themselves, we substitute for each block the stringof indices of the 1-bits within that block. A priori k bits are su�cient for storing sucha relative index; however we need an additional bit per index to serve as a
ag, whichidenti�es the boundary of each block. Therefore, in addition to the �xed overhead of{ 5 {

storing the vector v1, k + 1 bits are needed for representing each of the 1-bits of v0.When a block has a small number of 1-bits, a signi�cant saving in space could result.We would now like to �nd k that optimizes the size of the block to be chosen,that is, the integer k� that minimizes f(k) = d`02�ke + (k + 1)s, the size in bits ofthe compressed bitmap. Because of the appearance of the ceiling function in f(k),�nding the minimum value directly is di�cult. Instead we shall search for an integerk�1 that minimizes the related continuous function f1(k) = `02�k + (k+1)s. Since f1is a convex function, k�1 is an integer which satis�esf1(k�1) < f1(k�1 + 1) and f1(k�1) � f1(k�1 � 1):Examining the left hand inequality, we �nd`02�k�1 + (k�1 + 1)s < `02�k�1+1 + (k�1 + 2)s;or, 2�k�1+1 < s=`0. Thus k�1 > log2(`0=s)� 1. Similarly, the right hand inequality isequivalent to k�1 � log2(`0=s). Combining the two, we �nd that k�1 must satisfylog2 `0s � 1 < k�1 � log2 `0s ;so k�1 = blog2(`0=s)c.If we have a �le of m bitmaps, we want to use the same method for encoding eachof them, so the optimal k will be determined by the average �s of 1-bits per map. Thetotal number of bits in the compressed �le is thusm �`02�blog2(`0=�s)c� + S (blog2(`0=�s)c+ 1) ; (1)for S = m�s, the total number of 1-bits in the bitmap set.A priori, k�1 need not equal k�; however, it is easy to see that the cost of usingk�1 is identical to the cost of using k�. To show this, �rst note that by the de�nitionof the ceiling function, f(k�1) < 1 + f1(k�1). Since k�1 minimizes f1, f1(k�1) � f1(k�).But f1 cannot exceed f for any k, and in particular f1(k�) � f(k�). Combining theseresults with the fact than k� minimizes f , we getf(k�) � f(k�1) < 1 + f(k�):We conclude that using k�1 for the true optimum, k�, results in an excess of less thanone bit in storage for each bitmap. But f(k) takes only integer values at integer k,so if the di�erence f(k�1)� f(k�) is smaller than 1, then it must actually equal zero:either k�1 = k�, or, at least, the storage implications are the same for both values(f(k�1) = f(k�)). { 6 {

For example, suppose `0 = 180 and the indices of the 1-bits in v0 are 36, 50, 53,105 and 126. Thus s = 5, so we get that the optimal k is blog2(180=5)c = 5. Thereare d180=25e = 6 bits in v1, each (except the last) corresponding to a block of 32 bitsin v0. There are three 1-bits in the second block, with relative indices 4, 18 and 21,and there are two 1-bits in the fourth block, with relative indices 9 and 30; the fourother blocks are empty. Thus the following information would be kept:v1 0 1 0 1 0 0z }| { z }| {0 { 00100 0 { 10010 1 { 10101 0 { 01001 1 { 11110indicates the end of the sequenceThe number of bits necessary to store this map is thus 6+5� (5+1) = 36. Withk = 4 we would need 12 + 5 � (4 + 1) = 37 bits and with k = 6 we would need3 + 5 � (6 + 1) = 38 bits. Note that if we list the relative indices of each sub-rangein increasing order, the
ag identifying the last index of each range is not alwaysneeded. In our example, for instance, the list of stored relative indices is 4, 18, 21, 9,30, so clearly the sublist corresponding to the second 1-bit in v1 consists of the lasttwo elements. If, however, there were no 1-bit in position 105 of v0, the list of storedrelative indices would have been 4, 18, 21, 30, and the partition of this list into twoincreasing sub-lists is not uniquely determined.3. Bitmap Clustering3.1 MotivationWe have remarked several times above that sparser bitmaps are more e�ectivelycompressed. We will now describe a method for reducing the number of 1-bits bymaking use of a natural clustering of bitmaps. To do this, we take advantage of thefact that many bitmaps are associated in the sense that the presence of a 1-bit in onemap increases the likelihood of a 1-bit occurring in the same position in the other.If two bitmaps X1 and X2 are strongly associated in this sense, then the bitmapX3 = X1 XOR X2 will very possibly have fewer 1-bits than, say, X2. If we store X1and X3, we can reconstruct X2. The advantage of doing this is that we may be ableto compress X1 and X3 more e�ectively than the original vectors. Since our intentionwhen XORing two vectors is to reduce the number of 1-bits, it is useful to take asa measure of association between two vectors, the number of 1-bits in the XORedvector. But this quantity is the familiar Hamming distance between the two vectors.If the maps Xi and Xj are \close" in the Hamming distance sense, we would wantto keep �Xj and the pair (�xi; j) instead of �Xj and �Xi; here xi = Xi XOR Xj , and abar indicates that the maps have been compressed, say by the method presented inSection 2.2. Given the retained information, the original bitmap can then be recovered{ 7 {

by �rst decompressing �xi and �Xj , which yields xi and Xj , and �nally XORing again,since Xi = xi XOR Xj .As described above, the unchanged map Xj is compressed directly. However, Xjmay itself be quite close to a third map, Xk, and therefore pro�tably XORed withthat third map, producing the pair (�xj ; k). Continuing in this manner we impose astructure on the bitmaps that can be represented as a directed graph, G = (V;E),where the vertices V = fX1; : : : ; Xmg correspond to the bitmaps and (Xi; Xj), thedirected edge from Xi to Xj , belongs to E if and only if Xi is compressed as (�xi; j).To be workable, the following restrictions must be imposed on G. (1) Any mapcan be compressed by XORing with at most one other map, so the outdegree of everyvertex is at most 1. (2) In a general graph satisfying condition (1), it might bepossible to form a chain of bitmaps X1; X2; : : : ; Xk; X1, denoting that Xi is stored as(�xi; i + 1) for i = 1; : : : ; k � 1, and Xk is stored as (�xk; 1). However, this situationmust be prohibited, if we want to be able to recover the original bitmaps: startingwith an arbitrary node, the chain must terminate with an untransformed bitmap, thatis, with a node with outdegree zero. In other words, a legitimate graph must be cyclefree.These conditions impose a strong structure on a legitimate graph. Let R =fr1; : : : ; rng be the set of vertices with outdegree zero, and de�ne T (ri) as the set ofvertices from which there is a directed path to ri; T (ri) also includes ri (connectedto itself by the empty path). Since there are no cycles in G, a directed path startingat any vertex X 2 V must eventually terminate, reaching one of the vertices ri 2 R.Thus every X 2 V is in one of the T (ri). If X 2 T (ri) \ T (rj) for i 6= j, then somevertex in the chain starting at X must have outdegree � 2. Since this is impossible,the components T (ri) are disjoint and fT (ri)g is a partition of V into connectedclusters of bitmaps. Further, there is no linkage between any pair T (ri) and T (rj):for suppose X1 2 T (ri) and an edge (X1; X2) exists with X2 2 T (rj). But then,since a path exists connecting X2 to rj , a path exists (through X2) connecting X1 torj . Such a node X1 is a member of both T (ri) and T (rj), which is impossible. TheT (ri) are thus isolated connected components in G; because of conditions (1) and (2),each T (ri) is an oriented tree, as de�ned by Knuth [11, Section 2.3.4.2].Any forest of bitmaps can serve as the basis of our precompression operations. Tomaximize compressibility, however, we want to choose that forest among all possibleforests that minimizes the total number of ones in the resulting bitmaps. (Therecould conceivably exist some maps which, because of their special internal structure,yield better compression than others which are sparser. But until a quantitativerelationship can be derived between detailed bitmap characteristics and compression,sparseness is the best measure we have for bitmap compressibility.) We de�ne thequantity to be minimized, that is, the total number of 1-bits in the roots plus thetotal number of 1-bits in the XORed bitmaps, as the cost C of the forest. Notethat adopting this criterion prevents our XORing two vectors when the result wouldincrease the number of 1-bits | for example, in the extreme case, the set of original{ 8 {

bitmaps, with no XORed maps, is a forest and thus a legitimate graph.An exhaustive search generating all the possible graphs satisfying our constraintsand checking for each the cost for the forest, must be ruled out on the grounds ofcomputational expense, even if we have only a moderately large numberm of bitmaps:the number of ways to partition the m maps into n clusters is a Stirling numberof the second kind nmn o (see [11, Exercise 1.2.7{64]). But nmn o is asymptoticallyen nm�n�1=2 [1, Section 24.1.4], so summing over the potential number of clusters,we �nd that the number of partitions is Pmn=1 nmn o > n mm=2o =
(mm=2).Moreover, to get the number of possible graphs to be checked, we must consider, foreach partition, the number of ways to organize each cluster internally as an orientedtree.Fortunately, such a search is unnecessary, as the problem is equivalent to anotherfor which there are well known polynomial algorithms. To see this, we �rst recallthat, except for the roots, the number of 1's in a XORed bitmap is just the Hammingdistance between it and its successor in the directed graph. Thus, if we assign thisdistance as a weight to each edge, the cost of a forest is simply the sum of the weightsof all edges in the graph plus the sum of the number of ones in each root. But we canfurther simplify the statement of the problem by noting that the number of ones in amap is its Hamming distance to the zero bitmap (the bitmap, all of whose values arezero), denoted by X0. Thus, given any forest, if we introduce the zero bitmap andinclude the weighted edge between each root and X0 (thereby transforming the forestinto a tree), then the cost of the original forest is just equal to the sum of edge-weightsover all the edges of the resulting tree in the enhanced graph. The latter sum willbe called the cost of the tree. Since only the weights are signi�cant when computingthe cost, we can consider the tree as being non-directed. Such a simpli�cation is wellde�ned since the weight on an edge does not depend on its orientation (the Hammingdistance is a symetric measure). Thus given any directed forest over the set of nodesV , we can de�ne a non-directed tree over V � = V [fX0g having the same cost.The converse is also true. First note that given the set of vertices V �, any (undi-rected) spanning tree on V � de�nes a directed tree on V �: the root of the directed treein X0; the directed edge (Xi; Xj) is in the directed tree if a path (Xi; Xj ; : : : ; X0)exists in the undirected tree. Next, by removing X0 and the edges incident on itfrom the directed tree, we obtain a directed forest G, on V . Furthermore, if the edgeweights are as de�ned above, the cost of the forest is equal to the cost of the treethat induced it. Because of this equivalence, an optimal forest is associated with anoptimal (lowest cost) tree. Thus our problem is equivalent to the following one: givena complete non-directed graph whose vertex set is the union of our bitmaps with X0,and for which the weight on edge (i; j) is the Hamming distance between vertices iand j, �nd the tree for which the total edge weight is minimum. The directed forestinduced by this tree is the solution to our problem.More formally: we are looking for a graph G, which is a forest of oriented trees{ 9 {

spanning the vertex set V , optimizing our problem. To �nd the graph G, we considerthe weighted undirected graph G� = (V �; E�), where the set of vertices V � is obtainedby adjoining a new vertex, the zero vector X0, to the set V of bitmaps; E� = V � �V � � f(Xi; Xi) : Xi 2 V �g (ignoring order), that is, G� is a complete graphfrom which self-loops are removed; and the weight w(i; j) associated with the edge(Xi; Xj) 2 E� is the Hamming distance between Xi and Xj . We then de�ne as alegitimate sub-graph of G� a non-directed tree T connecting all the vertices in V �.Our task is to �nd the legitimate sub-graph for which the sum of all the weights ofthe edges in T is minimized | in fact, a minimum spanning tree (MST) of G�. TheMST in G� now induces the optimal directed forest, G, on the original set of bitmaps,as described above. The vertices that were adjacent to vertex X0 in T are the rootsof the oriented trees in G. G is the optimal forest we were seeking.Many algorithms for �nding a MST for a non-directed graph appear in the lit-erature, ranging from Kruskal's simple greedy algorithm [12], which has in our casecomplexity O(m2 logm), to Yao's more involved technique [20], which would needO(m2 log logm) operations for our application.3.2 Algorithm statementSummarizing, we suggest the following procedure as the �rst stage for compress-ing a set of m bitmaps X1; : : : ; Xm. This method in principle improves any givencompression algorithm C for individual bitmaps, provided our assumption of strongcorrelation between some of the maps holds. As output, we get a table B of com-pressed bitmaps, the compressed form of Xi being stored in B(i), 1 � i � m. Inaddition, the algorithm produces a small table F of size m, de�ned by F (i) = j if themap Xi is compressed as (�xi; j) (i.e., if Xj is the father of Xi in the oriented rootedtree T), or by F (i) = 0, if Xi is the root of one of the trees.1. Choose a compression method C for an individual map: given a bitmap X,C(X) is the result of C applied to X.2. Extend the set of bitmaps by adjoining X0, the zero-vector.3. (a) Using the Hamming distances as weights on the complete graph withoutself-loops having fX0; X1; : : : ; Xmg as set of vertices, compute a minimumspanning tree T .(b) Consider T as an oriented tree rooted at X0.(c) The subtrees of X0 in T partition the original set of bitmaps.4. (a) If Xi is a vertex adjacent to X0 in T , then it is the root of one of theoriented trees: these bitmaps (one per tree) are compressed directly using C.B(i) C(Xi)F (i) 0(b) A bitmap Xi, which is not the root of a tree, has a directed edge to{ 10 {

another bitmap Xj in the same tree; Xi is compressed by �rst computingxi = Xi XOR Xj and then compressing xi using C.B(i) C(xi)F (i) jIn the case of a set of bitmaps of an IR system, the problems of compression anddecompression are not exactly symetric. Compression is performed only once, duringthe construction of the system, and is applied to the entire set. Decompression, onthe other hand, is practically never needed simultaneously for the entire set, but onlyfor those maps associated with the keywords of a submitted query. We thus presentthe procedure decompress(i) which returns the original map Xi. It uses the functionC�1 as the inverse of the compression function C | that is C�1 decompresses bitmapswhich have been compressed by C.decompress(i)if i = 0 return� C�1(B(i)) �else return� C�1(B(i)) XOR decompress(F (i)) �We see that the savings in storage space gained by our clustering procedure comeat the expense of increased processing time. In order to recover the bitmap Xi, weneed decompress all the maps forming the path from Xi to the root of the cluster Xibelongs to.4. ExampleThe database we chose for testing our algorithm is the Hebrew Bible, consistingof 305514 words which are partitioned into 929 chapters. The number of di�erentwords is 39647. Following the suggestion in [5] that bitmaps should be constructedonly for words which appear more often than some �xed frequency threshold, werestricted ourselves to the 1478 words which appeared in at least 20 chapters. As atext segment, we de�ned a set of four consecutive chapters. The resulting bitmapswere d929=4e = 233 bits long. The total number of 1-bits in the 1478 maps was 65734,or �s = 44:47 1-bits per map.We �rst used the compression technique of Section 2.2 by itself. The optimalparameter k was blog2(233=44:47)c = 2. From equation (1) we thus get that the totalnumber of bits needed to store the set of bitmaps in compressed form is 284404. Forthe uncompressed �le we would need 1478 � 233 = 344374 bits, so that the simplemethod yields 17.4% compression. This k is indeed optimal for this method, sincewith k = 1 we get 11.6% compression, and with k = 3 we get 10.8%.We then applied Kruskal's MST algorithm, which partitioned the set of bitmapsinto 716 clusters. Of these, 530 were singletons, i.e., maps which couldn't e�ectivelybe XORed with some other map and which were therefore compressed without trans-formation. The other 948 bitmaps were partitioned into 186 clusters, each containing{ 11 {

at least two elements. Since in each cluster, the root is compressed directly, the num-ber of bitmaps which were XORed before compression was 948 � 186 = 762. Forthese, the total number of 1-bits decreased from 48590 to 33538, that is, by 31%.Considering the entire �le of bitmaps, the overall number of 1-bits decreased from65734 to 50658, or to �s = 34:27 1-bits per bitmap. The optimal parameter k was thusblog2(233=34:27)c = 2, as before. Substituting the values for m, S and �s in equation(1), we �nd that the total number of bits needed to store the set of bitmaps if we usethe clustering method of Section 3 is 239176. Relative to the noncompressed �le thisis a 30.5% reduction, and relative to using only the method of Section 2.2 withoutclustering, this is a 15.9% improvement.It is interesting to compare this to the information theoretic estimate of com-presibility mentioned in the introduction. The probability of a 1-bit in the original�le is 0.19, yielding an entropy per bit of H = 0:703. This means that if the 1-bitsappear with the given frequency but independently from each other, the best possi-ble compression would be 29.7%. Indeed, we got only 17.4% when the bitmaps werecompressed individually. Introducing the clustering, we exploit the dependencies be-tween di�erent bitmaps, yielding compression savings of 30.5%, which is beyond thosepossible for independently generated maps.While most of the generated clusters were small (two to four elements), someformed deep trees with tens of bitmaps, and the largest consisted of a tree of depth15 with 112 vertices. A closer look at some of the larger clusters revealed interestingassociations. Figure 1 shows a typical example. For each node in the tree, the Hebrewword is �rst given in English translitteration, using fABGDHWZXtYKLMNSaPCQR$Tgrespectively for faleph, beth, : : : ; tavg, as well as the translation of the word intoEnglish.In this cluster, 18 out of 28 words are numerals; these are clearly connected, as theBible tends to give exact dimensions (note the words length and cubit) in certaindetailed descriptions. See, for instance, Exodus 27:9{19, where a description of thecourt, the root of this cluster, is given. The depth of this tree is 5, which is thereforethe maximal depth of the recursion for the decompression algorithm. Note also thatthe root of this cluster has a high in-degree. This was not always the case, as can beseen in the following example.To present the second example, we use a more compact representation, based onpre-order traversal of a tree. A tree can be represented recursively by its root, followedby the list of its subtrees enclosed in parenthesis. To improve readability, the levelof the root of a subtree in the full tree appears as subscripts to the parentheses. Wenow give only the English translation of the word at each node (many Hebrew wordsmust be translated into several English words).and they camped (1 night, and they saw, and they went out (2 themen (3 and they came (4 from before, and he sent (5 and theysaid, and he sat (6 and he, his people, and he went out)6, and{ 12 {

HXCRthe court
Wa$RYM TMYM AMH aMDYM HaLHand twenty perfect cubit standing burnt offeringW$TY ARK WXM$YM WXM$H W$L$and two length and fifty and five and three
$Ba HAXD W$L$YM $MNH AXT WXM$seven the one and thirty eight one and five$TY WRB $TYM XM$H ARBaHtwo and most two five four

a$RH LH $$ten three six
HaYR A$Rthe city that
a$Wthey madeFigure 1: Sample cluster produced by the MST algorithm{ 13 {

he called (6 and he came (7 and now (8 please)8)7, and he gave(7 in the hand of)7, and he took (7 bread, and he did (8 two)8)7)6)5, and they sat)4, and they went)3)2)1The 25 elements in this cluster form a tree of depth 8, but no node has higherin-degree than 3. Note that most of the words are verbs related to motion, all in thepast tense, and in third person singular or plural.We also tried to apply the algorithm to sparser bitmaps, by de�ning a segment tobe one, instead of four, chapters. The 1478 bitmaps then had a total of 95472 1-bits,so they were compressed with k = 3 and gave 59.9% compression. The clusteringalgorithm however produced only 300 bitmaps that were XORed; for these, the re-duction in the number of 1-bits was about 21%, but nonetheless, the total numberof 1-bits remained quite large at 85195 bits. The optimal k now shifted to be 4, andcompression was improved by 7.5%; measured relative to the full �le, a 62.9% reduc-tion was achieved. In this case, the theoretical optimum for independently generatedbitmaps with this 1-bit density is 63.8%.In order to check the in
uence of the language of the database on the algorithm,we repeated the experiments with the King James Bible, again with a segment equalto one chapter. The improvement of the clustering method in this case was only 5.7%,again because only a small number of bitmaps (377 of 1454) were XORed. There werenevertheless some interesting clusters. For example: Asher (1 Ephraim, Joseph,Manasseh, Simeon (2 Levi, Reuben (3 Gad)3)2, Zebulun (2 Naphtali)2, Issachar (2 Benjamin, Dan)2)1. This cluster contains the names of allthe tribes, except Judah. The latter appears in another cluster, together with wordslike Jerusalem, reign, reigned, kings, etc. Clearly, Judah di�ers from the othertribes, as his name often refers to the kingdom or land of Judah.Summarizing our experiments, we see that the clustering algorithm works betterwhen the bitmaps are not so sparse: very sparse vectors tend to have very few over-lapping 1-bits, so that there is often no gain to be achieved by XORing. However, forthe very sparse vectors, many of the known techniques already yield excellent results.Thus the clustering algorithm helps especially for those maps that are most di�cultto compress.5. Variants5.1 Limited number of trees with depth � 2We now consider the possibility of other time/space tradeo�s, intermediate be-tween using no clustering (fast decompression but needing more space) and clusteringwith the MST (reducing storage requirements, but with slower decompression). Oneof the problems with using the forest structure of Section 3 is that the number ofclusters may be fairly large. In fact, there are many maps which don't bene�t from{ 14 {

XORing with some other map and these form singleton-clusters. In a practical appli-cation, we may want to limit the number of clusters, so that the cluster index can berepresented by just a few bits. Another problem with the MST approach is that someof the trees produced may be deep, as can be seen from the examples of the previoussection; for such trees, the decompression time for a given bitmap is proportional toits level in the tree. Thus it would be desirable to create trees similar to the onesdiscussed above, but restricted in number and constrained to have a small depth; weshall examine the case in which the maximum depth is two. The corresponding forestis not necessarily optimal, so the space complexity will probably increase; on the otherhand, at most one additional map is needed for decompressing any map, so we gainin speed.This new variant is described more precisely as follows. Suppose we can partitionthe �le B of m bitmaps into n mutually disjoint clusters B1; : : : ; Bn. In each clusterone map bi 2 Bi is chosen as a representative; thus we have a mapping � : B !f(B1; b1); : : : ; (Bn; bn)g, where bi 2 Bi and fBig is a partition of B. In terms of thepreceding discussion, each Bi corresponds to a tree of depth at most two, and bi isthe root of the tree Bi. For each Bi the associated bi will be compressed directly andstored. If x 6= bi is a bitmap in Bi, it is �rst XORed with the representative bi, andthen the result is compressed and stored, together with the index i of the cluster towhich it belongs.The problem, then, is to �nd that partition of B into clusters, and the selectionof the designated representatives, for which the savings are greatest. We have notfound an e�cient optimal solution to the problem and believe it to be very hard.To support this assertion, we will approximate this problem by a similar one, andshow that the second problem is hard. We expect that good partitions will havecertain reasonable properties. One way to identify a good partition is by searchingfor a partition that satis�es such a set of properties. We will now de�ne our secondproblem as an illustration of this approach.We again use the Hamming distance between maps x and y, HD(x; y), as ourmeasure of dissimilarity. Our revised problem is to �nd a partition of B into n setsand to select n representatives, such that these properties are satis�ed: (1) the totalnumber of 1-bits in the representatives, Pmi=1HD(bi; X0), is minimized; (2) the sumof all the distances from a map to the corresponding representative of the clusterit belongs to, Pni=1PV 2Bi HD(V; bi), is minimized; and (3) clusters should also be\di�erent" enough, in the sense that the distance between representatives of di�erentclusters should be bounded below by some constant.At �rst sight, this restricted problem seems easier than the previous one, where,since neither the number, nor the depth of the trees were restricted, we must locatethe optimal member from a much larger set. Once the partition of B into n clusters isgiven, we now only have to check every possible choice of a representative, instead ofgenerating all the spanning trees in each cluster. We show in the Appendix, however,that the restricted problem of �nding the optimal partition is NP-complete, which{ 15 {

implies that there is probably no feasible (polynomial) algorithm available.Instead of the optimizing problem, we actually de�ne the following correspondingdecision problem.HDC (Hamming Distance Clustering): Instance: A set B of m bitmaps of length` bits each, and integersK1, K2, K3 and n. Question: Is there a partition of B inton disjoint subsets B1; : : : ; Bn, such that in each of them there is one representativebi 2 Bi satisfying the following conditions:(1) the representatives are sparse: Pni=1HD(bi; 0) � K1;(2) the total distance is bounded: Pni=1PV 2Bi HD(V; bi) � K2;(3) cluster representatives are not close: 8i 6= j HD(bi; bj) � K3;(4) in terms of the given representatives, each map is in the best possible cluster:8V2B 8i (V 2 Bi ! HD(V; bi) = minj2f1;:::;ngHD(V; bj)) ?Theorem 1. HDC is NP-complete.Proof: Given the partition of B into clusters, condition (1) can be checked in timeO(n), conditions (2) and (4) in time O(m`) and condition (3) in time O(n2`). ThusHDC 2 NP. For the reduction, we use the following problem known to be NP-complete(see [8]):3DM (3 Dimensional Matching): Instance: A set M � W � X � Y , where W ,X and Y are disjoint sets having the same number q of elements. Question: DoesM contain a matching , that is, a subset M 0 � M such that jM 0j = q and no twoelements of M 0 agree in any coordinate?We show that 3DM / HDC. Consider an arbitrary instance of 3DM. We constructan instance of HDC. Create a set of m bitmaps, B, as follows: there is one bitmapfor each element in M (thus m = jM j); each bitmap has ` = 3q positions, the �rst qpositions corresponding to the elements ofW , the next q to the elements of X and thelast q to the elements of Y . In the bitmap corresponding to the element (w; x; y) 2M ,where w 2 W , x 2 X and y 2 Y , there are 1's in the positions corresponding to w,x and y, and zeros elsewhere; hence each bitmap consists of exactly three 1's and3(q � 1) zeros. Set K1 = 3q, K2 = 4(m� q), K3 = 6 and n = q.Suppose there exists a matching M 0. Denote the q rows corresponding to thematching by b1; : : : ; bq: these will be the representatives of the q clusters B1; : : : ; Bqrespectively. Now de�ne the partition of B in the following way. If a map V 2B � Sni=1 bi has two overlapping 1's with one of the representatives, say bj , thenV is included in Bj ; such a bj is unique. Otherwise, choose the (unique) map bv,v 2 f1; : : : ; qg, which has its leftmost 1 in the same bit-position as V , and include V inthe cluster Bv. (1) Since each bitmap contains exactly three 1-bits, this is in particular{ 16 {

true for b1; : : : ; bq. Thus Pqi=1HD(bi; 0) = 3q = K1. (2) As to the remaining m � qmaps in B �Sqi=1 bi, each such map V has either one or two 1's overlapping with therepresentative bv of the cluster to which V belongs, so that HD(V; bv) is either 4 or 2respectively. Thus Pqi=1PV 2Bi HD(V; bi) � 4(m � q) = K2. (3) Since for i 6= j, biand bj correspond to di�erent elements of the matchingM 0, they have no overlapping1's, thus HD(bi; bj) = 6 = K3 for all i 6= j. Condition (4) follows directly from theconstruction and the obvious fact that no map can have more than two overlapping1's with any other map.Conversely, suppose that there is a partition of B into n clusters, with repre-sentatives b1; : : : ; bn that satisfy (1), (2), (3) and (4). De�ne M 0 as the elementsof M corresponding to the bitmaps b1; : : : ; bn. Since for i 6= j, HD(bi; bj) = 6and there are only three 1-bits in each map, bi and bj cannot have 1-bits in iden-tical positions. Thus the corresponding elements of M 0 do not agree in any coor-dinate, and since there are n = q such elements, it follows that the set M 0 is amatching.5.2 Arti�cial representativesSuppose we can �nd a partition of the set of bitmaps into clusters of similarbitmaps. Instead of choosing one element in each cluster as a representative which isprocessed di�erently from the other maps in the cluster, we could construct a new,arti�cial bitmap Ri for each cluster, which will act as that cluster's representative.Thus Ri can be adapted to optimally �t the entire cluster. All the maps in the clusterare now processed in the same way. As in the original problem, the quantity we try tominimize is the number of 1-bits in the maps obtained by XORing the original mapswith their respective Ri, plus the number of 1-bits in the representative Ri.Given a set of clusters, it is easy to �nd the optimal R: we proceed by adjoininga bitmap B0, containing only zeros, to each cluster. Our problem is then, given thebitmaps B0; B1; : : : ; Bk in a cluster, to create a vector R such that Pki=0HD(Bi; R) isminimized; B0 is included so the ones in R are included in the sum. The minimizationcan be carried out individually for each bit position. Let Bi = (bi1; bi2; : : : ; bì) andR = (r1; : : : ; r`). For each j = 1; : : : ; `, we are looking for rj such that Pki=0 jbij � rj jis minimized.The optimal rj is obtained from the original bij (1 � i � k) by a simple majorityvote. That is, if more than half of the bits in the j-th position of the maps Bi are ones,then rj should be one. If there is a tie, or if the majority of values is zero, then rjshould be zero. The value of rj can be represented compactly as b2Pki=0 bij=(m+1)c.(This is a special case of the well known result that the median of a set of numbers isthe value that minimizes the sum of the absolute derivations from that value.)We just saw that given a partition into clusters, it is easy to construct a set ofrepresentatives by using the majority rule. The converse problem would be, given aset of representatives, to �nd an optimal partition into clusters. This is easily done by{ 17 {

checking, for each bitmap, to which representative it is closest. However, if one mustdetermine both the optimal representatives, and their clusters, with restrictions givenon the number of 1-bits in the representatives, then one again has an NP-completeproblem.PCFD (Partition into Clusters of Fixed Density): Instance: A set B = fb1; : : : ; bmgof bitmaps of length ` bits each, n integers d0; : : : ; dn�1, and an integer K. Ques-tion: Can B be partitioned into n clusters B0; : : : ; Bn�1 such that there exits a rep-resentative ri for cluster Bi with exactly di 1-bits and such that the total Hammingdistance is bounded, Pn�1i=0 Pb2Bi HD(b; ri) � K?Theorem 2. PCFD is NP-complete.Proof: Once the partition and the representatives are given, the condition is easilychecked, thus PCFD 2 NP. For the reduction we use the Partition problem [8].PAR (Partition): Instance: A set of positive integersA = fa1; : : : ; akg. Question:Is there a subset J of I = f1; : : : ; kg, such that Pi2J ai = Pi2I�J ai?Let A = Pki=1 ai. If A is odd, the partition problem is trivial, so we assume thatA is even.We show that PAR / PCFD. Letting a1; : : : ; ak be an instance of PAR, we con-struct an instance of PCFD. We set m = k and de�ne the set B of m binary vectorsb1; : : : ; bm, each of length ` = A, in the following way:bi = (0; 0; � � � ; 0; 1; 1; � � � ; 1; 0; 0; � � � ; 0)| {z } | {z } | {z }i�1Xj=1aj times ai times mXj=i+1aj timesThat is, the vector bi consists, in order, of Pi�1j=1 aj zeros, followed by ai 1's, followedby Pmj=i+1 aj zeros, where we use the convention that Pyi=x ai = 0 if x > y. Letn = 2, d0 = d1 = A=2, and K = �m2 � 1�A.Suppose there exists a set J as required. Let �iJ be de�ned by�iJ = � 1 if i 2 J0 otherwise,and construct the vector r0 to consist, in order, of a1 occurrences of �1J , followed bya2 occurrences of �2J , : : : ; followed by am occurrences of �mJ . De�ne r1 as the binarycomplement of r0. The number of 1's in r0 is thus Pi2J ai = A=2 = d0, and thereforethe number of 1's in r1 is also A=2 = d1. bi is in the cluster associated with r0 if{ 18 {

ai 2 J ; else, bi is in the cluster represented by r1. Summing the Hamming distances,we get Xi2J HD(bi; r0) + Xi2I�J HD(bi; r1) = mXi=1�A2 � ai� = mA2 � A = K;which shows that B can be partitioned as required in the de�nition of PCFD.Conversely, suppose the maps bi can be partitioned into two clusters and thatthere exist two representatives, r0 and r1, each with A=2 1-bits, such that the totalHamming distance is bounded by K. Since r0 has A=2 1-bits, the Hamming distanceof bi to r0 is at least A=2 � ai. This minimum can be achieved only if all the 1-bitsin bi are in positions where r0 has also 1-bits. The same remark is true for r1. Onthe other hand, if even one of the bi has a Hamming distance greater than A=2� aito the representative of the cluster it belongs to, the total Hamming distance wouldbe larger than Pmi=1(A=2� ai) = K.It follows that r0 and r1 have 1-bits in all the positions where the maps belongingto the corresponding clusters have 1-bits. On the other hand, neither r0 nor r1 canhave 1-bits in other positions, because the positions of the 1-bits in all the mapstogether cover all the A positions and there are only A 1-bits in r0 [r1. Thus r1must be the binary complement of r0, and the 1-bits in both r0 and r1 are arrangedin blocks corresponding to the bit-positions covered by the vectors bi. This can bereformulated as8 i2I 8j 2 f0; 1g HD(bi; rj) = A2 � ai () HD(bi; r(1�j)) = A2 + ai:We therefore can de�ne the set J � I to contain the indices of the maps bi whichhave overlapping 1-bits with one of the representatives, say, r0, i.e.,i 2 J () HD(bi; r0) = A2 � ai:The positions of the 1-bits in di�erent bi are mutually disjoint, and the positions ofthe 1-bits of bi, with i 2 J , are included in the set of the positions of the 1-bits of r0.Therefore the number of 1-bits in Si2J bi, Pi2J ai, is equal to the number of 1-bitsin r0, A=2. But then Pi2I�J ai is equal to A� A=2 = A=2. HenceXi2J ai = Xi2I�J ai;which shows that the set A can be partitioned as requested.{ 19 {

6. Conclusion and Future WorkWe have presented a new algorithm for transforming a set of bitmaps, whichin principle may improve any previous compression method that does not take intoaccount possible interrelationships among the di�erent bitmaps. The experimentalresults suggest that the new method is particularly e�ective for bitmaps which arenot extremely sparse. This may have several applications.For example, bit-slices of signature methods are often chosen so that the densityof 1-bits is 12 [15]. Such vectors are almost impossible to compress individually. Theremay however be a possible gain by using clustering. Also, the possibility of compres-sion would permit us to increase the size of the signature, resulting in more e�cientretrieval, whitout a�ecting the space requirements [3]. Another application would beto IR bitmaps which have already been slightly compacted, such as the maps obtainedby applying one iteration of the hierarchical bit-vector compression technique referredto in Section 2.1. Finally, there might be applications to areas outside of IR, such asimage compression, where adjacent raster rows may be similar, or processing of geneticinformation, where di�erent DNA strings often share long identical substrings.We noted several situations in which it would be desireable to put constraintson the graph structure produced by our algorithm. However, we concluded thatthe restricted problem is most probably intractable in reasonable time, thus it isjusti�ed to search for feasible heuristics. The possiblity of using such heuristics willbe investigated in future research.References[1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, DoverPublishing, Inc., New York (1965).[2] Bell T., Witten I.H., Cleary J.G., Modeling for Text Compression, ACMComputing Surveys 21 (1989) 557{591.[3] Bookstein A., Klein S.T., Using Bitmaps for Medium Sized InformationRetrieval Systems, to appear in Inf. Proc. and Management (1990).[4] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved hierarchicalbit-vector compression in document retrieval systems, Proc. 9-th ACM-SIGIRConf., Pisa; ACM, Baltimore, MD (1986) 88{97.[5] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved Techniquesfor Processing Queries in Full-Text Systems, Proc. 10-th ACM-SIGIR Conf.,New Orleans (1987) 306{315.[6] Faloutsos C., Christodulakis S., Signature �les: An access method for doc-uments and its analytical performance evaluation, ACM Trans. on O�ce Inf.{ 20 {

Systems 2 (1984) 267{288.[7] Fraenkel A.S., Klein S.T., Novel Compression of sparse Bit-Strings, in Com-binatorial Algorithms on Words, NATO ASI Series Vol F12, Springer Verlag,Berlin (1985) 169{183.[8] Garey M.R., Johnson D.S., Computers and Intractability: A Guide to theTheory of NP-Completeness, W.H. Freeman, San Francisco (1979).[9] Jakobsson M., Hu�man coding in Bit-Vector Compression, Inf. ProcessingLetters 7 (1978) 304{307.[10] Klein S.T., Bookstein A., Deerwester S., Storing Text Retrieval Systemson CD-ROM: Compression and Encryption Considerations, ACM Trans. on In-formation Systems 7 (1989), 230{245.[11] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental algo-rithms, Addison-Wesley, Reading, Mass. (1973).[12] Kruskal J.B., On the shortest spanning subtree of a graph and the TravellingSalesman Problem, Proc. Amer. Math. Soc. 7 (1956) 48{50.[13] Lelewer D.A., Hirschberg D.S., Data Compression, ACM Computing Sur-veys 19 (1987) 261{296.[14] Schuegraf E.J., Compression of large inverted �les with hyperbolic term dis-tribution, Inf. Proc. and Management 12 (1976) 377{384.[15] Stiassny S., Mathematical analysis of various superimposed coding methods,Amer. Documentation 11 (1960) 155{169.[16] Storer J.A., Data Compression: Methods and Theory , Computer SciencePress, Rockville, Maryland (1988).[17] Teuhola J., A Compression method for Clustered Bit-Vectors, Inf. ProcessingLetters 7 (1978) 308{311.[18] Vallarino O., On the use of bit-maps for multiple key retrieval, SIGPLANNotices, Special Issue Vol. II (1976) 108{114.[19] Wedekind H., H�arder T., Datenbanksysteme II, B.-I. Wissenschaftsverlag,Mannheim (1976).[20] Yao A.C.C., An O(jEj log log jV j) algorithm for �nding minimum spanningtrees, Inf. Processing Letters 4 (1975) 21{23.
{ 21 {

