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Abstract

A practical adaptive compression algorithm based on LZSS is presented,

which is especially constructed to solve the compressed pattern matching prob-

lem, i.e., pattern matching directly in a compressed text without decompress-

ing.

1. Introduction

The general approach for looking for a pattern in a �le that is stored in its compressed

form, is �rst decompressing and then applying one of the known pattern matching

algorithms in the decoded �le. In many cases, however, in particular on the Internet,

�les are stored in their original form, for if they were compressed, the host computer

would have to provide memory space for each user in order to store the decoded �le.

This requirement is not reasonable, as many users can simultaneously quest the same

information reservoir which will demand an astronomical quantity of free memory.

Another possibility is transferring the compressed �les to the personal computer of

the user, and then decoding the �les. However, we then assume that the user knows

the exact location of the information he is looking for; if this is not the case, much

unneeded information will be transferred.

There is therefore a need to develop methods for directly searching within a

compressed �le. For a given text T and pattern P and complementary encoding and
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decoding functions E and D, our aim is to search for E(P ) in E(T ), rather than the

usual approach which searches for the pattern P in the decompressed text D(E(T )).

But this is not always straightforward, since an instance of E(P ) in the compressed

text is not necessarily the encoding of instance of P in the original text T . Consider

for example a static Hu�man code: if there are three characters x, y and z, such that

a proper pre�x of length k of E(x) is also a su�x of E(y), and the remaining su�x

of length jE(x)j� k of E(x) is a pre�x of E(z), then in the encoding of an occurrence

of the string yz one will detect an occurrence of E(x), which is a wrong match. For

arithmetic coding and for adaptive methods, the situation is even worse, as a given

string is not always encoded the same way.

This so-called compressed matching problem has been introduced by Amir and

Benson [1], and has recently gotten a lot of attention [2, 4, 8, 9, 10, 5, 7]. Some

of the suggested solutions are theoretical in nature, some are more practical. We

are following here the idea of Manber [7]: instead of trying to adapt some pattern

matching algorithm to a given compression scheme, we suggest a new compression

method, specially built to allow easy searching in the compressed �le, even at the

price of reduced compression e�ciency.

In the next section we show the di�culty of applying a compressed pattern match-

ing on a �le compressed by LZSS [11]. In Section 3 we then present our new algorithm

and bring some experimental results in Section 4.

2. Compressed pattern matching on LZSS compressed texts

In order to justify the need for our new method, we start by presenting a pattern

matching scheme for �les that were compressed by the LZSS algorithm, and then

show the di�culty in it. We concentrate here on LZSS, because it is one of the most

popular variants of LZ77, and many other schemes build on it, e.g., LZRW1 [13].

LZSS compressed �les are also widespread, especially since it was also the basis of

Microsoft's DoubleSpace procedure [12].

In LZSS, a text is encoded as a sequence of elements which are either single

characters, or pointers to previously occurring strings, encoded as ordered pairs of

numbers denoted (o� , len), where o� is the number of characters from the current

location to the previous occurrence of a substring matching the one that starts at

the current location, and len is the length of the matching string.

For example, if T = acdeabceabcdeaeab, then E(T ) = acdeabc(4,4)(9,3)(7,3).

If we now look for the pattern P = bcdeaea, we see that P 's characters appear in T

in a di�erent order than in P . The pre�x bc of P appears in position 6 of E(T ), the

sub-pattern dea of P in position 3 and the su�x ea of P in position 4. Therefore, a
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compressed pattern matching algorithm has to save pointers to addresses that might

be referred to later in the text, but we obviously do not want to keep references to

all the scanned sub-string. The following procedure, the details of which will appear

elsewhere, may, at �rst sight, solve the problem.

We keep a table which records, for each character x of the pattern P , the address

in T of the last occurrence, as well as that of the last longest occurrence, of the

sub-pattern of P starting with x. For the up to 2jP j � 1 pre�xes and su�xes of P ,

we keep pointers to all of their previous occurrences. Referring to the above example,

suppose x is the character c in position 2 of P , and that our current position in E(T )

is just after the pair (4,4), i.e., the part of T known to us so far consists of the eleven

�rst characters acdeabceabc; then the last occurrence we are looking for is the single

character c in position 11 of T , whereas the last longest occurrence is the string cd

in position 2. These tables are updated constantly as we process the encoded string

E(T ), and after each step we check whether P has been detected.

Unfortunately, this algorithm does not always �nd all the occurrences of P as

wanted. For example, if T = cabeabecabdfabd, then E(T ) = cabe(3,3)(7,3)df

(4,3). Let us assume that the pattern P is fabd. The problem is that when recording

the occurrences of the sub-pattern starting with a at position 2 of P , the reference

to ab in position 2 of T will be erased by its re-occurrence in position 5 which is

found by means of the pair (3,3); but the pair (7,3) refers to the string starting in

position 1 of T and including ab, thus we cannot compute the occurrence of ab in

position 9, nor that in position 13 using the pair (4,3), so we miss the occurrence

of P in address 12. Note that both of the pre�x and su�x lists do not contain the

needed information.

Instead of trying to rectify the situation, we suggest in the next section a so-

lution tackling the problem from another angle: rather than sticking to one of the

known compression techniques, we devise a new one, specially adapted to our pattern

matching problem.

3. A new compression algorithm

For a given text T , let n be the length of the compressed text E(T ). The compressed

matching algorithm which searches for a pattern P of length m runs in time O(m �n)

in the worst case, and requires O(Maxo�set)+O(m)+O(j�j) memory storage, where

� is the alphabet of T , and Maxo�set is a constant which limits the o�set size in the

compressed �le. Note that it does not require space for the decompressed text, as the

searching process is done on the compressed text itself, which is the great advantage

of our algorithm.
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3.1 Design of the method

As has been illustrated in the previous section, the problem, when searching directly

in an LZSS compressed text, is that when a character string is processed, we have no

knowledge of whether it will be referenced later by means of a back-pointer of the form

(o�, len). This leads to the idea of changing the position of these pointers, so as to

store them close to the strings they replace. Thus contrarily to the LZSS algorithm,

where pointers point backwards into the text that has already been processed, the

new algorithm uses its pointers to point forward , to the text that will be encoded

later.

The compressed text is represented by a sequence of items, each of which being

either a single character, or a pointer to a string that appears later, encoded as a pair

(o�, len) like in LZSS. Only now o� is the number of characters from the current

location to the following occurrence of the longest substring matching the one that

starts at the current location, and len is the length of the matching string.

In a �rst attempt, it seems as if this idea can be implemented by simply swapping

the pointer with the string it replaces. For example, if the text is dabcdeabcb, LZSS

would compress it as dabcde(5,3)b and the new algorithm as d(5,3)abcdeb, where

the pair (5,3) means that the following 3 characters occur again 5 characters after the

current position. But such an implementation would not be convenient: since our

aim is building a compression algorithm adjusted to the pattern matching problem,

we want to know immediately what characters are referred to when an (o�, len)

pair is met. We therefore move the pair to immediately after the characters it refers

to, adjusting the value of o� to o� � len. This gives, for the above example,

dabc(2,3)deb, where the pair (2,3) now means that the last 3 characters occur

again 2 characters later.

Moreover, we cannot use the LZSS compressed �le and simply move each pointer

backwards adjusting the o�sets, because of overlapping strings. Consider the fol-

lowing example: let T be abcdeabcddea, which would be compressed by LZSS as

abcde(5,4)(6,3). Using the idea above, the �rst few items created by the new

algorithm would be abcd(1,4)e. When we reach the string dea in T , we would like

to store the pair (3,3) just after the second a which appears in position 6 of T , and

point to the last three characters dea. But that a is part of the string abcd which

occurred earlier in the text and therefore was encoded by means of the pair (1,4). It

is thus not clear, where the pair (3,3) should be stored.

One possibility to correct this, is by avoiding overlapping references. Some (o�,

len) pairs will be omitted altogether, others can be rede�ned by pointing to strings

which are not necessarily the longest possible. For the last example, this could yield

a compressed string of the form abcd(2,3)ea(3,3). But the loss in compression
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e�ciency could be signi�cant.

As alternative, we suggest replacing, when necessary, the pair (o�, len) by a triple

(o�, len, slide), where slide is the number of characters by which the original (o�,

len) pair should be shifted forwards. Returning to the last example, we would get

abcd(1,4)e(3,3,1). The triple (3,3,1) means that the original pair (3,3) should

have been placed after the character which follows the character e in the recon-

structed text T . Therefore, the triple refers to the last 3 characters, counted from

the shifted position, i.e., to the characters dea; these should be copied 3 characters

later, which are also counted from the current shifted position. The deterioration of

the compression ratio will in this case be due only to the encoding overhead incurred

by the triples, not because of the omission of copy items.

Note, however, that the de�nition of the triples does not extend to self-references,

which should thus be avoided, but removing a self-reference can be done at a penalty

which is only logarithmic in its size. For example, if T is a string of 16 a's, it could be

encoded by LZSS as a(1,15); when self-reference is prohibited, it could be encoded

by LZSS as aa(2,2)(4,4)(8,8), and in our case as aa(0,2)(0,4)(0,8),

Encoding is done as for LZSS, but using a temporary bu�er so as to enable the

encoder to insert pairs or triples at earlier positions. For decoding, each individual

character in the encoded �le is transmitted immediately; when a pair (o�, len) is

encountered, the last len characters are temporarily copied into a bu�er, o� charac-

ters ahead from the current position; in case of a triple (o�, len, slide), the current

position moves temporarily slide characters forward, and proceeds then as for the

pair. We shall assume that some bounds Maxo�set and Maxlength exist for the per-

missible o� and len values, which is true for most practical implementations of LZ

algorithms. This allows us to use a circular bu�er of size Maxo�set + Maxlength.

3.2 The compressed matching algorithm

The new compression algorithm ensures that whenever we meet a pointer item, we

immediately know if we must remember the characters of the string it refers to. If

there is at least one sub-pattern of P among the last len characters, the pattern

may occur in the later location. This obligates us to remember the characters of

the relevant sub-pattern and their locations. In practice we use a circular bu�er,

named buf , of size Maxo�set, which functions as a storage bu�er for the relevant

subpatterns.

The main loop processes sequentially the items of the compressed �le and scans in

parallel also the bu�er, using a pointer current to the current location. The input is

assumed to be a compressed �le E(T ) = E1E2 � � �, where each Ek is either an individual

character, or a pair or a triple.
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A procedure named copy relevant char() is used when we meet a pointer item

in order to copy only the relevant characters, i.e., characters of P , to their correct

position o�set characters ahead into the bu�er. For simplicity, we refer to pairs as

triples with slide = 0, so that the procedure deals only with triples; it copies charac-

ters of P within the last len characters preceding position current + slide to position

current + slide + o� . Even though characters that are not in P are not relevant, we

must know their location for the correct calculation of the o�set component. In order

to do this in a useful way, the procedure links the locations of successive relevant

characters, which allows us to skip over the non relevant ones. These links are kept

in vector next. By default, if next(current) is empty, no shortcut is available, and

current can be increased only by 1.

We use a procedure named �nd pat(x) for checking whether the pattern P occurs

in the text starting at position x. Since this information is needed during a left to

right scan of the text, the KMP pattern matching algorithm [6] seems appropriate.

To reduce the number of unneeded checkings, the variable relevant indicates the

index in T of the last character which was a character of the pattern P .

Figure 1 presents the formal pattern matching algorithm. In the main loop, the

item Ek is �rst checked whether it is a triple or pair; in this case, if relevant characters

are referenced, they have to be copied ahead into the bu�er. In the next step (2.2),

characters which have been previously copied into the current position are processed.

Step 2.3 skips over positions in the bu�er that are known not to contain relevant

characters. At step 2.4, Ek is known to be an individual character, which is processed

only if it appears in P .

Figure 2 shows the bu�er which is constructed while running the Compressed

Matching Algorithm on the text T = xbcyxbcabcdeabcdddea, when the pattern

is P = ddea. The compressed text is xbc(1,3)yabcd(1,4)e(3,3,1). Note how

the empty positions allow to skip forward without processing every character of the

decompressed �le.

4. Experimental results

For our experiments, we have chosen four �les of di�erent nature from the Calgary

corpus, to which we have added the �le dna, representing the tobacco chloroplast

genome.

Table 1 gives the compression results. The second column gives the size (in bytes)

of the uncompressed �les. For the following columns, the �gures are in percent, giving

the savings for each case, i.e., 100 (1 � size of compressed �le=size of original �le).

First are the compression results for LZSS, then for the new algorithm suggested
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1 relevant  � 0 current  � 1 k  � 1

2 while next symbol Ek of E(T ) is not EOF

or buf(current) not empty // check buf after �nishing with E(T )

f

2.1 while Ek is a triple (o�, len, slide)

f // possibly several pointers at same position

2.1.1 if relevant � current � len

2.1.1.1 copy relevant char()

2.1.2 else

2.1.2.1 next(current + o� ) � current + o� + len

2.1.3 k  � k + 1
g

2.2 if buf (current) is not empty

f
2.2.1 �nd pat(current)

2.2.2 relevant  � current
g

2.3 if next(current) is not empty

2.3.1 current  � next(current)

2.4 if Ek is a character of P

f
2.4.1 buf (current)  � Ek
2.4.2 �nd pat(current)

2.4.3 next(relevant)  � current

2.4.4 relevant  � current
g

2.5 current  � current + 1
g

Figure 1: The compressed matching algorithm

current 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

buf a d e a d d e a

next 8 16

Figure 2: Example of bu�er during compressed matching
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here, �nally for Manber's method [7], which is based on the substitution of common

pairs of characters by special symbols that are still encoded in a single byte. As this

method requires the basic alphabet to consist of up to 127 characters, it could not

be applied to �le obj1.

File size LZSS new Manber

obj1 21645 45.6 41.8 {

progc 38368 57.5 47.9 20.8

paper1.txt 52860 55.1 43.7 24.3

book1 768769 45.4 30.2 26.7

dna 155847 64.3 45.6 24.5

Table 1: Comparitive chart of compression performance

For LZSS and the new algorithm, the characters were encoded by 9 bits. For

pairs and triples, we used variable length encodings based on the ideas of [3], which

take advantage of the fact that the smaller values of o�set , length and slide appear

more frequently. As can be seen, there is a certain loss in compression e�ciency

when using the new algorithm instead of LZSS, which is mainly due to the encoding

of the triples. Nevertheless, the new method performs much better than that of [7].

To empirically compare the processing times, the patterns were chosen in the

following way. For each �le, we considered sub-strings of lengths 5 to 25, selected

their starting positions randomly within the �le and repeated this process 5 times.

We thus considered 105 patterns of di�erent lengths, each of which occurring at least

once, looked for all their occurrences, and averaged the search times. The results, in

seconds, are given in Table 2.

The processing time is typically reduced by about a third, since parts of the

decompressed �le are not scanned. The savings are more important for the shorter

patterns.

5. Conclusion and future work

The new compression algorithm is not meant to compete with others on the grounds

of compression ratio or processing speed. It is an adaptation of standard LZ methods,

but because of the forward pointers, both encoding and decoding are more involved

and therefore much slower. We should however remember that for the application at
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File LZSS new

obj1 0.44 0.28

progc 0.91 0.65

paper1 1.48 1.02

book1 40.89 25.70

dna 4.83 3.88

Table 2: Empirical comparison of processing time

hand here, compression is done only once, usually o�-line, and if indeed we can search

within the compressed text, decompression may never be necessary. The compression

performance of the new method is also inferior to those of comparable LZ methods,

but it is still superior to that of simple methods like Hu�man coding, and even a

method specially built for the compressed matching. The main motivation was to

facilitate the direct search in the compressed �le, which is done faster with the new

method.

We are now working on re�ning the matching algorithm. In the description above,

we have to deal with every occurrence in E(T ) of every character on P . If P is very

long, or if most of the characters or the most frequent ones are in P , we might be

forced to process almost every character on the input. It therefore seems useful to

record only the appearances of sub-patterns of P of length 2 or more. For instance,

if the pattern is P = adcba and the compressed text includes : : :abcd(3,3): : :, then

the sub-string bcd referred to by the pair (3,3) seems not relevant, despite the fact

that all its characters appear in P , but it is not a sub-string of P , nor is a su�x of

bcd matching a pre�x of P , or a pre�x of bcd matching a su�x of P . Nevertheless,

one can build examples for which such a strategy may miss certain occurrences of

P . Empirical tests have shown that this occurs rarely. We are thus working both of

extending the exact matching technique to include tests for longer sub-patterns, and

on turning the algorithm to a heuristic, which may occasionally miss a match, but

works generally much faster.
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