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Recent publications advocate the use of various variable length codes for which

each codeword consists of an integral number of bytes in compression applications

using large alphabets. This paper shows that another tradeoff with similar

properties can be obtained by Fibonacci codes. These are fixed codeword sets,

using binary representations of integers based on Fibonacci numbers of order

m ≥ 2. Fibonacci codes have been used before, and this paper extends previous

work presenting several novel features. In particular, the compression efficiency is

analyzed and compared to that of dense codes, and various table-driven decoding

routines are suggested.
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1. INTRODUCTION

In spite of the amazing advances in data storage
technology, compression techniques are not becoming
obsolete, and in fact research in data compression is
flourishing as can be seen by the large number of
papers published recently on the topic. In this work
we concentrate on very large textual databases as those
found in large Information Retrieval Systems. Such
systems could contain hundreds of millions of words,
which should be compressed by some method giving,
in addition to good compression performance, also
very fast decoding and the ability to search for the
appearance of some strings directly in the compressed
text. This paradigm of compressed pattern matching is
a well established research topic that has generated a
large literature in recent years, see [1, 2, 3, 4] to cite
just a few.

Classical Huffman coding, when applied to individual
characters, gives relatively poor compression, but when
every word of a large textual database is considered
as an atomic element to be encoded, this so-called
Huffword variant may compete with the best other
compression methods [5]. Yet the codewords of a
binary Huffman code are not necessarily aligned on
byte boundaries, which complicates both the decoding
process and the ability to perform searches in the
compressed file. The next step was therefore to pass
to 256-ary Huffman coding, in which every codeword
consists of an integral number of 8-bit bytes [3].
The loss incurred in the compression efficiency, which
is only a few percent for large enough alphabets,

is compensated for by the advantages of the easier
processing.

When searches in the compressed text should also
be supported, Huffman codes suffer from a problem of
synchronization: denoting by E the encoding function,
the compressed form E(x) of an element x may appear
in the compressed text E(T ), without corresponding
to an actual occurrence of x in the text T , because
the occurrence of E(x) is not necessarily aligned on
codeword boundaries. This problem has been overcome
in [6], relying on the tendency of Huffman codes to
resynchronize quickly after errors, but the suggested
solution is probabilistic and may produce wrong results.
A deterministic solution has recently been given in [7].
As alternative, [3] propose to reserve the first bit of
each byte as tag , which is used to identify the last byte
of each codeword, thereby reducing the order of the
Huffman tree to 128-ary. These Tagged Huffman codes

have then been replaced by End-Tagged Dense codes

(ETDC) in [8] and by (s, c)-Dense codes (SCDC) in [9].
The two last mentioned codes consist of fixed codewords
which do not depend on the probabilities of the items
to be encoded. Thus their construction is simpler than
that of Huffman codes: all one has to do is to sort the
items by non-increasing frequency and then assign the
codewords accordingly, starting with the shortest ones.

SCDC is based on a pair of numbers (s, c), where
the parameter s is chosen as 0 < s < 256 and c is
defined as c = 256 − s. Each codeword consists of a
sequence of bytes b1 · · · br, the last of which satisfying
br < s and the others bi ≥ s for i < r. ETDC is
just the special case of SCDC for which s = c = 128.
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ETDC and SCDC compress less than Huffman codes,
but are better than Tagged Huffman codes as more
codewords can be formed for every given length. In
addition, coding is simplified and the good searching
capabilities are maintained.

We show in this work that similar properties can
be obtained by Fibonacci codes, which have been
suggested in the context of compression codes for the
unbounded transmission of strings [10] and because of
their robustness against errors in data communication
applications [11]. They are also studied as a simple
alternative to Huffman codes in [12]. The main
contribution of this paper is to show that Fibonacci
codes are useful in this context and to present several
new properties that have not been mentioned before,
including (i) compression performance relative to other
static methods like ETDC and SCDC, (ii) fast decoding
techniques and (iii) support of compressed matching.

Note that Fibonacci codes have applications not only
as alternatives to dense codes for large textual word-
based compression systems. They are in particular
mentioned in [13] as a good choice for compressing
a set of small integers, and fast decoding as well as
compressed searches may be important tools for such
applications.

In the next section, we review the relevant features of
Fibonacci codes of order m ≥ 2. Section 3 then treats
the new properties mentioned above and compares
their performance with that of other static compression
codes.

2. FIBONACCI CODES

Fibonacci numbers of order m ≥ 2, denoted by F
(m)
i ,

are defined by the following recurrence relation:

F (m)
n = F

(m)
n−1 + F

(m)
n−2 + · · · + F

(m)
n−m for n > 0,

and the boundary conditions

F
(m)
0 = 1 and F (m)

n = 0 for −m < n < 0.

For fixed order m, the number F
(m)
n can be represented

as a linear combination of the nth powers of the roots
of the corresponding polynomial P (m) = xm − xm−1 −
· · · − x − 1. P (m) has only one real root that is larger
than 1, which we shall denote by φ(m), the other m− 1
roots are complex numbers with norm < 1 (for m = 2,
the second root is also real and its absolute value is < 1).

Therefore, when representing F
(m)
n as such a linear

combination, the term with φn
(m) will be the dominant

one, and the others will rapidly become negligible for
increasing n.

For example, m = 2 corresponds to the classical

Fibonacci sequence and φ(2) = 1+
√

5
2 = 1.6180 is

the well-known golden ratio. As a matter of fact,
the entire Fibonacci sequence can be obtained by

F
(m)
n = [a(m)φ

n
(m)], where a(m) is the coefficient of

the dominating term in the above mentioned linear
combination, and [x] means that the value of the real
number x is rounded to the closest integer, that is,
[x] = bx + 0.5c. Table 1 lists the first few elements
of the Fibonacci sequences of order up to 6. The
column headed General Term brings the values of a(m)

and φ(m). For larger n, the numbers a(m)φ
n
(m) are

usually quite close to integers, e.g., a(2)φ
10
(2) = 88.998

and a(3)φ
13
(3) = 1705.01.

The standard representation of an integer as a binary
string is based on a numeration system whose basis
elements are the powers of 2. If B is represented by
the k-bit string bk−1bk−2 · · · b1b0, then B =

∑k−1
i=0 bi2

i.
But many other possible binary representations do
exist, and those using the Fibonacci sequences as basis
elements have some interesting properties. Let us first
consider the standard Fibonacci numbers of order 2.

Any integer B can be represented by a binary string

of length r, crcr−1 · · · c2c1, such that B =
∑r

i=1 ciF
(2)
i .

The representation will be unique if one uses the
following procedure to produce it: given the integer

B, find the largest Fibonacci number F
(2)
r smaller or

equal to B; then continue recursively with B − F
(2)
r .

For example, 45 = 34 + 8 + 3, so its binary Fibonacci
representation would be 10010100. As a result of
this encoding procedure, there are never consecutive
Fibonacci numbers in any of these sums, implying that
in the corresponding binary representation, there are no
adjacent 1s.

This property can be exploited to devise an infinite
code whose set of codewords consists of the Fibonacci
representations of the integers: to assure the code
being uniquely decipherable (UD), each codeword is
prefixed by a single 1-bit, which acts like a comma

and permits to identify the boundaries between the
codewords. The first few elements of this code
would thus be {u1, u2, . . .} = {11, 110, 1100, 1101,
11000, 11001,. . .}, where the separating 1 is put in
boldface for visibility. A typical compressed text could
be 1100111001101111101, which is easily parsed as
u6u3u4u1u4. Though being UD, this is not a prefix
code, so decoding may be somewhat more involved. In
particular, the first codeword 11, which is the only one
containing no zeros, complicates the decoding, because
if a run of several such codewords appears, the correct
decoding of the codeword preceding the run depends on
the parity of the length of the run. Consider for example
the encoded string 11011111110: a first attempt to

parse it as 110 11 11 11 10 = u2u1u1u110 would
fail, because the tail 10 is not a codeword; hence only
when trying to decode the fifth codeword do we realize
that the first one is not correct, and that the parsing

should rather be 1101 11 11 110 = u4u1u1u2.
To overcome this problem, [10, 11] suggest to reverse

all the codewords, yielding the set {v1, v2, . . .} = {11,
011, 0011, 1011, 00011, 10011, . . .}, which is a prefix
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F
(m)
n General Term 1 2 3 4 5 6 7 8 9 10 11 12 13

m = 2 0.7236 (1.6180)n 1 2 3 5 8 13 21 34 55 89 144 233 377
m = 3 0.6184 (1.8393)n 1 2 4 7 13 24 44 81 149 274 504 927 1705
m = 4 0.5663 (1.9275)n 1 2 4 8 15 29 56 108 208 401 773 1490 2872
m = 5 0.5379 (1.9659)n 1 2 4 8 16 31 61 120 236 464 912 1793 3525
m = 6 0.5218 (1.9836)n 1 2 4 8 16 32 63 125 248 492 976 1936 3840

Table 1: Fibonacci numbers of order m = 2, 3, 4, 5, 6

code, since all codewords are terminated by 11 and this
substring does not appear anywhere in any codeword,
except at its suffix. In addition, we show below
that having a reversed representation, with the bits
corresponding to increasing basis elements running from
left to right rather than as usual, is advantageous for
fast decoding. Table 2 brings a larger sample of this set
of codewords in the column headed Fib2. Note that the
order of the elements is not lexicographic, e.g., 10011
precedes 01011.

The generalization to higher order seems at first
sight straightforward: any integer B can be uniquely
represented by the string dsds−1 · · · d2d1 such that B =
∑s

i=1 diF
(m)
i using the iterative encoding procedure

mentioned above. In this representation, there are
no consecutive substrings of m 1s. For example, the
representations of the integers 10, 11, 12 and 13 using
F (3) are, respectively, 1011, 1100, 1101 and 10000. But
simply adding now m − 1 1’s as commas and reversing
the strings does not yield a prefix code for m > 2,
and in fact the code so obtained is not even UD. For
example, for m = 3, the above numbers would give the
codewords {v10, . . . , v13} = {110111, 001111, 101111,
0000111}, but the encoding of the fourth element of
the sequence would be v4 = 00111, which is a prefix
of v11. The string 0011110111 could be parsed both as

00111 10111 = v4v5 and as 001111 0111 = v11v2.
The problem stems from the fact that for m >

2, there can be more than one leading 1 in the
representation of an integer, so adding m − 1 1s may
give a string of up to 2m − 2 consecutive 1s. The fact
that a string of m 1s appears only as a suffix is thus
only true for m = 2. To turn the sequence into a prefix
code, the definition has to be amended as follows: the
set Fibm will be defined as the set of binary codewords
of lengths ≥ m, such that every codeword contains
exactly one occurrence of the substring consisting of
m consecutive 1s, and this occurrence is the suffix of
every codeword. The first elements of these codes for
m ≤ 4 are given in Table 2. For m = 2, this last
definition is equivalent to the one above based on the

representation with basis elements F
(2)
n ; for m > 2, only

a subset of the corresponding codewords is taken. There
is nevertheless a connection between the codewords and
the higher order Fibonacci numbers: for m ≥ 2, and

index Fib2 Fib3 Fib4

1 11 111 1111
2 011 0111 01111
3 0011 00111 001111
4 1011 10111 101111
5 00011 000111 0001111
6 10011 100111 1001111
7 01011 010111 0101111
8 000011 110111 1101111
9 100011 0000111 00001111

10 010011 1000111 10001111
11 001011 0100111 01001111
12 101011 1100111 11001111
13 0000011 0010111 00101111
14 1000011 1010111 10101111
15 0100011 0110111 01101111
16 0010011 00000111 11101111
17 1010011 10000111 000001111
18 0001011 01000111 100001111
19 1001011 11000111 010001111
20 0101011 00100111 110001111
21 00000011 10100111 001001111
22 10000011 01100111 101001111
23 01000011 00010111 011001111
24 00100011 10010111 111001111
25 10100011 01010111 000101111
26 00010011 11010111 100101111
27 10010011 00110111 010101111
28 01010011 10110111 110101111
29 00001011 000000111 001101111
30 10001011 100000111 101101111
31 01001011 010000111 011101111
32 00101011 110000111 0000001111
33 10101011 001000111 1000001111
34 000000011 101000111 0100001111
35 100000011 011000111 1100001111

Table 2: Fibonacci codes of order m = 2, 3, 4

n ≥ 0, the code Fibm consists of

F (m)
n codewords of length n + m. (1)

This is visualized in Table 2, where for each code,
blocks of codewords of the same length are separated by
horizontal lines. Within each such block of lengths ≥
m + 2 for Fibm, the prefixes of the codewords obtained
by removing the terminating string of 1s correspond
to consecutive integers in the representation based on
F (m). For decoding, the Fibonacci representation will
thus be used to get the relative index within the block,
to which the starting index of the given block has to
be added. This is identical to the decoding procedure
of canonical Huffman codes , for which each block of
codewords of a given length consists of the standard
binary representation of consecutive integers, see [14].

3. COMPRESSION BY FIBONACCI

CODES

We now turn to an investigation of some properties
of the Fibonacci codes and in particular compare
them with the dense codes ETDC and SCDC. The
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latter were introduced in [9, 8] as alternatives to
Tagged Huffman codes, improving these because of the
following advantages:

(i) better compression ratios;
(ii) simpler vocabulary representation;
(iii) simpler and faster decoding ;
(iv) same searching possibilities.

We show that on all these criteria, Fibonacci codes
are a plausible alternative to ETDC and SCDC,
improving on the first, being equivalent on the second
and inferior on the last two. A simple implementation
of decoding and searching could be as much as 100 times
slower than for the dense codes, and we show how to
accelerate both procedures, reducing the advantage of
SCDC to 2 to 3-fold. We also add robustness as fifth
criterion, for which the Fibonacci codes are preferable.
Our conclusion is that overall, Fibonacci codes may
be an attractive substitute for dense codes in certain
applications.

A comprehensive study of the Fibonacci codes
should possibly also include comparisons with other
alternatives, like standard binary Huffman codes or
arithmetic coding. We shall, however, keep the focus in
this paper on the comparison against the dense codes
ETDC and SCDC, and mention the others only briefly,
first, because such comparisons can already be found
in the papers on dense codes, and second, because the
choice of an encoding scheme may be considered as a
package deal: if one had only a single application in
mind, then different codes could be chosen according
to the intended application. So if the only criterion is
compression, one would use arithmetic coding, which
practically achieves the entropy bound, and if speed is
the only concern, one could use ETDC for example.
But the assumption here is, like in [8] and [9], that one
chooses a single code which should be useful for various
applications and on several criteria.

Classical 2-ary Huffman coding gives very good
compression when applied on the different words of
a large text, and the excess of the entropy, the
information theoretic lower bound, is below 0.3% on
our examples, see Table 3 below. Simple bit-wise
decoding is slow, but several table driven decoding
methods have been devised, achieving a significant
speedup [15]. Searching in Huffman encoded texts has
to deal with synchronization problems, but can be done,
as mentioned in the introduction.

Arithmetic coding gives optimal compression, and
examples of typical compression ratios are included in
Table 3 in the column headed Entropy , though the
savings relative to Huffman codes are generally very low
[16]. But the processing for both encoding and decoding
is much slower than for all the alternatives mentioned in
this paper, and searching within the compressed text is
impossible, since it is not true that different occurrences
of a word in the text are always encoded by the same
bitstring.

3.1. Compression efficiency

Let us first compare the number of codewords of each of
the codes for a given length. As a rough approximation,
ETDC utilize 7 of the 8 bits of each byte, so that the
number of codewords grows like 27k/8 = 1.834k, where k
is the number of bits. This should be compared with the
Fibonacci codes, for which the number grows roughly
like φk

(m). Thus we expect the codes based on standard
Fibonacci numbers to have less codewords than ETDC,
but for m > 2, the Fibm codes are denser than ETDC.

More precisely, the number of codewords of length up
to M bytes for ETDC is 128

∑M
i=1 128i−1 ' 128M−1 =

27M . For Fibm, the last m bits of each codeword are
reserved, so using eq. (1), the number of codewords with
up to 8M bits is approximately

8M−m
∑

i=1

F
(m)
i ' a(m)

8M−m
∑

i=1

φi
(m) '

a(m)

φ(m) − 1
φ8M−m+1

(m) ,

which should be compared with 27M . We get that the
number of codewords for Fibm will be larger if

(

φ8
(m)

27

)M

>
(φ(m) − 1)φm−1

(m)

a(m)
. (2)

But for m = 2, the constant φ8
(2)/27 = 0.367 is smaller

than 1, while the right hand side of (2) is 1.38 > 1, so
that for any length M , ETDC has more codewords than
Fib2. For m ≥ 3, we get from (2) that

M >
(m − 1) log2 φ(m) + log2(φ(m) − 1) − log2 a(m)

8 log2 φ(m) − 7
,

(3)
so that asymptotically all the Fibm codes are denser,
and their number of codewords is larger than that of
ETDC if M is at least 67, 7, 6 and 7, for m = 3, 4, 5, 6,
respectively. These values derive from the approximate
lower bound of equation (3) and coincide with the values
obtained using precise integer computations. Of course,
the fact that Fibm codes are denser in the limit has
no impact on real life distributions, as M = 4 suffices
already for huge alphabets.

However, the codes should not be compared only on
the basis of the number of their elements. This would
correspond to a uniform distribution, for which it makes
no sense to use variable length codes anyway. For non-
uniform distributions, the advantage of the Fibonacci
codes should be even more evident, as because of the
possibility of using a larger set of different lengths,
the codes can approach the optimal codeword lengths
more closely, and in particular assign codewords that
are shorter than 1 byte to the elements of highest
frequency. The rigidity of ETDC, which assigns 1 byte
codewords only to the 128 most frequent elements, and
then already passes to codewords of length 2 bytes was
the main motivation for the development of the (s, c)-
codes; Fibonacci codes have also codewords shorter
than one byte.
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Figure 1: Codeword lengths

Figure 1 plots the lengths of the codewords as a
function of the index of the element on a logarithmic
scale for ETDC, Fib2 and Fib3. In addition, there is
also a (seemingly continuous) curve corresponding to
a real life distribution, 500 MB (87 million words) of
the Wall Street Journal [17]; the plot corresponds to
an ideal encoding of the different words, using − log2 pi

bits to encode an element with probability pi, as could
be approximated by an arithmetic encoder. We see how
the Fibonacci curves approach the real distribution by
a series of small steps much closer than the larger steps
of ETDC.

To compare the codes analytically on more realistic
distributions than the uniform one, consider Zipf’s law
[18], which is believed to govern the distribution of the
words in a large natural language text. It is defined
by the weights pi = 1/(i HN), for 1 ≤ i ≤ N , where
Hn =

∑n
j=1(1/j) is the n-th harmonic number1. It

is well known that Hn ' ln n − γ, where γ = 0.5772
is Euler’s constant. Since Fibm and ETDC are step
functions, it is convenient to have a notation for the
indices of the last elements of every codeword length.
Let LE(k) and Lm(k) denote, respectively, these indices
for ETDC and Fibm, m ≥ 2. Thus LE(8) =
128, LE(16) = 16512, LE(24) = 2113664; L2(k) =
1, 2, 4, 7, 12, 20, 33, . . ., L3(k) = 1, 2, 4, 8, 15, 28, . . . and
L4(k) = 1, 2, 4, 8, 16, 31, . . ., for k ≥ m, as can be seen
in Table 2. Similarly, let ME(N) and Mm(N) denote
the number of different codeword lengths, which is the
number of blocks of codewords of equal length for an
alphabet of size N . Since approximately (128)ME(N) =

N and a(m)φ
Mm(N)
(m) /(φ(m) − 1) = N , we get that

ME(N) '
ln N

ln 128

1Actually, a more precise definition of the law is pi =
1/iθ HN (θ) for some constant θ > 1, where Hn(θ) =
∑n

j=1
(1/jθ), but we shall stick to the simpler definition;

according to Wikipedia, θ is just slightly larger than 1.
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Figure 2: Zipf averages

and

Mm(N) '
ln(φ(m) − 1) + ln N − ln a(m)

ln φ(m)
.

Denoting the ith codeword by Ci, the average length
of a codeword using a Zipf distribution is then

N
∑

i=1

1

iHN
|Ci| '

1

HN

ME(N)
∑

k=1

8k

LE(k)
∑

LE(k−1)+1

1

i
for ETDC

'
1

HN

Mm(N)
∑

k=1

(k + m − 1)

Lm(k)
∑

Lm(k−1)+1

1

i
for Fibm.

But

L(k)
∑

L(k−1)+1

1

i
= HL(k) − HL(k−1)

' ln L(k) − γ − (ln L(k − 1) − γ)

= ln
L(k)

L(k − 1)
,

and the ratio of consecutive L values is roughly 128 for
ETDC and φ(m) for Fibm. We thus get that the average
is

4 ln 128

ln N − γ
ME(N)(ME(N) + 1) for ETDC,

and for Fibm, it is, after simplification,

ln φ(m)

2(ln N − γ)
Mm(N)

(

Mm(N) + 2m − 1
)

.

Figure 2 plots these average values for N up to 108 for
ETDC (the bold line) and Fibm, with 2 ≤ m ≤ 6. As all
the functions are roughly proportional to log N , we get
almost straight lines on the displayed logarithmic scale.
We see that ETDC has a consistently longer average
than the Fibonacci codes, at least for m ≤ 5 and up
to alphabet sizes of 108. The additional overhead may
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Language size Entropy excess in % over the entropy lower bound
words bits Huffman Fib2 Fib3 Fib4 Fib5 Fib6 ETDC (s, c)

English 289,101 11.173 0.26 10.63 5.35 10.72 18.51 27.01 16.09 (189,67) 14.12
French 439,191 10.442 0.29 8.31 4.77 11.09 19.61 28.71 14.82 (185,71) 13.10
Hebrew 296,933 13.003 0.23 15.35 6.82 10.44 16.74 23.82 15.20 (176,80) 13.90
Artificial 1,000,000 13.378 0.20 12.42 3.68 7.04 13.02 19.90 14.07 (171,85) 13.32

Table 3: Average codeword lengths and excesses over the entropy

index Λ 00011 01 100010

dec bin S R S R S R S R

.

..
.
..

220 11011100 C8 00 C5C4 00 C2C2 00 C317 00

221 11011101 C8 01 C5C4 01 C2C2 01 C317 01

222 11011110 C8 10 C5C4 10 C2C2 10 C317 10

223 11011111 C8 11 C5C4 11 C2C2 11 C317 11

224 11100000 C1 00000 C5 1100000 C2 100000 C43 00000
225 11100001 C1 00001 C5 1100001 C2 100001 C43 00001

226 11100010 C1 00010 C5 1100010 C2 100010 C43 00010

227 11100011 C1 00011 C5 1100011 C2 100011 C43 00011

.

..
.
..

Table 4: Partial decoding tables

reach 33% for alphabets as small as 1000 elements, but
even for N = 1000000, the overhead of ETDC relative
to Fib2, Fib3 and Fib4 is 1, 10 and 7%, respectively.

For a comparison of real data and different languages,
the following sets were used, beside Wall Street Journal :
the data for French was collected from the Trésor de

la Langue Française, a database of 680 MB of French
language texts (115 million words) of the 17th–20th

centuries [19], and for Hebrew, the data was a part of
the Responsa Retrieval Project , 100MB of Hebrew and
Aramaic texts (15 million words) written over the past
ten centuries [20]. All these texts have been encoded
as sequences of words. Table 3 lists the sizes of the
alphabets (number of words) and the entropy of each
distribution in bits per codeword, which gives a lower
bound on the possible average codeword lengths, as
could be approached by an arithmetic encoder. Then
follow the values for 2-ary Huffman, Fibm, ETDC and
SCDC codes, all given as the excess, in percent, over
the entropy, the information theoretic lower bound. For
SCDC, the best (s, c) pair was chosen for each of the
distributions, and this optimal pair appears also in the
last column. The table also gives values for an artificial
Zipf distribution of size 106.

Among the static codes considered here, the best
results are consistently given by Fib3, saving additional
6–9% over ETDC or the best SCDC, and exceeding the
entropy or a Huffman code only by 4–7%. Even Fib2
encoding improves by 1–4% on the English, French and

artificial texts, and only for Hebrew, Fib2 is marginally
inferior (by 1.2%) to the best SCDC.

3.2. Vocabulary representation

There are many different Huffman codes for a given
probability distribution. Even if canonical Huffman
codes are used, one still needs to store the number of
codewords of every length. The size of this additional
storage is of course negligible relatively to the sizes
of the other files involved, but the fact that the set
of codewords will vary according to the distribution
at hand puts an additional burden on both encoder
and decoder. On the other hand, ETDC, SCDC and
the Fibm codes are fixed sets, not depending on the
frequencies. The codewords are thus stored once and
for all, and from that point of view, ETDC, SCDC and
the Fibm codes are equivalent.

3.3. Fast decoding

A major reason for abandoning the optimal binary
Huffman codes and using instead 256-ary Huffman
codes or SCDC is to obtain faster decoding, since
each codeword consists of an integral number of bytes.
Though fast methods for the decoding of general 2-ary
Huffman codes have been devised [15, 14, 24], they
cannot be faster than the decoding of byte aligned
Huffman codes, which do not need time consuming bit
manipulations and can perform the whole process at
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the byte level. On the other hand, the decoding of byte
aligned Huffman codes has extensively been compared
with that of ETDC and SCDC in [21], and found to be
roughly equivalent: Huffman decoding is reported to be
up to 3% faster.

The Fibm codes are also of variable lengths but
not necessarily byte-aligned, so the naive approach to
decoding, involving many bit manipulations, will be
more costly than for the alternatives. This section
deals with ways to accelerate the decoding process. As
mentioned above, this is important for any application
using Fibonacci codes, not only as alternatives to dense
codes, and we show a significant improvement over
the standard decoding procedure. In comparison with
ETDC and SCDC, decoding is still slower, but the
inferiority of the Fibm codes is greatly reduced.

As a decoding baseline, consider the simple bitwise
decoding procedure as follows: the Fibm encoded text
is denoted T1T2T3 · · ·, and an array Startm[j] gives
the index of the first element of length j in the
Fibm code. Thus Start2[] = 1, 2, 3, 5, 8, . . ., Start3[] =
1, 2, 3, 5, 9, 16, . . ., Start4[] = 1, 2, 3, 5, 9, 17, 32, . . ., as
can be seen in Table 2. Note also that using the
notation of the previous section, where the index of
the last element for each length was needed, we have
Startm[j + 1] = Lm(j) + 1 for j ≥ m. Let Word[j] be
the element encoded by the j-th codeword; i will point
to the bit preceding the first bit of a codeword, ` is
the number of bits decoded so far within the current
codeword, and rel ind is the relative index of the
current codeword within the list of those of length `;
F (m)[j] is the j-th Fibonacci number of order m, as in
Table 1. The formal naive decoding is then given by:

i ←− 0 ` ←− 0
rel ind ←− 0
while i < length of encoded text in bits

if Ti+`+1 · · ·Ti+`+m = 11 · · · 1
/* m consecutive 1s */
output ←− Word[ Startm[` + m] + rel ind ]
i ←− i + ` + m ` ←− 0
rel ind ←− 0

else
` ←− ` + 1

rel ind ←− rel ind + Ti+` × F (m)[`]

In words, the input is processed bit by bit. If the last
m bits are a string of 1s, a codeword has been detected
and can be sent to output, otherwise the relative index
of the current codeword is incrementally calculated by
adding the corresponding Fibonacci numbers.

3.3.1. Partial decoding tables
To improve the bitwise approach, we adapt, in a first
attempt, a method originally suggested for the fast
decoding of Huffman codes, which suffer from the same
problem as the variable length Fibm codes. The method
uses a set of partial decoding tables that are prepared in

advance and depend only on the code, not on the actual
text to be decoded, by means of which the decoding is
then performed by blocks of k bits at a time, rather
than bit per bit. Typically, k = 8 or 16. One therefore
gets a time/space tradeoff, where faster decoding comes
at the cost of storing larger tables. The range of the
parameter k is nevertheless restricted, because too large
tables, even if they fit into the available RAM, may
cause more page faults and cache misses, which may
cancel the speed advantages. The method has first been
presented in [22] and has been reinvented several times,
e.g., [23].

The basic scheme is as follows. The number of entries
in each table is 2k, corresponding to the 2k possible
values of the k-bit patterns. Each entry is of the form
(S, R), where S is a sequence of characters and R is
the label of the next table to be used. The idea is
that entry i, 0 ≤ i < 2k, of the first table contains the
longest possible sequence S of characters that can be
decoded from the k-bit block representing the integer
i (S may be empty when there are codewords of more
than k bits); usually some of the last bits of the block
will not be decipherable, being the prefix P of more
than one codeword; there will be one table for each of
the possible prefixes P , in particular, if P = Λ, where
Λ denotes the empty string, the corresponding table is
the first one.

The table for P 6= Λ is constructed in a similar
way except for the fact that entry i will contain the
analysis of the bit pattern formed by the prefixing of P
to the binary representation of i. More formally, in the
table corresponding to P , the i-th entry, Tab[i, P ], is
defined as follows: let B be the bit-string composed of
the juxtaposition of P to the left of the k-bit binary
representation of i. Let S be the (possibly empty)
longest sequence of characters that can be decoded
from B, and R the remaining undecipherable bits of
B; then Tab[i, P ] = (S, R). Table 4 brings a part of
these partial decoding tables for m = 3 and k = 8,
showing certain lines for selected values of P . The first
columns are the indices to be decoded in both decimal
and binary notations; the decoding tables are labeled
by the corresponding prefixes P .

The general decoding routine is thus extremely
simple: denoting the ith byte of the encoded text by
Text[i], one performs

R ←− Λ
for i ←− 1 to length of text in bytes

(output, R) ←− Tab[Text[i], R]

As example, consider the input string displayed in
Figure 3. The different codewords appear in alternating
grey tones, the decimal value of the bytes is displayed
above and the output generated by the decoding
procedure appears below. For the given example, the
bit string in the first byte is the binary representation
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227 221 226 221 223

C C C C C C C1 5 4 2 317 2 2

1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 11 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1

Figure 3: Example of decoding by partial decoding tables

of 227, so one accesses the first table at entry 227,
yielding as output C1 and a remainder suffix 00011.
The next table accessed is thus that labeled 00011, at
entry 221, which is the value of the next byte; this table
contains at entry 221 the partial decoding of the string
0001111011101, which yields the characters C5C4 and
the remainder P = 01, etc. Refer to Table 4, where the
entries used in this decoding example are boxed.

The main problem with this partial decoding
approach is that the number of required tables may be
prohibitively large. A similar problem occurs in the
Huffman case, which led to various attempts to reduce
the number of tables [22, 24]. There is one table for each
possible prefix of a codeword, so for Huffman codes,
the number of tables is N − 1, where N is the size of
the alphabet. This is true because a Huffman tree is a
full binary tree, each prefix corresponds to an internal
node, and the number of internal nodes is one less than
the number of leaves. The Fibm codes are also prefix
codes, but the corresponding binary trees are not full,
i.e., there are internal nodes having only one child.

An upper bound for the number of prefixes can be
obtained as follows: let ` be the length of the longest
of the N codewords, that is, using eq. (1), N ≤
∑`−m

i=0 F
(m)
i , the number of prefixes is then bounded

by
∑`−m

i=0 (i + m − 1)F
(m)
i . This bound is not tight, as

prefixes shared by more than one codeword are counted
more than once. Every codeword, except the first, of
Fibm is of the form α01m, where α is some binary
string, so that the set of different prefixes includes at
least the strings α01j , for 0 ≤ j < m. The number
of tables is thus at least mN − 1. For example, for
m = 3 and N = 4, the codewords are 111, 0111,
00111 and 10111, and the set of different prefixes is
{1, 11, 0, 01, 011, 00, 001, 0011, 10, 101, 1011}. For m =
3 and an alphabet of N = 100000 codewords, even if
each table entry needs only 4 bytes and one uses a low
value of k such as k = 8, the space for the tables would
be more than 300MB. The partial decoding approach is
thus not feasible for the large values of N for which the
Fibm encoding schemes are intended as alternatives to
the dense codes, but it could be an attractive variant
for smaller alphabets.

3.3.2. Reducing the number of tables
It is possible to reduce the number of required tables
using the properties of the Fibonacci numeration
systems on which the Fibm codes are based. Consider

ii − i +1 1

SLoldSL PL

SVPVoldSV S111 S

Figure 4: Decoding a single byte

the i-th byte of the text to be decoded, schematically
represented in Figure 4. The byte can be partitioned
into three zones: there is first a prefix of length PL,
containing the bits necessary to complete a codeword,
the first bits of which appeared already in the previous
byte. This prefix may be empty (in case the previous
codeword ended at the last bit of byte i− 1), or it may,
in the other extreme case, extend to the end of the i-th
byte and possibly even beyond. Whether a codeword
ends within the byte or not can be decided by the
(non-)occurrence of m consecutive 1’s. The second zone
consists of zero or more complete codewords, depicted
in grey in Figure 4. The third zone is the suffix of length
SL of byte i and contains the prefix of a codeword, the
completion of which appears only in the next byte or
even later; again, this zone may be empty.

The partial decoding tables deal easily with the full
codewords of the second zone and defer the treatment
of the suffix in the third zone to the next iteration. The
main problem is thus to relate the PL bits of the first
zone to the oldSL bits of the third zone of the previous
byte, so as to evaluate the index of this codeword that is
split by the byte boundary. Contrarily to the decoding
of Huffman codes, for which there is no connection
between different parts of a codeword, the codewords
of Fibm codes are in fact representations of integers,
which can be exploited as follows.

For the ease of description, we restrict the discussion
and the examples in the sequel to the case m = 3, but all
the statements can be easily generalized to other values
of m. The codewords of Fib3 are defined as C1 = 111,
and for i > 1, Ci = d1d2 · · · ds0111, where rel index =
∑s

j=1 djF
(3)
j is the relative index of the codeword Ci

within the ordered set of codewords of length s + 4; the
absolute index is given as i = rel index + Start[s + 4],
where Start[`] is the index of the first codeword of length
`, as mentioned above in the description of the naive
decoding algorithm.

Suppose the codeword Ci = d1d2 · · · ds0111 is split
after the t-th bit into two parts that are treated
separately: D = d1d2 · · · dt and E = dt+1 · · · ds0111.
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Denote by DV the value of the string D, that is,

DV =
∑t

j=1 djF
(3)
j , and by EV the value of the

string E from which the terminating 0111 has been
stripped, considered independently of D, so that EV =
∑s

j=t+1 djF
(3)
j−t. For example, if Ci = 0110110110111

and t = 5, we get D = 01101 and E = 10110111,
and the corresponding values are DV = 19 and EV =
12. To recover the relative index, V = 273, of
the original string within the sequence of codewords
of length 13, EV has first to be “shifted” so that
the bits of E correspond to the Fibonacci numbers

F
(3)
t+1, F

(3)
t+2, . . . , F

(3)
s , rather than to F

(3)
1 , F

(3)
2 , . . . , F

(3)
s−t

as given in the definition of EV . But here we can use

the fact that F
(3)
j = [a(3)φ

j
(3)], so that roughly

F
(3)
t+j ' φt

(3) × F
(3)
j .

One would thus expect the requested value to be
V = DV + EV × φt

(3), rounded to the nearest integer.

However, in our example, DV +EV ×φt
(3) = 271.60, so

even after rounding the target value would be missed
by 1. This can be explained by the fact that though
it is true that the j-th Fib3 number can be obtained
by raising φ(3) to the power j, multiplying by a(3) and
then rounding, this property is not additive: when

substituting, in our approximation, F
(3)
j by a(3)φ

j
(3),

the cumulative error for several such substitutions is
not necessarily smaller than 1/2, so that even after
rounding, one may get wrong values.

To salvage the evaluation procedure, the approximate
values should be used already in DV and EV . More

precisely, instead of defining EV =
∑s

j=t+1 djF
(3)
j−t, let

us define EV =
∑s

j=t+1 djφ
j−t
(3) , and similarly for DV ,

without rounding to an integer value. The rounding will
only be performed at the end, after having “shifted”
EV by multiplying it with φt

(3). For our example, one
gets thus DV = 18.958 and EV = 12.063, so that
DV + EV × φt

(3) = 272.881; now the rounding gives
the correct answer.

Summarizing, the revised version of the partial
decoding tables still uses tables of 2k entries for each
of the possible k-bit bytes, each entry including the
following information:

(i) PL: the length of the prefix of the byte terminating
a codeword, not including the final 111, or if no
codeword ends in this byte (no occurrence of 111),
then PL= k;

(ii) PV: the approximate value of this prefix, using φ(3);
(iii) S: a sequence of zero or more full codewords that

could be decoded from the byte;
(iv) SL: the length of the suffix of the byte that has not

be decoded;
(v) SV: the approximate value of this suffix, as above;
(vi) p: number of rightmost 1-bits in the SL-bit suffix

of the byte, 0 ≤ p < m.

1 (oldSL, oldSV, p) ←− (0, 0, 0)
2 for i ←− 1 to length of text in bytes
3 (PL, PV, S, SL, SV, p) ←− Tab[Text[i], p]
4 if PL = k /* no codeword ends in this byte */
5 oldSV ←− oldSV + PV × Phi[oldSL]
6 oldSL ←− oldSL + PL
7 else

8 index ←−
[

oldSV + PV× Phi[oldSL]
]

+ Start[3 + oldSL + PL]
9 output Cindex, S

10 (oldSV, oldSL) ←− (SV, SL)

Figure 5: Revised decoding procedure with partial
decoding tables

The last item, p, is needed to decide where the
separating 111 strings occur. Indeed, suppose a byte
starts with the bits 10111; if the previous byte ended
with p = 2 non-decoded 1-bits, then only the leading 1
of the current byte is needed to complete a codeword
and the byte contains, in addition, the codeword 0111;
if the previous byte had p < 2, then the 5 first bits
of the current byte are used to complete a codeword.
Similarly, if in the previous byte p = 1, the current
byte needs special treatment if it starts with 11. The
decoding process thus uses three tables, one for each
possible value of p.

The formal code is given in Figure 5. The procedure
uses a precomputed array Phi, defined by Phi[i] = φi

(3).
oldSL and oldSV hold the SL and SV values of the
previous byte. The if-clause in lines 4–6 deals with the
special case when no codeword ends in this byte (there is
no occurrence of the substring 111), that is, the current
codeword started either at the beginning of this byte or
even earlier and extends into the next byte(s). In this
case, one has only to update the length and value of the
prefix of the current codeword. Otherwise, the index of
the first codeword in this byte is evaluated in line 8.

A special case has to be dealt with when the
terminating 111 of a codeword is split by a byte
boundary, that is, for the previous byte p ≥ 1, and the
current byte starts with at least 3−p ones. PL has been
defined as the length of the prefix in the first zone, not
including the final 111, so to be consistent in our special
case, PL should be defined as −p. This also corrects
the index to be used in the Start table, since in the
previous byte, all the oldSL bits were used to calculate
the value oldSV, and only after reading the current byte
did it turn out that the last p bits of the previous byte
were a part of the separator 111, and thus should not
participate in evaluating oldSV. Moreover, the value of
PV should be zero in this case, but a correction term
is needed to subtract the weight added by these last p
bits to oldSV. If p = 1, the erroneously added amount
is a(3)φ

oldSL
(3) , so if one defines PV= −a(3), the definition
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index p = 0 p = 1 p = 2
dec bin PL PV S SL SV p PL PV S SL SV p PL PV S SL SV p

0 00000000 8 0 – 0 0 0 8 0 – 0 0 0 8 0 – 0 0 0
1 00000001 8 80.9989 – 0 0 1 8 80.9989 – 0 0 1 8 80.9989 – 0 0 1
..
.

..

.
124 01111100 1 0 – 4 3.2296 0 1 0 – 4 3.2296 0 1 0 – 4 3.2296 0
125 01111101 1 0 – 4 10.3071 1 1 0 – 4 10.3071 1 1 0 – 4 10.3071 1
126 01111110 1 0 C1 1 0 0 1 0 C1 1 0 0 1 0 C1 1 0 0
127 01111111 1 0 C1 1 1.1374 1 1 0 C1 1 1.1374 1 1 0 C1 1 1.1374 1
128 10000000 8 1.1374 – 0 0 0 8 1.1374 – 0 0 0 -2 -1.474 – 7 0 0
129 10000001 8 82.1363 – 0 0 1 8 82.1363 – 0 0 1 -2 -1.474 – 7 44.0382 1
130 10000010 8 45.1757 – 0 0 0 8 45.1757 – 0 0 0 -2 -1.474 – 7 23.9431 1
131 10000011 8 126.175 – 0 0 2 8 126.175 – 0 0 2 -2 -1.474 – 7 67.9813 2
.
..

.

..
183 10110111 5 12.399 – 0 0 0 5 12.399 – 0 0 0 -2 -1.474 C15 0 0 0
184 10111000 2 1.1374 – 3 0 0 2 1.1374 – 3 0 0 -2 -1.474 C2 3 0 0
185 10111001 2 1.1374 – 3 3.8480 1 2 1.1374 – 3 3.8480 1 -2 -1.474 C2 3 3.8480 1
..
.

..

.
220 11011100 3 3.2296 – 2 0 0 -1 -.6184 C2 2 0 0 -2 -1.474 C4 2 0 0
221 11011101 3 3.2296 – 2 2.0921 1 -1 -.6184 C2 2 2.0921 1 -2 -1.474 C4 2 2.0921 1
222 11011110 3 3.2296 – 2 1.1374 0 -1 -.6184 C2 2 1.1374 0 -2 -1.474 C4 2 1.1374 0
223 11011111 3 3.2296 – 2 3.2296 2 -1 -.6184 C2 2 3.2296 2 -2 -1.474 C4 2 3.2296 2
224 11100000 0 0 – 5 0 0 -1 -.6184 – 6 1.1374 0 -2 -1.474 – 7 3.2296 0
225 11100001 0 0 – 5 13.0176 1 -1 -.6184 – 6 25.0805 1 -2 -1.474 – 7 47.2678 1
226 11100010 0 0 – 5 7.0775 0 -1 -.6184 – 6 14.1550 0 -2 -1.474 – 7 27.1726 0
227 11100011 0 0 – 5 20.0951 2 -1 -.6184 – 6 38.0981 2 -2 -1.474 – 7 71.2108 2
.
..

.

..
254 11111110 0 0 C1 2 1.1374 0 -1 -.6184 C1 3 3.2296 0 -2 -1.474 C1C1 1 0 0
255 11111111 0 0 C1 2 3.2296 2 -1 -.6184 C1C1 0 0 0 -2 -1.474 C1C1 1 1.1374 1

Table 5: Sample lines of revised partial decoding tables

index of first
precision a(3) φ(3) wrong

codeword

32 0.6184199 1.8392868 189,473
64 / 32 2,097,155

64 0.6184199223193926 1.8392867552141611 —

Table 6: Influence of precision on the correctness

of index in line 8 applies also in this case. For p = 2,
the amount to be subtracted is

a(3)φ
oldSL−1
(3) + a(3)φ

oldSL
(3) = a(3)

(

1 + 1
φ(3)

)

φoldSL
(3)

= 1.4738 φoldSL
(3) ,

so PV should be defined as −1.4738. Table 5 brings
some sample lines of the revised partial decoding tables
for k = 8 and m = 3.

To estimate the size of the tables, consider first k = 8.
Just 4 bits are then needed for the PL and SL fields, and
2 bits for p (which is enough also for m = 4). S will
store the index of the decoded codeword rather than
the codeword itself, so the number of bits allocated to
S depends on the size N of the alphabet. If N < 4
million, and in most cases it will be, one can pack S and
p together in 3 bytes. Of course, there is the possibility

of more than one codeword being decoded from a single
byte (see, e.g., the last line in Table 5), but for k = 8,
this can only happen for the pair C1C1. Instead of
reserving space for two codewords within the string S,
one rather may deal with this special case by treating
the pair C1C1 as if it were another symbol, indexed, e.g.,
N +1. The values PV and SV are stored as 4-byte float
numbers. Adding it up, one needs 12 bytes per entry,
so for m = 3 and k = 8, the total size is 28 × 3 × 12,
less than 10K. Such a low value suggests that it might
even be reasonable to use k = 16, processing twice as
many bits in each iteration. The size of each entry may
increase to 13 bytes (there are more possible values for
PL and SL, and more special cases have to be taken care
of if one restricts S to a single index), but the overall
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size is still 216 × 3× 13, less than 2.5MB, which is often
acceptable.

It should be noted that the validity of the above
decoding procedure depends on the precision used to
represent floating point numbers in the program. If
single precision is used (32 bits of which 23 bits are
the mantissa), the accumulated error when raising φ(3)

to the power j will yield wrong values for j ≥ 24.
For a given number i, a growing number of different
Fibonacci numbers is used in its representation, and
here again the absolute value of the error introduced
by lower precision adds up until it may exceed 0.5, so
that rounding will not give the required integer. We
have checked all the numbers up to the first error and
found that it occurs for i = 189473. If the alphabet
to be dealt with is smaller, then single precision is
enough. However, it seems that for larger alphabets
(such as all the examples in Table 3), double precision
(64 bits, 52 bit mantissa) must be used. But double
precision will not only increase substantially the size of
the tables, it is also much more time consuming. A
compromise could be a hybrid approach, using double
precision only for all the off-line evaluations, that is,
for the all values in the tables. Thus up to φ8

(3), we
shall use double precision to calculate the value, but
actually store them in the table in four bytes only; all
the online evaluations (lines 5 and 8) are done with single
precision. Table 6 brings the indices of the first wrong
elements for the given precision, as well as the according
values of a(3) and φ(3). The middle line, headed 64/32,
corresponds to the hybrid case. For double precision,

we checked all the values up to F
(3)
39 > 12.96 billion,

and did not find any rounding error. In all these cases,
−0.392 < error < 0.247, where error is the difference
between the correct (integer) value and the value based
on powers of φ(3).

3.3.3. Eliminating multiplications
One may still object that the use multiplications,
floating point numbers and rounding can have a
negative impact on the processing time. One can
get rid of all these at the cost of some additional
tables. The idea is to replace the multiplications with
Phi[oldSL] in lines 5 and 8 by pre-calculated values
of shifted Fibonacci numbers. One thus prepares a
two-dimensional table Fib3[index, shift], index running
over all the possible PV values, and shift over the
possible shifts, that is, from zero to the length of the
longest possible prefix of a codeword. According to our
earlier notation, the bitstring x1 · · ·xk represents the

integer
∑k

i=1 xiF
(3)
i . Fib3[index, shift ] will contain the

corresponding value obtained by shifting all the bits by
shift bits to the right, i.e.,

Fib3[index, shift ] =

k
∑

i=1

xiF
(3)
i+shift .

index shift

dec Fib-bin 0 1 2 · · · 10 · · ·

.

..
.
..

56 10110010 56 103 190 24858
57 00001010 57 105 193 25281
58 10001010 58 107 197 25785
59 01001010 59 109 200 26208
60 11001010 60 111 204 26712
61 00101010 61 112 206 26986
...

...
147 01011011 147 271 498 65234
148 11011011 148 273 502 65738

149 p = 1 – -1 -2 -274
150 p = 2 – – -3 -423

Table 7: Sample lines and columns of the
Fib3[index, shift ] table

Table 7 displays some sample lines and columns of the
Fib3[index, shift ] table. The last two lines are a special
case, to be explained below.

Using this table, the algorithm of Figure 5 can be
modified by replacing lines 5 and 8, respectively, by

5 oldSV ←− oldSV + Fib3[PV, oldSL]
and
8 index ←− oldSV + Fib3[PV, oldSL]

+ Start[3 + oldSL + PL]

Note that all the values are integers now, so no rounding
is necessary and there are no multiplications. The tables
Tab[] can be simplified and all float numbers be replaced
by the corresponding integers, using for each only 1
instead of 4 bytes. To adapt the modified algorithm
also to the special cases when the separating 111 is
split by byte boundaries, note that when p = 1 and the
current codeword starts with 1, then the rightmost 1-bit

of the previous byte contributed the amount of F
(3)
oldSL to

oldSV, but this addition was erroneous and should now
be corrected. For p = 2, in case the current codeword

starts with 1, the erroneous addition is F
(3)
oldSL−1+F

(3)
oldSL.

As above, the correct value of PL in these cases is
−p. The correction factors will be accommodated in
the Fib3 table, since it is used in lines 5 and 8. Two new
lines are added to the tables, indexed M +1 and M +2,
where M is the index of the highest of the PV values.
For k = 8, the highest number that can be represented
in the Fib3 representation is 11011011, corresponding
to M = 148 and for k = 16, the largest number is
1011011011011011, representing M = 19511. The new
entries are defined as

Fib3[M + 1, s] = −F
(3)
s

Fib3[M + 2, s] = −F
(3)
s−1 − F

(3)
s .

All that remains to be done is then to define, in the Tab
tables, the value PV as M + p in case PL= −p. Table 8
shows a few sample lines of the updated Tab tables.
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index p = 0 p = 1 p = 2
dec bin PL PV S SL SV p PL PV S SL SV p PL PV S SL SV p

.

..
.
..

124 01111100 1 0 – 4 3 0 1 0 – 4 3 0 1 0 – 4 3 0
125 01111101 1 0 – 4 10 1 1 0 – 4 10 1 1 0 – 4 10 1
126 01111110 1 0 C1 1 0 0 1 0 C1 1 0 0 1 0 C1 1 0 0
127 01111111 1 0 C1 1 1 1 1 0 C1 1 1 1 1 0 C1 1 1 1
128 10000000 8 1 – 0 0 0 8 1 – 0 0 0 -2 149 – 7 0 0
129 10000001 8 82 – 0 0 1 8 82 – 0 0 1 -2 149 – 7 44 1
...

...
222 11011110 3 3 – 2 1 0 -1 150 C2 2 1 0 -2 149 C4 2 1 0
223 11011111 3 3 – 2 3 2 -1 150 C2 2 3 2 -2 149 C4 2 3 2
224 11100000 0 0 – 5 0 0 -1 150 – 6 1 0 -2 149 – 7 3 0
225 11100001 0 0 – 5 13 1 -1 150 – 6 25 1 -2 149 – 7 47 1
...

...

Table 8: Sample lines of updated, integer only, partial decoding tables

The reduction in processing time and in the size of the
Tab tables comes at the price of storing the additional
Fib3 tables, the number of which depends on the size of
the alphabet, N . There is one table for each possible
shift, and the number of shifts is the size in bits of the
largest integer, which is 16, 24 and 28 for N = 104, 105

and 106, respectively.
Table 9 summarizes the space needed for the various

decoding methods for different sizes N of the alphabet,
and for k = 8 or 16. Full tables refers to the basic partial
decoding tables of Section 3.3.1 and the values for it
are lower bounds. As the size is at least proportional
to N , this method is not feasible for larger alphabets.
The columns headed Mult correspond to the algorithm
of Figure 5 using multiplications and floating point
numbers in the tables. Their space does not depend on
N . Finally, the last column for each value of N is for the
method using in addition to the partial decoding tables,
also the Fib3 tables. The additional space is O(log N).

As can be seen, the last two methods have reasonable
space requirements, and for low values of N , the last
method, which is also faster than the previous one, may
even require less space. For larger alphabets, the revised
partial decoding tables with floats or integers offer a
time/space tradeoff.

To empirically compare timing results, we chose the
following input files of different sizes and languages:
the Bible (King James version) in English, and the
French version of the European Union’s JOC corpus, a
collection of pairs of questions and answers on various
topics used in the arcade evaluation project [25]. The
dictionary of the Bible was generated after stripping the
text of all punctuation signs, whereas the French text
has not been altered and every string of consecutive
non-blanks was considered as a dictionary term; for
example, “tour”, “Tour” and “tour.” are considered
as different terms in French, but generate only one
element in the English dictionary.

The results are presented in Table 10, which includes
also relevant statistics, such as the size of the file in
words and the number of different words. The timing
results correspond to the last version of the decoding
mentioned, that using the Fib3[index, shift ] tables and
the partial decoding tables as those in Table 8. Note
that because of the preprocessing of the files, their sizes
are different from standard versions of the Bible or
the JOC corpus. The values in the column headed
Compressed size are given in average number of bits
per word, and the numbers in parentheses in the SCDC
column give the optimal (s, c) pair used for the given
distribution. The time values are in seconds and
were averaged over 100 independent runs of the full
decoding of each text on an IBM X366 e-series with 6GB
RAM running Red Hat Enterprise Linux. The column
headed Bit-Fib3 refers to the naive bitwise decoding,
whereas the column headed Block-Fib3 is the table-
driven variant described in this section, with k = 8.
The programs for the SCDC decoding, as well as those
used for the compressed search below, have kindly been
provided by the authors of [9]. We see that the Fib3
files are 9-10% shorter than the optimal (s, c)-codes.
Relative to the naive bitwise Fib3 decoding, the block
based Fib3 approach is, on the given data, about 30%
faster, but it still takes roughly twice as long as the
decoding of the byte aligned SCDC codes.

3.4. Compressed search

The main motivation for the creation of Tagged
Huffman codes was to support the possibility of
searching directly within the compressed text. Regular
Huffman codes, even byte-aligned ones, suffer from a
synchronization problem. Consider, for example, the
code {0, 11, 100, 101} for the alphabet {A, B, C, D},
then the encoding of DC would be 101100, and the
substring 11 in the middle could be falsely identified as
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N = 10, 000 N = 100, 000 N = 1, 000, 000
Full tables Mult with Fib3 Full tables Mult with Fib3 Full tables Mult with Fib3

k = 8 30M 10K 10K 300M 10K 15K 3G 10K 21.4K
k = 16 7.5G 2.5M 1.9M 75G 2.5M 2.6M 750G 2.5M 3.4M

Table 9: Required storage space for different decoding methods

Database Total # # different Compressed size Time (sec)

of words words Fib3 SCDC Bit-Fib3 Block-Fib3 SCDC

Bible KJV 611,793 11,378 9.34 (223,33) 10.28 0.111 0.079 0.034
French 1,176,192 75,192 11.12 (188,68) 12.36 0.261 0.178 0.092

Table 10: Empirical comparison of Fib3 and SCDC decoding

the encoded form of B. If the search is done sequentially
from the beginning of the text, one could record the
codeword boundaries and then even a regular Huffman
code could be used. But this would disqualify non-
sequential searches, which can be much more efficient,
such as the Boyer-Moore (BM) algorithm [26]. So if
BM searches are to be supported, the synchronization
problem has to be dealt with.

In the tagged Huffman version, the tag identifies the
last byte of each codeword so that a tagged byte can
only appear as the last byte of a codeword. Similarly,
the last byte of a codeword for ETDC must have a
value less than 128 and for SCDC less than s. In
the bit-oriented Fibm codes, the end of a codeword is
detected by the appearance of a string of m consecutive
1s, which occur at the end of each codeword, and only
there. However, for all four mentioned codes, if a given
codeword E(x) is located in the compressed text E(T ),
it does not necessarily correspond to a real occurrence
of the encoded item x in the text T , because all these
codes have codewords that are suffixes of others. One
therefore needs to check also the bits just preceding
the located match: it is a true occurrence of x if the
preceding byte is tagged for the tagged Huffman codes,
or if the value of the preceding byte is < s for SCDC.

For Fibm, the m bits preceding the match have to
be all 1s, but even then one cannot be sure that a true
match has been detected. For example, suppose one is
looking for the word day, encoded by 1011000111 in the
Fib3 compressed KJV Bible. If one uses this pattern,
extended at its left end by 111, it will be erroneously
located as a suffix of 100001000111-11011000111, which
is the encoding of burnt offering. What causes the
problem is the existence of codewords in Fib3 that start
with one or two 1s.

One way to overcome this difficulty is to redefine
the set of codewords of Fib3, eliminating the first
codeword, 111, which is the only one not containing
a zero. As a result, all the codewords have then 0111
as suffix, so to find E(x), one can look for 0111E(x) in

Database SCDC Fib3 (Byte) Fib3 (Bit)

Bible KJV 0.88 2.48 81.7
French 0.67 2.04 65.5

Table 11: Empirical comparison of compressed
search (in milliseconds)

0111E(T ). This would come with a penalty of increasing
the lengths of certain codewords, yielding, respectively,
an average length of 9.52 and 11.27 bits for the Bible
and the French texts used above, an increase of less than
2%. This could be tolerable as the files would still be
shorter by 7–9% than the corresponding optimal SCDC
variants.

As second option, when better compression is critical,
the search procedure in the Fib3 encoded text can be
amended similarly to the additional check of the byte
preceding the match in tagged Huffman or SCDC. To
locate E(x), one searches for the pattern 111E(x), and
if it is found starting at position i in the encoded text,
one goes through the following sequence of checks: the
match is declared a true occurrence of x if either the bit
in position i−1 is 0, or the string terminating in position
i − 1 is 0111, or 0111111, or generally 0(111)t for some
t ≥ 0. This seems as a potentially infinite sequence of
checks, but practically, the appearance, for t > 0, of
the string 0(111)t ending at position i − 1, means that
the term x is preceded in the text by t copies of the
most frequent term (encoded by 111), which is often
the word the. In natural language texts it will be very
rare to have two or more such consecutive occurrences.
One can therefore restrict the check to, say, t ≤ 2, at
the risk of very rarely announcing a false match; or one
could in a preparation phase evaluate the length of the
longest sequence of consecutive occurrences of the most
frequent term, and set t accordingly.

As a final option, the problem caused by the shortest
codeword 111 can be circumvented by encoding all
the (non-overlapping) occurrences of pairs of the most
frequent term by a single codeword, rather than by two
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i Code Decoded text

Fib3 In the beginning God created the heaven and the
���������	�

And the earth was without form and void and darkness was . . .
80 Huf In the beginning God created the heaven and the

��
���
�������
��������������
was without form and void and darkness was . . .
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Fib3 And the earth was without form and 5 darkness was upon the face of the deep. And the Spirit of God moved upon . . .
160 Huf And the earth was without form and void and

��
����	�������	� � �3��
��/67
�,-
��4��
�
��8
����'��
��/.4
 � .4� � 
�
�* * Spirit of God moved . . .
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Table 12: Illustration of robustness: decoded text after having deleted the bit at position number i

consecutive 111s. The phrase the the would thus be
assigned a special codeword in many natural language
texts, but the loss of compression efficiency would be
negligible if such a phrase appears only very rarely, if at
all. On the other hand, in the search procedure above,
one can restrict the number of checks to t = 1.

Basically, a BM search in SCDC or tagged Huffman
compressed text is faster, since it is performed byte
per byte, whereas the Fibm compressed texts have to
be scanned on the bit level. However, in our tests,
we used a byte-oriented version of the BM algorithm
(Byte) described in [27], which reads and compares
whole blocks, typically bytes, instead of manipulating
individual bits. Table 11 reports the average time of
sample runs, performed on the same test files as above.
The patterns have been chosen as the encodings of
single codewords of various lengths. Emulating the
tests described in [9], we randomly chose terms of the
database vocabulary of various lengths (from 5 to 21
characters), and considered the corresponding SCDC
and Fib3 encodings. The SCDC encodings were 1 to 3
bytes long, and the lengths of the Fib3 encoded patterns
were between 14 and 24 bits for French, and between
9 and 21 bits for English. For each of the sets, 700
terms were chosen and each run was repeated 100 times.
The time measured was until the first occurrence of
the binary SCDC or Fib3 encoding has been located
in the SCDC or Fib3 compressed text, respectively,
averaged for each language and over the 100 runs. For
comparison, we also ran the regular bit-oriented BM
algorithm (Bit). The results show that while the SCDC
algorithm is almost 100 times faster than bitwise BM
searching, it is just up to three times faster than the
performance of byte oriented BM on our tests, giving a
reasonable tradeoff between the compression ratio and
the processing speed.

3.5. Robustness

As a final criterion, we turn to one that has not been
mentioned in [4, 8], which is the robustness of the
code against errors. If the codes are to be used over
a noisy communication channel, their resilience to bit
insertions, deletions and to bit-flips may be of high
importance.

Similarly to the case of fixed length codes, the damage
caused by a bit change in the SCDC codes will be locally
restricted. One codeword will be changed into another
of equal length or will be split into two codewords, and
two adjacent codewords may fusion into a single one,
but there will be no propagation beyond that. The
insertion or deletion of even a single bit, on the other
hand, may be devastating, rendering the suffix of the
text following the error useless, as the decoding will
be shifted and all the true codeword boundaries could
be missed. The same may be true for variable length
Huffman codes, though they generally have a tendency
to resynchronize quickly [6]. In contrast, Fibonacci
codes are robust even against insertions and deletions:
since the codeword endings are explicitly given by the
string of m 1s, and do not depend on the position, an
error will affect only a single codeword, or at most two
adjacent ones.

Table 12 brings a small example to illustrate the
differences in robustness of some of the codes discussed
above. The text is that of the KJV Bible, encoded as a
sequence of words, and three codes were tested: Fib3,
Huffword and the optimal SCDC with (s, c) = (223, 33).
To simulate the occurrence of an error—in our case,
a bit getting lost—a single bit has been deleted (at
position i = 80 or 160) for each of the files, and the
resulting files were decoded using the corresponding
regular decoding routines. Erroneously decoded words
are boldfaced for emphasis.

As expected, only one or two codewords were lost for
Fib3. For i = 80, the codeword 01010000111 (earth)
turned into 0101000111 (before); for i = 160, the
deleted bit was in the separating 111 string, so the
two codewords 110100110110111 (void) and 0111 (and)
fusioned to 110100110110110111, which represents the
index number 12627; there are, however, only 11378
elements in the alphabet, so we have here an example
of a case in which the error can be detected, even if
there is no way to correct it. Note that for Huffword
and SCDC, even the fact that an error has occurred can
go undetected.

Huffman coding provides interesting examples: one
could have expected that the error might propagate,
but in fact, after 4–10 codewords, synchronization is
regained in these examples, and this is also generally
the case, as mentioned in [6]. Finally, for SCDC, all the
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codewords after the error are shifted one bit to the left,
so the decoding will never resynchronize, and the error
will be detected only at the end of the encoded string.

4. CONCLUSION

The paper suggests the use of higher order Fibonacci
codes as efficient alternatives to recently proposed
compression codes such as tagged Huffman codes,
End-Tagged dense codes and (s, c)-dense codes. It
shows that on some criteria, including compression
efficiency and the robustness against errors, Fibonacci
codes may be preferable and perform better than the
other codes, while still being inferior on decompression
and compressed search speed. Overall, the Fibonacci
codes may thus give a plausible tradeoff for certain
applications.

For the cases in which Fibonacci codes have been
chosen, independently of their competition with the
other alternatives, we have shown how to accelerate
their decoding by means of decoding tables that have
been prepared in advance and depend only on the code,
not on the given encoded text.
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