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Abstract

AWavelet tree is a data structure adjoined to a file that has been compressed
by a variable length encoding, which allows direct access to the underlying
file, resulting in the fact that the compressed file is not needed any more.
We adapt, in this paper, the Wavelet tree to Fibonacci Codes, so that in
addition to supporting direct access to the Fibonacci encoded file, we also
increase the compression savings when compared to the original Fibonacci
compressed file. The improvements are achieved by means of a new pruning
technique.
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1. Introduction and previous work

Variable length codes, such as Huffman and Fibonacci codes, have been
suggested long ago as alternatives to fixed length codes, since they might
improve the compression performance. However, random access to the ith
codeword of a file encoded by a variable length code is no longer trivial
because the beginning position of the ith element is the sum of the lengths
of all the preceding ones.

A possible solution to allow random access is to divide the encoded file
into blocks of size b codewords, and to use an auxiliary vector to indicate
the beginning of each block. The time complexity of random access depends
on the size b, as we can begin from the sampled bit address of the i

b
th block

to retrieve the ith codeword. This method thus suggests a processing time
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vs. memory storage tradeoff, since direct access requires decoding i − ⌊ i
b
⌋b

codewords, i.e., less than b.
Consider for example the text T = COMPRESSORS over the alphabet {C,

M, P, E, O, R, S} of size 7, whose elements appear {1, 1, 1, 1, 2, 2, 3}
times, respectively. The Fibonacci encoded file of length 39 bits is the
following binary string, in which spaces have been added for clarity:

Efib(T ) = 01011 0011 10011 00011 011 1011 11 11 0011 011 11.

block index 0 1 2 3
index of first bit in block 0 14 26 34

Table 1: Example of table of indices of 1-bits

If b, the number of codewords of each block, is equal to 3, the auxiliary
vector A is initialized as shown in Table 1, whose first line indicates the
indices of the block, and each cell on the second line records the address of
the first bit of the corresponding block. In order to access the 8th character
of T , one uses the cell of A indexed ⌊8−1

3 ⌋ = 2 to retrieve 26, and decodes
1 + ((8 − 1) mod 3) = 2 codewords, to get to 11; the 8th character of T is
thus Efib(11) = S.

Another line of investigation applies efficiently implemented rank and
select operations on bit-vectors [28, 25] to develop a data structure called
a Wavelet Tree, suggested by Grossi et al. [14], which allows direct access
to any codeword, and in fact recodes the compressed file into an alternative
form. The root of the Wavelet Tree holds the bitmap obtained by concate-
nating the first bit of each of the sequence of codewords in the order they
appear in the compressed text. The left and right children of the root hold,
respectively, the bitmaps obtained by concatenating, again in the given or-
der, the second bit of each of the codewords starting with 0, respectively
with 1. This process is repeated similarly with the grand-children of the
root that hold the bitmap obtained by concatenating the third bit of the
sequence of codewords; the fourth level nodes hold the fourth bit, and so on.

In this paper, we study the properties of Wavelet trees when applied
to Fibonacci codes, and show how to improve the compression beyond the
savings achieved by Wavelet trees for general prefix free codes. It should
be noted that a Wavelet tree for general prefix free codes requires some
amount of additional memory storage as compared to the memory usage of
the compressed file itself. However, since it enables efficient direct access,
this is a price one is often willing to pay. Wavelet trees, which are different
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implementations of compressed suffix arrays, yield a tradeoff between search
time and memory storage. Given a string T of length n and an alphabet Σ,
Grossi et al.’s implementation requires space nHh+O(n log logn

log|Σ| n
) bits, where

Hh denotes the hth-order empirical entropy of the text, which is bounded
by log |Σ|, and processing time just O(m log |Σ|+ polylog(n)) for searching
any pattern sequence of length m.

We concentrate on Wavelet trees for Fibonacci codes and suggest pruning
the trees in order to save space, but without impairing their functionality.
It has already been suggested in previous research to alter the shape of
the Wavelet tree for different purposes. We mention here several of these
suggestions.

Grossi and Ottaviano introduce the Wavelet trie, which is a compressed
indexed sequence of strings in which the shape of the tree is induced from the
structure of the Patricia trie [24]. This enables efficient prefix computations
(e.g. count the number of strings up to a given index having a given prefix)
and supports dynamic changes to the alphabet.

Brisaboa et al. [5] use a variant of a Wavelet tree on Byte-Codes. It
encodes the sequence and provides direct access. The root of the Wavelet
tree contains the first byte, rather than the first bit, of all the codewords, in
the same order as they appear in the original text. The root has as many
children as the number of different bytes (128 for End-Tagged Dense Codes
(ETDC), since the first bit is reserved to indicate the end of a codeword).
The second level nodes store the second byte of those codewords whose first
byte corresponds to that child (in the same order as they appear in the text),
and so on. The reordering of the compressed text bits becomes an implicit
index representation of the text, which is empirically shown to be better
than explicit main memory inverted indexes, built on the same collection
of words, when using the same amount of space. We use, in this paper,
a binary Wavelet tree rather than a 128-ary one for byte-codes, using less
space.

In another work, Brisaboa et al. [7] introduced directly accessible codes
(DACs) by integrating rank dictionaries into byte aligned codes. Their
method is based on Vbyte coding [30], in which the codewords represent
integers. The Vbyte code splits the ⌊log xi⌋+ 1 bits needed to represent an
integer xi in its standard binary form into blocks of b bits and prepends
each block with a flag-bit as follows. The highest bit is 0 in the extended
block holding the most significant bits of xi, and 1 in the others. Thus,
the 0-bit acts as a comma between codewords. For example, if b = 3, and
xi = 25, the standard binary representation of xi, 11001, is split into two
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blocks, and after adding the flags to each block, the codeword is 0011 1001.
In the worst case, the Vbyte code loses one bit per b bits of xi plus b bits
for an almost empty leading block, which is worse than δ-Elias encoding.
DACs can be regarded as a reorganization of the bits of Vbyte, plus extra
space for the rank structures, that enables direct access to it. First, all the
least significant blocks of all codewords are concatenated, then the second
least significant blocks of all codewords having at least two blocks, and so
on. Then the rank data structure is applied on the comma bits for attaining
log(M)

b
processing time, where M is the maximum integer to be encoded. In

the current work, not only do we use the Fibonacci encoding which is better
than δ-Elias encoding in terms of memory space, we even eliminate some of
the bits of the original Fibonacci encoding, while still allowing direct access
with better processing time.

Recently, Külekci [23] suggested the usage of Wavelet trees and the rank
and select data structures for Elias and Rice variable length codes. This
method is based on handling separately the unary and binary parts of the
codeword in different strings so that random access is supported in constant
time by two select queries. As an alternative, the usage of a Wavelet tree over
the lengths of the unary section of each Elias or Rice codeword is proposed,
while storing their binary section, allowing direct access in time log r, where
r is the number of distinct unary lengths in the file.

It should be noted that better compression can obviously be obtained
by the optimal Huffman codes. The application field of the current work is
thus restricted to those instances in which fixed, predefined codeword sets
are preferred, for various reasons, to Huffman codes. These codes include,
among others, the different Elias codes, dense codes like ETDC and (s, c)-
Dense Codes (SCDC) [6], and Fibonacci codes.

The rest of the paper is organized as follows. Section 2 brings some
technical details on Fibonacci codes. Section 3 deals with random access
to Fibonacci encoded files, first suggesting the use of an auxiliary index,
then showing how to apply Wavelet trees especially adapted to Fibonacci
compressed files. Section 4 further improves the self-indexing data structure
by pruning the Wavelet tree, and Section 5 extends the work to higher order
Fibonacci codes. Finally, Section 6 brings experimental results, Section 7
describes time/space tradeoffs for rank and select, and Section 8 concludes.

2. Fibonacci Codes

The Fibonacci code is a universal variable length encoding of the integers
based on the Fibonacci sequence rather than on powers of 2. A code is called
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universal , if the expected length of its codewords, for any finite probabil-
ity distribution P , is within a constant factor of the expected length of an
optimal code for P [9]. A finite prefix of the infinite sequence of Fibonacci
codewords can be used as a fixed alternative to Huffman codes, giving obvi-
ously less compression, but adding simplicity (there is no need to generate
a new code every time), robustness and speed [11, 21]. The particular prop-
erty of the binary Fibonacci encoding is that it contains no adjacent 1’s, so
that the string 11 can act like a comma between codewords. More precisely,
the codeword set consists of all the binary strings for which the substring
11 appears exactly once, at the left end of the string.

The connection to the Fibonacci sequence can be seen as follows: just as
any integer k has a standard binary representation, that is, can be uniquely
represented as a sum of powers of 2, k =

∑

i≥0 bi2
i, with bi ∈ {0, 1}, there

is another possible binary representation based on Fibonacci numbers, k =
∑

i≥2 fiFi, with fi ∈ {0, 1}, where it is convenient to define the Fibonacci
sequence here by

F0 = 0, F1 = 1 and Fi = Fi−1 + Fi−2 for i ≥ 2. (1)

This Fibonacci representation will be unique if, when encoding an integer,
one repeatedly tries to fit in the largest possible Fibonacci number.

For example, the largest Fibonacci number fitting into 19 is 13, for the
remainder 6 one can use the Fibonacci number 5, and the remainder 1 is
a Fibonacci number itself. So one would represent 19 as 19 = 13 + 5 + 1,
yielding the binary string 101001. Note that the bit positions correspond to
Fi for increasing values of i from right to left, just as for the standard binary
representation, in which 19 = 16 + 2 + 1 would be represented by 10011.
Each such Fibonacci representation has a leading 1, so by preceding it with
an additional 1, one gets a sequence of uniquely decipherable codewords.

Decoding, however, would not be instantaneous, because the set lacks
the prefix property. For example, a first attempt to start the parsing of the
encoded string 1101111111110 by 110 11 11 11 11 would fail, because the
remaining suffix 10 is not the prefix of any codeword. So only after having
read 5 codewords in this case (and the example can obviously be extended)
would one know that the correct parsing is 1101 11 11 11 110. To overcome
this problem, the Fibonacci code defined in [11] simply reverses each of the
codewords. The adjacent 1s are then at the right instead of at the left end of
each codeword, yielding the prefix code Efib = {11, 011, 0011, 1011, 00011,
10011, 01011, 000011, 100011, 010011, 001011, 101011, 0000011,. . .}.

Since the set of Fibonacci codewords is fixed in advance, and the code-
words are assigned by non-increasing frequency of the elements, but oth-
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erwise independently from the exact probabilities, the compression perfor-
mance of the code depends on how close the given probability distribution
is to one for which the Fibonacci codeword lengths would be optimal. The
lengths are 2, 3, 4, 4, 5, 5, 5, 6, . . ., so the optimal (infinite) probability
distribution would be (14 ,

1
8 ,

1
16 ,

1
16 ,

1
32 ,

1
32 ,

1
32 ,

1
64 , . . .). For any finite proba-

bility distribution, the compression by a prefix of the Fibonacci code will
always be inferior to what can be achieved by a Huffman code. For a typical
distribution of English characters, the excess of Fibonacci versus Huffman
encoding is about 17% [11], and may be less, around 9%, on much larger
alphabets [21]. On the other hand, Fibonacci coding may be significantly
better than other fixed codes such as Elias coding, ETDC and SCDC [21],
as stated above.

3. Random Access to Fibonacci Encoded Files

3.1. Using an Auxiliary Index

We are given an alphabet Σ and a text T = t1t2 · · · tn of size n, where
ti ∈ Σ. Let E(T ) = Efib(T ) be the encoding of T using the first |Σ| codewords
of the Fibonacci code. D is the decoding that corresponds to E so that
D(E(T )) = T .

A trivial solution for gaining random access to a Fibonacci encoded file
E(T ) is to create an auxiliary bitmapB of size |E(T )| indicating the codeword
boundaries, e.g., by setting B[i] = 1 if and only if E(T )[i] is the first bit of
a codeword. The following statement can then be used in order to extract
ti, the character in the ith position of T , using the select command of the
succinct data structures for B mentioned above:

extract(T, i)
return D

(

E(T )[select1(B, i)..select1(B, i+ 1)− 1]
)

The select operation will return the position of the ith and (i + 1)st
occurrences of a 1-bit in E(T ). The decoding function is then used to decode
the substring corresponding to these returned positions.

In the suggested solution, the space used to accomplish constant time
rank and select operations, excluding the encoded file, is u + o(u), where
u = |E(T )| denotes the length of the encoded file. A better approach would
be to omit the bitmap B of the first implementation and rather embed the
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index into the Fibonacci encoded file. This can be accomplished by treating
two consecutive 1 bits in E(T ) as a single 1-bit in B, and other bits in E(T )
as a 0 in B. The storage overhead is therefore reduced to o(u). Even better
solutions are presented below.

3.2. Using Wavelet Trees

We adjust the Wavelet tree to Fibonacci codes in the following way.
The Wavelet tree is in fact a set of annotations to the nodes of the binary
tree corresponding to the given prefix code. These annotations are bitmaps,
which together form the encoded text, though the bits are reorganized in
a different way to enable the random access. The exact definition of the
stored bitmaps, and some technical details on the rank and select operations
are given in the following subsection, followed by a detailed description of
Wavelet trees adapted to Fibonacci codes.

3.2.1. Rank and Select

Given a bit vector B and a bit b ∈ {0, 1},

rankb(B, i) – returns the number of occurrences of b up to and including
position i; and

selectb(B, i) – returns the position of the ith occurrence of b in B.

Note that rank1−b(B, i) = i − rankb(B, i), thus, only one of the two, say,
rank1(B, i) needs to be computed. However, for the select operation the
structures for both select0(B, i) and select1(B, i) need to be stored [25]. Ja-
cobson [19] showed that rank, on a bit-vector of length n, can be computed
in O(1) time using n+O(n log logn

logn ) = n+ o(n) bits.
The selectb(B, i) operation can be done by applying binary search on

the index j so that rankb(B, j) = i and rankb(B, j − 1) = i − 1. As for the
constant time solution for select, the bitmap B is partitioned into blocks,
similar to the solution for the rank operation. For simplicity, let us assume
that b = 1. The case in which b = 0 is dealt with symmetrically. We refer
to the work of [8] in more details, in which B is partitioned into blocks of
two kinds, each containing exactly ⌈log n⌉⌈log log n⌉ 1s. The first kind are
the blocks that are long enough (longer than ⌈log n⌉2⌈log log n⌉2 bits) to
store all their 1-positions within sublinear space. These positions are stored
explicitly using an array, in which the answer is read from the desired entry
i. The second kind of blocks are those we call short , of size O(logc n), where
c is a constant. Recording the 1-positions inside them requires again only
subliniear space by repartitioning these blocks, and storing their relative
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position. The remaining blocks are short enough to be handled in constant
time using a precomputed exhaustive table, and thus use three levels of
auxiliary directories.

Okanohara and Sadakane [26] introduce four practical rank and select
data structures, with different tradeoffs between memory storage and pro-
cessing time. The difference between the methods is based on the treatment
of sparse sets and dense sets. Although their methods do not always guar-
antee constant time, experimental results show that these data structures
support fast query results and their sizes are close to the zero order en-
tropy. Barbay et al. [2] propose a data structure that supports rank in time
O(log log |Σ|) and select in constant time using nH0(T ) + o(n)(H0(T ) + 1)
bits.

Navarro and Providel [25] present two data structures for rank and select
that improve the space overheads of previous work. One using the bitmap
in plain form and the other using the compressed form. In particular, they
concentrate on improving the select operation since it is less trivial than rank
and requires the computation of select0 and select1, unlike the symmetrical
nature of rank. The memory storage improvement is achieved by replacing
the exhaustive tables of [28]’s implementation by on-the-fly generation of
their cells. In addition, they combine the rank and select samplings instead
of solving each operation separately, so that each operation uses its own
sampling, possibly using also that of the other operation.

3.2.2. Fibonacci Adapted Wavelet Trees

Recall that the binary tree TC corresponding to a prefix code C is defined
as follows: we imagine that every edge pointing to a left child is labeled 0
and every edge pointing to a right child is labeled 1; each node v is associated
with the bitstring obtained by concatenating the labels on the edges on the
path from the root to v; finally, TC is defined as the binary tree for which
the set of bitstrings associated with its leaves is the code C. Figure 1 is the
tree corresponding to the first 7 elements of the Fibonacci code. Since the
bitmaps used by the Wavelet tree algorithms use the tree TC as underlying
structure, we shall refer to this tree as the Wavelet tree, for the ease of
discourse.

The bitmaps in the nodes of the Wavelet tree can be stored as a single
bit stream by concatenating them in order of any predetermined top-down
tree traversal, such as depth-first or breadth-first. No delimiters between
the individual bitmaps are required, since we can restore the tree topology
along with the bitmaps lengths at each node once the size u of the text is
given in the header of the file. We shall henceforth refer to the Wavelet
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Figure 1: Fibonacci Wavelet Tree for the text T = COMPRESSORS.

tree built for a Fibonacci code as the Fibonacci Wavelet tree (FWT). They
are related, but not quite identical, to the trees defined by Knuth [22] as
Fibonacci trees. We shall come back to the differences between FWTs and
Knuth’s Fibonacci trees later.

The FWT of our running example, including the annotating bitmaps, is
given in Figure 1. Recall that the Fibonacci encoding of the sample string
T = COMPRESSORS is Efib(T ) = 01011 0011 10011 00011 011 1011 11 11 0011
011 11. The bitmaps stored in the nodes of the FWT are in fact a very
specific reordering of the bits of the encoded file. The bitmap stored in the
root consists of eleven bits 00100111001, one for each of the characters of
T , and more specifically, the bitmap is the concatenation of the first bits
of the eleven codewords in the encoding of T . These codewords are then
partitioned into those starting with a 0-bit, in positions 1, 2, 4, 5, 9, and 10,
and those starting with a 1-bit, in the other positions. The root’s left child
then refers to the six codewords starting with a 0-bit. Collecting the second
bits of these codewords in the order they appear in the sample text, results
in the bitmap 100101, which is stored in the root’s left child. Similarly, the
second bits of the five codewords starting with 1 are concatenated to yield
00111, which is stored in the right child of the root. This process of splitting
the set of codewords corresponding to some node into two sub-sets that are
assigned to the node’s children, and collecting the i-th bit of the codewords
for nodes on level i, continues for all internal nodes.

The Wavelet tree for E(T ) is a succinct data structure for T as it takes
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space asymptotically equal to the Fibonacci encoding of T , and it enables
accessing any symbol ti in time O(|E(ti)|), where E(x) is the Fibonacci
encoding of the symbol x, under the assumption of a constant time rank
implementation.

The algorithm for extracting ti from an FWT rooted by vroot is given in
Figure 2 using the function call extract(vroot,i). Bv denotes the bit vector
belonging to vertex v of the Wavelet tree, and · denotes concatenation.
Computing the new index in the following bit vector is done by the rank
operation, given in lines 3.3 and 4.3. As the Fibonacci code is a fixed one,
the decoding of code in line 5 is done by a preprocessed lookup table.

extract(v, i)
1 code←− ǫ
2 while v is not a leaf
3 if Bv[i] = 0
3.1 v ←− left(v)
3.2 code←− code · 0
3.3 i←− rank0(Bv, i)
4 else
4.1 v ←− right(v)
4.2 code←− code · 1
4.3 i←− rank1(Bv, i)
5 return D(code)

Figure 2: Extracting ti from a Fibonacci Wavelet Tree rooted at vroot.

We extend the definition of selectb(B, i), which was defined on bitmaps,
to be defined on the text T for general alphabets, in the obvious way. More
precisely, we use the notation selectx(T, i) for returning the position of the
ith occurrence of the symbol x in T .

Computing selectx(T, i) is done in the opposite way of the computation
of rank. We start from the leaf, ℓ, representing the Fibonacci codeword E(x)
of x, and work our way up to the root. The formal algorithm is given in
Figure 3. The running time for selectx(T, i) is, again, O(|E(x)|), assuming a
constant time select implementation.

4. Enhanced Wavelet Trees for Fibonacci codes

In this section, we suggest to prune the Wavelet Tree, so that the attained
pruned Wavelet Tree still achieves efficient rank and select operations, and
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selectx(T, i)
1 ℓ←− leaf corresponding to E(x)
2 v ←− father of ℓ
3 while v 6= vroot(T )
3.1 if ℓ is a left child of v
3.1.1 i←− select0(Bv , i)
3.2 else // ℓ is a right child of v
3.2.1 i←− select1(Bv , i)
3.3 v ←− father of v
4 return i

Figure 3: Select the ith occurrence of x in T .

even improves the processing time. The proposed compressed data structure
not only provides efficient random access capability, but also improves the
compression performance as compared to the original Wavelet Tree.

4.1. Pruning the tree

The idea is based on the property of the Fibonacci code that all code-
words, except the first one 11, terminate with the suffix 011. These suffixes
are necessary to ensure the prefix property of the Fibonacci code, but some
of the corresponding nodes in the FWT are redundant. As can be seen,
e.g., in the example in Figure 1, the binary tree corresponding to the Fi-
bonacci code is not complete, and we can eliminate all the nodes which are
single children of their parents. The bitmaps corresponding to the remain-
ing internal nodes of the pruned tree are the only information needed in
order to achieve constant random access. A similar idea to this collapsing
strategy is applied on suffix or position trees in order to attain an efficient
compacted suffix trie. This has also been applied on Huffman trees [20] pro-
ducing a compact tree for efficient use, such as compressed pattern matching
[29]. Applying this strategy on the FWT of Figure 1 results in the Pruned
Fibonacci Wavelet Tree, PFWT for short, given in Figure 4.

The selectx(T, i) algorithm for selecting the ith occurrence of x in T is
the same as in Figure 3, gaining faster processing time since the lengths of
the longer codewords were shortened. However, the algorithm for extracting
ti from a PFWT requires minor adjustments for concatenating the pruned
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Figure 4: PFWT for the text T = COMPRESSORS.

parts. The lines of Figure 5 should be added instead of line 5 in the algorithm
of Figure 2.

5 if suffix of code = 0
5.1 code←− code · 11
6 if suffix of code 6= 11
6.1 code←− code · 1
7 return D(code)

Figure 5: Extracting ti from the PFWT.

The FWT of an alphabet of finite size is well defined and fixed. There-
fore, only the size of the alphabet is needed for recovering the topological
structure of the tree, as opposed to Huffman Wavelet Trees. Recall that the
Wavelet tree for general prefix free codes is a reorganization of the bits of
the underlying encoded file. The suggested pruned Fibonacci Wavelet tree
uses only a partial set of the bits of the encoded file. The main savings
of PFWTs as compared to the original FWTs of Section 3 stems from the
fact that the bitmaps corresponding to the nodes are not all necessary for
gaining the ability of direct access. These non-pruned nodes, therefore, are
in a one-to-one correspondence with the bits of the encoded Fibonacci file.
The bold bits of Figure 6 correspond to those bits that should be encoded;
the others can be removed when we use the PFWT.
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Efib(T ) 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1
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0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1

Figure 6: The Bitmap Encoding

4.2. Analysis

We now turn to evaluate the number of nodes in the original and pruned
FWTs, from which the compression savings can be derived. Two parameters
have to be considered: the number of nodes in the trees, which relate to the
storage overhead of applying the Wavelet trees, and the cumulative size of
the bitmaps stored in them, which is the size of the compressed file. A
certain codeword may appear several times in the compressed file, but will
be recorded only once in the FWT.

Since we are interested in asymptotic values, we shall restrict our dis-
cussion here to prefixes of the Fibonacci code corresponding to full levels,
that is, since the number of codewords of length h+1 is a Fibonacci number
Fh [21], we assume that if the given tree is of depth h + 1, then all the Fh

codewords of length h+1 are in the alphabet. This restricts the size n of the
alphabet to belong to the sequence 1, 2, 4, 7, 12, 20, 33, etc., or generally
n ∈ {Fh−1|h ≥ 3}.

Th+1

Th Th−1

Figure 7: Recursive definition of a FWT of height h+ 1.
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There are two ways to obtain the FWT of height h + 1 from that of
height h. The first is to consider the defining inductive process, as given in
Figure 7. The left subtree of the root is the FWT of height h, while the
right subtree of the root consists itself of a root, with a left subtree being the
FWT of height h− 1, and the right subtree being a single node. Denote by
Nh the number of nodes in the FWT of height h, we then have N0 = N1 = 0
and

Nh+1 = Nh +Nh−1 + 3 for h ≥ 1. (2)

Note that the Fibonacci tree by Knuth [22] is based on a similar recursion,
but with a different layout: the right subtree of the root of Th+1 would be
Th−1.

The second way to derive Nh+1 is by adding the paths corresponding to
the Fh longest codewords (of length h + 1) to the tree for height h. This
is done by referring to the nodes on level h − 2 which have a single child,
and there are again exactly Fh such nodes. The single child of these nodes
corresponds to the bit 1, and their parent nodes are extended by adding
trailing outgoing paths corresponding to the terminating string 011, turning
each of them into a node with two children. For example, the gray nodes in
Figure 8 are the FWT of height h = 4. The three darker nodes are those on
level 2 which are internal nodes with only one child. In the passage to the
FWT of height h+1 = 5, the bold edges and nodes (representing the suffix
011) are appended to these nodes. This yields the recursion

Nh+1 = Nh + 3Fh. (3)

Applying eq. (3) repeatedly gives

Nh+1 = Nh−1 + 3(Fh−1 + Fh) = Nh−2 + 3(Fh−2 + Fh−1 + Fh),

and in general after k stages we get that

Nh+1 = Nh−k + 3(

h
∑

i=h−k

Fi).

When substituting h− k by 2 we get that

Nh+1 = N2 + 3(
h
∑

i=2

Fi).

By induction it is easy to show that

h
∑

i=2

Fi = Fh+2 − 2.
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Since N2 = 3, we get that

Nh+1 = 3 + 3(Fh+2 − 2) = 3Fh+2 − 3. (4)

This is also consistent with our first derivation, since the basis of the induc-
tion is obviously the same, and assuming the truth of eq. (2) for values up
to h, we get by inserting eq. (4) for Nh and Nh−1 that

Nh+1 = (3Fh+1 − 3) + (3Fh − 3) + 3 = 3Fh+2 − 3.

2

3

4

5

Figure 8: Extending a FWT.

The PFWT corresponding to the FWT of height h+1 is of height h− 1
and obtained by pruning all single child nodes of the FWT: for each of the
Fh leaves of the lowest level h+ 1, two nodes are saved, and for each of the
Fh−1 leaves on level h, only a single node is erased. Denoting by Ph the
number of nodes in a PFWT of height h, we get

Ph−1 = Nh+1 − 2Fh − Fh−1. (5)

But
2Fh + Fh−1 = Fh+1 + Fh = Fh+2,

so substituting the value for Nh+1 from eq. (4), we get

Ph−1 = 3Fh+2 − 3− Fh+2 = 2Fh+2 − 3.

15



The ratio of the sizes of the pruned to the original FWTs is therefore

Ph−1

Nh+1
=

2Fh+2 − 3

3Fh+2 − 3
−→
h→∞

2

3
,

when the size of the tree grows to infinity, so that about one third of the
nodes will be saved. Figure 9 plots the number of nodes in both original
and pruned FWTs as a function of the tree’s heights.
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Figure 9: Number of nodes in original and pruned FWT as function of height.

5. Wavelet Trees for Higher Order Fibonacci Encoded files

The idea of the previous sections can be generalized to higher-order Fi-
bonacci codes [11]. Fibonacci numbers of order m ≥ 2 are defined by the
recursive formula:

F
(m)
i = F

(m)
i−1 + F

(m)
i−2 + ...+ F

(m)
i−m for i ≥ 1,

with boundary conditions F
(m)
0 = 1 and F

(m)
i = 0 for i < 0. A representa-

tion of the integers on the basis of higher order Fibonacci numbers has the
property that there is no occurrence of a string of m consecutive 1s. For

m = 2 one gets the standard Fibonacci sequence defined above, F
(2)
i = Fi.

Such a generalization seems natural from a theoretic point of view, but has
moreover also practical value, as for certain applications, the optimal per-
formance might be reached for m > 2. For example, the best compression in
[21] is consistently obtained for the codes of order m = 3; higher order Fi-
bonacci codes are suggested in [1] for the transmission of binary strings in an
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unbounded range; another generalization has been designed for the encoding
of data on CD-ROMs [18] and is known as Eight-to-Fourteen-Modulation:
every byte of 8 bits is mapped to a bit-string of length 14 in which there are
at least two zeros between any two 1s.

At first sight, Fibonacci codes of order m should have been defined as
a direct extension of the definition for m = 2, uniquely representing any
integer k as a sum of Fibonacci numbers of order m and appending a string
of m − 1 1s. However, the code generated by this generalization is not
uniquely decodable. We therefore use the definition of [21] for higher order
of Fibonacci Codes as follows: F (m) denotes the set of binary codewords of
length ≥ m, such that every codeword contains exactly one occurrence of
m consecutive 1s, and this occurrence is the suffix of every codeword. For
m = 2 this definition is equivalent to the basic definition of a Fibonacci code
as given in section 2.2. For example, for m = 3, we get

F (3) = {111, 0111, 00111, 10111, 000111, 100111, 010111, 110111, 0000111,
1000111, 0100111, 1100111, 0010111, 1010111, 0110111, · · · }

There is still a connection to Fibonacci numbers, namely, it can be shown

that for m ≥ 2 and i ≥ 0, the code F (m) consists of F
(m)
i codewords of

length i+m [1].
We denote the Wavelet tree for Fibonacci codes of order m by FWT(m),

and evaluate now the number of nodes in its original and pruned versions.
As in the case of m = 2, we restrict our discussion to prefixes of the code
corresponding to full levels of the tree.

Given an FWT(m) of height h, we add the paths corresponding to the
longest codewords of length h + 1 in order to construct FWT(m) of height

h + 1. We thus adjoin F
(m)
h−m+1 new paths to the tree, and the new nodes

added by these paths are those corresponding to their common suffix 01m of

length m+1. This results in the following recurrence: N
(m)
h = 0 for h < m,

and
N

(m)
h+1 = N

(m)
h + (m+ 1) · F (m)

h−m+1 for h ≥ m− 1. (6)

For example, for m = 3 and h ≥ 2, N
(3)
h+1 = N

(3)
h + 4 · F (3)

h−2, and Figure 10

depicts the nodes of FWT(3) of height h = 6, starting from FWT(3) of height
h = 5 (gray and darker nodes), extending the darker nodes on level 2 by the
bold edges and white nodes, representing the suffix 0111.

Applying equation (6) repeatedly h−m+ 2 times gives

N
(m)
h+1 = N

(m)
m−1 + (m+ 1) ·

(

h−m+1
∑

i=0

F
(m)
i

)

.

17



2

3

4

5

6

Figure 10: Constructing FWT(3) of height 6 from that of height 5.

Let S
(m)
k denote the summation of the first k + 1 Fibonacci numbers

of order m, that is, S
(m)
k =

∑k
i=0 F

(m)
i . Note that we have included also

the first element, indexed 0, in this summation, F
(m)
0 = 1, even though

the Fibonacci representations start only from index 1. N
(m)
h+1 can be simply

rewritten as
N

(m)
h+1 = (m+ 1) · S(m)

h−m+1. (7)

The pruned tree corresponding to the FWT(m) of height h is of height
h −m, and obtained by pruning all single child nodes of the FWT(m): for

each of the F
(m)
h−m leaves of the lowest level h, m nodes are saved, and for

each of the F
(m)
h−m−1 leaves on level h− 1, m− 1 nodes are erased, and so on,

up to level h− 2m+1 in which a single node is saved for each of the F
(m)
h−2m

codewords. Denoting by P
(m)
h the number of nodes in a pruned FWT(m) of
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height h, we get

P
(m)
h−m = N

(m)
h −

(

mF
(m)
h−m+(m− 1)F

(m)
h−m−1 + · · ·+ 2F

(m)
h−2m+2 + F

(m)
h−2m+1

)

= N
(m)
h −

m
∑

i=1

i · F (m)
h−2m+i

= N
(m)
h −

m
∑

j=1

m
∑

i=j

F
(m)
h−2m+i

= N
(m)
h −

m
∑

j=1

(S
(m)
h−m − S

(m)
h−2m+j−1)

= (m+ 1)S
(m)
h−m −mS

(m)
h−m +

h−m−1
∑

k=h−2m

S
(m)
k .

To evaluate the rightmost summation, we use the following:

Lemma: For every order m ≥ 2 and any starting index j ≥ 0, the sum,

starting at index j, of m consecutive summation elements of the mth order

Fibonacci sequence is the next higher summation element, minus 1, i.e.,

j+m−1
∑

i=j

S
(m)
i = S

(m)
j+m − 1 for all j ≥ 0, m ≥ 2.

Proof: It follows from the definition that the first m + 1 elements of the
F (m) sequence are powers of 2, F

(m)
0 = F

(m)
1 = 1, and

F
(m)
i = 2i−1 for 2 ≤ i ≤ m,

so their sum S
(m)
t = 1 +

∑t
i=1 2

i−1 = 2t is also a power of 2 for 0 ≤ t ≤ m,
and therefore the sum of the first m such summations is

m−1
∑

t=0

S
(m)
t =

m−1
∑

t=0

2t = 2m − 1 = S(m)
m − 1.
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Assume the truth of the claim for j − 1 ≥ 0, and let us show it for j:

S
(m)
j + S

(m)
j+1 + · · ·+ S

(m)
j+m−1

=
(

F
(m)
j + S

(m)
j−1

)

+
(

F
(m)
j+1 + S

(m)
j

)

+ · · ·+
(

F
(m)
j+m−1 + S

(m)
j+m−2

)

=

j+m−1
∑

t=j

F
(m)
t +

j+m−2
∑

t=j−1

S
(m)
t .

But using the definition of Fibonacci numbers for the first summation, and
the inductive hypothesis for the second, we get

= F
(m)
j+m + S

(m)
j+m−1 − 1 = S

(m)
j+m − 1.

Returning to the evaluation of the number of nodes in the pruned trees, we
get

P
(m)
h−m = (m+ 1) · S(m)

h−m −m · S(m)
h−m + S

(m)
h−m − 1 = 2 · S(m)

h−m − 1.

and the ratio of the sizes of the pruned to the original FWTs of order m is
therefore

P
(m)
h−m

N
(m)
h+1

=
2 · S(m)

h−m − 1

(m+ 1) · S(m)
h−m

−→
h→∞

2

m+ 1
.

Incidentally, the lemma can also be used to derive another form for N
(m)
h+1,

as we did in Section 4.2. We have, using equation (7),

N
(m)
h+1 = (m+ 1)S

(m)
h+1

= m+ 1 + (m+ 1)
(

S
(m)
h+1 − 1

)

= m+ 1 + (m+ 1)

h
∑

i=h−m+1

S
(m)
i−m

= m+ 1 +

h
∑

i=h−m+1

N
(m)
i . (8)

This equality illustrates the inductive process, shown in Figure 11, for gen-
erating the FWT(m) of height h + 1 from those of height h, h − 1, down to
h −m + 1, on which the construction of the Wavelet tree could have been
based.
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Th+1

Th Th−1 Th−m+1

m

Figure 11: Recursive definition of a FWT(m) of height h+ 1.

The rightmost path of the tree, starting at the root and ending at the
rightmost leaf, corresponds to the substring 1m. We call the nodes of this
path, top down, the ith right descendant of the root, for 0 ≤ i ≤ m. The
left subtree of the root is the FWT(m) of height h, and more generally, the
left subtree rooted at the ith right descendant of the root is the FWT(m) of
height h− i, 0 ≤ i ≤ m− 1. This yields equality (8).

6. Experimental Results

While the number of nodes saved in the pruning process could be ana-
lytically derived in the previous section, the number of bits to be saved in
the compressed file will depend on the distribution of the different encoded
elements. It might be hard to define a “typical” distribution of probabilities,
so we decided to calculate the savings for the distribution of characters in
several real-life languages.

The distribution of the 26 letters and the 378 letter pairs of English was
taken from Heaps [16]; the distribution of the 29 letters of Finnish is from
Pesonen [27]; the distribution for French (26 letters) has been computed
from the database of the Trésor de la Langue Française (TLF) of about
112 million words (for details on TLF, see [4]); for German, the distribution
of 30 letters (including blank and Umlaute) is given in Bauer & Goos [3];
for Hebrew (30 letters including two kinds of apostrophes and blank, and
743 letter-pairs), the distribution has been computed using the database
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File n FWT(m) pruned Huff
m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

English 26 4.90 5.74 6.72 4.41 4.65 4.87 4.19
Finnish 29 4.76 5.63 6.61 4.41 4.65 4.88 4.04
French 26 4.68 5.53 6.52 4.23 4.56 4.83 4.00
German 30 4.70 5.54 6.53 4.34 4.55 4.85 4.15
Hebrew 30 4.82 5.64 6.62 4.40 4.54 4.80 4.29
Italian 26 4.70 5.56 6.55 4.28 4.65 4.88 4.00
Portuguese 26 4.67 5.52 6.51 4.23 4.60 4.87 4.01
Russian 32 5.13 5.92 6.89 4.74 4.73 4.89 4.47
Spanish 26 4.71 5.57 6.56 4.27 4.61 4.87 4.05
English-2 378 8.78 8.95 9.75 8.24 7.89 8.45 7.44
Hebrew-2 743 9.13 9.22 10.01 8.81 8.30 9.03 8.04
English-w 289101 12.358 11.77 12.37 12.356 11.76 12.32 11.20
French-w 439191 11.313 10.94 11.60 11.311 10.93 11.59 10.48
Hebrew-w 296933 15.00 13.89 14.36 14.99 13.88 14.29 13.06

Table 2: Compression Performance: average codeword lengths, in bits, using

FWT(m) or PFWT(m), of the distributions of single characters, letter-pairs and

words, for various natural languages.

of the Responsa Retrieval Project (RRP) [10] of about 40 million Hebrew
and Aramaic words; the distribution for Italian, Portuguese and Spanish
(26 letters each) can be found in Gaines [12], and for Russian (32 letters) in
Herdan [17].

To get even larger distributions, we considered natural texts in several
languages encoded as sequences of words rather than of characters or charac-
ter pairs, which yields distributions with hundreds of thousands of elements.
For English, the text is 500MB (87 million words) of theWall Street Journal ,
and for French and Hebrew, we chose subsets of TLF and RRP.

The results, summarized in Table 2, are partitioned into three blocks.
The upper block consists of the small single character alphabets, the middle
block of the letter-pairs, and the lower block of the distributions of the dif-
ferent words. The second column shows the size n of the encoded alphabets.
The next three columns show the average codeword length in bits for the
original FWT(m), for m = 2, 3, 4, and the following three columns, headed
pruned, are the corresponding values for the pruned trees. To get some idea
on the relative compression performance, we add, in the last column, entitled
Huff, the average codeword length of an optimal Huffman code.

As can be seen, the pruning yields, for m = 2, a 7–10% gain for the
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smaller alphabets, and 2–3% for the letter-pairs; for m = 3, the gain is 16–
20% for the small and about 10% for the moderately large alphabets; and for
m = 4, the corresponding reductions are 25–29% and 10–13%. For the very
large distributions of the lower block, the reduction is hardly noticeable. The
reduced savings can be explained by the fact that though a third for m = 2,
a half for m = 3 and 60% for m = 4, of the nodes have been eliminated, they
correspond to the leaves with lowest probabilities, so the expected savings
are lower.

The increase, relative to the Huffman encoded files, of the size of the
FWT(m) compressed files can roughly be reduced to a third by the prun-
ing technique for the smaller files. For example, for English, the FWT(2)

compressed file is 17% larger than the Huffman compressed one, but the
pruned FWT(2) reduces this excess to only 5%. For the small alphabets,
all the numbers have been calculated for the given sizes n, and not been
approximated by trees with full levels.

The best compression, among the Fibonacci codes, is obtained for m = 2
for the smaller files, and for m = 3 for the very large ones. This is not
surprising, as the appearance of m 1s at the end of each codeword is a very
high price to pay, which is profitable only for very large alphabets. However,
these are exactly the bits targeted by the pruning technique, resulting, for
each alphabet, in similar average codeword sizes for different m values, as
can be seen by the numbers in the columns for the pruned trees in Table 2.
In particular, note that for the letter-pairs (middle block) and for the single
characters of Russian, the best performance of the pruned trees is achieved
for m = 3, while for the original FWT(m), m = 2 is best.

Referring to the time complexity, direct access, rank and select operations
on Wavelet trees for any prefix free codes take time proportional to the
corresponding codeword length, under the assumption of constant time rank
and select implementations on bit vectors. Thus, Table 2 also shows that
the algorithms on PFWT are always faster than those on FWT, while both
are slower than for Huffman.

7. Time/Space tradeoffs for rank and select

As mentioned before, Jacobson [19] showed that rank, on a bit-vector of
length n, can be computed in O(1) time using n + O(n log logn

logn ) = n + o(n)

bits. His solution is based on storing rank answers every ⌈log2 n⌉ bits of
B, using log n bits per sample, and then storing rank answers relative to
the last sample every ⌈ logn2 ⌉ bits, requiring log(log2 n) = 2 log log n bits per
sub-sample. Finally, a precomputed table is used to store rank answers of
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every bit stream of length ⌈ log n2 ⌉ using O(
√
n log n log log n) bits. The final

answer of the rank query thus uses three memory accesses, and a total of
O( n

logn + n log logn
logn +

√
n log log n) bits.

For example, if the size of the bit vector is n = 232, then rank answers are
stored every log2 n = 1024 bits using log n = 32 bits per sample, for a total
of 227 bits. The second level stores relative rank answers every logn

2 = 16
bits using 2 log log n = 10 bits per subsample, using in total 10

162
32 bits.

The table, in this case, has 216 entries, one for each of the possible 16-bit
strings. For example, the entry indexed 42072 will contain 6, which is the
the number of 1-bits in the binary representation 1010010001011000 of this
index; the table entries are stored using log 16 = 4 bits per entry for a total
of 216 · 4 = 218 bits, only for the exhaustive table.

It is important to stress that the numbers here demonstrate that the
overhead o(n) of the rank and select data structures for a bitmap of size n is
more than 4n log logn

logn , which for n = 232 is at least 20
32n = 0.66n, — this is not

at all negligible. Furthermore, the size of the Wavelet tree, which is based
on this data structure and uses it in all of its internal nodes, might reduce
the compression gain achieved by the corresponding encoding. The present
work reduces the size of the Wavelet tree without hurting the direct access
capabilities, so that the Wavelet tree becomes useful also in practice. Meth-
ods in [13] suggest practical implementations for rank and select, reducing
the storage overhead to merely a few percent, at the price of losing the con-
stant time access but with only a negligible increase in processing time. By
applying our suggested strategy, the extra space of these implementations
can also be saved.

8. Concluding Remarks

Fibonacci codes are universal variable length codes consisting, similarly
to Elias γ and δ codes, End-tagged dense codes and (s, c) dense codes, of
sets of codewords that are fixed in advance and need not be generated for
each new input distribution. This property helps to reduce the processing
time at the cost of reduced compression, but Fibonacci codes have also other
advantages [21].

A Wavelet tree is a data structure adjoined to a file that has been com-
pressed by a variable length encoding, which allows direct access to the
underlying file, resulting in the fact that the compressed file is not needed
any more. The direct access can be achieved by means of rank and select
queries on a set of bitmaps stored in the nodes of the Wavelet tree. There
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have recently been many works adapting the Wavelet tree to various vari-
able length encodings. We followed this line of investigation, showing how
to apply Wavelet trees to Fibonacci codes. Moreover, an enhanced Wavelet
tree for Fibonacci encoded files was proposed, pruning a part of the nodes.

We showed, both analytically and in experiments on real life data, that
the number of nodes is reduced by a factor of about 2/(m + 1), where m
is the order of the Fibonacci code, which improves the space complexity of
the Wavelet trees. As to the weighted average number of bits used for each
codeword, which affects the time complexity, the reduction for the pruned
Wavelet tree is relatively less, since the nodes that are eliminated correspond
to those of the lowest probabilities. For very large distributions, there may
thus hardly be any gain in time, and the advantage of the pruning is only
the improved space complexity. Nevertheless, for smaller files, the pruning
may yield an improvement of 7− 10% in the number of needed comparisons
for m = 2, and even more for larger m.

References

[1] A. Apostolico, A.S. Fraenkel, Robust transmission of unbounded
strings using Fibonacci representations, IEEE Trans. Inform. Theory 33
(1987) 238–245.

[2] J. Barbay, T. Gagie, G. Navarro, Y. Nekrich, Alphabet partitioning
for compressed rank/select and applications, Algorithms and Computation,
Lecture Notes in Computer Science LNCS, 6507 (2010) 315–326.

[3] F.L. Bauer, G. Goos, Informatik, Eine einführende Übersicht, Erster Teil,
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