Similarity Based Deduplication
with Small Data Chunks*

L. Aronovich?®, R. Asher?, D. HarnikP, M. Hirsch?, S.T. Klein®, Y. Toaff”

*IBM, Toronto, Canada
aronovic@ca.ibm.com

YIBM - Diligent, Tel Aviv, Israel
{ronasher,dannyh,hirschm,yairtoaff}@il.ibm.com

“Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
tomi@cs.biu.ac.il

Abstract

Large backup and restore systems may have a petabyte or more data in their
repository. Such systems are often compressed by means of deduplication
techniques, that partition the input text into chunks and store recurring
chunks only once. One of the approaches is to use hashing methods to
store fingerprints for each data chunk, detecting identical chunks with very
low probability for collisions. As alternative, it has been suggested to use
similarity instead of identity based searches, which allows the definition of
much larger chunks. This implies that the data structure needed to store
the fingerprints is much smaller, so that such a system may be more scalable
than systems built on the first approach.

This paper deals with an extension of the second approach to systems
in which it is still preferred to use small chunks. We describe the design
choices made during the development of what we call an approximate hash
function, serving as the basic tool of the new suggested deduplication system
and report on extensive tests performed on an variety of large input files.

Keywords: Deduplication, similarity, small data chunks, approximate
hashing

*This is an extended version of a paper that has been presented at the Prague Stringol-
ogy Conference (PSC’12) in 2012, and appeared in its Proceedings, 3-17.

Preprint submitted to Discrete Applied Mathematics September 29, 2014

1. Introduction and Motivation

Huge amounts of data have to be processed daily and the current trend
suggests that these amounts will continue being ever-increasing in the fore-
seeable future. An efficient way to alleviate the problem is by using dedu-
plication: large parts of the available data is copied again and again and
forwarded without any change; the idea underlying a deduplication system
is to locate repeated data and store only its first occurrence. Subsequent
copies are replaced by pointers to the stored occurrence, which significantly
reduces the storage requirements if the data is indeed repetitive [3].

Several approaches have been proposed to solve the problem, each con-
centrating on another aspect of the input characteristics. One of the ap-
proaches, based on hashing, can be schematically described as follows [15,
17, 13, 20].

Hash Table
Repository Chunks
380 415 470 510

2484 Ci

2485

2486

470 | 2487 <-\\\\\\\\\\—
2488
2489 h(C;) = 2487

FIGURE 1: Schematical view of a hash based deduplication system.

The available data is partitioned into parts called chunks C;. These
chunks can be of fixed or variable size, and the (average) size of a chunk
can be small, say 4-8KB, up to quite large, say, about 16MB. A crypto-
graphically strong hash function h is applied to these chunks, meaning that
if h(C;) = h(C}), it can be assumed, with very low error probability, that
the chunks C; and C; are identical. The set S of different hash values, along
with pointers to the corresponding chunks, is kept in a data structure D
allowing fast access and easy update, typically a hash table or a B-tree. For
each new chunk to be treated, its hash value is searched for in D, and if
it appears there, one may assume that the given chunk is a duplicate. It
is thus not stored again, rather, it is replaced by a pointer to its earlier

occurrence. If the hash value is not in D, the given chunk is considered new,
so it is stored and its hash value is adjoined to the set S. Figure 1 shows
the starting addresses of some consecutive chunks C;. The hash value of the
chunk starting at ad = 470 is h = 2487, so the address ad is stored at entry
h in the table.

The suggested methods mainly differ in the way they define the chunk
boundaries, and in the suggested size of the chunks. The chunk size may
indeed have a major impact on the performance: if it is too small, the num-
ber of different chunks may be so large as to jeopardize the whole approach,
because the data structure D might not fit into RAM, so the system might
not be scalable. On the other hand, if the chunk size is chosen too large, the
probability of getting identical chunks decreases: many instances of chunks
might exist, that could have been deduplicated had the chunk size been
chosen smaller, but which, for the larger chunk size, have to be kept.

A possible solution to this chunk size dilemma has been suggested in [1]
and is implemented in the IBM ProtecTIER Product [9]. The main idea
there is to look for similar rather than identical chunks. If such a similar
chunk is located, only the difference is recorded, which is generally much
smaller than a full chunk. This allows the use of much larger chunks than
in identity based systems. The idea of similarity has also been exploited in
(2, 18].

For many applications, such as data backups and archiving, data is more
fine-grained, and much better deduplication can be performed if one can
use significantly smaller chunks. A simple generalization of the ProtecTIER
system in which the chunk size would be reduced from 16MB to 8K, that
is, by a factor of 2000, without changing anything else in the design, would
imply a 2000 fold increase of the size of the index, from 4GB to about 8TB.
This cannot be assumed to fit into RAM in the near future. Moreover,
keeping the definition of the notion of similarity and reducing the size of the
chunks will lead to an increased number of collisions, which may invalidate
the approach altogether.

Xia at al. [19] suggest to combine deduplication with delta encoding
of similar chunks, assuming that chunks that are adjacent to deduplicated
ones tend to be similar. The idea of the current work is to implement the
required similarity by what we call an approzimate hash scheme. This is
an extension of the notion of locality-sensitive hashing introduced in [10].
The basic idea is that such an approximate hash function is not sensitive to
“small” changes within the chunk, and yet behaves like other hash functions
as far as the close to uniform distribution of its values is concerned. As a
consequence, one can handle the set of approximate hash values as is usually

done in hash applications (using a hash table, or storing the values in a B-
Tree), but detect also similar, and not only identical chunks. If a given
chunk undergoes a more extended, but still minor, update, its new hash
value might be close to the original one, which suggests that in the case of
a miss, the values stored in the vicinity of the given element in the hash
table should be checked. Such vicinity searches are useless in a regular hash
approach.

An approximate hash could be defined by a property that reminds the
definition of a continuous function: let A and B be data chunks of fixed size,
and let d(z,y) be some distance function to be defined on the set of chunks;
a hash function ah will be called an e-approximate hash if

36 >0 d(A,B) <d — |ah(A) — ah(B)| < e.

Note the difference with the common continuity definition, in which we
would have Vedd, implying that we can get function values as close as wanted
(e can tend to 0) if we start from close enough arguments. In our case, it
would be exaggerated to impose such a property, and we can relax it to find
two bounds § and e such that if the distance between chunks is bounded
by the first, then the distance between the hash values of these chunks is
bounded by the second, for reasonably chosen small values of .

Actually, even this definition could be too restrictive, and we should
allow a small number of exceptions for certain extreme chunks. This leads
to a probabilistic version of the above definition: a hash function ah will be
called an g-approximate hash with probability p if

30 >0 d(A,B) <0 — Pr(lah(A) —ah(B)| >¢) <1—p,

where the probability is taken over a uniform selection of the possible chunks
A and B.

There are several possibilities to define the distance function d. A simple
solution would be the Hamming distance, defined either on bits (number of
1 bits in A XOR B) or on characters (number of differing characters), but
this requires the chunks to be of the same length. A more significant, yet
more involved, function could be the edit distance: the minimal number of
single character insert, delete and substitute operations needed to transform
A into B.

The challenge is now to find such a function ah, giving a tradeoff between
how well it can be adapted to reflect the approximate nature described
above, and how long it takes to evaluate it. We should still bear in mind

that one of the most basic requirements of a hash function is that it should
not require too much CPU time.

The general algorithm for storing the repository will then be as follows.
The number k of bits in the signature will be chosen in advance, and a hash
table H with 2% entries will be used as basic data structure. During the
building process, each chunk C' will be assigned its approximate hash value
ah(C), and the index, or address, of the chunk will be stored at H[ah(C)],
the entry in H indexed by the hash value of the chunk. If the location in the
table is not free, it is overwritten. This may happen in case the new chunk
is identical or very similar to a previously encountered chunk, in which case
we prefer to store the address of the more recent chunk for potential later
reference; but a collision may also be the result of two completely different
chunks hashing to the same value, and then the pointer to the older chunk
that has been overwritten will be lost.

In the next section, we describe the details leading to the design of the
approximate hash function, and then report on extensive tests in Section 3,
showing a noticeable improvement of the suggested method over identity
based deduplication with small data chunks.

2. An approximate hashing function

Once it has been decided to base the system on approximate hashes
according to the ideas stated above, the problem reduces to devising an
appropriate function. This is the main thrust of the present suggestion.

Classical hashing functions have been studied for decades and many good
solutions are known [7]. The major challenge in the design of an approzi-
mate hash function is finding the right balance between the following three
competing criteria:

e Uniformity: the function should yield a distribution of values as close
as possible to uniform, so as to minimize the number of collisions (false
matches);

e Simplicity: the function should be easy and fast to calculate;

e Sensitivity: small changes in the chunk should not, or only slightly,
affect the corresponding approximate hash value.

The first two are properties that are common to all hashing functions,
the third one, sensitivity, is proper to the approximate version suggested

herein. For standard hashing schemes, just the contrary is required: even
very small changes in the chunk should lead to extensive changes in the
hash value, otherwise the uniformity would be hurt. Some works dealing
with similarity rather than identity can be found in [5, 6, 14]. Our approach
is different and will be described below.

The value produced by a hash function is, in a certain sense, a summa-
rization of the information contained in the data on which the function has
been applied. This is reminiscent of similar functions, like the Fourier Trans-
form with its many applications, or the Discrete Cosine Transform, used in
JPEG image compression. Such transforms allow to recode the information
of the given data into a different form, which may be more useful for certain
applications, for example, being more compressible. Similarly, we would like
to recode compactly much of the information contained within a given data
chunk under the constraint that this recoding should be immune to small
fluctuations.

This lead to the decision of using the distribution of the various char-
acters that appear in the data as the basis for the suggested approximate
hash. The data will be partitioned into relatively small chunks C' of fixed or
variable length, with (average) size of about 8-16 K. Each such chunk will
be analyzed as to the distribution of the bytes forming it and their frequen-
cies. We define the sequence of different bytes, ordered by their frequency
of occurrence in the chunk, as the c-spectrum of C, and the corresponding
sequence of frequencies as the f-spectrum of C. In addition, we consider also
the sequence of different byte pairs, ordered by their frequency of occurrence
in the chunk, and call it the p-spectrum of C. The suggested approximate
hash function ah(C) will be a combination of certain elements of these spec-
tra. The reasoning behind the decision of relying on these distributions is
that on the one hand, they usually behave like fingerprints, and it will be
rare that essentially different chunks will exhibit the same distributions, but
on the other hand, small perturbations in the data will often have no, or
just a minor, impact on the corresponding spectra. This is the goal we wish
to achieve in designing an approximate hash.

The size of the hash values will be fixed in advance, so as to exploit the
space of the allocated hash table. For example, one could decide that the
table will have about 4 billion entries, which corresponds to a hash value of
32 bits. A much larger hash value using k > 32 bits could be prohibitive,
since the corresponding hash table would then have 2% entries. On the other
hand, a small value of k limits the number of elements of the spectra that
can be chosen to be a part of the definition of the signature. To overcome

31 24 16 8 0
L]

FIGURE 2: Schematic representation of the building blocks of a signature.

this limitation, the chosen elements of the spectra, and more precisely, only
a part of their bits, will be arranged appropriately by shifting them to the
desired positions, and all these bit strings will be XORed. By using different
indents for the different elements, the final value will not only depend on
each of the building blocks, but also on their internal order. Figure 2 is a
schematic representation of a possible layout of these elements. The columns
correspond to the 32 bit positions, and each rectangle stands for one of the
elements, with the upper elements corresponding to the c-spectrum, the
lowest elements corresponding to the f-spectrum, and the element in the
middle corresponding to the p-spectrum, as detailed below. As can be seen,
each bit position of the final signature is influenced by several elements.
We do not claim that the suggested layout is the best possible, not even
for the sample data on which it has been tested. Rather, it is brought as
an illustration of the ideas leading to its design. The specific values of the
various parameters (lengths and shifts) shown in this example have been set
empirically by iterating experiments to locally optimize the performance.

2.1. Using elements of the c-spectrum

Let aq,as9,...,a, be the sequence of different bytes in the chunk, or,
more precisely, the numerical value of these bytes, ordered by non-increasing
frequency in the chunk. Ties are broken by sorting bytes with identical

frequency by their numerical value. Let f1, fo,..., fi, be, respectively, the
corresponding frequencies. The number n of different bytes in the chunk
can vary between 1 (for chunks of identical bytes, like all zeroes or blanks)
and |C], the size of the chunk. As this size is mostly much larger than the
maximum numerical value of a byte, one may assume that 1 < n < 256.

A first attempt would be to consider each byte on its own as one of the
building blocks of Figure 1, but this might result in a function that is too
sensitive to noise. It will often happen that frequencies of certain bytes may
be equal or very close. In such a case, a small perturbation might change the
order of the bytes and yield a completely different hash value, contrarily to
our goal of the approximate hash function being immune to small changes.
To circumvent this problem, the a; will be partitioned into blocks, gathering
several bytes together and treating them symmetrically. The representation
of all the elements in a block will be aligned with the same offset and will
be XORed together, so that the internal order within the blocks may be
arbitrary, since the XOR, operation is commutative.

The sizes of the blocks should not be fixed in advance, but depend on the
values themselves. Consider the sizes d; of the gaps between the frequencies,
di = fi — fix1, for ¢ = 1,...,n — 1. The boundaries between the blocks
should be chosen according to the largest gaps, however, sorting according
to d; alone would strongly bias the definition of the gaps towards inducing
blocks with single elements, since the largest gaps will tend to occur between
the largest values. We should therefore normalize the size of the gaps by
dividing by an appropriate weight. We chose harmonic weights % for i >1
according to Zipf’s law [21]. The gaps are therefore sorted with respect to

d; . .
T =ixdi =1x (fi = fir1),
7

which has the advantage of requiring only integer arithmetic.

For a given parameter ¢, the ¢ — 1 gaps with largest weights are chosen
and the ¢ sets of consecutive elements delimited by the beginning of the
sequence, these £ — 1 gaps, and the end of the sequence, are defined as the
blocks. Figure 3 is a schematic representation of an example partition into
blocks with ¢ = 8. The squares represent elements a;, the arrows stand
for weighted gaps i (f; — fi+1), and the numbers under the arrows are the
indices of the weighted gaps in non-increasing order. In this example, the
induced blocks would consist of 3, 1, 3, 2, 4,... bytes, respectively.

The number of elements forming the last block is limited, if necessary,
to include at most a predetermined number of bytes, say 10, otherwise the

000 0 000 OO Ooood O Oood OO0 ooo
- > - A > > >
4 2 5 6 7 01 3

FIGURE 3: Schematic representation of the gaps.

speed of calculation could be hurt, and spurious bytes that appear possibly
only once or twice in the chunk would have too strong of an influence. For
the same reason, there are also lower bounds on the number of occurrences
of a byte to be considered at all (for example, 15) and on the size d; of a
gap (for example, 5). If after these adjustments, the number of blocks in a
given chunk is smaller than the selected value of ¢, a different layout will be
chosen that is adapted to the given number of blocks. In any case, one has
to prepare layouts also for the possibility of having any number of blocks
between 1 and /¢, since certain extreme chunks may contain only a small
number of different bytes.

Each block taken from the c-spectrum will be represented by a string of
8 bits, using the full representation of the corresponding bytes. The strings
are depicted in Figure 1 as white rectangles. Each of these rectangles is
shifted as indicated in Figure 2, where they are listed in order top down.
That is, the first rectangle is shifted by 24 bits to the left (in fact, to get it
left justified in the 32-bit layout), the next rectangle is shifted 21 bits, then
18, 15, 12, 9, 6 and 3 bits.

2.2. Using elements of the f-spectrum

The elements of the f-spectrum are incorporated into the signature in-
dependently from the partition into blocks of the corresponding bytes. For
each frequency value, which can be an integer between 1 and |C|, consider
first its standard binary representation (say, in 16 bits), and extend this
string by m additional zeros to the right, for some predetermined small in-
teger m. Thus for m = 8, we assign to each frequency f; a 24-bit string
F;, for example, if f; = 5, then F; = 00000000 00000101 00000000. We
further define D; as the substring of F; of length m bits, starting at the po-
sition immediately following the most significant 1-bit, for our case 00000000
00000101 00000000, the bits forming D; for m = 3 appear bold faced. To
give another example with a value of more than 8 bits, consider f; = 759;
00000010 11110111 00000000 then displays both F; and D;. In the example
of Figure 2, the elements included in the layout are the D;, and the size m
of all the elements is chosen as 3 bits. The offsets of these elements are as
indicated, this time bottom up, with the largest frequency being depicted as
the lowest element in the figure: 0,0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6 and 6.

The idea behind this choice of bits is to select those with highest variability
S0 as to get a broad spread of values, but to ignore, for the larger frequencies,
the lowest bits, which are those most influenced by small fluctuations.

2.3. Using elements of the p-spectrum

Though much of the information of a chunk is already contained in the
¢- and f-spectrum, we decided to adjoin also elements of the p-spectrum and
got empirical evidence that this improved the performance. Further justi-
fications for this decision is given below in Section 4. When the maximal
number £ of blocks could be used, a single element based on the p-spectrum
was sufficient. The corresponding rectangle, depicted in the center of Fig-
ure 1, is of length 12 bits and will be placed left-justified in the layout. It
is defined as follows: order the pairs by non-increasing frequencies and con-
sider those indexed 5, 6, 7, 8 and 9 in this ordering. The reason for not
choosing the most frequent pairs as we did for the individual bytes is that
their distribution is much more biased, with the pairs (0,0) and (255,255)
appearing as the most frequent in an overwhelming majority of the cases we
tested. On the other side, there was already a great variability in the pairs
in positions 5 to 9.

For each of the 5 pairs, the following bitstring is constructed. Given the
2 bytes A =a7---ag and B = by --- by, we rotate A cyclically to the left by
3 bits, and B cyclically to the right by 3 bits. The bytes are aligned so that
the rightmost 4 bits of A overlap with the leftmost 4 bits of B, and then the
strings are XORed. Formally, the 12 resulting bits are now

a4,a3,a2,a1,a0 © bz, a7 ® b1, ae @ by, as @ by,bg,bs,b4,b3,

where the @ operator stands for bitwise XOR. Note that the most and least
significant bits of both A and B are in the overlapping part, so if their
distribution is biased, they have an additional chance to correct the bias
by the additional XOR. This is important for special cases, for example,
when the chunk only contains printable text. The representation of all the
bytes would then start with the same one to three bits, which could have a
negative effect on the uniformity we seek.

2.4. Putting it all together

Finally, all the elements of the layout are XORed, yielding a 32 bit string,
representing a number between 0 and 232 — 1 that will act as the hash value
of the given chunk C.

10

The time complexity of the whole construction process is essentially lin-
ear in the size of the chunk. Most of the work is in fact the collection of the
statistics; since only a constant number of highest ranked characters, fre-
quencies or pairs is required, there is no need to fully sort the lists and the
elements can be obtained by using heaps. The space complexity is constant,
as it depends only on the alphabet and the number of elements used for the
chosen layout, and not on the sizes of the processed chunks.

The geometry of the layout of the signature has been chosen on purpose
as given in Figure 2, with the most frequent bytes being placed left-justified,
thereby influencing the most significant (highest) bits, and the lowest ele-
ments of the f-spectrum appearing in the area influencing the least significant
(lowest) bits. The intention was that in case of small fluctuations in the fre-
quencies, the order of the most frequent characters might remain the same,
so only some low order bits would change, yielding just a small difference
in the signature values. Minor changes affecting even lower frequencies may
go undetected, either because the corresponding frequencies are not among
those chosen, or because the change is in the lower order bits that are not
recorded in the signature.

3. Experimental Results

We performed a series of tests to assess the usefulness of the approach.
A first concern was to verify that the proposed approximate hash indeed
spreads its values evenly. Once this has been confirmed, we have to check
that this uniformity does not come at the price of sensitivity, as it would for
a standard hashing scheme. We thus checked the impact of the signature
scheme in some artificial perturbation and clustering tests, described below.
Finally, we bring examples of applying the whole deduplication process in
comparison with an identity based approach.

As testbed, a subset of an Exchange database (EXC) of about 27GB has
been chosen, as well as the entire operating system of one of our computers
(0S), a file of about 5GB. The first set of tests was done with chunks of fixed
length 8K. These tests were then repeated for variable length sized chunks,
the boundary of a chunk being defined by applying a simple Rabin-Karp
rolling hash on the d rightmost bytes of the chunk under consideration. If
this hash value equals some predefined constant ¢, the chunk is truncated
after these d bytes; otherwise, the following byte is adjoined and the test
with the rolling hash is repeated. In the test, d = 25, ¢ = 2718 and the hash
function is RK (z) = mod P, where P = 2% — 257 is a prime number. To
avoid extreme values for the chunk lengths, a lower limit of 2K and an upper

11

limit of 64K has been imposed. The average size of a chunk was around 12K
on our test databases.

blocks Average Excess St.Dev Excess Avg # occ
expected 1/2 1/V12
EXC | 3,300,000 0.5050 1.0% 0.2991 3.6% 1.0033
OS | 594,969 0.5085 1.7% 0.2858 2% 1.0996

TABLE 1: Some statistics on the test databases and signatures.

3.1. Uniformity

Table 1 summarizes some statistics about the test databases, the number
of 8K blocks, the average signature value (normalized to the [0,1] range),
the standard deviation of these normalized values, as well as the deviation
from the expected results for a uniform distribution. As can be seen, the
values are very close to the expected ones. On the EXC database, the chunk
containing only zeros appeared 1756 times, but beside the corresponding
signature, all the others appeared mostly only once, some appeared twice,
etc. No signature appeared more than 45 times. The last column of Table 1
gives the average number of occurrences for each signature.

For a more precise evaluation, inspecting each individual bit, the graph
of Figure 4 shows the probability of getting a 1-bit in each of the 32 positions
of the signatures. Note that these probabilities, for all bit positions, are very
close to the expected value of 0.5 for a random distribution.

3.2. Perturbation tests

We now turn to observing the properties of the signature when introduc-
ing perturbations. Recall that the challenge was to reconcile two contradict-
ing demands: on the one hand, the function is required, similarly to usual
hash functions, to spread its values as much as possible, so as to minimize
the number of collisions; on the other hand, we want small perturbations to
yield only slight differences, if at all, in the corresponding signature values,
a property one explicitly prohibits for classical hashing.

To simulate real life changes, the modified bytes did not get a random
value, but rather another randomly chosen byte from within the same chunk
was copied into the location to be modified. Thus the perturbations were
introduced as follows: a random position i between 1 and |C|, the size of
the chunk, was chosen, and the character from position |C| — i 4+ 1 was

12

Prob 1-bit 0 —+—
Prob 1-bit EXC ---X---
0.5

08 |- ~

06 —

o . e R~]

0.4 —

02 ~

0

L L L L L L L
30 25 20 15 10 5 0

FIGURE 4: Bit distribution on example data.

copied to position i, overwriting the current one. The idea was to change
the chunk slightly, but without introducing any new characters that are not
already present in the chunk. Obviously, there is a small chance that this
“perturbation” is in fact void (when overwriting a character by itself), but
the corresponding probability is small enough so as not to bias the overall
statistics. The signature function was then applied to the modified chunk
and compared to the signature of the original chunk. In many cases, we got
the same signature, meaning that changing a single byte in the chunk did
not change the function, contrarily to what would be expected from a real
hash function.

The above perturbation procedure has then been repeated, and the sig-
nature was reevaluated after 2,3, ..., 10,20, 30,...,100,110 byte changes.
The changes were cumulative, that is, each test added one (or 10) more
perturbations. Table 2 is a sample of some consecutive lines of the corre-
sponding table.

One could define the distance between two signature values as the ab-
solute value of their difference, reflecting the intention of the design of the
signature layout to yield changes in the low order bits of the signature as
result of small changes in the chunk. However, in the intended application
to a deduplication system, one cannot afford too many search attempts in
the vicinity of the hash value. More precisely, suppose a chunk C' is given.
We would evaluate ah(C) and check whether there is a pointer to a chunk
D at the address H[ah(C)] in the hash table. If so and indeed D = C, the
newly arrived chunk C' can be deduplicated by pointing to D. But if D # C|

13

signature 1234567 8 910 20 30 40 50 60 70 80 90 100 110
1144762526 | 0 0 0 0 0 0 0 0 0 O 2 12 12 12 12 12 12 12 12 12
127187251 |0 0 0 0 0 0 O O 14 14 14 14 14 14 14 14 14 14 14 14
4244827393 | 0 0 0 0 0 0 0O O O O 0 10 10 13 13 14 13 9 6 5
1818305692 | 0 0 0 0 0O O O O O 14 17 17 15 18 18 18 18 18 20 20
1354737651 | 0 0 0 0 0 0 0 0 0 O 8 10 10 10 10 6 5 10 12 14
33724058 | 0 0 6 6 6 6 6 6 6 6 6 6 2 2 8 8 6 6 6 6
1392679006 | 0 0 0 0 0 0 0 0O 0 O 0 000 0O OO 0 1
59007581 | 0 0 0 0 0 0 0 0O O O 1 8 7 14 16 12 16 16 16 16
1343544922 | 0 0 0 0O O OO O O O 0O o1 o 7 7 711 0 0
1077804921 | 0 0 0 0 0 0 0 0 0 O 000 0O OOO 0 O
142372494 | 0 0 0 0 0 0 O O O O 000 2 2 2 2 2 2 2
1076507414 | 0 0 0 0 0 0 0 0 0 O 000 00O OO GO0 2 2
583838910 | 0 1 2 2 2 2 2 2 2 3 3 9 9 3 0 6 6 6 6 6
2214783602 | 0 0 0 0O O O O 10 O O 9 810 8 8 8 8 8 8 8
2217595617 | 1 1 1 11 00 1 1 1 0 6 3 2 2 1 1 4 3 3
2198134340 | 5 5 5 5 5 5 5 5 5 5 6 5 4 4 4 4 4 7 13 10
1073872964 | 0 0 0 0 0 0 0 0 0 O 000 0O OOO 0 O
323387338 | 0 1 1 11 11 1 1 1 2 7 7 7 2 3 1 1 1 1
2155372916 | 0 0 8 8 8 8 8 8 8 2 0 2 212 12 4 2 2 2 2
4277376398 | 0 0 0 0 0 0 0 O O O 3 3 1 2 414 14 12 12 12
4264726240 |0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
2248374342 {0 0 0 0 0 0 0 0 0 O 0 7 7 7131516 8 8 8
TABLE 2: Hamming distance with original chunk after 1,2,...,110
perturbations.

the intention was to look for pointers to chunks identical to C' at the neigh-
boring locations of the hash table. But each trial is costly, so the number
of trials will have to be restricted. It might possibly only be reasonable to
check at H[ah(C)], H[ah(C) + 1] and H[ah(C) — 1]. In that case, we can
as well restrict ourselves to the Hamming distance between signatures, i.e.,
the number of differing bits in their standard binary representation, rather
than their arithmetic difference. These are the values displayed in Table 2.

The first column gives the original signature (as a decimal number) be-
fore applying any perturbation, then in the column headed i is the Hamming
distance between the original and the new signatures when ¢ perturbations
have been applied. Note that this distance is not always an increasing func-
tion of the number of perturbations, indicating that there might be quite
a few cases in which the signature tends to “correct itself” when there are
many changes; however, the overall trend is clearly increasing, as can be
seen in the graphs below.

The plot in Figure 5 shows the average number of changed bits as a
function of the number of perturbations, for both the Exchange and the
OS databases. The average Hamming distance was between 0.3 and 5 to

14

6. There are slight differences between the databases, but the trend is the
same.

L Changed bits EXC —+—
" Changed bits OS ---x---

ol L L L L L
0 20 40 60 80 100 120

FI1GURE 5: Average number of changed bits as function of the number of
perturbations for the suggested signature.

Note that the distances, at least for the small number of perturbations,
are quite low, and very often even zero, meaning that very small changes
often yield the same signature as before. This is in sharp contrast with
regular hashing schemes, for which the corresponding graph is expected to
be a straight line (that is, independent of the number of changes as long as
this number is > 0) at the level of about 16 (that is, about half of the bits
are expected to change).

To verify this fact, we devised a control experiment in which a regular
hash function (modulo P = 232 — 17 = 4,294,967,279), was applied to
the same blocks, and then performed the same perturbation tests as for
our function, recording the Hamming distance between the original and
perturbed signatures. Note that P is a prime number (actually the largest
one fitting into our unsigned 32 bit signature). As expected, the number of
changed bits was indeed around 16, as can be seen on the plot in Figure 6,
more precisely, the average values were in the range from 15.988 to 16.018.
Figure 6 also displays again the graph for the OS database, for comparison.

For our function, even if there are more than 100 bytes changed, this
implies, at the average, only a change in about 5 to 6 bits. The resulting
signature might thus be very different (depending on the position of those
6 changed bits), but the change is clearly not as radical as if a regular hash
had be applied. In any case, this is just a noteworthy observation as in the

15

Changed bits 0S —+—
Changed bits Random ---X---

2 L

0

20 40 60 80 100

FIGURE 6: Average number of changed bits as function of the number of
perturbations for a real hash function.

intended application, there is no intention to look for similar chunks so far
away.

Non-Zero EXC —+—
Non-Zero OS ---x---
0 L L L L I

0 20 40 60 80 100 120

FIGURE 7: Probability of getting non-zero Hamming distance

To get a feeling on how far one can insert perturbations without yet
changing the signature value, consider the plot in Figure 7, giving for each
number ¢ of perturbations, the probability of getting a non-zero value in
the column headed i of the perturbation table. The plots are again given
for both the Exchange and the OS databases. The probability of a non-
zero value for a single perturbation is just about 0.06, and we see a clear

16

ascending trend, reaching probability about 0.8 for more than 100 changes.
For the control test with the real hashing function, we again got practically
always non-zero values, more precisely, the probability for getting a non-zero
for each of the columns was between 0.99986 and 1.00000.

3.3. Correlation with edit distance

After testing that the proposed signature indeed has the properties re-
quired from an approximate hash function, that is: it gives a uniform spread,
yet preserves locality in the sense that similar blocks give similar signatures,
we turn now to a less subjective measure of the closeness of two chunks
in a test, which in fact checks the transpose of the above implication, that
similar signatures also imply similar blocks.

The closeness of two chunks can be measured by the Levenshtein distance
(LD), also generally known as the edit distance [16]. Given two character
strings X and Y, the distance LD(X,Y") is defined as the minimal number
of simple operations (delete one character, insert one character or replace
one character by another) needed to transform X into Y. The solution of
this minimization problem is given by a well-known dynamic programming
scheme requiring time and space O(|X| - |Y]).

To study the correlation comparing the edit distance between chunks
with the difference of their signatures, the following setup has been used.

1. Generate the list of the signatures.

2. Sort the list so as to facilitate the detection of duplicates.

3. Scanning sequentially the list of differences, if two consecutive entries
are found sharing the same signature, the edit distance between the
corresponding chunks is recorded. Note that if a signature appears
k times, for k > 2, at blocks with indices bq,...,bg, this approach
produces k — 1 edit distances, for the pairs {(b;,bi+1) | 1 < i < k}.
A complementing test, trying to generate all possible %k(kz — 1) pairs
of the form {(b;,0;) | 1 < i < j < k}, has not been performed, as it
would bias the values in case of many identical chunks.

4. The file Dy of edit distances recorded in point 3. corresponds to pairs of
chunks yielding the same signature. Similar files are then generated for
the cases where the difference of the consecutive signatures is between
1 and 9, 10 and 99, and between 100 and 999.

5. For each of these files, a histogram is produced, counting the number
of occurrences of each of the possible edit distance values. The upper
graph of Figure 8, labeled correlated blocks, displays the cumulative
values of this histogram corresponding to file Dy for the EXC database,

17

normalized to probabilities, that is, for entry x, the probability for a
chunk pair to have the edit distance between its components to be
< z. Three graphs in the lower part of the figure correspond to the
files with larger distances, as indicated.

T T
correlated blocks
range 1-9 -------
range 10-99 - -

range 100-999

random location ==r==: i
random content =:-+=:- H

0.8 —

0.6 | ~

0.4

02

0 [z e~ o ¢+ 4
1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

FIGURE 8: Probability of getting a given difference in the signatures as
function of edit distance for the EXC database.

12 T T T T

02 [H q

range 100-999
random location -
randqm content

L L L
7950 8000 8050 8100 8150 8200

FIGURE 9: Zooming in on Figure 8.

0+

Note that on Dy, 74% of the pairs have an edit distance of less than 100.
If the chunks were not correlated, we would expect all the edit distances to
be much larger. In order to compare these findings with those expected for
non-correlated chunks, we devised the following simulations.

18

In a first test, 1000 chunks of 8K each were generated, with each charac-
ter being randomly and independently chosen in the range 0-255, then the
edit distance of the 999 pairs of adjacent chunks was calculated. Practically
all the values were very close to the maximum 8192. The plot of the cor-
responding cumulative values, which are 0 up to more than 8000 and then
get up to 1 within a very small range, is the almost vertical line in Figure 8
labeled random content.

To extend the comparison also to more realistic chunks, we chose, in a
second test, 100,000 pairs of chunks at random positions. The values in this
case were also generally very high, though also smaller distances appeared,
since there were many quite similar chunks in the database, while among
the randomly generated chunks no such similarities could exist. The plot
of the corresponding cumulative values is labeled random location. One can
see a completely different behavior of the plot, increasing first very slowly,
passing the 20% threshold only after 7200. This clearly indicates that the
pairs producing the first plot are not randomly selected, that is, that the
fact that their distance in terms of the proposed signature function is zero,
implied that their edit distance is much smaller than expected for a random
choice.

The next step was then to produce similar graphs for the other files, cor-
responding to the ranges 1-9, 10-99 and 100-999 of the signature distance.
The normalized cumulative plots, together with those displayed above, can
be seen in the corresponding graphs of Figure 8. The plots for the two
random files appear boldfaced at the right side of the figure.

Figure 9 is a closer look at the same graph, zooming in on the range
[7950,8192], clearly showing how different from the random data the four
plots for the various ranges behave. The plots reveal well how with increasing
signature distance, the cumulative curves gradually become less steep and
more distant from the curve of equal signature, and at the same time closer
to the graph corresponding to the random choice of the blocks.

3.4. Clustering

Another test checking that similar signatures correspond to similar blocks
is based on clustering. For each of the tested databases, N centroid chunks
have been chosen (we used N = 11), so that they were mutually not similar.
This is achieved by choosing the chunks in a random sequence, and checking
for each new candidate that it is different enough from all the preceding
chosen chunks in the sequence. X and Y are said to be different enough if
LD(X,Y) > T, where T is some independently chosen threshold (we used
1000), and LD is the Levenshtein distance mentioned above.

19

Each of the centroids is then used to generate a number M of pertur-
bation chunks (we used M = 10), which are obtained by either changing
a predetermined number K of bytes of the map to a random value, or by
copying to each of these K bytes the value of another, randomly chosen,
byte value from within the same chunk. The number of perturbations K
has been chosen to vary from 2 to 1024, doubling in each step. Finally,
the approximate hashing is applied to each of the generated chunks, and
the whole set of IV - M signatures is then sent to a clustering procedure,
which partitions the set of signatures, and thereby the set of corresponding
chunks, into subset of similar chunks. The number of hits, that is, correctly
assigned correlations between a generated chunk and its generating centroid,
is recorded as a function of the number K of perturbations.

1 T T T T T T T T T
EXC —+—
S — 0OS ---%---

09

08

0.7

5 15 % e s % sz i
FIGURE 10: Probability of guessing the correct cluster as function of the
number of perturbations.

Three different alternatives have been considered to perform the cluster-
ing: the hierarchical Tree-method (repeatedly choosing the pair of closest
chunks among the set of remaining subsets and dynamically updating the
sets), K-means (minimizing the within-cluster sum of squares) [12], and sim-
ply checking the distance from every generated chunk to each of the centroids
and choosing that with minimal distance. The results were similar, with the
first method consistently giving slightly better performance.

Each experiment was repeated 10 times and the values averaged. The
results for our test databases of the hit ratio as function of the number
of perturbations are displayed in Figure 10. As can be seen, the success
rate is indeed decreasing with increasing K, and for a small number of

20

perturbations, the number of successful assignments may be as large as

95%.

3.5. Comparison of similarity with identity

As has been mentioned earlier, the ultimate aim of these hash based sys-
tems is to perform deduplication. One approach is to use standard hashing,
even with cryptographically strong hash functions that reduce the proba-
bility of false alarms to almost zero, but can thereby detect only identical
chunks. The alternative suggested in this paper is the approrimate hash,
which could be able of locating also similar and not necessarily identical
data chunks.

It might not be possible to quantify the relative improvement caused by
shifting from a system based on identity to one based on similarity: the
results will be extremely data dependent, based on the nature of the data
and its repetitiveness. It obviously makes no sense to simulate the system’s
behavior on random data, as is done for many other applications, since truly
random data is not compressible. On the other hand, also compressed files
cannot be compressed even further, but they may be able to take advantage
of deduplication, for example when several copies of such a file appear in
the database.

We therefore decided, by lack of what could be agreed on as being “typ-
ical” data, to test the performance in tests on publicly available files and
report the results just as examples, without claiming that these results are
representative. Indeed, on different input data, the figures could be higher
or lower, depending on the data at hand.

file name size (MB) identity similarity gain
centos-5.3-1386-server 2816 6.58 7.10 7.3%
freebsd-6.4-i386 949 3.88 4.02 3.5%
fedora-fc6-i386 265 5.84 6.20 5.8%

TABLE 3: Comparing identity with similarity based systems.

distance | -5 4 -3 -2 -1 0 1 2 3 4 5
probability | 0.6 24 13 21 27 817 29 24 13 19 06

TABLE 4: Distribution of distances from the approximate hash value.

21

The files we chose were images of virtual machines obtainable from the
web, a sample of which is presented in Table 3. The sizes are given in MB,
and the columns headed identity and similarity list the corresponding com-
pression ratios. The compression ratio is defined as the size of the original
file divided by the size of the compressed file. For identity, we used the SHA1
secure hash function [8] and second and subsequent copies of identical chunks
were removed. For similarity, we used our approximate hashing scheme, and
in case a similar chunk has been found, the new chunk was delta-encoded
using VCDIFF [4]. For both identity and similarity based algorithms, fixed
length chunks (of size 8K) have been used, following a suggestion in [11]
that fixed-sized chunks may be more appropriate for VM disk images. The
final column lists the relative gain, in percent, of using similarity instead of
identity.

Table 4 gives a more specific insight in the distribution of where the
matching chunks have been located by our system. We checked first at
Hlah(C)], and if this entry did not contain a pointer to C, we also checked
Hlah(C) %], for i =1,2,...,5. On our example data, in the overwhelming
majority of cases among those where the chunk could indeed be dedupli-
cated, the pointer was found at H[ah(C)] itself. But in 18% of the cases,
it was found nearby. As could be expected, the probability of locating the
chunk decreases with the distance from ah(C), but interestingly, the de-
crease is not monotonic: the values for +4 are larger than for +3. Clearly,
this is due to the fact that a difference of 4 means that only one bit is dif-
ferent in the signature, while for a difference of 3, there are two differing
bits.

4. Deciding the final layout

We chose to start the presentation of the suggested approximate hash
function giving all the details of the final layout. Many of these details may
seem being the result of quite arbitrary decisions, and indeed, much of our
work has been empirical, as usual in many of the works on deduplication.
Nevertheless, the final details were the result of an iterative process, and
we report in this section some of the decisions that lead to the suggestion
above.

In the early stages of the research, we experimented with various pos-
sibilities of using only elements of the c-spectrum, to which some elements
of the f-spectrum have been added later. Once a satisfactory uniform dis-
tribution of the signature values had been reached, the perturbation tests
showed that the function was much too sensitive to noise. This triggered

22

several iterations of relaxing the strict uniformity requirements, which grad-
ually also improved the sensitivity, but we were not satisfied with the overall
compromise. This lead finally to the extension of the signature to include
also representatives of the p-spectrum.

We thus run some tests on a 16 GB sample of the EXC database, about
2.15 million 8K chunks, to learn about the number of different pairs per
chunk. The theoretical maximum of 8191 pairs has never been reached.
The actual maximal value was 7855, with an average of 279.2. Since we
considered using part of the pairs as building blocks for the signature, we
could assume that there are enough such pairs available, as only about 0.5%
of the chunks of our sample had less than 78 pairs. More interestingly,
beside the about 4000 chunks consisting only of a single pair, practically all
the others contained more than 50 pairs. One could thus fairly assume that
any chunk, which is not all zero or blank, has a well defined ith pair, for low
values of 7, like 5 to 10.

1 1
0 5000 10000 15000

FIGURE 11: Cumulative probability of getting in position j a pair whose
index in the global list of pairs is less than the value of the z-axis.

Judging from the variability point of view, it seemed at the first look
that choosing the most frequent pair would yield a most variable choice, but
a closer look revealed that though there are a maximum number of options
for both the pair itself and for its frequency, an overwhelming percentage of
these pairs are just the null-pair (0,0), which appeared in 76% of the cases as
the most frequent pair! The distribution of the possible pairs are plotted in
Figure 11, in which the graph prl shows the cumulative probability of getting
in the first position a pair whose index, in the global list compiled by all the

23

pairs in the sample sorted by frequency, is less than ¢, for 1 < ¢ < 6991; only
about 7000 different pairs appear in the first position, which can be seen in
the plot, where the corresponding curve already reaches the limiting value
1 for about ¢ = 7000. As mentioned above, even for ¢ = 1, the probability
is already 0.76. The plot labeled prj displays the corresponding cumulative
probabilities for position 7, 1 < 5 < 10, and one immediately sees the much
larger range involved. Already for pr2, the probability for ¢ = 1 is only 0.09
(meaning that only in 9% of the cases, the pair in second position (j = 2)
is the pair which is the most frequent (; = 1) in the global list), and the
limiting value 1 is only reached for the pair indexed 39738, i.e., all pairs
in second position have an index smaller than that index in the global list.
For prl0, the corresponding two values are 0.02 and 63302. The plots are
well separated and tend to get less skewed with increasing position j. We
conclude that if we want to include pairs as building blocks for the signature,
it should probably not be one of the most frequent ones, but rather one (or
more) in positions around 5 or up.

5. Conclusion

We have presented the main ideas leading to the design of a similar-
ity rather than identity based deduplication system working with relatively
small data chunks. Similarity has been explored earlier in this context [1],
but the performance depended critically on the fact that the chunk size could
be chosen large enough, in the MB range, which reduced the size of the re-
quired data structures. The current work is a first attempt to adapt this
similarity approach also to systems in which a more fine grained resolution
is required, with data chunks typically in the KB range.

The tests we performed suggest that the proposed approximate hash
function indeed combines quite contradicting properties, like uniformity and
sensitivity as required, though this can only be empirically tested on chosen
examples, and not quantitatively checked in controlled statistical experi-
ments. The scalability of the system will obviously depend on the amount
of duplicate data it contains.

24

1]

2]

[13]

References

ArRONOVICH L., AsHER R., BACHMAT E., BITNER H., HIRSCH M., KLEIN
S.T., The Design of a Similarity Based Deduplication System, Proc. of the
SYSTOR’09 Conference, Haifa, (2009) 1-14.

BuaacwaT D., EsHcHr K., LonGg D.D.E., LILLIBRIDGE M., Extreme Bin-
ning: Scalable, parallel deduplication for chunk-based file backup. Proc. Mod-
eling, Analysis, and Simulation On Computer and Telecommunication Systems

(MASCOTS) (2009) 1-9.

BoBBARJUNG D.R., JAGANNATHAN D., DuBNIcKI C., Improving duplicate
elimination in storage systems, ACM Transactions on Storage, 2(4) (2006)
424-448.

BENTLEY J.L., DoucLAs McILROY M., Data Compression Using Long Com-
mon Strings, Proc. Data Compression Conference, Snowbird, Utah, (1999)
287-295.

BRODER A.Z., Identifying and Filtering Near-Duplicate Documents, Proc.
Combinatorial Pattern Matching Conference, CPM’00, (2000) 1-10.

BRODER A.Z., On the resemblance and containment of documents, Proc. of
Compression and Complezity of Sequences, IEEE Computer Society, (1997)
21-29.

CorMEN T.H., LEISERSON C.E., RIVEST R.L., Introduction to Algorithms,
MIT Press, 1990.

FERGUSON N., SCHNEIER B., KouNO T., Cryptography Engineering, John
Wiley & Sons, (2010).

HirscH M., BITNER H., ARONOVICH L., ASHER R., BAcHMAT E., KLEIN
S.T., Systems and methods for efficient data searching, storage and reduction,
U.S. Patent 7,523,098, Apr. 21, 2009.

INDYK P., MoTwANI R., Approximate Nearest Neighbors: Towards Remov-
ing the Curse of Dimensionality, Proc. of the ACM Symposium on the Theory
of Computing STOC’98, (1998) 604-613.

JIN K., MILLER E.L., The effectiveness of deduplication on virtual machine
disk images, Proc. of the SYSTOR’09 Conference, Haifa, (2009) 7.

Kanunco T., MounT D.M., NETANYAHU N.S., PiaTKO C.D., SILVERMAN
R., WU A.Y., An efficient K-means clustering algorithm: Analysis and imple-
mentation, IEEE Trans. Pattern Analysis and Machine Intelligence 24 (2002)
881-892.

LiLLiBRIDGE M., EsHGHI K., BHAGWAT D., Improving restore speed for
backup systems that use inline chunk-based deduplication, Proc. of the
USENIX Conference on File And Storage Technologies (FAST), (2013) 183—
198.

25

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

MANBER U., Finding Similar Files in A Large File System, Proc. of the
USENIX Winter 1994 Technical Conference, (1994) 17-21.

MourToN G. H., WHITEHILL S. B., Hash file system and method for use
in a commonality factoring system, U.S. Pat. No. 6,704,730, issued March 9,
2004.

NAVARRO G., A guided tour to approximate string matching, ACM Computing
Surveys 33(1) (2001) 31-88.

QUINLAN S., DORWARD S., Venti: A New Approach to Archival Storage,
Proc. of the USENIX Conference on File And Storage Technologies (FAST),
(2002) 89-101.

XA W., Jian¢ H., FEng D., Hua Y., SiLo: A Similarity-Locality
based Near-Exact Deduplication Scheme with Low RAM Overhead and High
Throughput, Proc. USENIX Annual Technical Conference, Portland, OR
(2011).

Xia W., JianG H., FENG D., TiaN L., Combining Deduplication and Delta
Compression to Achieve Low-Overhead Data Reduction on Backup Datasets,
Proc. Data Compression Conference (DCC), Snowbird, Utah (2014) 203-212.

Zuu B., L1 K., PATTERSON H., Avoiding the Disk Bottleneck in the Data
Domain Deduplication File System, Proc. of the USENIX Conference on File
And Storage Technologies (FAST), (2008) 279-292.

Z1pr G.K., The Psycho-Biology of Language, Boston, Houghton (1935).

26

