Practical Fixed Length Lempel Ziv Coding*

Shmuel T. Klein®, Dana Shapira®
“Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Dept. of Computer Science, Ashkelon Academic College, Ashkelon 78211, Israel
shapird@ash-college.ac.il

Abstract

We explore the possibility of transforming the standard encodings of the
main LZ methods to be of fixed length, without reverting to the originally
suggested encodings. This has the advantage of allowing easier processing
and giving more robustness against errors, while only marginally reducing
the compression efficiency in certain cases.

Keywords: Lempel-Ziv, fixed length encoding, compression

1. Introduction and Motivation

Most courses dealing with Data Compression or Information Theory in-
troduce at some stage the notion of coding. The most straightforward way
to encode data is by using a fixed length code, such as the standard ASCII or
EBCDIC, but to get also some compression gain, the codewords have to be
of variable length. Indeed, the idea of assigning shorter codewords to items
which appear with higher probability has been a main ingredient of some
basic compression approaches belonging to the family of statistical encoders,
such as Huffman coding. Huffman coding is optimal once the probabilities of
the items to be encoded are given, and under the constraint that an integral
number of bits should be used for the encoding of each element. But the
use of variable length coding has its price:

e The manipulation of variable length codewords, which are thus not
always byte aligned, is much more involved, requiring algorithms that

*This is an extended version of a paper that has been presented at the Prague Stringol-
ogy Conference (PSC’10) in 2010, and appeared in its Proceedings, 116-126.

Preprint submitted to Discrete Applied Mathematics June 16, 2013

are more complicated and usually also more time consuming. While
increased time might be acceptable in certain applications for the en-
coding, the decoding is often required to be very fast, and fixed length
codes can contribute to this goal.

e The compressed text is more vulnerable to transmission errors.

As alternative to the statistical approach to data compression, there
is the family of dictionary based techniques, featuring some of the most
popular compression algorithms, many of which are based on the works of
J. Ziv and A. Lempel. Compression is obtained by replacing parts of the
text to be compressed by (shorter) pointers to elements in some dictionary.
The ingenious innovation of the LZ methods was to define the dictionary
as the text itself, using pointers of the form (offset, length) in the variant
known as LZ77 [18], or using a dynamically built dictionary consisting of
the strings not encountered so far in the text for the method known as LZ78
[19].

The original Lempel-Ziv algorithms suggested to produce pointers and
single characters in strict alternation and thereby enabled the use of a fixed
length encoding for the (offset, length, character) items of LZ77 or the
(pointer, character) items of LZ78. Later and more efficient implementa-
tions then removed the requirement for strict alternation by adding flag-
bits, as in [12] for LZ77, or by including the single characters within the
dictionary elements, as in [16] for LZ78. This paved the way to using vari-
able length encodings also in this setting. The variable length improved the
compression, but suffered from the problems mentioned above.

Another disadvantage of variable length codes is that direct search in the
compressed file is not always possible, and even if it is, it might be slower
than in the case of fixed length encodings. In the case of LZ schemes, even
the processing of fixed length encodings might be problematic, as will be
explained below.

These deficiencies of variable length codes have led recently to the inves-
tigation of several alternatives. It was first suggested to trade the optimal
compression of binary Huffman codes with a faster to process 256-ary vari-
ant. The resulting codewords have lengths which are multiples of 8, so
consist of 1, 2 or more bytes, and for large enough alphabets, the loss in
compression efficiency is of the order of only a few percent [11], and may
often be tolerated. The problem of getting large enough alphabets for the
method to be worthwhile was overcome, on natural text files, by defining
the elements of the “alphabet” to be encoded as the different words of the
database, instead of just the different characters [10].

A further step was then to use a fized set of codewords, rather than
one which has to be derived according to the given probability distribution
as for Huffman codes, still adhering to the main idea of variable length
codes with codeword lengths that are multiples of bytes [3, 2]. Another
tradeoff with better compression but slower processing can be obtained by
the use of Fibonacci codes [5]. Both (s, c) codes and Fibonacci codes have
the additional advantage of lending themselves to searches directly in the
compressed file. Finally, at the other end of the spectrum, one may advocate
again the use of fixed length codes, achieving compression by using variable
length for the strings to be encoded instead for the codewords themselves
[14, 8].

We now turn to the investigation of how to adapt Lempel and Ziv codes
to fit into a framework of fixed length codes without reverting to the original
encodings based on alternating pointers and characters, yielding some of the
above mentioned advantages. The new variants are presented in the next
section, and some experimental results are given in Section 3.

2. Fixed length LZ codes

The two main approaches suggested by Lempel and Ziv have generated
a myriad of variants. We shall more specifically refer to LZSS [12] as repre-
sentative of the LZ77 family, and to LZW [16] for LZ78.

2.1. Fixed length LZSS

LZ77 produces an output consisting of a strictly alternating sequence of
single characters and pointers, but no external dictionary is involved and
the pointers, coded as (offset, length) pairs, refer to the previously scanned
text itself. LZSS suggests to replace strict alternation by a set of flag-bits
indicating whether the next element is a single character or an (offset, length)
pair. A simple implementation, like in LZRW1 [17], uses 8 bits to encode
a character, 12 bits for the offset and 4 bits for the length. Excluding the
flag-bits, we thus get codewords of lengths 8 or 16. Though variable length,
it still keeps byte alignment, by processing the flag bits by blocks of 16.

One of the challenges of LZ77 is the way to locate the longest matching
previously occurring substring. Various techniques have been suggested,
approximating the requested longest match by means of trees or hashing as
in [17]. In many cases, fixed length codes are preferred in a setting in which
encoding and decoding are not considered to be symmetric tasks: encoding
might be done only once, e.g., during the construction of a large textual
database, so the time spent on compression is not really relevant. On the

other hand, decompression is requested every time the database is being
accessed and ought therefore to be extremely fast. For such cases, there is
no need to use hashing or other fast approximations for finding the longest
possible match, and one might find the true optimum by exhaustive search.
Given the limit on the encoding of the offset (12 bits), the size of the window
to be scanned is just 4K, but the scan has to be done for each position in
the text.

2.1.1. Encoding and decoding

A fast way to get a fixed length encoding is to set the length of the
shortest character sequence to be copied to 3 (rather than 2 in the original
algorithm); thus when looking for the longest previously occurring sequence
P which matches the sequence of characters C' starting at the current point
in the text, if the length of P is less than 3, we encode the first 2 characters of
C. In the original algorithm, if the length of P was less than 2, we encoded
only the first character of C'. The resulting encoding therefore uses only
16 bits elements, regardless of if they represent character pairs or (offset,
length) pairs. To efficiently deal also with the flag bits, one can use the
same technique as in [17], aggregating them into blocks of 16 elements each.
This is schematically represented in Figure 1, in which a 0-flag indicates a
character pair, and a 1-flag an (offset, length) pair. Decoding could then be
done by the simple procedure in Figure 2.

lo

—

flags

A

char char offset len

F1GURE 1: Building blocks for fixed length encoding for LZSS

2.1.2. Compression efficiency

At first sight, enforcing fixed length codewords seems quite wasteful with
the LZRW1 encoding scheme: the number of characters that are not encoded
as part of a pointer will increase, so the average length of a substring repre-
sented by a codeword, and thus the compression, will decrease. Moreover,
each such character actually adds a negative contribution to the compres-
sion, because the need of the flag bit: a single character is encoded by 9

7 <« 0
while not EOF
F[0--15] <— next 2 bytes
fori <«— O0tolb
if F'[i] =0 then
(T[j],T[j +1]) +— next 2 bytes
Jjo— j+2
else
z — next 2 bytes
off +— 1+ zmod 2"
len «— 3+ |z/2'2]
T{j -+ j+len—1] <— T[j—off -- j—off+len —1]
j ¢— j+len
end for
end while

FIGURE 2: Fixed length decoding for LZSS

bits in the original LZSS and by 8.5 bits in the fixed length variant, whereas
only 8 bits are needed in the uncompressed file.

If there is a sequence of characters encoded on their own in LZSS, and
the length ¢ of this sequence is odd and it is followed by a pointer (off, len),
with len > 2, one would need v(¢) = 9417 bits to encode them. This can be
replaced in the fixed length variant by (¢+ 1)/2 pairs of characters, followed
by the pointer (off, len—1), requiring f(¢) = 17 (“‘Tl + 1) bits. There is thus
a loss whenever ¢ < 17, and this will mostly be the case, as the probability
of having sequences of single characters of length longer than 17 in the
compressed text is extremely low: it would mean that the sequence contains
no substring of more than two characters which occurred earlier. In all our
experiments, the longest sequence of single characters was of length ¢ = 14.

A bound on the efficiency loss for this LZSS variant will thus be

100(f(6)/v() = 1)

percent, which is obtained in the extreme case when the entire file consists
of such substitutions. This is a decreasing function of £, so £ = 1 yields the
worst case bound, 30.7%.

On the other hand, the passage to fixed length encoding can even lead
to additional savings in certain cases. An extreme example would be an
LZSS encoded file in which all the sequences of single characters are of even
length. In the corresponding fixed length encoding, all the (off, len) pairs
would be kept, and the single characters could be partitioned into pairs, each
requiring only 17 bits for its encoding instead of 18 bits if encoded as two
9-bit characters. But the improvement can also originate from a different
parsing, as can be seen in the example in Figure 3.

File Text Size
Original bcdefbbcdabbcdefbb 18 bytes
variable LZSS bcdefb (6,3)a(54) (11,4) 15 bytes
fixed length bcdefb(6,3)ab(53)(11,4) 16 bytes
better fixed bcdefb(6,3)ab(11,7) 14 bytes

FiGURrE 3: Comparison of LZSS encodings

The first line brings a small example of a text of 18 characters and the
next line is its LZSS encoding using the LZRW1 scheme: it parses the text
into 10 elements, 7 single characters and 3 (off, len) pointers, for a total of
7 x 14 3 x 2 bytes +10 flag bits (rounded up to 2 bytes) = 15 bytes. The
third line shows a parsing which could be derived from the one above it, but
does not encode single characters, so that a (5,4) has to be replaced by a
b (5,3). There are now 7 elements in the parsing, 4 character pairs and 3
pointers, so they require already 14 bytes, to which one has to add the flags.
In fact, only 7 flag-bits are needed for this example, which would require just
one byte in the original LZRW1 encoding, but since we deal here with fixed
length, the flags are also consolidated into 2-byte blocks, so the minimum
to be added for the flags is 2 bytes, for a total of 16 bytes in this example.
We thus see that the passage to fixed length may cause a loss. The last line
shows that in this case, another parsing is possible, using only 6 codewords
for 4 character pairs and 2 (off, len) pointers, which yields 12 bytes plus the
flag bits, so a total of 14 bytes. This example shows that one may get a
strict improvement with fixed length encoding.

An encoding as in LZRW1 is of course not the only possibility for fixed
lengths, but the 16 bit units have been chosen because it is most convenient
to process the input by multiples of bytes. If one is willing to abandon
byte alignment, but still wants to keep fixed length, one could for example
define codewords of 18 bits and incorporate the flag bits into the codewords
themselves. The processing could be done by blocks of 18 bytes = 144 bits,
each block representing 8 consecutive 18 bit codewords. One could then use

13 bits for offsets of size 1 to 8192, and stay with 4 bits for copy lengths
between 3 and 18. Alternatively, the 18 bit codewords could be stored as
before in units of 2 bytes, considering the exceeding 2 bits as flag-bits, which
could be blocked for each set of 8 consecutive codewords.

|00|11|01| | l | | | flags
l L
L — l
[char char__| 000000001101 | len | 000000000101 | len |

FI1GURE 4: Building blocks for 18-bit fixed length encoding for LZSS

For a further refinement, note that only 17 of the 18 bits are used in
case of a character pair. For example, the second bit from the left could be
unused. To fully exploit the encoding possibilities, decide that this second
bit will be 0 when the following 16 bits represent a character pair; this frees
16 bits in the case the second bit is set to 1. One can then use these 16 bits for
(off, len) pairs as before in the 16-bit encoding for offsets from 1 to 4096, and
shift the range of the offsets encoded by the 18-bit codewords accordingly
to represent numbers between 4097 and 12288. The increased size of the
search window will lead to improved compression. In other words, the four
possibilities of the two bit-flags may be interpreted as: 00 for a character
pair, 01, 10 and 11 for (off, len) pairs, and more specifically, for 01, off will
be in the range [1:4096], for 10 in the range [4097:8192], and for 11 in the
range [8193:12288]. The actual value stored in the off field represents the
relative offset within the given range.

Figure 4 brings a small example. According to the flag bits, the first
two bytes of the lower part of the figure are recognized as representing a
character pair, in the next two bytes, the off field contains the number 13
(in binary), so it represents the offset 8193 + 13 = 8206, and the last two
bytes represent the offset 1 + 5 = 6.

The above methods are suitable for alphabets with up to 256 symbols.
For the general case of a byte aligned fixed length encoding of LZSS, consider
an alphabet X, of size |X|, and denote the size of a byte by B. We shall
adapt the encoding algorithm, the size W of the sliding window and the
maximum copy length L as follows. If log(|X|) = kB for some integer k,
choose W and L such that

logW +log L = kB, (1)

and use throughout codewords of fixed length k bytes. If log(|X|) is not a
multiple of B, let k = [log(|X|)/B]| and again use codewords of k bytes,

only that in this case, a codeword for a single character has r spare bits,
1 < r < B, which we shall use to accommodate the required flag bits. The
codewords for copy elements are still defined by equation (1).

The first element does not need a flag, as it must be a single character.
The r flags in codewords representing single characters refer to the following
r items that have not yet been assigned a flag. For example, if the second and
third elements in the compressed file are single characters, we have already
collected 2r flag bits, referring to the elements indexed 2,3,...,2r + 1. If at
some stage we run out of flag bits, a codeword consisting only of kB flags
is inserted. This may happen in the above example if the elements indexed
3,...,2r + 1 are all of type (offset, length). If there are many items
of type single character, this scheme might be wasteful, as a part of the
available flag bits will be superfluous, but in a typical scenario, after some
initialization phase, an LZSS encoded file consists almost exclusively of a
sequence of copy items, with only occasionally interspersed single characters.

2.1.83. Robustness

A major reason for the vulnerability of variable length codes to trans-
mission errors — a bit flip from 0 to 1 or 1 to 0, a bit getting lost or a
spurious bit being picked up — is that the error might not be locally re-
stricted. If one considers only changes in bit values, but assumes that there
are no bit insertions or deletions, then in the case of fixed length codes,
only a single codeword will be affected. But for variable length codes, a bit
flip might imply that the encoded text will now be parsed into codewords
of different lengths, and the error can then propagate indefinitely. Con-
sider, for example, the code {01,10,000,001,110,111} for the alphabet {A,
B, C, D, E, F}, respectively, and suppose the encoded text is EBBB-: - -BA =
110101010- - -1001. If the leftmost bit is flipped, the text will erroneously be
decoded as AAAA..-AD, which shows that a single bit error can affect an
unlimited number of consecutive codewords.

For the case in which the number of bits can also change, fixed length
codes might be the most vulnerable of all. An inserted or deleted bit will
cause a shift in the decoding, and all the codeword boundaries after the error
could be missed. In variable length encoded files, on the other hand, the
error might also spill over to a few consecutive other codewords, but there
is always also a chance that synchronization will be regained. This actually
happens often after a quite low number of codewords for Huffman codes [7],
a property which has several applications, see [9].

As to LZSS encoded texts, bit insertions or deletions are hazardous for
both the fixed and the original variable length variants. For bit flips, if they
occur in the encoding of a character, it will be changed into another one,

so the error will be local; if the bit flip occurs in an offset item, a wrong
sequence will be copied, but again, only a restricted range will (generally)
be affected; if the error is in a length item, a wrong number of characters
will be copied (yet starting from the correct location), which is equivalent to
inserting or deleting a few characters; if one of the flag bits is flipped, then
the text encoded by the original LZSS could be completely garbled, while
for the fixed length variant, no harm is done other than wrongly decoding a
codeword of one type as if it were of the other, since both types are encoded
by 16 bits.

There might be the danger of an unbounded propagation of the error
even in the case of a bit flip in an offset or length item: the wrong characters
could be referenced later by subsequent (off, len) pairs, which would again
cause the insertion of wrong characters, etc. Such a chain of dependent errors
is not unlikely in natural language texts: a rare word might be locally very
frequent, e.g., some proper name, and each occurrence could be encoded by
a reference to the preceding one. If there is an error in the first occurrence,
all the subsequent ones might be affected.

In fact, LZSS encodings are error prone on two accounts: because of
the variable lengths, (1) the parsing into codewords could be wrong, but
in addition, even if the parsing and thus the codewords are correct, (2)
their interpretation might suffer when previous errors caused an erroneous
reconstitution of the referenced text. Fixed length LZSS is robust against
the first type of error, but not against the second.

2.1.4. Compressed Pattern Matching

Given a pattern of size m and a compressed file of size n, Compressed
Pattern Matching is the problem of locating a pattern directly in the com-
pressed file without any decompression, in time proportional to the size of
the input. Performing pattern matching in LZSS compressed files is not
trivial, as the encoding of the same subpattern is not necessarily the same
throughout the file and depends also on its location. A variant of LZSS
that is suitable for compressed matching, replacing the backward by for-
ward pointing copy elements, has been suggested in [6], but the problems
remain essentially the same for fixed length as for variable length encodings.

2.2. Fixed length LZW

LZW is based on parsing the text into phrases belonging to a dictionary,
which is dynamically built during the parsing process itself. The output
of LZW consists of a sequence of pointers, and the size of the encoding
of the pointers is usually adapted to the growing dictionary: starting with

a dictionary of 512 entries (256 for a basic ASCII alphabet as the single
characters have to be included, and room for 256 additional items), one
uses 9-bit pointers to refer to its elements, until the dictionary fills up. At
that stage, the number of potential entries is doubled and the length of the
pointers is increased by 1. This procedure is repeated until the size of the
dictionary reaches some predetermined limit, say 64K with 16-bit pointers.
In principle, the dictionary could be extended even further, but erasing
it and starting over from scratch has the advantage of allowing improved
adaptation to dynamically changing texts, while only marginally hurting
the compression efficiency on many typical texts.

2.2.1. Encoding and decoding

A fixed length encoding variant of LZW could thus fix the size S of
the dictionary in advance and use throughout log.S bits for each of the
pointers. This would have almost no effect on the encoding and decoding
procedures, besides that there is no need to keep track of the number of
encoded elements, since their size does not change.

2.2.2. Compression efficiency

The exact loss incurred by passing from the variable to fixed length LZW
can be evaluated based on the fact that after each substring parsed from
the text, a new element is adjoined to the dictionary. Suppose we let the
dictionary grow up to a size of 2¥ entries. For the first 256 elements of the
encoded text, the loss of using fixed instead of variable length is 256(k — 9)
bits; for the next 512 elements, the loss is 512(k — 10), etc. The penultimate
block has 2¥=2 elements, for each of which only 1 bit is lost, and in the last
block, of 25~1 elements, there is no loss as the maximum of k bits are needed
anyway. The total loss in bits is thus

k—9 4
> ookl =9k — (k- 7)28 (2)
=1

The size of the fixed length compressed file at this stage is k times the total
number of encoded elements,

kkf 2 = k(28 — 28). (3)
=8

The relative loss, expressed as a fraction of the file size, is then the ratio
of (2) to (3), which is plotted in Figure 5. Typical values are about 6.05%

10

T 1 ((x-1)*2"%-75256)(x*2*x-x*256)

lzw-comp.txt" +

0.06 |

0.05

0.04 |

0.02 |

0.01

10 15 20 25 30
FIGURE 5: Fraction of loss by using fixed length LZW as function of codeword
length

for kK = 16 and 4.17% for k = 24, and in any case the loss does not exceed
6.463% (for k = 14).

For larger files, if the dictionary is rebuilt each time it reaches a size
of 2% elements, one may consider it as a sequence of blocks, each of which,
except perhaps the last, representing the encoding of 2* elements. The
overall relative loss would thus approach the values above for large enough
files. Another option, which can also be useful for the regular LZW, is to
consider the dictionary as constant once it fills up. This approach is actually
a good one when the file is homogeneous, like, e.g., some natural language
text. In that case, the relative loss of using fixed length codewords already
from the beginning, and not only after 2*~1 elements have been processed,
will decrease to zero with increasing file size.

2.2.3. Robustness

From the point of view of robustness to errors, fixed and variable length
LZW are identical. Note that a bit flip cannot change the length of one of
the codewords, even if those are of variable length, because the length is
determined by an external mechanism (the number of elements processed so
far) and does not depend on the value of the codeword itself. Therefore a bit
flip will not affect subsequent codewords, and the error seems at first sight to
be locally restricted. There might, however, be a snowball effect in case the
error occurs during the construction of the dictionary: a wrong bit implies

11

an erroneously decoded codeword, which may cause one or more wrong
codewords to be inserted into the dictionary; if these are later referenced,
they will cause even more such wrong insertions, and in the long run, the
text may become completely garbled.

If the dictionary is erased when it reaches 2% entries, such errors cannot
propagate beyond these new initialization points. On the other hand, if the
dictionary is considered as fixed once it reaches it limiting size, a bit flip
in the construction phase can cause considerable damage, but a bit error
occurring later will only destroy a single codeword.

2.2.4. Compressed Pattern Matching

The problem of Compressed Pattern Matching in LZW has been ad-
dressed in [1, 13]. After preprocessing the pattern, a so-called LZW trie
is built, and used to check at each stage whether the pattern has been
found. Since the algorithm requires the extraction of all the codewords for
building the trie, the difference between fixed and variable length encodings
depends on the number of accesses to the encoded file. One should distin-
guish between the efficient byte aligned operations and the more expensive
operations requiring bit manipulations. If the size of the dictionary is 28% for
some integer k, each codeword of the fixed length LZW encoding requires a
single byte oriented operation (by fetching k bytes at a time). However, the
codewords of the variable length LZW encoding require bit manipulations
in addition to byte extractions. Although the size of the compressed file in
fixed length LZW is larger than for variable length LZW, the compressed
matching algorithm depends on the number of codewords, which is identical
in the two schemes. Therefore, compressed pattern matching in fixed length
encoding is less time consuming than pattern matching in variable length
LZW.

Figure 6 gives a schematic view of the layout of LZW codewords in
the case of variable length. The lower part (b) shows the increase of the
codeword sizes from left to right, and the upper part (a) zooms in on the
subfile in which only 10-bit codewords are used. Solid lines refer to byte
boundaries and the broken lines to codeword boundaries. The appearance
of a broken line which does not overlap with a solid line indicates that
bit manipulations are required. In the case of fixed length encodings, the
codeword length can be chosen so as to minimize the bit specific operations,
whereas for the variable length encodings, the non-synchronization of the
byte and codeword boundaries can not be avoided.

12

10 20 30 40 50
I I
I I
I I
I I
| |

T
I
I
I
:
~.8 16 24 32 40 48

256 codaNofds 512 codewords ‘ 1024 codewords
I
I
I
I
I}

9 bits 10 bits 11 bits

(b)

FIGURE 6: Variable length LZW encoding

3. Experimental results

To empirically compare the compression efficiency, we chose the following
input files of different sizes and languages: the Bible (King James version) in
English, the French version of the European Union’s JOC corpus, a collection
of pairs of questions and answers on various topics used in the ARCADE
evaluation project [15], and the concatenated text of all the XML files of the
INEX database [4]. To get also alphabets of different sizes, the Bible text
was stripped of all punctuation signs, whereas the French text and the XML
file have not been altered.

File Size (MB) | gzip bzip2
Bible 2.96 0.279 0.205
JOC corpus 7.26 0.306 0.212
XML 494.7 0.278 0.202

TABLE 1: Test file statistics

Table 1 brings basic statistics on the files, their sizes in MB and some
measure of compressibility, in terms of bzip2 and gzip (run with parameter
-9) compression. All compression figures are given as the ratio between the
size of the compressed file to that of the uncompressed one. It should be
noted that we do not claim that the suggested fixed length variants are
competitive with state of the art compressors, but that the main point of
this work is a comparison between variable and fixed length encodings in LZ
methods. The numbers for gzip and bzip2 are thus only given as a reference
baseline. Their performance cannot be compared directly, since gzip also

13

applies an additional layer of Huffman coding, and bzip2 uses the Burrows-
Wheeler transform, an altogether different compression scheme.

Table 2 deals with LZSS and brings results for 16 and 18 bit codewords.
For 18 bits, the refinements mentioned in Section 2.1.2 have been used.
The columns headed hash refer to the approximate method of [17], in which
the matching substring is located by hashing character pairs. In our case,
we used a full table of 2'6 entries for each possible character pair; when a
previous occurrence was found, it was extended as much as possible. Much
better compression could be obtained by using an optimal variant, searching
the full addressable window for the longest match, the column headed fix
referring to the fixed length variant of Section 2.1, and the column headed
var to the original one using variable length. The column entitled loss shows
the relative loss in percent when using fixed length LZSS, which can be seen
to be low.

16 bit 18 bit
LZ55 hash fix var loss hash fix var loss
Bible 0.664 0.398 0.398 0.05% | 0.694 0.345 0.331 4.0%
JOC corpus | 0.732 0.452 0.451 0.42% | 0.760 0.388 0.372 4.1%
XML 0.637 0.412 0.409 0.65% | 0.655 0.357 0.340 4.8%

TABLE 2: Comparing fixed with variable length compression for LZSS

Table 3 is then the corresponding table for LZW, with dictionaries ad-
dressed by pointers of 12, 16 and 18 bits. The test files being homogeneous,
we used the variant building the dictionary until it fills up, and keeping
it constant thereafter. This explains why the loss incurred by using fixed
length is decreasing with the size of the input file.

LZW . 12 bit _ 16 bit _ 18 bit
fix var loss fix var loss fix var loss
Bible 0.444 0.444 0.02% | 0.341 0.339 0.75% | 0.313 0.303 3.35%
JocC corpus | 0.482 0.482 0.009% | 0.346 0.345 0.30% | 0.306 0.302 1.38%
XML 0.605 0.605 0.001% | 0.484 0.484 0.004% | 0.436 0.436 0.01%

TABLE 3: Comparing fixed with variable length compression for LZW

4. Conclusion

We saw that there is only a small increase in the size of the compressed
file when passing from the standard variable length LZ encodings to fixed

14

length variants. In many applications, it may thus be worthwhile to consider
this option, which gives some known advantages, like more robustness and
easier processing.

[1]

[2]

[12]

[13]

References

AMIR A., BENSON G., FARACH M., Let Sleeping Files Lie: Pattern Matching
in Z-compressed Files, Journal of Computer and System Sciences 52 299-307.

BrisaABOA N.R., FARINA A., NAVARRO G., ESTELLER M.F., (S, C)-dense
coding: an optimized compression code for natural language text databases,
Proc. SPIRE’03, LNCS 2857 (2003) 122-136.

BrisaBoA N.R., IcLESIAS E.L., NAVARRO G., PARAMA J.R., An efficient
compression code for text databases, Proc. ECIR’03, LNCS 2633 (2003) 468—
481.

Kaza1l G., GOVERT N., LaLMAS M., FuHR N., The INEX Evaluation Ini-
tiative, in Intelligent Search on XML data, LNCS 2818 (2003) 279-293.

KreIN S.T., KOoPEL BEN-NISSAN M., On the Usefulness of Fibonacci Com-
pression Codes, The Computer Journal 53 (2010) 701-716.

KreiN S.T., SHAPIRA D., A New Compression Method for Compressed
Matching, Proc. Data Compression Conference DCC-2000, Snowbird, Utah
(2000) 400-409.

KLEIN S.T., SHAPIRA D., Pattern matching in Huffman encoded texts, In-
formation Processing € Management 41(4) (2005) 829-841.

KrLEIN S.T., SHAPIRA D.; On improving Tunstall Codes, Information Pro-
cessing & Management 47(5) (2011) 777-785.

KrLeEIN S.T., WIiSEMAN Y., Parallel Huffman Decoding with Applications to
JPEG Files, The Computer Journal 46(5) (2003) 487-497.

MOoFFAT A. Word-based text compression, Software — Practice & Experience,
19 (1989) 185-198.

DE MOURA E.S., NAVARRO G., ZIVIANI N., BAEZA-YATES R., Fast and flex-
ible word searching on compressed text, ACM Trans. on Information Systems,
18 (2000) 113-139.

STORER J.A., SZyMANSKI T.G., Data Compression Via Textual Substitu-
tion, Journal of the ACM, 29(4) (1982) 928-951.

Tao T., MUKHERJEE A., Pattern Matching in LZW Compressed Files, IEEFE
Transactions on Computers, 54(8)(2005), 929-938.

15

[14]

[15]

[16]

[17]

TUNSTALL B.P., Synthesis of noiseless compression codes, PhD dissertation,
Georgia Institute of Technology, Atlanta, GA (1967).

VERONIS J., LANGLAIS P., Evaluation of parallel text alighment systems: The
ARCADE project, Parallel Text Processing, J. Véronis, ed., Kluwer Academic
Publishers, Dordrecht, (2000) 369-388.

WELCH T.A., A technique for high performance data compression, I[EEE
Computer 17 (1984) 8-19.

WiLLiaMS R.N., An extremely fast Ziv-Lempel data compression algorithm,
Proc. Data Compression Conference DCC-91, Snowbird, Utah (1991) 362-
371.

Ziv J., LEMPEL A., A Universal Algorithm for sequential data compression,
IEEE Trans. on Information Theory 23 (1977) 337-343.

Ziv J., LEMPEL A., Compression of individual sequence via variable rate
coding, IEEE Trans. on Information Theory 24 (1978) 530-536.

16

