
Compressed Delta Encoding

for LZSS Encoded Files

Shmuel T. Klein
Department of Computer Science

Bar Ilan University
Ramat Gan 52900, Israel

tomi@cs.biu.ac.il

Dana Shapira
Department of Computer Science

Ashkelon Academic College
Ashkelon 78211, Israel
shapird@ash-college.ac.il

Abstract

We explore the Full Compressed Delta Encoding problem in compressed
texts, defined as the problem of constructing a delta file directly from the two
given compressed files, without decompressing. We concentrate on the case
where the given files are compressed using LZSS and propose solutions for the
special cases involving substitutions only.

1. Introduction

Delta encoding is a way of storing or transmitting data in the form of differences
between two given files. This is a widely studied subfield of data compression, as
can be seen by the large number of pubications on the topic, see [2, 3, 6, 7, 8, 9, 13],
to cite just a few. The Compressed Differencing Problem is of constructing a delta
file of the two given original files out of their compressed forms in time proportional
to the size of the input, i.e., without decompressing the compressed files. That is,
let S be the source file and T be the target file (in many applications, these are
two versions of the same file), and suppose we are given their compressed forms
E(S) and E(T ) as input. Our goal is to construct a new file Δ(S, T ) which is the
differencing file of S and T , but without decompressing, that is, without using S or
T themselves. The problem, called also the Full Compressed Differencing Problem,
was first introduced in the work of Klein et al. [10], along with another, reduced,
variant called the Semi Compressed Differencing Problem, in which only one of the
files is given in its compressed form. If none of the input files are compressed, we are
back to the original problem of differencing. Although the pure difference problem
requires to derive T based on S only, for compression needs the difference between
S and T includes also copies into T . In the presented algorithm it is done without
any overhead achieving these copies on the fly, while scanning E(T ).

A motivation for this problem is, first, reducing the number of I/O operations,
by transmitting a (shorter) delta file instead of the compressed target file when the
compressed source file is already shared by the transmitter and receiver. Another
application is detecting resemblance in a set of files when they are all given in their
compressed forms. Using techniques for solving the Compressed Differencing Prob-
lem, this can be done without decompression, since delta files that are smaller than
the underlying compressed files indicate resemblance between the original files.
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If both files, S and T , are compressed using static Huffman coding (or any other
static method), generating the delta file can be done by applying the same algorithms
directly on the compressed files. The size of the output delta file is at least as small
as the size of the delta encoding generated on the original files S and T , since the
corresponding compressed forms of common substrings of S and T are still common
substrings of the compressed versions. The reverse, however, is not necessarily true,
as the common substrings of the compressed forms can exceed codeword boundaries.
Consider for example a Huffman code in which {00, 01} are the codewords assigned
to a and b, respectively. Let S be bab and T be baa, then E(S) is 010001 and
E(T ) is 010000. The substring ba is the longest both S and T have in common,
and it is encoded by 0100. This encoded substring, however, can be extended in the
compressed form of the files to include also the following bit 0, since 01000 is still
common to both encoded strings.

The problem is harder when using adaptive compression methods such as Lempel-
Ziv techniques. The encoding of a substring depends also on its environment in the
file rather than on its characters only. Thus a recurring substring is not necessarily
encoded identically throughout the text. Our goal is to identify reoccurring sub-
strings in the compressed form so that we can replace them by pointers to previous
occurrences. In [10] we explored the compressed differencing problem on LZW com-
pressed files and showed that in order to achieve efficient delta compression, one may
need some partial decoding. In the present work, we deal with the Full Compressed
Differencing Problem, which is harder than the semi compressed variant, and con-
centrate on the case where the original files are compressed using LZSS [14]. Since
basic Delta encoding techniques use generally copy and add commands, there seems
to be a closer relation between Delta encoding and LZSS than with LZW.

Section 2 shows the difficulties of solving the problem in its general form. We
therefore restrict our attention to the special case of substitutions only. Section 3
presents a first attempt to solve the restricted problem, using partial decoding. In
Section 4 any usage of decoding is removed and algorithms for a single and an un-
known number of substitutions are suggested, based on the compressed files alone.
Experiments then show that the damage to the delta file is reasonable.

2. Difficulties in Solving the LZSS Compressed Delta Encoding

The LZSS compression algorithm represents a given file, T , as a sequence of copies
and single characters. The copies are described in the form of ordered pairs (off, len),
meaning that the substring starting at the position corresponding to the current
ordered pair can be copied from off characters before the current position in the
decompressed file, and the length of this substring (number of characters) is len.

The Delta file Δ(S, T ) can be formed using a similar format of individual char-
acters and copy items, but copies can now refer either to S or to T itself. This
can be implemented using a flag bit, for example, (1, off, len) could refer to copies of
substrings in S, while (0, off, len) would indicate that the copy is from T . The value
of off is taken relative to the current position in T , thus an additional difference is
that unlike the offset component in T that refers to characters appearing before the
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current position, the offset component in S can also refer to characters ahead; an
extra flag-bit may encode this choice.

The following notation is used:

E(S) = s1s2 · · · su and E(T ) = t1t2 · · · tv,
where each of the si and ti is either a codeword of the form (oi, �i) for a copy codeword,
or it is an individual character. For consistency, if si or ti is an individual character,
we define �i = 1. When necessary, the �i component will appear with a superscript
as �s

i or �t
i. Greedy LZSS compression is used, i.e., for each position in the file, the

longest possible match between the string starting at the current position and the
already scanned part of S or T is located.

bxcb aa

(10,3)(5,3)(4,2)

(6,3)(5,3)(4,3)xcb

c

d

a

d

a

E(T)

T

S

E(S)

xcba

cbxc

a

dxcba

cbxccb a

Figure 1: Example of similar compressed source and target files

The difficulty of detecting matches between two files S and T which are given
in their LZSS compressed form is illustrated in the example in Figure 1. Let the
source file be S = abcxabccxaabc and suppose the target file T = abcxdbccxdabc is
obtained by substituting a by d in positions 5 and 10, as indicated by the boxes in
the Figure. The LZSS compressed forms are E(S) = abcx(4,3)(5,3)(6,3) and E(T ) =
abcxd(4,2)(5,3)(10,3) and are shown above, resp. below, S and T . Recurring strings
are visualized by connected bars.

The first difference between E(S) and E(T ) occurs at the fifth codeword, where
s5 = (4, 3) and t5 = d are referring to the substrings abc and d, respectively. After
regaining synchronization, the following pair of codewords is (s6, t7), referring, respec-
tively, to the substrings cxa in S and cxd in T . However, the codewords are identical,
s6 = t7 = (5, 3), which shows that an identical codeword at corresponding locations
of S and T does not necessarily imply underlying identical substrings. Moreover,
different ordered pairs do not necessarily refer to different substrings, as can be seen
in the example with the following codewords, where the codewords s7 = (6, 3) and
t8 = (10, 3) both refer to the same substring abc. The expected output would be a
compact delta file, which for our example could be (1,0,4)d(1,0,4)d(1,0,3). Note that
in this example only substitutions occur, therefore all off parameters are 0, as they
are taken relative to the current position in T .
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These problems suggest that it may be difficult to solve the Compressed Delta
Encoding problem in its most general form, where any sequence of edit operations,
i.e., character insertions, deletions or substitutions, is allowed when passing from one
file to the other. We therefore restrict the problem to take care of a file T that was
generated from another file S using only a limited set of edit operations, and shall
deal in the sequel with substitutions only. The restriction to substitutions can
be justified in certain applications, for example when dealing with updates of web
pages, where only a small number of fixed length fields, such as the current date or
time, are changed. Another suitable application is successive versions of backups in
databases which are constraint to a rigid layout, so that only a small number of fixed
length changes are present. Restricting a problem to specific special cases has also
been done for pattern matching applications, such as variants dealing with a known
or unknown number of don’t cares, swaps or mismatches [11, 1, 4, 5]. In the next
section, we try, in a first attempt, to overcome the difficulties by using some degree
of partial decoding.

3. Compressed Delta Encoding with Partial Decoding

Assuming substitutions only, one can try and keep the pointers into the compressed
files in some synchronization. First we note that, as shown in the example above, the
off component in pointers to S will always be zero and can thus be omitted. Further,
one can control synchronization by keeping track of the lengths of the copied items
in both S and T and assuring that

∑
i �

s
i =

∑
j �t

j , by advancing the pointer (into S
or T ) that is lagging behind.

In order to detect all the differences between the two given files, we consider pairs
of corresponding codewords from E(S) and E(T ). Once the first difference is located
at position p, each ordered pair (o, �) is examined to see whether it refers to a string
including position p. If c is the current location in T , then we must check whether
c− o ≤ p < c− o + �. We shall refer to this operation as an intersection between the
ordered pair (o, �) and the list of changes, consisting, after the first difference, only
of {p}.

The general algorithm is given in Figure 2. It partially decodes selected parts of
the compressed inputs using the decoding procedure D, which is the inverse of the
encoding E. The differences between the decoded strings are recorded in a list called
Changes, and the remaining substrings of T are output to the delta file as copies of
the corresponding substrings of S. The pointers into S and T , denoted by Sp and Tp,
respectively, are then advanced. The algorithm uses a variable length to accumulate
the length of the matching string that is currently expanded. The function update,
given in Figure 3, compares two corresponding decoded substrings of S and T from
position start to position end, and updates the list Changes to include the positions
at which the substrings of S and T differ.

If the number of changes is n and the number of elements in the compressed file
E(T ) is v, then the total time spent on the intersections is O(v log n): the indices of
the substitutions are discovered in order, thus for each element tj , two binary searches
are sufficient to verify whether one of the indices falls into the corresponding range
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i ←− 1 j ←− 1 // E(S) and E(T ) indices
Sp ←− 1 Tp ←− 1
Changes ←− ∅
while not EOF E(T )
{

length ←− 0
if si = tj and tj ∩ Changes = ∅

length ←− length + �t
j

elseif D(si) �= D(tj) // partial decoding

update
(
Sp, Sp + min(|D(sj)|, |D(tj)|) − 1

)

Sp ←− Sp + �s
i Tp ←− Tp + �t

j

i + + j + +
while Sp �= Tp // search synchronization point
{

if Sp < Tp // advance in E(S)
update(Sp, Tp)
Sp ←− Sp + �s

i

i + +
else // Tp < Sp, advance in E(T )

update(Tp, Sp)
Tp ←− Tp + �t

j

j + +
}

}
Figure 2: Compressed Differencing algorithm with partial decoding

update(start, end)
{

for k ←− start to end
if S[k] �= T [k]

concatenate k to Changes
if length > 0

output (1, length) // copy from S
output T [k]
length ← 0

else
length ←− length + 1

}
Figure 3: Comparing corresponding decompressed substrings of S and T
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in T . In practice, however, the influence of a small number of substitutions will be
locally restricted, as can be seen in Figure 4, which shows the number of changes in
the LZSS file as a function of the number of substitutions in the original for several
test files.
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Figure 4: Substitutions as function of changes

For the experiment we considered different file types: text, spreadsheet and ex-
ecutable, choosing paper1 of the Calgary Corpus and Kennedy.xls and sum of the
Canterbury corpus. We then randomly applied substitutions on the file. A single
substitute was created by first choosing two positions in the file and overwriting
the character that appears at the first position with that appearing at the second
position. Note that in realistic applications, changes tend to be more clustered, so
assuming the substitutions are uniformly distributed only worsens the results. This
process was repeated for the desired number of changes. We then constructed the
two LZSS compressed forms of these files. The number of changes in the compressed
files was computed as follows: the two compressed versions were scanned in parallel
keeping them synchronized. That is, once a mismatch was detected, the number
of changes was increased and the pointers of the two files were moved to the same
position in the original files (matching ends of codewords), before continuing with
the count. We considered different numbers of changes, repeated each experiment
10 times and averaged the results. The graphs show almost straight lines, implying
that a small number of substitutions, which we assume when talking about similar
files for which delta encoding is suitable, cannot, generally, cause a large number of
changes.

The main problem in the partial decoding algorithm stems from the fact that
LZSS is a left to right decoding algorithm while decoding here proceeds from right to
left. That is, suppose we are decoding an ordered pair tj = (o, �) which corresponds
to positions c − o to c − o + � − 1 in the original file; in the compressed file, the
corresponding positions may again contain some (o, �) codewords, which must be
recursively decoded (right to left) as part of the decoding of tj . For example, consider
the LZSS encoding abcde(5,5)fg(4,3)(14,3)(7,3). To decode t10 = (14, 3), one has
to go backwards and sum up the number of individual characters and the length
components of the copy items. In this example t10 points directly to the substring
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bcd. In contrast, the range pointed to by t9 = (4, 3) covers both a part of t6 = (5, 5)
and t7 = f, so t6 has to be decoded recursively. Although decoding here proceeds
“on demand”, in a worst case scenario, the partial decoding algorithm may become
full decoding. Moreover, if no additional space is used, the same codeword might
be decoded more than once, as can be seen when decoding t11 = (7, 3), pointing to
t9 = (4, 3), which might have already been decoded. This can be solved by storing
each decoded substring in a buffer, thus saving redundant decoding operations and
recursive calls.

In the following section we propose an alternative algorithm which does not nec-
essarily produce an optimal delta file, and the size of the delta file can be larger than
the size of that produced by the partial decoding algorithm, but on the other hand,
it works without any decompression.

4. Compressed Delta Encoding without Decoding

4.1 Compressed Delta for a Single Substitutions

Given are two files S and T , where T differs from S only by a few substitutions, and
we here assume first a single substitution only. Our goal is to construct the Delta file
of T with respect to S. Let us assume that the first k − 1 codewords s1, s2 · · · sk−1

of E(S) are identical to the first k − 1 codewords t1t2 · · · tk−1 of E(T ), that sk �= tk,
and define � =

∑k−1
i=1 �i. Using the fact that both files were compressed by means of

the same LZSS compression algorithm, we conclude that the substitution occurs at
the kth codeword. If tk is a single character, then Δ(S, T ), the delta file of T with
respect to S, is (1, �)tk(1, |E(T )| − �− 1), meaning that the delta file consists of two
(possibly empty) copies of substrings of S, inserting the character tk between them.
In fact, even if tk is a copy item, we can use the same delta file. In this case tk refers
to a substring that occurred earlier in T itself. The fact that the first part of Δ(S, T ),
the pair (1, �), refers to a substring in S is not confusing, since on the corresponding
parts, the files S and T are matching. Notice that the construction of the delta file
is the same even if we allow self references in the LZSS compressed file. The formal
algorithm is given in Figure 5.

4.2 Compressed Delta Encoding for an unknown number of Substitutions

To generalize the algorithm above, we consider k substitutions (k ≥ 1) and refer
to one which is not the first. It can either be detected when two corresponding
codewords are different, or when a copy item tj in E(T ), though being equal to sj

in E(S), refers to a substring affected by one of the earlier substitution. Consider
then the case when different copies refer to identical substrings: this can be detected
only by decoding. The decoding operations can be avoided at the price of a larger
than necessary delta file. In fact, since the substrings are identical, the currently
constructed copy from S could be extended as in the case si = tj , but instead, we
keep the item tj and simply output this redundant copy to the delta file.

The other case when two identical ordered pairs refer to different substrings should
be detected for the correctness of the constructed delta file. This only happens when
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i ←− 1
length ←− 1
while not EOF E(T ) and si = ti

i + +
length ←− length + �i

if i > 1
output(1, length)

output (0, ti) // output the change preceded by a 0 bit
if i �= |E(T )|

output(1, |E(T )| − length − �i)

Figure 5: Compressed Differencing algorithm for a single substitution

i ←− 1 j ←− 1 // E(S) and E(T ) indices
Sp ←− 1 Tp ←− 1
Changes ←− ∅
while not EOF E(T )
{

length ←− 0
while si = tj and tj ∩ Changes = ∅
{

i + + j + +
Sp ←− Sp + �s

i Tp ←− Tp + �t
j

length ←− length + �t
j}

if length > 0
output (1, length)

output (0, tj) // output the change preceded with a 0 bit
concatenate tj to Changes
while Sp �= Tp // search synchronization point
{

if Sp > Tp // advance in E(S)
Sp ←− Sp + �s

i

i + +
else // Tp > Sp, advance in E(T )

Tp ←− Tp + �t
j

j + +
output (0, tj)}}

Figure 6: Compressed Differencing for an unknown number of substitutions
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Figure 7: Comparing file sizes

ordered pairs point to previous substitutions. Although such ordered pairs do not
necessarily refer to actual substitutions, we nevertheless append them to the list of
detected substitution candidates and output them as copies to the delta file, as can
be seen in the algorithm in Figure 6.

Using a buffer with the “Decompress then delta” method, might produce a bad
delta file, not only when the files are not aligned, but also when a big insert or delete,
with length of about the size of the buffer, is the difference between the input files.
In these cases, using a buffer might not identify any similarity. Therefore, producing
the delta file requires space for the decompressed files S and T . Moreover, a buffer
is only suitable for LZSS files with limited size offsets, e.g., the size of the buffer.
If such limitation holds, then in the restricted case of substitutions a buffer suffices.
However, if the compressed forms are given on a remote computer, transferring the
compressed files to the local computer is necessary (unless there is space available on
the remote computer), thus performing time consuming I/O operations. On the other
hand, the compressed delta encoding algorithm does not require any assumptions on
the offset sizes, and the operations can be done on the remote computer.

5. Experiments

Figure 7 presents the compression performance of the algorithm proposed in Figure 6.
We considered the same set of files as above, with various numbers of substitutions.
Beside the graphs for the Compressed Delta Algorithm (CDA), we included also
graphs for the file size obtained by Unix’ XDelta on the original S and T and for
LZSS(T ). The XDelta method computes the delta file of its two input files given in
their decompressed form requiring decompression in the case the input is compressed.
The following encoding was used for CDA: characters occupied a single byte plus a
flag bit; for copies from T , ordered pairs were encoded using a static format — 4 bits
for the length component and 12 bits for the offset component, based on the constants
of Nelson [12]; the length component in copies from S were encoded, depending on
their size, by 5, 8 or 15 bits, using, respectively, the flags 0, 10 and 11 to identify the
different cases. The figures are given in bytes.
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We see that consistently, CDA is preferable to XDelta for a very small number
of substitutions, but as this number increases, the file produced by CDA gets larger
than the corresponding XDelta one. This is not surprising as one should bear in
mind that CDA works on the compressed versions alone, and there is a price to pay
for this restriction. Both CDA and XDelta outperform by far LZSS applied on T ,
which does not take advantage of the similarity between T and S.
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