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ABSTRACT

The Compressed Delta Encoding paradigm is introduced, i.e., delta encoding directly
in two given compressed files without decompressing. Here we explore the case where
the two given files are compressed using LZW, and devise the theoretical framework
for modeling delta encoding of compressed files. In practice, although working on the
compressed versions in processing time proportional to the compressed files, our target
file may be considerably smaller than the corresponding LZW form.
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1. Introduction

Delta compression is a main field in data compression research. In this paper we

introduce a new model of differencing encoding, that of Compressed Differencing.

In this model we are given two files, at least one in its compressed form. The

goal is to create a third file which is the differencing file (i.e. the delta file) of the

two original files, in time proportional to the size of the input, that is, without

decompressing the compressed files.
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More formally, let S be the source file and T be the target file (probably two

versions of the same file). The goal is to create a new file ∆(S, T ) which is the

differencing file of S and T . If both S and T are given in their compressed form,

we call it the Full Compressed Differencing Problem. If one of the files is given in

its compressed form we call it the Semi Compressed Differencing Problem. If none

of the files are compressed, it refers to the original problem of differencing.

One motivation for this problem is when the encoder is interested in transmitting

the compressed target file when both encoder and decoder have the source file

in its compressed or uncompressed form. Creating the Delta file can reduce the

transmitted file’s size and therefore the number of I/O operations. Working on the

compressed given form, the encoder can save memory space as well as processing

time. Another motivation is detecting resemblance of a set of files when they are all

given in their compressed form without decompressing them, perhaps saving time

and space. When the difference file’s size is less than the target file it indicates

resemblance.

Traditional differencing algorithms compress data by finding common strings

between two versions of a file and replacing substrings by a copy reference. The

resulting file is often called a delta file. Two known approaches to differencing are

the Longest Common Sub-sequence (LCS) method and the edit-distance method.

LCS algorithms find the longest common subsequence between two strings, and do

not necessarily detect the minimum set of changes. Edit distance algorithms find

the shortest sequence of edits (e.g., insert, delete, or change character) to convert

one string to another. One application which uses the LCS approach is the UNIX

diff utility, which lists changes between two files in a line by line summary, where

each insertion and deletion involves only complete lines. Line oriented algorithms,

however, perform poorly on files which are not line terminated such as images and

object files.

Tichy [16] uses edit-distance techniques for differencing and considers the string

to string correction problem with block moves, where the problem is to find the

minimal covering set of T with respect to S such that every symbol of T that also

appears in S is included in exactly one block move. Weiner [17] uses a suffix tree

for a linear time and space left-to-right copy/insert algorithm, that repeatedly out-

puts a copy command of the longest copy from S or an insert command when no

copy can be found. This left-to-right greedy approach is optimal (e.g., Burns and

Long[5], Storer and Szymanski [15]). Hunt, Vo, and Tichy [11] compute a delta file

by using the reference file as part of the dictionary to LZ-compress the target file.

Their results indicate that delta compression algorithms based on LZ techniques sig-

nificantly outperform LCS based algorithms in terms of compression performance.

Factor, Sheinwald, and Yassour [7] employ Lempel-Ziv based compression to com-

press S with respect to a collection of shared files that resemble S; resemblance is

indicated by files being of same type and/or produced by the same vendor, etc. At

first the extended dictionary includes all shared data. They achieve better com-

pression by reducing the set of all shared files to only the relevant subset. Based on

these researches we construct the delta file using edit distance techniques including
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insert and copy commands. We also reference the already compressed part of the

target file for better compression.

Ajtai, Burns, Fagin, and Long [2] and Burns and Long [5] present several differ-

ential compression algorithms for when memory available is much smaller than S

and T , and present an algorithm named checkpointing that employs hashing to fit

footprints of substrings of S into memory; matching substrings are found by looking

only at their footprints and extending the original substrings forwards and back-

wards (to reduce memory, they may use only a subset of the footprints). Heckel [10]

presents a linear time algorithm for detecting block moves using Longest Common

Subsequences techniques. One of his motivations was the comparison of two ver-

sions of a source program or other file in order to display the differences. Agarwal

et al.[1] speed up differential compression with hashing techniques and additional

data structures such as suffix arrays. In our work we use tries in order to detect

matches.

Burns and Long [6] achieve in-place reconstruction of standard delta files by

eliminating write before read conflicts, where the encoder has specified a copy from

a file region where new file data has already been written. Shapira and Storer [14]

also study in-place differential file compression. The non in-place version of this

problem is known to be NP-Hard, and they present a constant factor approxima-

tion algorithm for this problem, which is based on a simple sliding window data

compressor. Motivated by the constant bound approximation factor they modify

the algorithm so that it is suitable for in-place decoding and present the In-Place

Sliding Window Algorithm (IPSW). The advantage of the IPSW approach is sim-

plicity and speed, achieved in-place without additional memory, with compression

that compares well with existing methods (both in-place and not in-place). Our

delta file is not necessarily in place, but minor changes (such as limiting the offset’s

size) can result in an in place version of the file.

If both files, S and T , are compressed using Huffman coding (or any other static

method), generating the differencing file can be done in the traditional way (perhaps

a sliding window) directly on the compressed files. The delta encoding is at least

as efficient as the delta encoding generated on the original files S and T . Common

substrings of S and T are still common substrings of the compressed versions of S

and T . However the reverse is not necessary true, since the common substrings can

exceed the codeword boundaries. For example, consider the alphabet Σ = {a, b, c}

and the corresponding Huffman code {00, 01, 1}. Let S =abab and T =cbaa,

then E(S) =00010001 and E(T ) =1010000. A common substring of S and T is ba

which refers to the substring 0100 in the compressed file. However, this substring

can be extended in the compressed form to include also the following bit, as the

LCS is 01000 in this case.

The problem is less trivial when using adaptive compression methods such as

Lempel-Ziv compressions. The encoding of a substring is determined by the data,

and depends on its location. For this reason the same substring is not necessarily

encoded in the same way throughout the text. Our goal is to identify reoccur-

ring substrings in the compressed form so that we can replace them by pointers to
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previous occurrences. In this paper we explore the compressed differencing prob-

lem on LZW compressed files and devise a model for constructing delta encodings

on compressed files. In Section 2 we perform Semi Compressed Differencing using

compressed pattern matching, where the source file is encoded using the correspond-

ing compression method. In Section 3 we present an optimal algorithm in terms

of processing time for the Semi and Full versions of the compressed differencing

problem using tries.

2. Delta encoding in compressed files using compressed pattern matching

Many papers have been written in the area of compressed pattern matching, i.e.

performing pattern matching on the compressed form of the file. Amir, Benson and

Farach [4] propose a pattern matching algorithm in LZW compressed files which

runs in O(n + m2) processing time or O(n log m + m), where n is the size of the

compressed text and m is the length of the pattern. Kida et al. [12], present an

algorithm for finding all occurrences of multiple patterns in LZW compressed texts.

Their algorithm simulates the Aho-Corasick pattern matching machine, and runs in

O(n+m2 +r) processing time, where r is the number of pattern occurrences. Com-

pressed pattern matching was also studied in [9, 8, 13] and in many others. In this

section we use any compressed pattern matching algorithm to perform compressed

differencing using the same compression method. Given a file T and a compressed

file E(S), our goal is to present T as a sequence of pointers and individual charac-

ters. The pointers point to substrings that either occur in S, or previously occurred

in T . This can be done by processing T from left to right and repeatedly finding

the longest match between the incoming text and the text of S or to the left of the

current position in T itself, and replacing it by a pointer, or by a single character,

if a match of two or more characters cannot be found.

The input of any given compressed pattern matching algorithm is a specific

pattern P we are interested in searching for. Since we are interested in locating

the longest possible match at the current position, we only know the position the

pattern starts with but not the one it ends with. A naıve algorithm can, therefore,

try to locate all substrings of T starting at the current position by concatenating

the following character to the pattern each time a match in S or in the already

scanned part of T can still be found. A formal algorithm is given in Figure 1. We

use u to denote the length of the uncompressed file. We denote by cpm(P, E(S))

any compressed pattern matching algorithm for matching a given pattern P in the

compressed file E(S). It returns the position of the (last) occurrence of P in the

original text S, and 0 if such location is not found. Similarly, pm(P, T ) denotes any

pattern matching algorithm for matching a given pattern P in T , which returns the

position of the (last) occurrence of P in T , and 0 if no such location is found. If

the match between the pattern starting at the current position and the compressed

form of S or the previous scanned part of T can not be extended, we output the

match we have already found. If this longest match is only of a single character we

output the character at the current position, and advance the position in T by one.

For analyzing the processing time of the naive algorithm presented in Figure 1,
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1 i←− 1;

2 while i ≤ u do

{

2.1 P ←− Ti;

2.2 j ←− 0;

2.3 while i + j ≤ u and

(pos1←− cpm(P, E(S)) 6= 0 or pos2←− pm(P,T1 · · ·Ti−1) 6= 0)

2.3.1 j ←− j + 1;

2.3.2 P ←− P · Ti+j ; // concatenate the next character

2.4 if j = 0 // no match was found

2.4.1 output Ti;

2.5 elseif pos1 6= 0; //output a pointer to S

2.5.1 output a pointer (pos1, j);

2.6 else // output a pointer to T

2.6.1 output a pointer (pos2, j);

2.7 i← i + j + 1

}

Figure 1: Solving the Semi Compressed Differencing problem using Compressed

Pattern Matching.

let us assume that the compressed pattern matching algorithm is optimal in terms

of processing time. By the definition of Amir and Benson [3] of optimal compressed

matching algorithms the running time is O(n + m), where n is the size of the

compressed text and m is the length of the pattern. Thus the total running time of

the algorithm presented in Figure 1 is O(u2(n + m)), even for optimal compressed

pattern matching algorithms. Our goal is, therefore, to reduce the processing time.

In the following chapter we concentrate on differencing in LZW files.

3. Delta Encoding in LZW Files

The LZW algorithm by Welch [18] is a common compression technique which is

used for instance by the compress command of UNIX. The LZW algorithm parses

the text into phrases and replaces them as pointers to a dictionary trie, i.e., the

nodes of the trie are labeled by characters of the alphabet, and the string associated

with each node is the concatenation of the characters on the path going from the

root down to that node. The trie initially consists of all the characters of the

alphabet. At each stage of the algorithm it looks for the longest match between

the string starting at the current position and the previous scanned text. It then

updates the dictionary trie to include the node corresponding to the string of the

match concatenated with the following character in the text.
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3.1. Semi Compressed Delta Encoding

1 construct the trie of E(S);

2 i←− 1;

3 while i ≤ u

{

3.1 P ←− TiTi+1...Tu;

3.2 Starting at the root, traverse the trie using P

3.3 when you encounter a leaf v corresponding to a prefix of length ℓ of P

3.3.1 output the position in S corresponding to v;

3.4 i←− i + ℓ;

}

Figure 2: Semi Compressed Differencing algorithm for LZW compressed files.

During LZW decompression an identical trie to the LZW compression trie is

constructed. Although the LZW decompression algorithm takes linear time in size

of the original file, if the reconstructed file is not needed, the construction of the

dictionary trie can be done in time proportional to the size of the compressed

file. Figure 2 presents an improved algorithm for constructing the delta file of the

compressed file E(S) and a given file T . It uses the dictionary trie constructed by

E(S). Starting from the root, it traverses the trie with T until it reaches a leaf. It

then outputs the position of the string corresponding to the leaf (this information is

kept in the nodes of the trie when it is constructed). The prefix of T corresponding to

the matched string is truncated, and traversing the trie continues with the remaining

part of T starting from the root repeatedly. Since the trie is initialized with nodes

corresponding to all the characters of the alphabet, outputting the positions of these

nodes to the delta file correspond to inserting individual characters. The processing

time of this algorithm is O(|E(S)|+ |T |), which is linear in the size of the input. In

order to improve the compression performance we can add pointers to the portion

of T that has already been processed. This can be done by constructing the trie for

T in addition to the trie for S. This is done in the algorithm for full compressed

delta files of the next sub-section.

3.2. Full Compressed Delta Encoding

In this section we present a linear time algorithm for the Full Compressed Delta

Encoding problem. Figure 3 presents the algorithm for constructing the delta file

of S and T given E(S) and E(T ). It constructs the dictionary trie of S recording

for each node the position of the last occurrence of the corresponding string and its

length (the depth of the node) and the first character of the corresponding string. In

addition, each node of the trie records its code indicating the order the nodes were

created, which also corresponds to the node’s LZW code. Dictionary[code] returns
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a pointer to the node in the trie having the corresponding code. Since the original

file T is not needed, we construct the trie of T in parallel to traversing the trie of

S. New nodes are introduced during this phase of the algorithm when substrings

of T correspond to nodes that are not present in the trie of S. When adding or

updating a node (recording the position in T and changing its code) it outputs to

the delta file the position and length of its parent, or the position and length of

the node itself, depending on whether the node exists or not. This ordered pair

(position, length) can refer to a substring of S or T , depending on the last update

of the output node. The variable flag indicates whether the character k (the first

character of the previous code) was written to the delta file in the preceding stage.

If so, we should eliminate k from the current pointer by skipping a single character

in the copy’s position and shortening the copy’s length by 1. The processing time

of this algorithm is O(|E(S)|+ |E(T )|), which is again linear in the size of the input.

1 construct the trie of E(S);

2 flag ←− 0; // output character k

3 input oldcode from E(T );

4 while oldcode 6= NULL // still processing E(T )

{

4.1 input code from E(T );

4.2 node←− Dictionary[oldcode];

4.3 if (Dictionary[code] 6= NULL)

4.3.1 k←− first character of Dictionary[code];

4.4 else

4.4.1 k←− first character of node

4.5 if ((node has a child k) ) and (code 6= NULL))

4.5.1 output the position+flag and length−flag

corresponding to child k of node;

4.5.2 update position of child k of node;

4.5.3 flag ←− 1; // character k has been outputed

4.6 else

4.6.1 output the position+flag and length−flag corresponding to node;

4.6.2 add child k to node;

4.6.3 flag ←− 0; // output character k

4.7 oldcode←− code;

}

Figure 3: Full Compressed Differencing algorithm for LZW compressed files.

To improve the compression performance of the delta file, we can check whether

each ordered pair of the form (position, length) can be combined with its previous

ordered pair, i.e., if two consecutive ordered pairs are of the form (i, ℓ1) and (i +

ℓ1, ℓ2) where i denotes a position in S or T and ℓ1 and ℓ2 denote lengths, we combine

them into a single ordered pair (i, ℓ1 + ℓ2). The combined ordered pair can then be
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combined with successive ordered pairs.

Consider the following example: S = abccbaaabccba, T = ccbbabccbabccbba.

Applying LZW we get that E(S) = 1233219571 and E(T ) = 33221247957. The

dictionary trie of E(S) and the combined dictionary of E(S) and E(T ) are given in

the following figures. In the combined trie, dotted nodes indicate new nodes that

were introduced during the parsing of E(T ). Bold numbers represent data that was

updated during the parsing of E(T ), and therefore corresponds to positions in T .

a b c

a b a c

b c a

b c

2 3

7 6

1211

5849

10

1

(11,3,c)

(3,2,c)(4,2,c)(2,2,b)

(9,3,b)

(6,2,a) (1,2,a) (5,2,b)

(7,3,a)

Figure 4: The Dictionary Trie for E(S)

a b c

a b a b c

b b c a

b

b

c

b

2

6 5 4

101312

97

11 12

8

10

31

(3,2,b) (6,2,b)(6,2,a) (5,2,a)

(7,3,a)

(4,2,b)

(9,3,b) (11,3,b)

(2,2,c) (1,2,c)

(11,3,c) (13,3,c) (7,3,c)

9

Figure 5: The Combined Dictionary Trie for E(S) and E(T )

We get that ∆(S, T ) = 〈3, 2〉〈5, 1〉〈5, 2〉〈2, 1〉〈3, 1〉(2, 1)(4, 2)〈9, 3〉(3, 1)(4, 2),

where pointers to S are delimited with brackets, and pointers to T with parentheses.

Two ordered pairs can be combined thus ∆(S, T )=〈3, 3〉〈5, 2〉〈2, 2〉c(4, 2)〈9, 3〉b(4, 2).
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At this stage ordered pairs of length 1 are translated to the corresponding character.

The compression performance of the above algorithm is similar to that of LZW.

To improve that, we tried various degrees of partial decoding, and preliminary tests

with these variants gave encouraging results. For example, using the executable file

xfig.3.2.1.exe as source file S to compress the next version xfig.3.2.2.exe,

playing the role of T , the resulting delta file was smaller than 3K, whereas the

original size of T was 812K, gzip would reduce that only to 325K, and LZW, the

method on which the delta encoding has been applied here, would yield a file of size

497K. The coding used was a combination of different Huffman codes for the char-

acters, the offsets and the lengths. Non-compressed delta encoding could achieve

even better results, but loose the advantage of working directly with the compressed

files.

4. Future Work

Our exposition here has been mainly theoretical, presenting optimal algorithms

(in the sense defined in [3]) for constructing delta files from LZW compressed data.

We intend to explore the semi and full compressed delta encoding problems for LZ77

encoded files, both theoretically and practically. LZ77 based compressions resembles

more to the basic delta encoding scheme, thus we expect that the compression

performance will be better than LZ78 based compressions. Since the general form

of the problem is difficult, in [?]we relax the problem to include only a restricted set

of edit distance operations that were done when transforming the source file into

the target file.
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