
Optimal Partitioning of Data Chunks
in Deduplication Systems∗

M. Hirscha, A. Ish-Shaloma, S.T. Kleinb

aIBM – Diligent, Tel Aviv, Israel
{hirschm,arielish}@il.ibm.com

bDepartment of Computer Science, Bar Ilan University, Ramat Gan, Israel
tomi@cs.biu.ac.il

Abstract

Deduplication is a special case of data compression in which repeated chunks
of data are stored only once. For very large chunks, this process may be
applied even if the chunks are similar and not necessarily identical, and then
the encoding of duplicate data consists of a sequence of pointers to matching
parts. However, not all the pointers are worth being kept, as they incur some
storage overhead. A linear, sub-optimal solution of this partition problem is
presented, followed by an optimal solution with cubic time complexity and
requiring quadratic space.

Keywords: Deduplication, partitioning data chunks, dynamic
programming

1. Introduction and Background

Lossless Data compression deals with techniques to recode large amounts
of digital information into a more compact form, under the constraint that
the original may be restored without alterations. The compression gain
depends on the compressibility of the data at hand, and some files, like
pseudo-random sequences, may not be compressed at all. A special case of
input data are large backup and storage systems, which need to process ever
increasing amounts of information, and standard lossless data compression
methods may not be able to cope with it. On the other hand, the use of
classical compression may be an overkill, since backup data has generally

∗This is an extended version of a paper that has been presented at the Prague Stringol-
ogy Conference (PSC’13) in 2013, and appeared in its Proceedings, 128–141.

Preprint submitted to Discrete Applied Mathematics September 10, 2014

the property that only a small fraction of it is changed between consecutive
backup generations. The data is therefore highly repetitive, which calls for
a special form of data compression, known as deduplication: trying to store
duplicates only once. The challenge is, of course, to locate as much of the
duplicated data as possible.

A standard deduplication system achieves its goal in the following way.
Partition the input database, which is often called the repository , into fixed
or variable sized blocks, called chunks, apply a cryptographically strong hash
function on each of these input chunks, and store the different hash values,
along with the address of the corresponding chunk, in a fast to access data
structure, like a hash table or a B-Tree [6, 7]. When a fresh copy of the data
is given, e.g., for a weekly or even daily backup, the new data, often called
a version, is also partitioned into similar chunks, and a chunk is only kept
if the corresponding hash value is not stored yet. Otherwise it is replaced
by a pointer to the already stored copy.

A major dilemma is to decide what the (average) chunk size should be,
as if it is too small, the number of chunks and the accompanying overhead
might be too large; on the other hand, the larger the chunks, the lower is
the probability of finding identical ones, reducing the potential deduplication
benefits. Note that systems based on using hashing functions are generally
only able to detect identical chunks, because most hashing functions are
designed with the specific aim that even small changes in the argument
should imply substantive changes in the hashed values. This lead to the
idea of devising deduplication systems based on similarity rather than iden-
tity, thereby allowing the use of considerably larger chunks, as in the IBM
ProtecTIER product, described in [1]. An extension of this similarity based
deduplication system to an environment using small sized chunks appears in
[2]. We focus here on systems using very large chunks, and shall deal with
the following problem implied by it.

While a single pointer is sufficient for the compression of an identical
chunk, the case of similar chunks is more involved. Similarity might imply
that most of the data of the version chunk can be copied from the repository,
but the data to be copied is not necessarily contiguous and might appear in
various chunks; moreover, even if several pointers refer to the same reposi-
tory chunk, they could point to locations that are scattered throughout it.
Consider, for example, a repository including Lewis Carroll’s famous quote:

”Begin-at - the-begin n ing,”-the - King-said , -very-gra v ely,”-and - go-

on-til l -you-come - to-the-en d :-then-st o p.”

where spaces have been visualized by dashes, and every tenth character is

2

boxed to facilitate their enumeration. Imagine now a new version of a similar
phrase:

”Start-at-the-beginning,”-said-the-King,-very-gravely,-”and-continue-
until-you-reach-the-end:-then-finish.”

The phrase can be encoded as a sequence of characters and (address, length)
pairs as in Ziv and Lempel’s compression scheme known as LZ77 [8], where
address refers to the starting location of a matching string from the version
within the repository, and length is the number of its characters. In our
example, the encoded form would be:

”Start (7,19) (35,5) (26,9) (40,21) continue-un (67,3) (71,5) reach
(83,15) finish (102,2)

The encoding of a compressed chunk will thus be a sequence of various
copy items, interspersed with stretches of new data. If one considers quite
long chunks, say, of the order of 16MB, and adds to this the fact that the
new data can be as short as a single byte, the conclusion is that the number
of elements in the encoding of a single chunk may be large.

This situation is aggravated in a typical scenario of a backup system,
which stores several consecutive generations of almost the same data. There
might only be minor changes between adjacent generations, but these changes
have a cumulative effect, leading to chunks that are increasingly fragmented
into smaller and smaller copy and non-copy items. However, storing the
data needed to reconstruct a highly fragmented chunk may itself create a
compression problem.

In the next section, we define the specific problem dealt with herein,
namely finding an optimal partition of a chunk into matching and non-
matching parts. Section 3 then suggests a sub-optimal, yet linear, algorithm,
and Section 4 an optimal one, requiring cubic time. Section 5 brings a few
improvements.

Papers presenting new compression schemes usually contain experimen-
tal sections reporting on tests of the suggested algorithms. But while there
are well established test cases which have been agreed upon in the compres-
sion community, like the Calgary or the Canterbury [3] corpora, there is no
equivalent for deduplication tests. The reason is mainly that the perfor-
mance does not depend on the nature of the files, but rather on the their
repetitiveness. Thus even a file containing random data, which cannot be
compressed, may still profit from deduplication if it appears more than once
in the repository.

3

There is therefore no possibility to find data that could be deemed to
be representative, which is why we have preferred to leave this article on
the theoretic level, suggesting only a theoretical framework, with no ex-
perimental section. Even if we had performed some tests, the experimental
results could be presented as examples only, without claiming that one could
extrapolate from them information on the performance in general.

2. Definition of the problem

We assume that given a new version, the deduplication system has al-
ready located all its matching parts in the repository, and we consider now
applying a filtering stage which should eliminate those parts of the com-
pressed data that will ultimately not be worth being kept, because the
required overhead might be larger than the compression gain. The input
to this part of the process is a chunk of data and a list of matches, each
consisting of a pair of pointers, one to the given version chunk, one into the
repository, and the size of the matching substring. The expected output is
a partition of the given chunk into a sequence of mismatching and matching
blocks. The compressed form of the chunk will then consist of a copy of the
mismatching parts, and of pointers describing where the matching parts can
be found.

A simplistic solution would of course be to build the output by just
copying the input, that is, accept exactly the partition found by listing all
the matches. But this would ignore the fact that at least a part of the
matches are not worth being kept, as they might cause a too high degree
of fragmentation. Referring to the example quote in the introduction, the
starting quotation marks ” of the version could have been substituted by the
pair (1,1), pointing to their counterpart at the beginning of the repository,
but this is obviously more expensive than repeating the ” itself; similarly,
the (102,2) pointer at the end refers to the string .” (dot, quotation mark),
and might better be omitted. The challenge is therefore to decide which
matches should be kept, and which should be ignored.

Figure 1: Schematic representation of the partition of a data chunk

Figure 1 shows a possible partition of a data chunk into alternating
areas of non-matches and matches. The non-matches, represented by the

4

grey rectangles, contain New data and are indexed N1, N2, . . . , Nk. The
Matches, drawn as the white rectangles, contain data that has previously
appeared in the repository, and will be stored by means of pointers of the
form (address, length); the matching parts between the non-matching blocks
Ni and Ni+1 are indexed Mi,1,Mi,2, . . .Mi,ji . Non-matching parts cannot be
consecutive — this is new data, and any stretch of such new characters is
considered a single new part. The matching parts, on the other hand, may
consist of several different sub-parts that are located in different places on
the disk; each sub-part needs therefore a pointer of its own.

We consider two functions defined on these matching and non-matching
parts. A cost function c() giving the price we incur for storing the pointers in
the meta-data; typically, but not necessarily, all pointers are of fixed length
E (in our implementation, E = 24 bytes), that is c(Ni) = c(Mℓ,j) = 24
for all indexes, so that actually, the cost for the meta-data depends only on
the number of parts, which is k +

∑k
t=1 jt. In other implementations, the

pointers may undergo another layer of compression, e.g., Huffman coding,
resulting in variable length elements.

The second function s() measures, for each part, the size of the data on
the disk. So we have that s(Ni) will be just the number of bytes of the non-
matching part, as these new bytes have to be stored physically somewhere,
and s(Mℓ,j) = 0, since no new data is written to the disk for a matching
part. However, we shall define s(Mℓ,j) = length for a block Mℓ,j that is
stored by means of a pointer (address, length), which means that the size
will be defined as the number of bytes written to the disk in case we decide
to ignore the fact that Mℓ,j has occurred earlier and thus has a matching
part already in the repository.

The compressed data consists of the items written to the disk plus the
pointers in the meta-data, but these cannot necessarily be traded one to
one, as storage space for the meta-data will generally be more expensive.
We shall assume that there exists a multiplicative factor F such that, in
our calculations, we can count one byte of meta-data as equivalent to F
bytes of data written to the disk. This factor need not be constant and may
dynamically depend on several run-time parameters. Practically, F will be
stored in a variable and may be updated when necessary, but we shall use
it in the sequel as if it were a constant.

Given the above notations, the size of the compressed file is then

F ·

 k∑
i=1

c(Ni) +
ji∑
t=1

c(Mi,t)

+
k∑

i=1

s(Ni),

5

and in the particular case of fixed length pointers of size E, which we shall
assume below, for simplicity:

F · E ·
(
k +

k∑
t=1

jt

)
+

k∑
i=1

s(Ni), (1)

whereas the uncompressed file has size

k∑
i=1

s(Ni) +
ji∑
t=1

s(Mi,t)

 .

The optimization problem we consider is based on the fact that the
partition we obtain as input may be altered. The non-matching parts Ni

can obviously not be touched, so the only degree of freedom we have is
to decide, for each of the matching parts Mi,j , whether the corresponding
pointer should be kept, or whether we opt to ignore the match and treat this
part as if it were non-matching. There is a priori nothing to be gained from
such a decision: the pointer in the meta-data is changed from matching to
non-matching, but incurs the same cost, and some data has been added to
the disk, so there will always be a loss.

The following example shows that nevertheless, there can also be a gain
in certain cases. Consider the block M1,2 in Figure 1. If we decide to ignore
its matching counterpart, the data of M1,2 has to be written to the disk,
but it is contiguous with the data of N2. The two parts may therefore be
fusioned, which reduces the number of meta-data entries by one. This will
result in a gain if

s(M1,2) < F · E.

Moreover, if indeed we decide to consider M1,2 as a non-matching block,
this will leave M1,1 as a single match between two non-matches. In this
case, ignoring the match may allow to unify the three blocks N1,M1,1, N2,
reducing the number of meta-data entries by two. This will be worthwhile
even if

s(M1,1) < 2 F · E.

More generally, any extremal matching blocks (those touching on at least
one of their sides with a non-match) may be candidates for such a fusion,
which can trigger even further unifications like in the example. But these are
not the only cases: even non-extremal blocks may profit from unification.
This is not true for a single matching blocks, whose both neighbors are also
matching, like M3,2 in Figure 1, because we add data to the disk, but do

6

not remove any meta-data, just change one of the entries. But there might
be a stretch of several (at least two) matching blocks that can profit from
unification.

It should be noted that devising a new partition is not only a matter
of trading a byte of meta-data versus F bytes of disk data. Reducing the
number of entries in the meta-data has also an effect on the time complexity,
since each entry requires an additional read operation. Many compression
algorithms have to deal with such time/space tradeoffs, and for our purpose,
we shall assume that the factor F already takes also the time complexity
into account, that is, F reflects our estimation of how many bytes of disk
space we are ready to pay in order to save one byte of meta-data, considering
all aspects, including space, CPU and I/O.

The challenge is therefore to come up with an efficient, and if possible,
optimal way to select an appropriate subset of the input partition which
minimizes the size of the compressed file as measured by equation (1).

3. Linear sub-optimal algorithm

The following algorithm is a first solution attempt. The partition it pro-
duces is not necessarily optimal, but the complexity is linear in the number
of elementsNi andMi,j . The algorithm uses as main data structure a doubly
linked list L, the elements of which represent the matching or non-matching
data blocks defined above, so their initial number is n = k +

∑k
t=1 jt. Each

element p of the list L has the following fields:

• status(p) – indicating whether the element p is pointing to is match-
ing (M), non-matching (NM), or a sentinel element (S) for smoother
programming

• prev(p) – pointing to the predecessor of p

• succ(p) – pointing to the successor of p

• size(p) – if status(p) = NM, this is the number of non-matching bytes;
if status(p) = M, this is the length of the element to be copied; if
status(p) = S, size(p) is not defined.

• data(p) – defined only if status(p) = NM, in which case it contains the
new data not found in the repository; if status(p) = M, nothing will be
stored in data(p), but we shall refer by DATA(p) to the bytes pointed
to by the (address, length) pointer.

7

p p

p p

p p

p p

before after

Case 1

Case 2

Case 3

Case 4

Figure 2: Different cases dealt by the algorithm

We first add sentinel elements, TOP and REAR at the beginning and
end of the list, respectively, which avoids the necessity to check at each step
whether successors and predecessors exist. The main idea is then to scan
the list of items with a pointer p and perform local substitutions according
to the contexts, if possible. If the current item is of type NM, it is skipped.
If it is a matching item, we consider 5 disjoint cases.

1. Case 1: The item pointed to by p is surrounded by NM items. In this
case, all 3 elements can be merged into one, if appropriate, that is, if
size(p)< 2F E.

2. Case 2: The item pointed to by p is preceded by an NM item (and
since it is a disjoint case from Case 1, there is no need to check that
the element is followed by an M item); it can then be merged into the
preceding item, if appropriate. Note that if several consecutive items
can be merged, this is dealt with in the following iterations.

3. Case 3: The item pointed to by p is followed by an NM item (and
therefore preceded by an M item); this case is symmetric to Case 2 .

4. Case 4: The item pointed to by p is surrounded by M items. We then
check whether two M items can be merged into one NM item. Longer
chains of M items are considered in the following iterations, though
then in Case 3.

5. Case 5: No substitution is possible, just advance p to its successor.

The four first cases are schematically represented in Figure 2, where as
before, NM items appear in grey and M items in white. As part of the
actions to be performed in each case, the pointer p has to be repositioned.
In the first 2 cases, p will point to the item following the newly merged block,

8

p ←− succ(TOP)
while succ(p) ̸= REAR

if status(p) ̸= M then
p ←− succ(p)

else

if status(prev(p)) = NM and status(succ(p)) = NM
and size(p) < 2 F E then

// Case 1
q ←− prev(p)
size(q) ←− size(q) + size(p) + size(succ(p))
data(q) ←− data(q) ∥ DATA(p) ∥ data(succ(p))
q ←− succ(succ(p))
delete (p) and succ(p) from L
p ←− q

else if status(prev(p)) = NM and size(p) < F E then
// Case 2

q ←− prev(p)
size(q) ←− size(q) + size(p)
data(q) ←− data(q) ∥ DATA(p)
q ←− succ(p)
delete (p) from L
p ←− q

else if status(succ(p)) = NM and size(p) < F E then
// Case 3

q ←− succ(p)
size(q) ←− size(q) + size(p)
data(q) ←− DATA(p) ∥ data(q)
q ←− prev(p)
delete (p) from L
p ←− q

else if status(prev(p)) ̸= NM and status(succ(succ(p))) ̸= NM
and size(p) + size(succ(p)) < F E then

// Case 4
status(p) ←− NM
size(p) ←− size(p) + size(succ(p))
data(p) ←− DATA(p) ∥ data(succ(p))
delete succ(p) from L
p ←− prev(p)

else
p ←− succ(p)

Figure 3: Linear sub-optimal algorithm

9

so the next iteration will take us to Case 2, and in the last 2 cases, p will
point to the item preceding the newly merged block, so the next iteration
will take us to Case 3.

It therefore follows that the main pointer of the procedure may also move
backwards, which could result in an unbounded number of iterations. But
in each iteration, either the pointer is advanced by one step, or the overall
number of items is reduced by one, which bounds the global complexity to be
at most 2n iterations, each requiring O(1) commands. Note, however, that
this solution is not necessarily optimal, as sequences of consecutive blocks
are substituted greedily by pairs. It may happen that 3 consecutive M items
could be merged, but considered as two pairs, none of them will result in
a substitution. The formal algorithm is given in Figure 3. The operator ∥
denotes concatenation.

At the end, the linked list contains all the necessary information on
the partition. In particular, the original data can be reconstructed by the
following sequential scan:

p ←− succ(TOP)
while (p) ̸= REAR

if status(p) = NM then output data(p)
else output DATA(p)

4. Optimal solution of the partition problem

We now turn to an optimal solution of the partition problem. The solu-
tion will be applied individually on each sequence of consecutive M-items,
surrounded on both ends by NM-items, since these cannot be altered, and
the only possible transformation is to declare matching blocks as if they were
non-matching. Therefore the originally given NM-items will appear also in
the final optimal solution, so we can concentrate on each sub-part on its
own. Consider then the (matching) elements as indexed 1, 2, . . . , n, and the
non-matching delimiters as indexed 0 and n+ 1.

Notation: we shall return the required partition in the form of a bit-
string of length n, with the bit in position i being set to 1 if the i-th element
should be of type NM, and set to 0 if the i-th element should be of type M.
This notation implies immediately that the number of possible solutions is
2n, so that an exhaustive search of this exponential number of alternatives
is ruled out.

The basis for a non-exponential solution is the fact that the optimal
partition can be split into sub-parts, each of which has to be optimal for the

10

corresponding subranges. We can thus get the solution for a given range
by trying all the possible splits into, say, two sub-parts. Such recursive
definitions call for resolving them by means of dynamic programming [4].
The tricky part here is that the optimal solution for the range (i, j), might
depend on whether its bordering elements, indexed i − 1 and j + 1, are
of type matching or non-matching, so the optimal solution for range (i, j)
might depend on the optimal solution on the neighboring ranges.

The optimal partition will thus be built by means of a two-dimensional
dynamic programming table C[i, j], and the optimal partition will be stored
in a similar table PS, so that PS[i, j] holds the optimal partition for the
given parameters, which is a bit-string of length j − i + 1. For 1 ≤ i ≤
j ≤ n, we define C[i, j] as the global cost of the optimal partition of the
sub-sequence of elements i, i+1, . . . , j−1, j, when the surrounding elements
i− 1 and j + 1 are of type NM. This cost will be given in bytes and reflects
the size of the data on disk for NM-items, plus the size of the meta-data
for all the elements, using the equivalence factor explained above, that is,
each meta-data entry incurs a cost of FE bytes. Once the table is filled
up, the cost of the optimal solution we seek is stored in C[1, n] and the
corresponding partition is given in PS[1, n].

The basis of the calculation will be the individual items themselves stored
in the main diagonal of the matrix, C[i, i] for 1 ≤ i ≤ n, as well as the
elements just below the diagonal, C[i, i − 1]. The following iterations will
then be ordered by increasing difference between i and j. We shall thus
first deal with all sequences of two adjacent elements, then 3, etc. When
calculating the optimal solution for a sequence of ℓ adjacent elements, we
can use our knowledge of the optimal solutions for all shorter sub-sequences.
If fact, for a sequence of length ℓ = j− i+1, we only need to check the sum
of the costs of all possible partitions of this range into two subranges, that
is the cost for (i, k − 1) plus that of (k + 1, j) for i < k < j. We initialize
the cost for each subrange by the possibility of leaving all the n elements of
type matching.

More specifically, the formal algorithm is given in Figure 4 and the line
numbers below refer to this figure. Lines 1 and 3 initialize the table for
ranges of size 0, that is, of type [i + 1, i], giving them a cost 0. The corre-
sponding bit-strings are Λ, which denotes the empty string. Lines 4–7 deal
with singletons of type [i, i]. Since we assume that the surrounding elements
are both of type NM, we have to compare the size s(i) of the matching ele-
ment with the cost of defining it as non-matching, and letting it be absorbed
by the neighboring NM items. In that case, two elements of the meta-data
can be saved, which is checked in line 4.

11

1 C[n+ 1, n] ←− 0 PS[n+ 1, n] ←− Λ
2 for i ←− 1 to n
3 C[i, i− 1] ←− 0 PS[i, i− 1] ←− Λ
4 if s(i)− FE < FE then
5 C[i, i] ←− s(i)− FE PS[i, i] ←− ’1’
6 else
7 C[i, i] ←− FE PS[i, i] ←− ’0’
8 end for i

9 for diff ←− 1 to n− 1
10 for i ←− 1 to n− diff
11 j ←− i+ diff
12 C[i, j] ←− (diff+ 1)FE
13 PS[i, j] ←− ’000· · ·0’ //(length diff+ 1)

14 OK ←− 0
15 for k ←− i to j
16 if k = j then L ←− 1 else L ←− left(PS[k + 1, j])
17 if k = i then R ←− 1 else R ←− right(PS[i, k − 1])

18 newcost ←− C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE
19 if newcost < C[i, j]
20 C[i, j] ←− newcost
21 OK ←− k
22 end for k

23 if OK > 0 then
24 PS[i, j] ←− PS[i, OK − 1] ∥ ′1′ ∥ PS[OK + 1, j]
25 end for i
26 end for diff

Figure 4: Optimal algorithm

12

The main loop starts then on line 9. The table is filled primarily by
diagonals, each corresponding to a constant difference diff = j − i, and
within each diagonal, by increasing i. Line 11 redefines j just for notational
convenience.

In lines 12–13, the table entries are given default values, corresponding
to the extreme case of all diff+1 elements in the range between and including
i and j remaining matching as initially given in the input. This corresponds
to a bitstring of diff+1 zeroes ‘000· · ·0’ in PS. As to the cost of the default
partition, we have to store diff + 1 meta data blocks, at the total price of
(diff+ 1)FE.

After having initialized the table, the loop starting in line 15 tries to
partition the range (i, j) into two sub-pieces. The idea is to consider two
possibilities for the optimal partition of the range [i, j]: either all the diff+1
elements should remain matching, as we assume in the default setting ini-
tializing the C[i, j] value in line 12, or there is at least one element k, with
i ≤ k ≤ j, which in the optimal partition should be turned into an NM-
element. The optimal solution is then obtained by solving the problem
recursively on the remaining sub-ranges (i, k−1) and (k+1, j). The advan-
tage of this definition is that the surrounding elements of the sub-ranges,
i − 1 and k for (i, k − 1), and k and j + 1 for (i, k − 1), are again both of
type NM, so the same table C can be used.

 i j k k+1

L R

k-1

Figure 5: Schematic representation of a partition of a sub-range

However, to combine the optimal solutions of the sub-ranges into an op-
timal solution for the entire range, one needs to know whether the elements
adjacent to the separating element indexed k are of type M or NM. For if one
or both of them are NM, they can be merged with the separating element
itself, so the meta-data decreases by one or two elements, reducing the price
by FE or 2FE. Let L denote type, 0 or 1, corresponding to M or NM,
of the leftmost element of the right range [k + 1, j], and R the type of the
rightmost element of the left range [i, k − 1]. These values are assigned in
lines 16–17, including extremal values. The functions left(B) and right(B)
return, respectively, the leftmost and rightmost bit of a given bitstring B.
The general case is depicted in Figure 5. We thus need a function f(L,R),

13

giving the number of additional meta-data elements needed as function of
the type of the bordering elements, L and R. This function should give val-
ues according to Table 1. A possible function is thus f(L,R) = 1− L− R,
which explains the definition of the newcost in line 18.

L R f(L,R)

1 1 -1
0 1 0
1 0 0
0 0 1

Table 1: Values for f(L,R)

We check the sum of the costs of the optimal solutions of the sub-
problems plus the cost of the separating element, and keep the smallest
such sum, over all the possible partition points k, in the table entry C[i, j].
In other words,

C[i, j]← min


(diff+ 1)FE,

min
i≤k≤j

(C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE) .

OK stores the value of k for which the optimal partition has been found, i.e.,
that with minimum cost. If the default value has been changed, the optimal
solution, expressed as a bitstring of length diff + 1, is obtained in line 24
by concatenating the bitstrings corresponding to the optimal solutions of
the subranges and between them the string ′1′ corresponding to the element
indexed k.

The complexity of evaluating the table is dominated by the loops starting
at line 9. There are three nested loops, and the loop on k goes from i to
j − 1 = i+ diff− 1, so it is executed diff times for each possible value of diff
and i. The total number of iterations is therefore

n−1∑
i=1

i(n− i) =

[
n
n(n− 1)

2
− (n− 1)n(2n− 1)

6

]
=

1

6
(n3 − n).

Such a cubic number of iterations might be prohibitive, even though
the coefficient of n3 is at most 0.17. Recall that n, the input parameter of
the number of consecutive blocks dealt with in each call to the program for
the optimal partition, is the number of consecutive matching items between
two non-matching ones. In terms of our bit-string notation: the result of

14

applying the deduplication algorithm of a large input chunk is a sequence
of matching or non-matching items, which we denoted by a bit-string of the
form, e.g., 1001000101110000000100. . .. The optimal partition algorithm is
then invoked for each of the 0-bit runs, which, on the given example, are of
lengths 2, 3, 1, 0, 0, 7, etc. There is of course no need to call the procedure
when n = 0.

5. Improvements

5.1. Reducing the time complexity

If certain values of n are too large, one may try to reduce the complexity
a priori by applying a preliminary filtering heuristic that will not impair the
optimal solution. For example, one could consider the maximal possible gain
from declaring a matching item (0) to be non-matching (1). This happens if
the two adjacent blocks are non-matching themselves, and then all 3 items
could be merged into a single one. The savings would then be equivalent
to 2FE bytes, which have to be counterbalanced by the loss of s(i) bytes
that are not referenced anymore, so have to be stored explicitly. Thus, if
s(i) > 2FE, the ith M-element will surely not be transformed into an NM-
element. It follows that s(i) > 2FE is a sufficient condition for keeping the
value of the ith bit in the optimal partition as 0.

The heuristic will then scan all the input items and check this condi-
tion for each 0-item. If the condition holds, the element can be declared to
remain of type 0, which partitions the rest of the elements into two parts.
For example, if the middle element of n is thereby declared as keeping its
0-status, we have split the n elements into two parts of size n/2 each, so
the complexity is reduced from 1

6n
3 to 21

6

(
n
2

)3
= 1

24n
3. Returning to the

example bit-string above 1001000101110000000100. . ., if the boldfaced el-
ements are those fixed by the heuristic in their 0-status, the algorithm will
be invoked with lengths 1, 1, 1, 1, 3, 2, etc. Theoretically, the worst case
didn’t change, even after applying this heuristic, but in practice, the largest
values of n might be much smaller.

There remains a technical problem: the optimal partition evaluated in
C[i, j] is based on the assumption that the surrounding elements i− 1 and
j+1 were of type 1, and if the above heuristic is applied, this assumption is
not necessarily true. Two approaches are possible to confront this problem.
We could use the value of C[i, j] and the corresponding partition in PS[i, j]
and adapt it locally to the cases if one of the surrounding elements is 0. For
example, if the rightmost bit in PS[i, j] is 0, and bit j +1 is also 0, then no
adaptation is needed; but if the rightmost bit in PS[i, j] is 1, and bit j+1 is

15

0, then the optimal value C[i, j] took into account that elements j and j+1
were merged, which is not true in our case, so the value of C[i, j] has to be
increased by one meta-data element, that is by FE. A similar adaptation
is needed for the left extremity, element i − 1. Such an adaptation is not
necessary optimal, since it might be possible that, had we known that the
surrounding elements are not both 1, an altogether different solution will be
optimal.

As a second approach, we could extend the definitions of the C[i, j] and
PS[i, j] tables to be 4-dimensional, with C[i, j, L,R] being the cost of the
optimal partition of the elements i, i + 1, . . . , j, under the assumption that
the bordering elements i − 1 and j + 1 are of type L and R, respectively,
where L,R ∈ {0, 1}. Similarly, PS[i, j, L,R] will hold the optimal partition
for the given parameters. There are only four possibilities for L and R:
LR ∈ {00, 01, 10, 11}, and the total size of each table is therefore only 2n2.

As above, one tries to partition the range (i, j) into two pieces, just
without a separating element as before. The ranges will be (i, k) and (k +
1, j), for some i ≤ k < j. L and R still denote the elements to the left of i
and to the right of j, respectively, but we also need the bordering elements
of the subranges, which again can be of type M or NM, denoted by 0 or 1,
respectively. We therefore need to iterate on the possible internal left and
right values IL and IR. It might be easiest to understand the notation by
referring to the schema in Figure 7. The left subrange, (i, k), is delimited on
its left by L and on its right by IL, whereas the right subrange, (k + 1, j),
is delimited on its left by IR and on its right by R. The notation thus
refers each bordering element to the position of the corresponding subrange,
rather than to its own position, which is why IL appears in the figure to
the right of IR.

Iterating on the four possibilities for (IL, IR), we have to check for
consistency. Suppose, for example, that we consider IL = 0. That means
that we are looking for the optimal partition of the left range (i, k), under
the condition that the bordering elements are L and IL = 0. But we have
also to check that the complementing optimal solution of the right range
(k + 1, j) is such that its leftmost bit is indeed 0. A similar consistency
check verifies that the optimal solution for the right range (k+1, j) is taken
for the given value of IR and that indeed, the rightmost bit of the string
corresponding to the left range (i, k) is consistent with this IR value. If
there is consistency, we check the sum of the costs of the optimal solutions
of the sub-problems, and keep the smallest such sum, over all the possible
partition points k. If there is no consistency for any k, the default value of
keeping all bits as 0 is chosen. We omit here the formal algorithm and the

16

1 for LR ∈ {00, 01, 10, 11}
2 C[n+ 1, n, L,R] ←− 0 PS[n+ 1, n, L,R] ←− Λ

3 for i ←− 1 to n
4 for LR ∈ {00, 01, 10, 11}
5 C[i, i− 1, L,R] ←− 0 PS[i, i− 1, L,R] ←− Λ

6 C[i, i, 0, 0] ←− FE PS[i, i, 0, 0] ←− ’0’

7 if s(i) < FE then
8 C[i, i, 0, 1] ←− s(i) PS[i, i, 0, 1] ←− ’1’
9 C[i, i, 1, 0] ←− s(i) PS[i, i, 1, 0] ←− ’1’
10 else
11 C[i, i, 0, 1] ←− FE PS[i, i, 0, 1] ←− ’0’
12 C[i, i, 1, 0] ←− FE PS[i, i, 1, 0] ←− ’0’

13 if s(i)− FE < FE then
14 C[i, i, 1, 1] ←− s(i)− FE PS[i, i, 1, 1] ←− ’1’
15 else
16 C[i, i, 1, 1] ←− FE PS[i, i, 1, 1] ←− ’0’
17 end for i

18 for diff ←− 1 to n− 1
19 for i ←− 1 to n− diff
20 j ←− i+ diff

21 for LR ∈ {00, 01, 10, 11}
22 C[i, j, L,R] ←− (diff+ 1)FE
23 PS[i, j, L,R] ←− ’000· · ·0’ //(length diff+ 1)

24 OK ←− 0
25 for k ←− i to j − 1
26 for IL IR ∈ {00, 01, 10, 11}
27 if left(PS[k + 1, j, IR,R]) = IL and right(PS[i, k, L, IL]) = IR

28 newcost ←− C[i, k, L, IL] + C[k + 1, j, IR,R]− (IL× IR)FE
29 if newcost < C[i, j, L,R]
30 C[i, j, L,R] ←− newcost
31 OK ←− k OL ←− IL OR ←− IR
32 end for IL IR
33 end for k

34 if OK > 0 then
35 PS[i, j, L,R] ←− PS[i, OK,L,OL] ∥ PS[OK + 1, j, OR,R]
36 end for LR
37 end for i
38 end for diff

Figure 4a: New Optimal algorithm

17

1 C[n+ 1, n] ←− 0 LT [n+ 1, n] ←− 1 RT [n+ 1, n] ←− 1
2 for i ←− 1 to n
3 C[i, i− 1] ←− 0 LT [i, i− 1] ←− 1 RT [i, i− 1] ←− 1
4 if s(i)− FE < FE then
5 C[i, i] ←− s(i)− FE S[i, i] ←− i
6 LT [i, i] ←− 1 RT [i, i] ←− 1
7 else
8 C[i, i] ←− FE
9 LT [i, i] ←− 0 RT [i, i] ←− 0
10 end for i

11 for diff ←− 1 to n− 1
12 for i ←− 1 to n− diff
13 j ←− i+ diff
14 C[i, j] ←− (diff+ 1)FE
15 LT [i, j] ←− 0 RT [i, j] ←− 0

16 OK ←− 0
17 for k ←− i to j
18 L ←− LT [k + 1, j]
19 R ←− RT [i, k − 1]

20 newcost ←− C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE

21 if newcost < C[i, j]
22 C[i, j] ←− newcost
23 OK ←− k
24 end for k

25 S[i, j] ←− OK

26 if OK > 0 then
27 LT [i, j] ←− LT [i, OK − 1] RT [i, j] ←− RT [OK + 1, j]
28 end for i
29 end for diff

Figure 6: Optimal algorithm with reduced space complexity

18

i j k k+1

L R IL IR

right(PS[i,k,L,IL]) left(PS[k+1,j,IR,R])

Figure 7: Schematic representation of an alternative partition of a
sub-range

details.

5.2. Reducing the space complexity

While the time complexity is θ(n3), the C[i, j] table needs only n2 space.
But the strings stored in the PS[i, j] table are of length j − i + 1, so that
the space for PS[i, j] is also θ(n3). We can reduce this and store only O(1)
for each entry at the cost of not giving the optimal partition explicitly, but
providing enough information for the optimal partition to be built in linear
time, similarly to what has been done in [5].

The key to this reduction is storing in PS[i, j] (which we call now S[i, j]
to avoid confusions) not the string itself, but the value OK at which the
range [i, j] has been split in an optimal way (line 27), or leaving it undefined,
if no such value OK exists. Since the string PS[i, j] served also to provide
information on its extremal elements (left and right in lines 16 and 17 of the
algorithm in Figure 4), these elements have now to be saved in tables LT
and RT on their own. The updated algorithm is given in Figure 6.

To build the optimal solution, we initialize a vector A with n zeros, and
then change selected values according to the values in the S[i, j] matrix,
using the recursive procedure Fill Sol, given in Figure 8. It will be invoked by
Fill Sol(A, 1, n). The total running time of the recursion is clearly bounded
by n.

6. Conclusion

References

[1] Aronovich L., Asher R., Bachmat E., Bitner H., Hirsch M.,
Klein S.T., The Design of a Similarity Based Deduplication System,
Proc. SYSTOR’09 , Haifa, (2009) 1–14.

19

1 Fill Sol(A, i, j)
2 if j ≥ i and S[i, j] is defined
3 k ←− S[i, j]
4 A[k] ←− 1
5 Fill Sol(A, i, k − 1)
6 Fill Sol(A, k + 1, j)

Figure 8: Construction of the optimal solution

[2] Aronovich L., Asher R., Harnik D., Hirsch M., Klein S.T.,
Toaff Y., Similarity based Deduplication with small data chunks,
Proc. Prague Stringology Conference PSC–2012 , Prague, (2012) 3–
17.

[3] http://corpus.canterbury.ac.nz/

[4] Cormen T.H., Leiserson C.E., Rivest R.L., Introduction to Al-
gorithms, MIT Press, 1990.

[5] Klein S.T., On the Use of Negation in Boolean IR Queries, Informa-
tion Processing & Management 45 (2009) 298–311.

[6] Quinlan S., Dorward S., Venti: A New Approach to Archival Stor-
age, Proceedings of FAST’02, the 1st USENIX Conference on File and
Storage Technologies , Monterey, CA (2002) 89–101.

[7] Zhu B., Li K., Patterson H., Avoiding the Disk Bottleneck in the
Data Domain Deduplication File System, Proceedings of FAST’08, the
6th USENIX Conference on File and Storage Technologies, San Jose,
CA (2008) 279–292.

[8] Ziv J., Lempel A., A Universal Algorithm for sequential data com-
pression, IEEE Trans. on Information Theory 23 (1977) 337–343.

20

