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1. IntroductionA well-known combinatorial formula for the Fibonacci numbers Fn, de�ned byF0 = 0, F1 = 1, Fn = Fn�1 + Fn�2 for n � 2, isbn=2cXi=0  n� ii ! = Fn+1 for n � 0; (1)which can be shown by induction (see for example Knuth [11, Exercise 1.2.8{16]). Thefollowing proof, however, is easily generalizable to various other recursively de�nedsequences of integers.The Fibonacci numbers fF2; F3; : : :g are the basis elements of the binary Fibonaccinumeration system (see [11, Exercise 1.2.8{34] or Fraenkel [7]). Every integerK in therange 0 � K < Fn+1 has a unique binary representation of n�1 bits, kn�1kn�2 � � �k1,such that K = Pn�1i=1 kiFi+1 and such that there are no adjacent 1's in this represen-tation of K (see Zeckendorf [17]). It follows that for n � 1, Fn+1 is the number of{ 1 {



binary strings of length n � 1 having no adjacent 1's. The number of these stringswith precisely i 1's, 0 � i � bn=2c, is evaluated using the fact that the number ofpossibilities to distribute a indistinguishable objects into b+ 1 disjoint sets, of whichb � 1 should contain at least one element, is �a+1b � (see Feller [6, Section II.5]). Inour case, there are n� 1� i zeros to be partitioned into i+1 runs, of which the i� 1runs delimited on both sides by 1's should be non-empty; the number of these stringsis therefore �n�ii �.In a similar way, counting strings of certain types, Philippou & Muwa� [15] deriveda representation of Fibonacci numbers of orderm, withm � 2, as a sum of multinomialcoe�cients; their formula coincides with that presented earlier by Miles [13].The properties of the representation of integers in Fibonacci type numeration sys-tems were used by Kautz [10] for synchronization control. More recently, they wereinvestigated in Pihko [16], and exploited in various applications, such as the compres-sion of large sparse bit-strings (Fraenkel, Klein [8]), the robust transmission of binarystrings in which the length is in an unknown range (Apostolico, Fraenkel [3]), and theevaluation of the potential number of phenotypes in a model of biological processingof genetic information based on the majority rule (Agur, Fraenkel, Klein [1]). In thepresent work, the properties of numeration systems are used to generate new com-binatorial formul�. In the next section this is done for the sequence based on therecurrence ai = ai�1 + ai�m, for some m � 2, which appears in certain applicationsto encoding algorithms for CD-ROM. Section 3 deals with other generalizations of Fi-bonacci numbers, namely sequences based on the recurrences ui = mui�1 + ui�2 form � 1, or vi = mvi�1 � vi�2 for m � 3, which are special cases of the sequencesinvestigated by Horadam [9]. For certain values of m and with appropriate initial val-ues, these two recurrence relations generate the sub-sequences of every k-th Fibonaccinumber, for all k � 1. For more details on the properties of numeration systems, thereader is referred to [7]. { 2 {



2. A generalization of Fibonacci numbersGiven a constant integer m � 2, consider the sequence de�ned byA(m)n = n� 1 for 1 < n � m + 1;A(m)n = A(m)n�1 + A(m)n�m for n > m + 1:In particular, Fn � A(2)n are the standard Fibonacci numbers. It follows from [7,Theorem 1], that for �xed m, the numbers fA(m)2 ; A(m)3 ; : : :g are the basis elements of abinary numeration system with the following property: every integer K in the range0 � K < A(m)n+1 has a unique binary representation of n � 1 bits, kn�1kn�2 � � �k1,such that K = Pn�1i=1 kiA(m)i+1 and such that there are at least m�1 zeros between anytwo 1's in this representation of K. Hence for n � 1, A(m)n+1 is the number of binarystrings of length n� 1 having this property.For m = 2 we again get the property that there are no adjacent ones in the binaryrepresentation.An interesting application of the sequence A(m)n is to analyze encoding methodsfor certain optical discs. A CD-ROM (compact disc { read only memory) is an opticalstorage medium able to store large amounts of digital data (about 550 MB or more).The information, represented by a spiral of almost two billion tiny pits separated byspaces, is molded onto the surface of the disc. A digit 1 is represented by a transitionfrom a pit to a space or from a space to a pit, and the length of a pit or spaceindicates the number of zeros. Due to the physical limitations of the optical devices,the lengths of pits and spaces are restricted, implying that there are at least two 0'sbetween any two 1's (for details, see for example Davies [4]): this is the case m = 3of our sequence above. It follows that if we want to encode a standard ASCII byte(256 possibilities), we need at least 14 bits, which corresponds to A(3)16 = 277. In factthere is an additional restriction, that no more than 11 consecutive zeros are allowed,{ 3 {



which disquali�es 6 of the 277 strings, but 14 bits are still enough; indeed, the codeused for CD-ROM is called EFM (eight to fourteen modulation).We now derive a combinatorial formula for A(m)n+1. First note that A(m)n+1 is also thenumber of binary strings of length n+m� 2, with zeros in its m� 1 rightmost bits,such that every 1 is immediately followed by m� 1 zeros. Let k be the number of 1'sin such a string, so that k can take values from 0 to b(n+m�2)=mc. We now considerthe string of consisting of elements of two types: blocks of the form 10 � � �0 (m � 1zeros) and single zeros; there are k elements of the �rst type and (n +m� 2)� kmof the second, which can be arranged in �n+m�2�(m�1)kk � ways. We thus have thefollowing formula, holding for m � 2 and n � 1:b(n+m�2)=mcXk=0  n+m� 2� (m� 1)kk ! = A(m)n+1: (2)For m = 2, (2) reduces to formula (1). Using the example mentioned above for EFMcodes, setting m = 3 and n = 15, we get:�160 �+ �141 �+ �122 �+ �103 �+ �84�+ �65� = 1 + 14 + 66 + 120 + 70 + 6 = 277 = A(3)16 .3. Regular Fibonacci sub-sequencesLet Ln be the n-th Lucas number, de�ned by L0 = 2, L1 = 1, Ln = Ln�1+Ln�2for n � 2. The standard extension to negative indices sets L�n = (�1)nLn andF�n = (�1)n+1Fn for n � 1.We are interested in the regular sub-sequences of the Fibonacci sequence obtainedby scanning the latter in intervals of size k, i.e. the sequences fFkn+jg1n=�1, forall constant integers k � 2 and 0 � j < k. The following identity, which is easilychecked and apparently due to Lucas (see Dickson [5, p. 395]), shows that all the sub-sequences with the same interval size k satisfy a simple recurrence relation: for all(positive, null or negative) integers k and nFn = LkFn�k + (�1)k+1Fn�2k: (3){ 4 {



It follows that all regular sub-sequences of the Fibonacci numbers can be generatedby a recurrence relation of the type ui = mui�1 � ui�2, for certain values of m, andwith appropriate initial conditions. We now apply the above techniques to obtaincombinatorial representations of these number sequences.
For �xed m � 3, de�ne a sequence of integers by U (m)0 = 0, U (m)1 = 1, andU (m)n = mU (m)n�1 � U (m)n�2 for n � 2. The numbers fU (m)1 ; U (m)2 ; : : :g are the basis el-ements of an m-ary numeration system: every integer K in the range 0 � K < U (m)nhas a representation of n � 1 \m-ary digits", kn�1kn�2 � � �k1, with 0 � ki � m � 1,such that K = Pn�1i=1 kiU (m)i ; this representation is unique if the following propertyholds: if for some 1 � i < j � n � 1, ki and kj assume both their maximal valuem� 1, then there exists an index s satisfying i < s < j, for which ks � m� 3 (see [7,Theorem 4]). In particular, for m = 3, we get a ternary system based on the even-indexed Fibonacci numbers f1; 3; 8; 21; : : :g, and in the representation of any integerusing this sequence as basis elements, there is at least one zero between any two 2's.
For general m, we have that U (m)n is the number of m-ary strings of length n� 1,such that between any two (m� 1)'s, there is at least one of the digits 0; : : : ; (m� 3).For a given m-ary string A of length n� 1, let ji be the number of i's in A, 0 � i �m� 1, thus 0 � ji < n and Pm�1i=0 ji = n� 1. In order to construct an m-ary stringsatisfying the condition, we �rst arrange the digits 0; : : : ; (m� 3) in any order, whichcan be done in � Pm�3i=0 jij0;j1;:::;jm�3� ways. Then the jm�1 (m�1)'s have to be interspersed,with no two of them adjacent. In other words the Pm�3i=0 ji smaller digits, whichare now considered indistinguishable, are partitioned into jm�1 + 1 sets of which atleast jm�1 � 1 should be non-empty; there are �n�jm�2�jm�1jm�1 � possibilities for thispartition. Finally, the (m� 2)'s can be added anywhere, in � n�1jm�2� ways. This yields{ 5 {



the following formula, holding for m � 3 and n � 1:Xj0;:::;jm�1� 0j0+���+jm�1=n�1  n� 1� jm�2 � jm�1j0; j1; : : : ; jm�3 ! n� 1jm�2! n� jm�2 � jm�1jm�1 ! = U (m)n :(4)Using the fact that for integers a and b, �ab� = 0 if 0 � a < b, there is no need toimpose further restrictions on the indices, but the rightmost binomial coe�cient in (4)implies that jm�1 varies in fact in the range 0 � jm�1 � d(n� 1)=2e. The sequencefU (m)n g corresponds to the sequence fwn(0; 1; m; 1)g studied by Horadam [9], butformula (4) is di�erent from Horadam's identity (3.20).Remark: Noting that the de�nition and the multinomial expansion of the multivari-ate Fibonacci polynomials of order k fH(k)n (x1; : : : ; xk)g of Philippou and Antzou-lakos [14] may be trivially extended to xj 2 R (j = 1; : : : ; k), we readily get thefollowing alternative to (4), namely,U (m)n = b(n�1)=2cXj=0  n� 1� jj !(�1)jmn�1�2j; m � 3; n � 1;since fU (m)n g = fH(2)n (m;�1)g (m � 3; n � 1).From (3) we know that the regular sub-sequence fFk(n�1)+jg1n=0 of the Fibonaccinumbers, for constant even k � 2 and 0 � j < k, is obtained by the same recurrencerelation as the sequence fU (Lk)n g1n=0, with the di�erence that the �rst two elements(indexed 0 and 1) must be de�ned as F�k+j and Fj instead of 0 and 1. We thus canexpress the Fibonacci sub-sequences with even interval size in terms of U (m):Theorem 1. For any even constant k � 2 and any constant 0 � j < k, the followingidentity holds for all n � 1:Fk(n�1)+j = Fj U (Lk)n � F�k+j U (Lk)n�1 : (5)Proof: By induction on n. For n = 1, Fj = Fj � 1 � F�k+j � 0. For n = 2,Fk+j = Lk Fj + (�1)k+1F�k+j by (3), but since k is even, the right hand side can{ 6 {



be rewritten as FjU (Lk)2 � F�k+jU (Lk)1 . Supppose the identity holds for all integers� n. ThenFkn+j = LkFk(n�1)+j � Fk(n�2)+j= LkhFjU (Lk)n � F�k+jU (Lk)n�1 i� FjU (Lk)n�1 + F�k+jU (Lk)n�2= FjU (Lk)n+1 � F�k+jU (Lk)n ;so the identity holds also for n+ 1, and therefore for all n � 1.In particular, for j = 0 and k = 2, we get the numbers F2(n�1), n = 1; 2; : : :, whichare the even-indexed Fibonacci numbers, and correspond by (5) to U (L2)n�1 = U (3)n�1. Form = L2 = 3, the multinomial coe�cient in (4) reduces to �j0j0� = 1 and the equivalentof (4) can therefore be rewritten as:d(n�1)=2eXj2=0 n�1�j2Xj0=max(0;j2�1) n� 1j0 + j2! j0 + 1j2 ! = U (3)n = F2n:For example, for n=4 we get �30��10�+ �31��20�+ �32��30�+ �33��40�+ �31��11�+ �32��21�+�33��31�+ �33��22� = 1 + 3 + 3 + 1 + 3 + 6 + 3 + 1 = 21 = U (3)4 = F8.For �xed m � 1, de�ne a sequence of integers by V (m)0 = 1, V (m)1 = 1, andV (m)n = mV (m)n�1 + V (m)n�2 for n � 2. The numbers fV (m)1 ; V (m)2 ; : : :g are the basis ele-ments of an (m+1)-ary numeration system with the following property: every integerK in the range 0 � K < V (m)n has a unique representation of n � 1 \(m + 1)-arydigits", kn�1kn�2 � � �k1, with 0 � ki � m, such that K = Pn�1i=1 kiV (m)i and suchthat for i � 1, if ki+1 assumes its maximal value m, then ki = 0 (see [7, Theorem 3]).In particular, for m = 1, we get the binary numeration system based on the Fibonaccisequence and the condition that there are no adjacent 1's.For general m, we have that V (m)n is the number of (m + 1)-ary strings of lengthn� 1, such that when scanning the string from left to right, every appearance of thedigit m, unless it is in the last position, is immediately followed by a digit 0. Special{ 7 {



treatment of the rightmost digit is avoided by noting that V (m)n is also the number of(m+1)-ary strings of length n, with 0 in its rightmost position, and where each digitm is followed by a digit 0. For a given (m+ 1)-ary string A of length n, let ji be thenumber of i's in A, 0 � i � m, thus 0 � ji � n and Pmi=0 ji = n. In order to constructan (m+1)-ary string satisfying the condition, distribute the 0's in the spaces betweenthe m's, such that every m is followed by at least one 0. In other words, the j0 zeroshave to be partitioned into jm + 1 sets of which at least jm should be non-empty;there are � j0jm� possibilities for this partition. We now consider the string obtainedso far as consisting of j0 units, where each unit is either one of the jm pairs `m0' orone of the remaining j0 � jm single zeros. The digits 1; : : : ; (m � 1) are then to bedistributed in the spaces between these units, including the space preceding the �rstunit, but not after the last unit, because the rightmost position must be 0. First thedigits 1; : : : ; (m�1) are arranged in any order, which can be done in � Pm�1i=1 jij1;:::;jm�1� ways;�nally these Pm�1i=1 ji digits, which are considered indistinguishable, are partitionedinto j0 sets, which can be done in �Pm�1i=0 ji�1j0�1 � = � n�1�jmn�j0�jm� ways. Summarizing, weget for m � 1 and n � 1:Xj0>0; j1;:::;jm� 0j0+���+jm=n  j0jm! n� 1� jmj0 � 1; j1; : : : ; jm�1! = V (m)n : (6)For m = 1, the multinomial coe�cient is �j0�1j0�1� = 1 and we again get (1). For m = 2,the sequence fV (2)n g is f1; 3; 7; 17; : : :g, and the ternary numeration system based onthis sequence is the system which yielded the best compression results in [8]. Thesequence fV (m)n g corresponds to fwn(1; 1; m;�1)g in [9], but again the combinatorialrepresentation (6) is di�erent from Horadam's formula (3.20). For m = 2, (6) reducesto: d(n�1)=2eXj2=0 n�j2Xj0=max(1;j2) j0j2! n� 1� j2j0 � 1 ! = V (2)n :{ 8 {



For example, for n = 3 we get �10��20�+ �20��21�+ �30��22�+ �11��10�+ �21��11� = 1+ 2+1 + 1 + 2 = 7 = V (2)3 .Returning to the regular sub-sequences of the Fibonacci numbers, we still needa combinatorial representation of the sub-sequences with odd interval size k, whichby (3) satisfy the same recurrence relation as V (Lk)n , but possibly with other initialvalues. The counterpart of Theorem 1 for the odd intervals is:Theorem 2. For any odd constant k � 1 and any constant 0 � j < k, the followingidentity holds for all n � 1:Fk(n�1)+j = FjV (Lk)n + (F�k+j � Fj) n�1Xi=1(�1)i+1V (Lk)n�i : (7)Proof: By induction on n. For n = 1, Fj = Fj � 1+(F�k+j �Fj)� 0. For n = 2,Fk+j = LkFj+F�k+j = Fj(Lk+1)+(F�k+j�Fj) = FjV (Lk)2 +(F�k+j�Fj)V (Lk)1 .Suppose the identity holds for all integers � n. Then, denoting the constant (F�k+j�Fj) by �,Fkn+j = LkFk(n�1)+j + Fk(n�2)+j= LkhFjV (Lk)n + � n�1Xi=1(�1)i+1V (Lk)n�i i + FjV (Lk)n�1 + � n�2Xi=1(�1)i+1V (Lk)n�1�i= FjV (Lk)n+1 + � n�2Xi=1(�1)i+1[LkV (Lk)n�i + V (Lk)n�1�i] + �Lk(�1)nV (Lk)1 :But the last term is�(�1)nLk = �(�1)n(V (Lk)2 � V (Lk)1 ) = �[(�1)nV (Lk)2 + (�1)n+1V (Lk)1 ],thereforeFkn+j = FjV (Lk)n+1 + � nXi=1(�1)i+1V (Lk)n+1�i;and the identity holds also for n+ 1, and therefore for all n.In particular, for j = 2 and k = 3, we get the numbers fF3(n�1)+2g1n=1 = f1; 5;21; 89; : : :g, i.e. every third Fibonacci number, which correspond by (7) to V (L3)n ={ 9 {



V (4)n . For example, using formula (6) with m = L3 = 4, we get for n = 3 (writing inthe multinomial coe�cients the values j0; : : : ; j4 from left to right and collecting termswhich di�er only in the order of the values of j1; j2; j3): �30�� 11;0;0;0;1�+ �21�� 22;0;0;0;0�+3�11�� 10;1;0;0;1�+ 3�20�� 21;1;0;0;0�+ 3�10�� 20;2;0;0;0�+ 3�10�� 20;1;1;0;0� = 1+ 2+ 3+ 6+ 3+ 6 =21 = V (4)3 = F8.4. Concluding remarksCombinatorial representations of several recursively de�ned sequences of integerswere generated, using the special properties of the corresponding numeration systems.On the other hand, it may sometimes be desirable to evaluate directly the numberof strings satisfying some constraints. The above techniques then suggest to try tode�ne a numeration system accordingly. For example, in Agur & Kerszberg [2] amodel of biological processing of genetic information is proposed, in which a binarystring symbolizing a DNA sequence is transformed by repeatedly applying some tran-sition function M. For M being the majority rule, the number of possible �nalstrings, or phenotypes, is evaluated in [1] using the binary numeration system basedon the standard Fibonacci numbers. Other transition functions could be studied, andif the resulting phenotypes can be characterized as satisfying some constraints, thecorresponding numeration system gives an easy way to evaluate the number of thesestrings.Acknowledgment: I wish to thank Prof. Abe Bookstein, Prof. Richard Guy andProf. Aviezri Fraenkel, as well as an anonymous referee for their helpful comments.References[1] Agur Z., Fraenkel A.S., Klein S.T., The number of �xed points of themajority rule, Discrete Mathematics 70 (1988) 295{302.[2] Agur Z., Kerszberg M., The emergence of phenotypic novelties throughprogressive genetic change, Amer. Natur 129 (1987) 862{875.{ 10 {
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