
ACM Trans. on Information Systems 8 (1990) 27{49.Compression, Information Theory and Grammars:A Uni�ed ApproachAbraham Bookstein and Shmuel T. KleinCenter for Information and Language StudiesUniversity of Chicago, 1100 East 57-th Street,Chicago, Illinois 60637January 1990Abstract:Text compression is of considerable theoretical and practical interest. It is, for example, becomingincreasingly important for satisfying the requirements of �tting a large database onto a single CD-ROM. Many of the compression techniques discussed in the literature are model based. We herepropose the notion of a formal grammar as a exible model of text generation that encompasses mostof the models o�ered before as well as, in principle, extending the possibility of compression to amuch more general class of languages. Assuming a general model of text generation, a derivationis given of the well known Shannon entropy formula, making possible a theory of information basedupon text representation rather than on communication. The ideas are shown to apply to a numberof commonly used text models. Finally, we focus on a Markov model of text generation, suggestan information theoretic measure of similarity between two probability distributions, and develop aclustering algorithm based on this measure. This algorithm allows us to cluster Markov states, andthereby base our compression algorithm on a smaller number of probability distributions than wouldotherwise have been required. A number of theoretical consequences of this approach to compressionare explored, and a detailed example is given.
1. IntroductionCompression is of interest for two reasons: Most immediately, it is of great practicalimportance, both for the storage and transmission of information. This is likely to con-tinue to be the case for some time into the future. While the signi�cance of compressionfor data transmission is generally accepted, it is often noted that storage devices arebecoming less expensive, and that this limits the need for data compression to save onstorage requirements. Less often noted, however, is that our ambition to store infor-mation is similarly growing quickly. Being able to store a large database on a single{ 1 {

CD-ROM rather than two has signi�cant implications for its cost and convenience ofuse [13]. For overviews of compression techniques and theory see [15] or [26].The possibility of compressing text also has important theoretical implications.Much of the theory of data compression relies heavily on Shannon's theory of informa-tion [2], [24], a body of mathematics intended for analyzing the encoding and transmis-sion of messages across a possibly noisy channel. In his formulation, Shannon o�ereda set of axioms describing the properties desired of a measure of uncertainty within acommunications context, and deduced from these axioms a function, H, that he calledEntropy : if we have a set of messages M = fmig, and each mi has an associatedprobability, Pi, then H is de�ned by the well known formulaH = �XPi logPi:H quanti�es the uncertainty regarding which message will be selected for transmission;the reduction in uncertainty then de�nes the information content of a transmission.Of particular importance for us, it is subsequently shown that H constitutes a lowerbound on our ability to compress data (see, e.g., [8] for a very readable derivation ofthis result): given a set of items and probabilities, fmi; Pig, it is not possible to usefullyencode the items fmig with a binary code so that the lengths of the codewords, li,satisfy PPili < H. H thus de�nes a theoretical limit in the compressibility of a set ofmessages, given a probability model describing message generation.We believe that the full conceptual implications of this result have been largelyoverlooked. The possibility of compressing data provides a basis for a completely newderivation of the entropy formula: given a probabilistic message generator, the uncer-tainty of (or information contained in) its message set can be de�ned as the smallestamount of storage, on the average, needed to store the encoded output of the machine.We will show that the Shannon measure follows directly from this de�nition. Thus en-tropy is directly related to compression, rather than primarily a communication-basedconcept with incidental implications for compression.A number of authors have commented on the importance of correct source modelingfor good compression [22], [20]. A mechanism for representing source models thatwe �nd appealing because of its simplicity and exibility is that of a grammar, [10],especially for describing text generation. In Section 2, we introduce the notion of agrammar more formally, and show how it can be used to derive Shannon's entropyformula: H then measures the \information content" of the messages generated by{ 2 {

the grammar. Several special cases, including the most popular ones appearing in theliterature, are then described from this vantage point.It is not realistic, however, to contemplate using a grammar de�ning a naturallanguage as the basis for a practical compression procedure. We therefore present inSections 4 and 5 a compression method based on a model we believe is a good trade-o�between a simple, but not very accurate, model like independent character generation,and a much more sophisticated model like a general grammar, which is impossible toimplement. In Section 4, we assume that natural text is generated by a �rst-orderMarkov process with anomalies: certain strings, relatively few in number, occur atrates substantially greater than expected on the basis of the Markov assumption. We�rst identify these strings and replace each of them by a single new symbol added toour alphabet. The new alphabet is then encoded as a �rst-order Markov process; fore�ciency, the number of states is reduced by a clustering mechanism, as describedin detail in Section 5. The clustering is based upon a similarity measure inspired byinformation theoretic arguments. A detailed example of the clustering algorithm ispresented in Section 6.2. GrammarsOur discussion of compression is guided by the notion of a grammar. A grammar isa systematic description of how a language is created. It permits us to de�ne a set withan in�nite number of items (the sentences of the language) in a �nite number of bytes(the grammar). Knowledge of the grammar supplies a great deal of information aboutthe sentences, and thus reduces the information contained in the sentences themselves.This can be made more precise: we are considering a machine that generates text,where the output of the machine is describable as a tuple (VN ; VT ;P; S): VN is a setof variables, VT a set of terminal symbols, P a set of productions and S 2 VN a startsymbol [10]. We adopt this customary de�nition, except that we also associate a prob-ability with each production rule. One consequence of the introduction of probabilitiesinto grammars is that it allows us in principle to assign a probability to each message.These message probabilities are the basis of all the compression methods and theorydiscussed below.We now show that it is possible, given the message probabilities, to derive theShannon entropy formula on the basis of compression considerations alone. To do thisin the fullest generality, we must �rst decide what it is that our source is generating.Beginning with the notion of a grammar suggests that the fundamental conceptual unit{ 3 {

be the whole message, not the individual characters. We may well compress a messageby a sequence of character oriented steps. But ultimately the message is conceived ofas a unit, and after compression we have a bit string representing the full message*.We begin, then, with the notion of a probabilistic message source, and consider theset of all possible messages fMig that can be generated by this source; associated witheach message Mi is the probability, Pi, that Mi will be generated. Though the com-putation may be complex, it is in principle possible to derive these probabilities givena grammar for the source. If a limit is imposed on the size of a message, the messageset can be considered �nite. Also associated with Mi is its compressed representation,a bit string of length `i. We further assume that none of the bit strings is a pre�xof any other|this may require adjoining a unique \end of message" character at theend of every message, as is usually done for arithmetic coding [21], [28]. The averagecompressed message length is PPi`i. The entropy HG of the source, described by thegrammar G, can now be de�ned as the minimum value this length can take over allpossible compression procedures. We can further de�ne the entropy per character asHG=�n, for �n the expected length in characters of the message set, provided the latteris de�ned. We speculate that the value HG=�n will be smaller than the correspondingvalues computed from distributions assuming independent character occurrence. Thatis, our knowledge of the source permits us to compute the true probability, Pi, of Mioccurring, and hence HG and HG=�n. But, given a set of textual messages, we canstatistically analyze the occurrences of characters to estimate the global probability ofoccurrence of each character; denote the probability of occurrence of the i-th characterby pi. Then the entropy per character under the independence model, HI , is given byHI = �P pi log pi; we expect HG=�n � HI . The di�erence, HI �HG=�n, measures theinformation per character captured by our knowledge that the language was generatedby a grammar. It is a measure of the information content of the grammar.To evaluate the entropy we �rst note that the lengths must obey the McMillaninequality: Pi 2�`i � 1 (see, for example, [4, Theorem 4.1]). This is a general propertyof binary trees (any set of bit strings satisfying the pre�x property in e�ect de�nesa binary tree). Given any set of codewords, we can create another set of average* This does not foreclose the possibility of generating a number of messages in sequence. How-ever, when we do so, we think of the messages as being generated independently, and theencoding and decoding processes starting over again each time. (This contrasts with thenotion of a code extension, in which, for encoding purposes, a �xed number of successive in-dependently generated messages is treated as a single message from a correspondingly largemessage set [8].) { 4 {

length no longer than the original that also represents our messages, observes thepre�x property, and satis�es the McMillan equality ; that is, the new set correspondsto a complete binary tree ([14, Exercise 2.3.4.5{3]). Since we are searching for optimalcompression, we can assume the equality is satis�ed.Using Lagrangian techniques** and ignoring integer constraints, one can showthat the expected size of a compressed message, Pi Pi`i, is minimized when `i =� logPi, where the optimization takes place subject to the McMillan equality; log-arithms throughout this paper are to base 2. This immediately shows that H =�Pi Pi logPi is a lower bound on the average size of encodings of messages from thesource. H can be shown to be in fact a greatest lower bound (using either code exten-sions or arithmetic encoding). Other familiar properties of H follow immediately fromour derivation. For example, if fPig and fQig are probabilities, then�Xi Pi log QiPi � 0; (1)otherwise, by setting `i (treated as a continuous variable) equal to � logQi, we wouldhave PPi`i < �Pi Pi logPi; but since the set of values, f`ig, constructed in this waysatisfy the McMillan constraint (recall PQi = 1), this contradicts our optimizationargument. (A more direct proof of (1) is possible based on Lagrangian methods: itis easy to show that the values Qi for which �Pi Pi log QiPi is minimized, subject toPiQi = 1, is Qi = Pi; for these values of Qi, the sum in (1) is zero.)Hu�man [11] described an optimal algorithm for compressing data of a given source.The argument that this algorithm provides an optimal code also does not depend onprior information theory based arguments. We see then that considering compressionoriented concepts as primary, the formula and properties of H follow independentlyof the context of communication, and can be used as an alternative development ofinformation theory. An advantage of this approach, besides providing an independentand immediately graspable argument supporting the Shannon formula, is that it bringsthe theory closer to the heart of theoretical computer science: parallel to the de�nitionsof the time and space complexity of a problem P in terms of performance measuresof optimal algorithms solving P, we de�ne the information content of an informationgenerator in terms of a performance measure of an optimal storage algorithm.** Lagrangian techniques extend the basic method of di�erential calculus for �nding an uncon-strained extremum of a di�erentiable function f(x) of a vector variable x = (x1; x2; : : :). If thevariables xi are constrained to satisfy, say, a single constraint, g(x) = 0, then the maxima andminima of f must satisfy @L@xi = 0, where L = f(x)��g(x) and � (the Lagrange multiplier) isa constant determined by the constraint (see [7]).{ 5 {

We now consider special cases of grammars as models of text generators.2.1 Independent character generationMost compression applications are implicitely based on the assumption that char-acters are generated independently. This can be represented in terms of a grammaras follows: given an alphabet A of m characters fc1; : : : ; cmg, we have the m produc-tions fS ! ciS (Pi)g, for S the starting and only non-terminal symbol, VT = A,and Pi referring to the probability of the character ci occurring. We will arbitrarilystop the process after n characters have been generated, though simple elaborations ofthis model will generate sentences that have a given expected length without such anexternal stopping procedure. For example, we could include a special stop-characterwith a speci�ed probability of occurrence.2.2 Simple Markov modelA natural generalization of the model of independent character generation is thatof a (�rst or higher order) Markov process [12], [17]. A �rst-order Markov pro-cess is a probabilistic process in which the probability of occurrence of an event isdetermined only by the immediately preceding event. This model is more exiblethan the model of independent character generation, since probabilities are inu-enced by history; however, the memory of a �rst-order Markov process is very limited:Prfxi j xi�1; xi�2; : : :g = Prfxi j xi�1g, for xi the state of the system at time i. Higherorder Markov processes are immediate generalizations of the �rst-order process.A �rst-order Markov model for an m character alphabet can be represented by agrammar with VN = fS; S1; : : : ; Smg, VT = A, and having the productions8<:S ! ciSi (Pi)Si ! ckSk (Pik):For simplicity, we assume this process stops after generating n characters. The gener-alization to higher order processes, in which the probability of a character depends ona �xed number of preceding characters, is immediate; it is a special case of the modeldescribed in the next section.2.3 Variable length Markov modelWe can also represent processes in which the probability of a character depends ona variable number of preceding characters [17]. Such a process can be represented by{ 6 {

a grammar that includes production rules of the following form:8<: S ! ciSi (Pi)Si1i2:::ir�1 ! cirSimim+1:::ir�1ir (Pi1i2:::ir�1 ; im:::ir)for some r � 2 and 1 � m � r; that is, we have just scanned the string ci1ci2 � � � cir�1,and the probability is Pi1i2:::ir�1 ; im:::ir that cir will be generated and a state enteredthat is de�ned by the last r�m+1 characters scanned. A k-th order Markov process,with k � 1, is a special case of this model.2.4 General grammarThe grammars de�ned above describe languages that permit the type of sequentialencoding/decoding of text that is customary in data compression: one can encode textby scanning characters sequentially and allowing the sequence of characters scannedto de�ne the state of the encoder; this state then determines the probability of occur-rence, and thus the codeword, for the next character. But the theoretical strength ofgrammars is that they in principle permit modelling sources which produce complexlystructured text. The following simple example is included to indicate the possibilitiesinherent in the grammar model; the language it produces cannot be analyzed fully bythe types of statistical approaches generally used for compression.Consider, then, the language: fab; aabb; aaabbb; : : :g, i.e., the language whose al-phabet is fa; bg and whose sentences are n a's followed by n b's. We can represent thislanguage by a grammar with the following production rules:8<:S ! a b (p)S ! a S b (1� p)Thus the number of a's and b's is a random variable, denoted by N . For this simplecase, we can very easily compute the probability of each sentence: the sentence madeup of n a's followed by n b's has probability Pr(N = n) = (1 � p)n�1p of occurring.Also, since in the �nal sentences there are as many a's as b's, the \global probability"of each character is 1=2. For the grammarH = � 1Xn=1 p(1� p)n�1 log(p(1� p)n�1) = 1p [�p log p� (1� p) log(1� p)]:Since for this distribution, E(N) = P1n=1(2n)p(1 � p)n�1 = 2p , the average entropyfor a character is 12 [�p log p � (1 � p) log(1 � p)] � 12 log 2 = 0:5. If we had used the{ 7 {

customary independence assumption, with the probability set to the global probabilityof 1=2, we would have concluded H = 1. Thus the grammar resolves at least half ofour uncertainty regarding which character will occur next.Generally, messages are compressed incrementally. The encoder receives one char-acter at a time and either on the basis of a preassigned set of probabilities or adaptively,using limited memory (Lempel & Ziv [29]), adds to the encoded string. Such an analy-sis is not possible here: once the �rst b is encountered, the rest of the text is known; butkeeping track of how many b's will be needed requires unlimited memory. The currentmodel suggests that radically di�erent approaches to compression may be possible.3. Notation and ConventionsIt will be useful at this point to de�ne notations that will be heavily used below.P 's, appropriately subscripted, will denote probabilities. Given a string s1s2 � � � sn,si denotes the i-th character of the string and Psi its probability of occurrence; Psisjdenotes the probability of the character sj occurring next, given that si has just beengenerated. In this notation, the indices refer to positions in a string. The si's are takenfrom an alphabet A. Sometimes it will be useful to refer to the i-th character of thealphabet, ci 2 A, or of some other set of characters. We will use the notation Pi as theunconditional probability that ci occurs, and Pij the probability that cj occurs next,given we have just scanned ci. This notation is extended to denote the probabilitythat any character in C, a set (or cluster) of characters, occurs by PC ; PCi will denotethe probability of ci given some cj 2 C has occurred, as de�ned below. The C in ournotation reects that below the sets will be generated by a clustering algorithm.Below, we shall need an estimate for the length of the codeword of a message withprobability P of occurrence; we shall use � logP for this purpose. This is an idealizedlength since it represents a lower bound on the size of the codeword. However, thisideal is obtained, or approached, for many codes. For example, this formula is exactfor the Hu�man code of a dyadic probability distribution, that is, a distribution whereeach probability is an integral power of 2�1 [19]. For example, the probability distri-bution (2�2; 2�2; 2�2; 2�3; 2�4; 2�4) is dyadic. For non-dyadic distributions, there aremany ways of justifying this approximation, for example considering code extensions,Shannon-Fano coding [8], or arithmetic coding [21].We will use Hu�man coding (as in [17] or [18]) in our discussion below, though ourideas apply to arithmetic coding (as in [3], [20]) as well. The reason we are emphasizing{ 8 {

Hu�man coding rather than arithmetic coding or Ziv & Lempel [29] coding, eventhough these codes might yield better compression [28], is that Hu�man codes alwaysencode a given element in the same way, a desirable property in certain applications(see [13]). Further, in practice, Hu�man codes approximate the idealized limit quitewell (see the example in Section 6), so the theory should be adequate for these codes.4. Hybrid ModelMost desirable for compression would be a full probabilistic grammar correctlydescribing the text being encoded. Lacking this, we must rely on statistical modelsthat capture essential aspects of the text. The simple independence model is clearlyinadequate. The �rst-order Markov model is an appealing substitute. It is a simplegeneralization of the independence model, and yet captures some of the statistical de-pendency that is inherent among the components constituting text. However, text ismade up of segments with rather long, strong dependencies that a �rst-order Markovmodel is incapable of representing. Using higher order or variable length models in-creases the complexity of the analysis.We propose here a compromise approach. We recognize the need to encode variablelength strings, but carry out this encoding in two stages. First, we identify a smallnumber of strings that occur frequently in our text, and represent them by singlesymbols not already in our alphabet; we then encode the alphabet enhanced by thesesymbols as a simple Markov process. Unfortunately, by increasing the size of thealphabet, this strategy also increases, perhaps substantially, the space requirements ofauxiliary tables. In Section 5 we will introduce a clustering method that allows us toaccommodate a very large alphabet while limiting the size of auxiliary tables.4.1 Implementation considerationsAs mentioned in the introduction to the article, we are assuming that text isgenerated by a Markov Process. To implement a k-th order Markov model, a distincttable of probabilities of character occurrence must be de�ned for each string of kcharacters. After such a string is scanned, the Hu�man code for the ensuing characteris determined by the probability table of the scanned string. Two problems immediatelyarise:(a) One expense of a code is the storage requirement for auxiliary tables, andthis varies with the generation model. If we have m characters, we need store onlym variable length codewords for the simple independence model; this increases to m2{ 9 {

codewords for the �rst-order Markov model and to mk+1 for the k-th order Markovmodel. If m is 100, a million table entries are needed for a second order model, andthe code tables themselves become a substantial consumer of space resources. Thus,in practice, one would rarely use higher orders than one. But then:(b) a �rst-order Markov model, while it may improve upon the assumption ofindependent character generation, and perhaps may even be quite adequate in general,fails most conspicuously because of the frequent occurrence of certain strings, especiallycommon trigrams and words. These often occur substantially more frequently thanexpected from the Markov assumption.In other words, in creating a compression program, we must resolve two conictingdemands: the order of the Markov process chosen to describe the character generationof the given text should on the one hand be made as low as possible to reduce thespace complexity, and on the other hand as high as possible to get a model which iscloser to reality. Our two stage procedure o�ers a trade-o� for the above demands.Certain strings occur more frequently than expected from the Markov assumption.We �rst extend our alphabet to include these strings. If A is our current alphabet,we procede as follows: if the string s1s2 � � � sn, for sk 2 A, occurs substantially moreoften than expected on the basis of the Markov model, recode it as a single symbol, Si,and treat A[fSig as the alphabet to be encoded. Since, in practice, n will be limitedin size, this process will terminate if continued iteratively. Only strings causing thelargest discrepancies will be transformed in this manner. In the second stage, we applya clustering mechanism to the expanded alphabet. The di�culties of identifying thestrings to replace by single symbols in our �rst stage, and then of resolving ambiguitiesinherent in reducing actual text to a sequence of symbols from this new alphabet, havebeen discussed extensively ([9], [27], [23]). We shall only comment on an aspect of thisproblem that is illuminated by the information theoretic approach we are taking in thispaper.4.2 Measure of worthWe must identify the strings that are to be replaced by single symbols. Processingall n-grams in order to identify the optimal set is too costly. Fraenkel, Mor & Perl [6]show that even if we restrict the potential n-grams to pre�xes and su�xes of the wordsin the text, the problem of �nding an optimal set is NP-complete. One therefore typi-cally uses a heuristic that is reasonably e�ective. We anticipate that bigrams, trigrams,{ 10 {

and words would be especially practical and useful, so we recommend restricting ourn-grams to these.We next need a measure of worth, w, for each candidate string; w is used to choosewhich strings to translate. A number of candidate measures are possible.(a) The most naive approach is to tabulate the number of occurrences of eachstring (w0 = frequency of string), and use the most frequent.(b) But translating a long string to a single codeword may yield a greater savingsthan translating a shorter, though more frequently occurring string. Therefore a moresensitive, but still easily computable measure, is most commonly used ([6], [23]): w1 =(`� 1)f for a string that is ` characters in length and which occurs f times.The measure w1 can be justi�ed on two grounds. If we think of the compressionprocess as being implemented in stages, then we �rst compress a number of strings intoone byte codewords. All resulting symbols are then merged with the initial alphabetand the resulting alphabet is �nally Hu�man encoded. If we procede in this manner,we would like the �rst stage compression to be as e�ective as possible; w1 ranks thestrings according to the savings accrued by replacing each string by a single byte. Asecond motivation is that those strings exhibiting the greatest savings in stage oneare likely to be the same as those whose probability of occurrence most exceeds theexpected value as predicted by a Markov model.(c) The last measure of worth, w2, follows naturally from our discussion of theencoding of a Markov process. We noted that frequency alone is inadequate as acriterion for substitution since the compression e�ectiveness of reducing a string toa single symbol is a�ected by its length as well. But also, a string may occur oftensimply because its components are expected to occur frequently. If the string occursfrequently only because its components do, no earnings occur from reducing the stringto a single symbol. Consider, for example, the string S = s1s2 � � � sn. If this has beengenerated by the underlying �rst-order Markov process, the probability with which thisstring occurs is given by Ps1Ps1s2 � � �Psn�1sn. The length of the Hu�man encoding ofthis string as a single unit will be approximately � log(Ps1 � � �Psn�1sn). If the textis N characters in length and PS is the probability that an occurrence of the stringbegins at a independently selected point in the text, then the occurrences of this stringwill take up about �PSN logPS amount of storage if each occurrence is encoded asa unit. But if the characters were encoded individually using the underlying Markovbased probabilities, the collective occurrence of these characters as contributed by this{ 11 {

string will occupy about PSN(� logPs1 � � � � � logPsnsn�1) bits, since � logPsjsiwould approximate the length of the code for si when it follows sj . But this quantityis identical to the one describing the storage required if we encode the string as a unit.Since the two quantities are equal, no savings result.Since our objective is to select strings that, when replaced by one byte codewords,will minimize storage requirements, the above analysis suggests that the following crite-rion should be appropriate: treat a string S as a unit if the savings gained by replacingit by a single byte are large. The criterion for replacing S by a single byte codewordthus becomes: w2 = �fS logPS + fS log(Ps1Ps1s2 � � �)� 0, i.e., fS log Ps1Ps1s2 ���PS � 0,where fS = PSN is the frequency with which the string occurs. Hence w2 explicitelyincorporates the correlation between the characters forming the string as well as theiroverall frequency (see also [13]).5. ClusteringAt the end of the �rst step of the algorithm described in Section 4, we have asequence of m elements, each a member of an alphabet A, such that the occurrencesof these elements are reasonably well described by a �rst-order Markov process. Ifwe were to continue to the second step directly, we would create tables indicating theprobability of an element occuring given the occurrence of the one just scanned. For ahigher order Markov process, especially with an extended alphabet, this would createa very large table. We reduce the size of this table by breaking the set of elements weare encoding into clusters. Then, when creating Hu�man trees, we use the same value,Psjsi , for the probability that si occurs for all preceding characters, sj , in the samecluster C [18]. Thus, if sj 2 C, we could denote this shared cluster based probabilityby PCsi. If we have m items and t clusters, we need a table of only tm elements torepresent this distribution, instead of the m2 needed for a �rst-order Markov process.Our main interest in this paper is in studying the properties of these clusters and togarner some insights about information theory. However, we also believe this to bea practical approach to compression; this belief is encouraged by the results of theexample presented in Section 6. The cluster model is represented in Figure 1.Insert Figure 1 hereFigure 1: Cluster model. Characters are partitioned into clusters C1; : : : ; Ct. The probability that cioccurs depends only on ci and the cluster with which the preceding character is associated.{ 12 {

Our task then is 1) to decide how to cluster elements, and 2) to decide, whencreating the Hu�man trees, what probability PCsi to use for an element si contingenton that element following a member of the cluster C. We �rst deal with the secondproblem, assuming that the partition of the elements into t non-overlapping clustersfC1; : : : ; Ctg is given.5.1 Cluster probabilitiesSuppose that we assign to an arbitrary element, ck 2 A, the probability P̂Ck whenit appears after a member of the cluster C; we want the optimal value of P̂Ck. ThusfP̂Ckg is a single probability distribution, approximating the set of distributions fPikg,for Pik the true probability of ck when it follows ci, for all ci 2 C. Given fP̂Ckg, we canconstruct a Hu�man tree (or de�ne an interval of appropriate length for arithmeticcoding). If ck follows cluster C, the length of its codeword will be approximately� log P̂Ck.Thus, if we have just scanned ci 2 C, the average length of the codeword forfollowing element is �Pmk=1 Pik log P̂Ck, and the overall average length of a codeword,averaged over all preceding elements, isH =XC 24Xci2C Pi0@� mXk=1Pik log P̂Ck1A35 ;where here and below, PC denotes the sum over the clusters C in fC1; : : : ; Ctg, and Pi isthe unconditional probability of ci occurring; in a Markov process, this unconditionallong-term probability can be computed from the transition matrix [5]. Each termin brackets is associated with a single cluster and depends on a single distribution,P̂Ck, which can be changed independently of the others; thus H is minimized if eachexpression in brackets is minimized. To �nd the optimal fP̂Ckg for a given cluster, weform the LagrangianL = � Xci2C mXk=1PiPik log P̂Ck � �(mXk=1 P̂Ck � 1);and minimize it for values P̂Ck subject to Pk P̂Ck = 1. We �nd, for cluster C,P̂Ck = Xci2C PiPikPC ; (2a)where PC = Xci2C Pi: (2b){ 13 {

Denote this optimal value for P̂Ck by PCk, which is clearly a probability; it is a weightedaverage of the probability distributions constituting C. For any cluster C, we shall referto fPCkg as the probability distribution associated with the cluster.Note that Pi=PC is the probability of ci, given that an element in C occurred.Since Pik is the probability that ck will occur, given that ci (ci 2 C) was just scanned,PiPik=PC is the probability that ci, a element in C, was just scanned and ck follows;summing over i for ci 2 C gives the average of Pik over i for ci 2 C. Thus PCk isinterpretable as the probability of ck, given that some element in C was just scanned.We can now write H asH =XC PC(�Xk PCk logPCk) �XC PCHC ; (2c)with HC = �Xk PCk logPCk (2d)the entropy de�ned by the cluster based probability. PCk is the \average" probabilitywithin the cluster C; below, when we want to emphasize this fact we will adopt thenotation H �C for HC . HC is the \ideal length" of the encoding of an element followingan element in C. Our task then is, given a value t, to �nd a partition of A into tclusters, such that H is minimized.Two special cases are particularly interesting:(a) If t = 1, then we are treating the entire alphabet as a single element. Then PCis 1, and PCk is simply the a priori probability of ck | the value we would use if weignored the Markov property.(b) If C is a single element, fcig, then PC = Pi and PCk = Pik. Now HC is in e�ectHi, the single character entropy. If each element is in its own cluster (t = m), then wehave a full Markov model.5.2 Clustering loss functionThe task of �nding the optimal partition is likely to be very di�cult. Indeed, verysimilar problems have been found to be NP-complete. We instead search for heuristicsthat are reasonable. A straightforward and often e�ective approach is to adopt a greedyalgorithm, beginning with the individual elements as elementary clusters and at eachstage merging several clusters. We de�ne the loss, L, in average storage required perelement due to merging clusters into superclusters as L = H2 �H1, where the indices{ 14 {

on H distinguish the entropy of the original partition (H1) from that of the new one(H2). We will usually omit from L the subscripts that de�ne the partitions merged tocreate L since it is generally clear which clusters are involved.L can be reexpressed in several useful ways:(a) Since the original partition is a re�nement of the new, merged partition, Lcan be naturally decomposed into components, each associated with one new cluster,and the analysis carried out separately on each; this expresses L in terms of lossesassociated with each cluster. Consider, then, the contribution to L of disjoint clustersfCrg combining to form C. To make this decomposition explicit, L can be written asL =XC PC(HC � XCr�C PCrPC HCr) �XC PCLC ; (3a)where LC = HC � XCr�C PCrPC HCr (3b)is the loss associated with C. The overall, weighted loss, L, is the average of theunweighted losses incurred when forming the individual superclusters. If we are simplycombining several clusters into a single cluster, C, then (3a) becomesL = PCLC ; (3c)with the terms associated with the unmodi�ed clusters cancelling.(b) We can rewrite LC more evocatively asLC = H �C � �HC ; (4)where H �C = HC and �HC = PCr�C PCrPC HCr = PCr�C PCrPC ��Pk PCrk logPCrk�: thatis, LC is the di�erence between the entropy of the average probability distribution inthe cluster and the average of the individual entropies of the clusters comprising it.Ultimately, a cluster is made up of individual probability distributions. If PCr = Piand PCrk = Pik, equation (4) describes the loss of merging a number of elementarydistributions into a cluster.(c) We would also like a representation of L directly in terms of the basic clusterprobabilities. Expanding HC and HCr , PCLC can be rewritten asPCHC � 0@ XCr�C PCrHCr1A = 0@�PCXk PCk logPCk1A� XCr�C PCr 0@�Xk PCrk logPCrk1A :{ 15 {

But PCPCk = Pci2C PiPik = PCr�C �Pci2Cr PiPik� = PCr�C PCrPCrk, soPCLC = XCr�C PCr 0@�Xk PCrk logPCk1A� XCr�C0@�PCr Xk PCrk logPCrk1A= XCr�C PCr 0@�Xk PCrk log PCkPCrk1Aand L is the sum of these values:L =XC XCr�C PCr 0@�Xk PCrk log PCkPCrk1A : (5a)Thus we get from the de�nition of LC in terms of L (eq. (3a))LC = XCr�C PCrPC 0@�Xk PCrk log PCkPCrk1A : (5b)5.2.1 Interpretation of loss functionWe can now make the following observations:First note that LC is a weighted average of terms of the form �PPk log QkPk , withfPkg and fQkg probabilities. As shown above (eq. (1)), this sum is greater than zerounless Pk � Qk, in which case the sum is zero. Thus LC will be zero if and only ifPCk = PCrk for all k, and each Cr that is being merged into C. Otherwise LC > 0, i.e.,the \loss" is a genuine loss | the average length of the code resulting from a mergingof clusters does increase, unless all the probabilities being merged into one cluster areidentical. The closer LC is to zero, the better the clustering.Second, note that the term in parenthesis in equation (5b) has the form�PPtrue log PapproxPtrue , where a cluster based distribution is approximating the compo-nent distributions comprising it. This formula has previously been used as a measureof how well an approximate probability distribution agrees with the true distributionit is estimating (see, e.g., [16]). The appearance of this measure here, motivated bycompression considerations, suggests an easily understandable, intuitively satisfying,interpretation: given a probability distribution fPig and an approximation to thatdistribution fQig, we can use as a measure of the goodness of the approximation theexpected deterioration in code length of using the approximate distribution as a sub-stitute for the true distribution when compressing the data.{ 16 {

The interpretation of the above approximation formula is important enough tomerit a more detailed argument. As we saw above, if we approximate Pk, the prob-ability associated with the character ck, by Qk, the length of the encoding of ck willbe about � logQk and the expected length of the code based on Qk will be about�PPk logQk. The optimal length is �PPk logPk. Thus the expected deteriorationis �PPk log QkPk . In our problem, Pk is the true probability of an element ck occur-ring, conditional on having scanned a speci�c element, say ci. Qk is our cluster basedapproximation of Pk. In general, any set of probabilities and approximations to themcan be interpreted in this manner. The interpretation of the measure as an increase inexpected coding size is concrete and easily understandable, and provides an alternativeto the more abstract idea of \information loss".In constructing LC , a number of distributions, fPCrkg, are approximated by PCk.The weighted average as given above generalizes the formula measuring how well onedistribution estimates another: LC estimates how well one distribution estimates a setof distributions.5.2.2 Special casesIt is instructive to note explicitely the form taken by the loss function for a fewspecial cases.(a)We �rst note the special case in which each Cr is an isolated element: Cr = fcrg.Then PCrk = Prk, LC = HC � Pr PrPCHr, and Hr is �Pk Prk logPrk, the entropyassociated with �rst having scanned cr. Expanding, we �ndLC = 0@�Xk PCk logPCk1A� Xcr2C PrPC 0@�Xk Prk logPrk1A :Thus the cummulative loss contributed by a cluster is the length associated with thecluster minus the average of the lengths associated with the elements making up thecluster. This quantity is interesting because it gives us the overall deterioration dueto the clustering of elements at any given stage. As such, LC can be interpreted as ageneral measure of the lack of cohesiveness of a set of probability distributions. Notethat if for all k, Pik = Pjk for ci 6= cj in C, then LC = 0, and LC always is greater thanor equal to zero. Also, LC is symmetric over ci 2 C.(b) A second interesting case is when all of the clusters merge into a single cluster,the entire alphabet A; this quantity is a measure of \headroom": how much capacity{ 17 {

we still have for loss as we continue clustering. This is given by L = HA �PPCHC,with HA = �Pmk=1 Pk logPk.(c) Another interesting measure is L = HA � Pmi=1 PiHi, with HA as beforeand Pk the unconditional probability of ck occuring: L is then the loss ignoring theMarkov structure of the generator. This measure indicates whether we should con-sider the Markov model at all, since HA is the average length if we created our codeunder the assumption of independent character generation. This argument can bepursued further, by asking what is the information content of a Markov process [12],[8]. Consider a string of n characters generated by the Markov process. The proba-bility of the string S = s1s2 � � � sn is PS = Ps1Ps1s2 � � �Psn�1sn, and the informationcontent of the generator is H = �PS PS logPS . Expanding the logarithm and col-lecting terms, this becomes H = H0 + (n � 1) �HA, where H0 = �PPi logPi and�HA = Pi Pi(�Pk Pik logPik) = Pi PiHi, i.e., �HA denotes �HC , where the cluster C isthe entire alphabet A.Thus the information content per character, H=n, for large n, approaches �HA. Theinequality LA � 0 or (from (4)) H �A � �HA, tells us that if the generator is Markov,we can only improve compression by recognizing this. More generally, if we have aMarkov process, recognizing this gives us information about the strings that are beinggenerated. �HA is the information content in the string once we recognize the string asbeing generated by a Markov process. H �A� �HA is, in e�ect, the information conveyedto us, when being told that the string was created by a Markov generator. Alternatively,when a message is generated by a stochastic device with structure, recognizing thatstructure conveys information about the strings that result, and this information canbe used to reduce the information content of the string, quanti�ed as the number ofbits needed to store it.(d) Finally, we consider the e�ect of merging two clusters into one; this will formthe basis of the algorithm proposed in Section 5.3. Suppose then that the disjointclusters C1 and C2 are merged to form C. Equation (3a) becomes L = PCLC , withLC = HC��PC1PC HC1 + PC2PC HC2�, and since it is easy to see that PCk = PC1PC1k+PC2PC2kPC1+PC2 ,we get the more explicit formLC = � mXk=1 PC1PC1k+PC2PC2kPC1+PC2 log PC1PC1k+PC2PC2kPC1+PC2+ PC1PC1+PC2 mXk=1PC1k log PC1k + PC2PC1+PC2 mXk=1PC2k log PC2k: (6){ 18 {

LC is a measure of dissimilarity of two clusters, and, more generally, a weighted measureof the dissimilarity of two probability distributions: in common with other measuresof dissimilarity, it takes positive values, is symmetric in the clusters, and is equal tozero if and only if fPC1kg = fPC2kg and thus equal to fPCkg. In general, if we wishto compute a loss for combining two probability distributions, but do not have explicitvalues for PC1 and PC2, we can set both equal to 1/2.5.3 Clustering heuristicThis suggests a heuristic for creating the clusters: beginning with the individualelements as primary clusters, we iteratively combine pairs of clusters. At each stage,we combine Cr and Cs to form cluster Crs provided that Lrs � PCrsLCrs, the lossafter combination, is less than that for any other pair of clusters. Thus Lrs � Luv,for u; v denoting any other pair of clusters that are candidates for combination. Notethat the critical value determining whether to combine two clusters is the productof the closeness of the two clusters and the likelihood of an element of these clustersoccurring. Thus we may well �nd ourselves combining quite di�erent clusters if theirelements occur rarely.Clustering procedures [25] often begin by creating a measure of similarity, and thencontinue by somehow combining items using this measure. Although the measure ofsimilarity is a critical component of this process, it tends to be chosen on an ad hocbasis. Our clustering procedure is unusual in being based on a measure of associationthat itself was directly developed out of our objectives for creating clusters. The follow-ing procedure is therefore used (repeating the required equations, for the convenienceof the reader):1. Initialization: For each element ci (treated as a primary cluster), store PCi = Pi,PCik = Pik and Hi = �Pk Pik logPik.2. Iteration: At each stage, compute Lrs (r < s) for each pair of clusters (Cr; Cs):(a) PCrs = PCr + PCs (eq. (2b))(b) PCrsk = (PCrPCrk + PCsPCsk)=PCrs (eq. (2a))(c) Hrs = � mXk=1PCrsk logPCrsk (eq. (2d))(d) LCrs = Hrs � � PCrPCrsHCr + PCsPCrsHCs� (eq. (3b))(e) Lrs = PCrsLCrs (eq. (3c))After the initial stage, Lrs need be computed only between the new cluster and{ 19 {

those older clusters remaining after the merged clusters are removed.3. Either combine the two clusters that yield the smallest value for Lrs or stop ifadequate clustering has taken place. As our stopping criterion, we could use athreshold on the loss function, stopping when the cost exceeds this threshold;another possibility is to continue until the set of clusters has been reduced to apredetermined number.4. If clusters Cr and Cs are combined to form cluster Crs � C:(a) remove clusters Cr and Cs from consideration;(b) enter cluster C;(c) associate with C the values PC, PCk and HC as computed in 2.(a) 2.(b) and2.(c);5. Return to step 2.Each iteration reduces the number of clusters by one. The matrix of L's for clus-ter pairs must be updated only for pairs involving the new cluster. We keep track ofthe partition of the primary elements into clusters using well-known Union-Find algo-rithms (see [1]). Our greedy algorithm is not necessarily optimal, but should producereasonable results. The end structure permits us to calculate LC and L.6. ExampleIn this section, we work through a detailed example. We wanted our exampleto be manageably small in the size of both the text and the alphabet, yet not to becompletely arti�cial. Both goals are met by using music as our text source. We chosethe Sonata in C major for Flute and Basso continuo, BWV 1033 , by Johann SebastianBach, consisting of �ve movements with a total of 1180 notes. For simplicity, the noteswere considered modulo an octave, and sharps and ats were ignored|that is, the\alphabet" consists of the seven notes in the scale of C: fC;D;E; F;G;A;Bg. Also,the �rst note of each movement was used only for computing the �rst-order Markovtransition probabilities of the following notes, but were not counted themselves asbelonging to the \text", leaving a text of 1175 \characters" to be compressed. Asa baseline, we use the space required by �xed length encoding. Since we have sevencharacters, we need dlog2 7e = 3 bits per character, or 3525 bits all told.{ 20 {

Table 1: First-order Markov probabilitiesA B C D E F G P 0 NA 0.0124 0.2795 0.1553 0.0683 0.0311 0.1056 0.3478 0.1370 161B 0.3421 0.0132 0.3750 0.0855 0.0395 0.0461 0.0987 0.1294 152C 0.1139 0.3218 0.0495 0.2376 0.1337 0.0545 0.0891 0.1719 202D 0.0180 0.0958 0.3533 0.0659 0.2934 0.0838 0.0898 0.1421 167E 0.0983 0.0173 0.1618 0.3006 0.0173 0.3121 0.0925 0.1472 173F 0.1032 0.0129 0.0516 0.1484 0.3677 0.0387 0.2774 0.1319 155G 0.3030 0.1152 0.0970 0.0545 0.1333 0.2788 0.0182 0.1404 165Table 1 summarizes the statistical characteristics of our text. The �rst sevencolumns of each row of Table 1 contain the conditional probabilities of a characteroccurring, given that the character de�ning the row has just been observed. Row i ofthe column labelled P 0 gives the unconditional probability of character i occurring.The column labelled N gives the total number of occurrences of the row character.(a) Simple Hu�man code: If we don't recognize the Markov property, we couldconstruct a straightforward Hu�man code based on the unconditional probabilitiesP 0i . The unconditional distribution of the seven characters is suprisingly uniform. Thecorresponding Hu�man code is almost a �xed length code.Any Hu�man code can be described by a string of integers, hn1; : : : ; n`i, where ni,for 1 � i � `, is the number of codewords of length i bits, and ` is the length of thelongest codeword (the depth of the tree). Note that Pì=1 ni is the size of the alphabet,in our case 7, and that Pì=1 ni2�i = 1, a property of all Hu�man codes. For theunconditional distribution, the Hu�man code can be described in this manner by thestring h0; 1; 6i: there are no codewords of length 1, a single codeword of length 2 andsix codewords of length 3. This encoding uses 3323 bits to encode the entire text, or2.828 bits per character on the average. Comparing this to a �xed length code, we �ndthat simple Hu�man coding yields 5.7% compression. This modest result is due to theuniformity of the distribution.(b) Markov model code: At the opposite extreme, we can treat the text as havingbeen generated by a Markov process and encode a character using the Hu�man treederived from the probability distribution associated with the preceding character. Theresults of such an encoding are presented in Table 2.The �rst column of Table 2 gives a description of the Hu�man tree for each of theconditional probability distributions. The second column gives the average codeword{ 21 {

length (ACL) of the characters de�ning the rows: that is, the average codeword lengthas given in row i is the average number of bits needed to encode a character followingan instance of character i. Finally, the last column of Table 2 gives the entropies ofthe conditional distributions of the corresponding rows in Table 1.Table 2: Statistical information on conditional probability distributionsHu�man code ACL EntropyA h0; 3; 1; 1; 2i 2.373 2.302B h1; 1; 0; 3; 2i 2.243 2.164C h0; 2; 3; 2i 2.545 2.518D h0; 2; 3; 2i 2.437 2.348E h0; 3; 1; 1; 2i 2.387 2.320F h1; 1; 1; 1; 1; 2i 2.348 2.274G h0; 2; 3; 2i 2.491 2.443The conditional probabilities are much more skewed than the unconditional dis-tribution. This is evident from Table 1 and also from the forms of the correspondingHu�man trees (�rst column of Table 2). We �nd that one needs 2832 bits to encodethe text as a �rst-order Markov process, or 2.410 bits per character on the average, a19.7% compression gain over the baseline �xed length code. The more than three-foldimprovement in compression over the simple Hu�man model is due to the emergenceof skewed distributions when conditional probabilities are considered | this skewingdisappears when all the distributions are merged. For this example, the recognition ofthe Markov property yields therefore a signi�cant improvement.The last two columns of Table 2 show that the ACL's are in fact quite close to theentropy, the theoretical lower bound: on our example, the Hu�man codes are between1% and 4% longer. Our decision to use the entropy, rather than the actual length, inour compression heuristic is experimentally justi�ed by the fact that both entropy andACL induce the same ordering on the given set of distributions: sorting the rows bydecreasing values of either ACL or the entropy yields the permutation CGDEAFB.Our example is too small to allow the replacement of some highly correlated stringsby a new symbol, as suggested in Section 4. If we had chosen a piece of music in someother key, there would be notes which would almost always be preceded by a sharp orat sign. Such pairs, (sharp, note) or (at, note), would probably be good candidatesfor substitution. Similarly, runs and chords would be interesting possibilities. For ourexample, we concentrate on the clustering proposed in Section 5.{ 22 {

(c) Cluster-based code: Intermediate between procedures (a) and (b) is basing thecompression on the probability distributions associated with clusters of characters. Todo this, we �rst must compute the table of losses, L. Table 3 contains this informationas well as the contents of the subsequent loss tables. The order of the characters in therows and columns of Table 3 has been chosen so as to permit us to encompass all thisinformation in a single table. The loss table corresponding to the initial state (7 clus-ters, each consisting of a singleton) is the sub-matrix bounded by rows D and G and bycolumns F and E. The cluster with minimum loss (0.054) is DF . To compute this loss,we �rst �nd PDF = PD+PF = 0:1421+0:1319 = 0:2740. We then compute the prob-ability distribution PDF;k = (0:0590; 0:0559; 0:2081; 0:1056; 0:3292; 0:0621; 0:1801).For example, the CDF cluster probability of A is (0:1421 � 0:0180 + 0:1319 �0:1032) = 0:2740 = 0:0590. The entropy for the CDF cluster, based on the proba-bility distribution PDF;k, is �(0:0590 log2 0:0590 + � � �) = 2:509; the average entropyof the components is 0:14210:2740 � 2:348+ 0:13190:2740 � 2:274 = 2:312. The weighted loss, LDF ,is thus 0:2740� (2:509� 2:312), or 0.054, as appears in the table.Table 3: Clustering loss matrixF A C B G E DF AC BG EBGD 0.054 0.059 0.072 0.065 0.070 0.083F 0.082 0.063 0.078 0.083 0.085A 0.055 0.091 0.093 0.080 0.073C 0.094 0.061 0.080 0.077B 0.056 0.058 0.074 0.104G 0.057 0.088 0.086E 0.093 0.086 0.059DF 0.082 0.093 0.113AC 0.116 0.127Note that requiring LC , the unweighted loss associated with a cluster, to be mul-tiplied by PC , the probability of the cluster, was critical in the choice of DF : the lossof DF before multiplication by PC was 2:509� 2:312 = 0:197, which was only secondsmallest, following the corresponding quantity for AC, which was 0.178.The next step in the clustering algorithm is to eliminate the rows and columnscorresponding to D and F and to create a new column for the cluster DF . Theresulting loss table is the sub-matrix of Table 3 bounded by rows A and E and bycolumns C and DF . The minimum in this sub-matrix is LAC = 0:055, so the nextcluster formed is AC. The resulting loss matrix is the sub-matrix bounded by rows{ 23 {

B and DF and by columns G and AC. The minimum is LBG = 0:056, therefore thenext cluster to form is BG, with loss matrix given by the sub-matrix bounded by rowsE and AC and by columns DF and BG. The minimum is now LEBG = 0:059, soEBG is created. At this stage, the loss matrix contains only 3 elements: column EBGand the element at the intersection of row DF and column AC, 0.082; the latter is thesmallest of the three. Thus the �nal cluster to be formed is ACDF .Table 4 and Figure 2 summarize the results. Each line of Table 4 corresponds toone iteration, i.e., the creation of a new cluster; the �rst line corresponds to the initial,full �rst-order Markov model, and the last line to the model of independent charactergeneration. The values in the column labelled compression are the percent reductionsin storage compared to the �xed length baseline model. For each newly formed cluster,the following information is given: a characterization of the corresponding Hu�mancode; the partition of the alphabet into clusters at this stage of the heuristic; the newtotal length of the encoding; and, in the last column, the overall compression obtainedusing the given partition. Figure 2 represents this information graphically.Table 4: Summary of clustering heuristicnew cluster Hu�man code partition total length compressionA B C D E F G 2832 19.7%DF h0; 3; 0; 4i A B C E G DF 2887 18.1%AC h0; 2; 3; 2i B E G DF AC 2949 16.3%BG h0; 3; 0; 4i E DF AC BG 3009 14.6%BGE h0; 3; 1; 1; 2i DF AC BGE 3071 12.9%ACDF h0; 2; 3; 2i BGE ACDF 3164 10.2%ACDFBGE h0; 1; 6i ACDFBGE 3323 5.7%Insert Figure 2 hereFigure 2: Clustering dendogram. This diagram indicates, as we go from the bottom up, the formationof clusters. The vertical level at which two clusters merge represents the number of bits needed tostore the text using that cluster representation. The implied savings in space over the baseline caseis given in parenthesis.The �rst three clusters formed are of pairs of notes a third (two notes) apart. Thestatistical reason for this is that both notes are strongly associated with the interme-diate note | for example, the probability of E occurring is high if either a D or an Fhas just occurred. { 24 {

The results exhibit the internal-space/compression tradeo�: the more clusters weuse, the more internal space we need for storing the di�erent Hu�man trees, but theless we need for encoding the text and, therefore, the better the compression. In thisexample, recognizing just a few clusters enables us to realize much of the advantagesof using a Markov model; this result should be tested on larger samples of text.7. ConclusionIt has often been observed that Shannon's theory of information o�ers importantinsights for data compression. In this paper, we showed that this favor can in part bereturned, and that the possibility of compression, coupled with a model of text gener-ation, permits an independent derivation of the Shannon entropy measure. Possibly,other aspects of a complete information theory can also be developed from this perspec-tive. That information theory is a fertile generator of ideas valuable for compression,however, is rea�rmed in this paper. It provides a natural measure of association oftwo probability distributions, and makes possible the clustering algorithm that formsthe basis of the compression approach suggested above.References[1] Aho A.V., Hopcroft J.E., Ullman J.D., The Design and Analysis of Computer Algorithms,Addison-Wesley, Reading, MA (1974).[2] Ash R., Information Theory , John Wiley & Sons, New York (1965).[3] Cleary J.G., Witten I.H., Data compression using adaptive coding and partial string match-ing, IEEE Trans. on Communications, COM{32 (1984) 396{402.[4] Even S., Graph Algorithms , Computer Science Press (1979).[5] Feller W., An Introduction to Probability Theory and Its Applications, Vol I, John Wiley &Sons, Inc., New York (1950).[6] Fraenkel A.S., Mor M., Perl Y., Is text compression by pre�xes and su�xes practical?Acta Informatica 20 (1983) 371{389.[7] Hadley, G., Nonlinear and Dynamic Programming , Addison-Wesley, Reading, Mass. (1964).[8] Hamming R.W., Coding and Information Theory, second edition, Prentice-Hall, EnglewoodCli�s, NJ (1986).[9] Heaps H.S., Information Retrieval, Computational and Theoretical Aspects, Academic Press,New York (1978).[10] Hopcroft J.E., Ullman J.D., Introduction to Automata Theory, Languages and Computa-tion, Addison-Wesley, Reading, MA (1979).{ 25 {

[11] Hu�man D., A method for the construction of minimum redundancy codes, Proc. of the IRE40 (1952) 1098{1101.[12] Khinchin A., Mathematical Foundations of Information Theory, Dover, New York (1957).[13] Klein S.T., Bookstein A., Deerwester S., Storing text retrieval systems on CD-ROM:compression and encryption considerations, ACM Trans. on Information Systems 7 (1989)230{245.[14] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental algorithms, Addison-Wesley, Reading, Mass. (1973).[15] Lelewer D.A., Hirschberg D.S., Data Compression, ACM Computing Surveys 19 (1987)261{296.[16] Lewis II, P.M., Approximating probability distributions to reduce storage requirements, In-formation and Control 2 (1959) 214{225.[17] Llewellyn J.A., Data compression for a source with Markov characteristics, The ComputerJournal, 30 (1987) 149{156.[18] Loh L.S., Mommens J.H., Raviv J., Method of achieving data compaction utilizingvariable-length dependent coding techniques, US Patent 3694813 (1972).[19] Longo G., Galasso G., An application of informational divergence to Hu�man codes, IEEETrans. on Inf. Th. IT{28 (1982) 36{43.[20] Ramabadran T.V., Cohn D.L., An adaptive algorithm for the compression of computerdata, IEEE Trans. on Communications, COM{37 (1989) 317{324.[21] Rissanen J., Langdon G.G., Arithmetic coding, IBM J. Res. Dev. 23 (1979) 149{162.[22] Rissanen J., Langdon G.G., Universal modeling and coding, IEEE Trans. on Inf. Th. IT{27 (1981) 12{23.[23] Rubin F., Experiments in text �le compression, Comm. ACM 19 (1976) 617{623.[24] Shannon C.E., A mathematical theory of communication, Bell System Tech. J., 27 (1948)379{423, 623{656.[25] Sneath P.H.A., Sokal R.R., Numerical Taxonomy, The Principles and Practice of NumericalClassi�cation, W.H. Freeman and Company, San Francisco (1973).[26] Storer J.A., Data Compression: Methods and Theory , Computer Science Press, Rockville,Maryland (1988).[27] Walker V.R., Compaction of names by x-grams, Proc. ASIS Vol 6 (1969) 129{133.[28] Witten I.H., Neal R.M., Cleary J.G., Arithmetic coding for data compression, Comm.ACM 30 (1987) 520{540.[29] Ziv J., Lempel A., Compression of individual sequences via variable-rate coding, IEEE Trans.on Inf. Th. IT{24 (1978) 530{536. { 26 {

