
Improving Deduplication Techniques
by Accelerating Remainder Calculations∗

M. Hirscha, S.T. Kleinb, Y. Toaffa

aIBM – Diligent, Tel Aviv, Israel
{hirschm,yair.toaff}@il.ibm.com

bDepartment of Computer Science, Bar Ilan University, Ramat Gan, Israel
tomi@cs.biu.ac.il

Abstract

The time efficiency of many storage systems rely critically on the ability
to perform a large number of evaluations of certain hashing functions fast
enough. The remainder function B mod P , generally applied with a large
prime number P , is often used as a building block of such hashing functions,
which leads to the need of accelerating remainder evaluations, possibly us-
ing parallel processors. We suggest several improvements exploiting the
mathematical properties of the remainder function, leading to iterative or
hierarchical evaluations. Experimental results show a 2 to 5-fold increase in
the processing speed.

Keywords: Deduplication, Rabin-Karp, modular arithmetic, hierarchical
evaluation

1. Introduction

Large storage and backup systems can be compressed by means of dedu-
plication: the basic paradigm calls for locating recurrent sub-parts of the
text, and replacing them by pointers to previous occurrences. One family of
deduplication algorithms is known in the storage industry as CAS (Content
Addressed Storage) and based on assigning a hash value to each data block
[5, 1]. Such systems detect only identical blocks and are not suitable when
large block sizes are used. if one relaxes this requirement and searches also
for similar and not necessarily identical data, this may enable the use of
much larger data chunks, as in the IBM ProtecTIER(R) product [2]. This

∗This is an extended version of a paper that has been presented at the Prague Stringol-
ogy Conference (PSC’11) in 2011, and appeared in its Proceedings, 173–183.

Preprint submitted to Discrete Applied Mathematics December 19, 2012

system is based on the evaluation of a hash function for a large number of
strings, and most of these evaluations can be done in constant time because
adjacent strings overlap.

The constant time is based on the repeated evaluation of a so-called
rolling hash using the probabilistic pattern matching algorithm due to Karp
and Rabin [4]: given is a text of length n and a pattern of length m, a hash
function has to be applied on all the substrings of the text of length m.
A naive implementation would thus yield a θ(nm) time complexity, which
might be prohibitive. The rolling property of the hash exploits the fact that
adjacent substrings are overlapping in all but their first and last characters,
so that the hash of one substring can be calculated in constant time from
the hash value of the preceding one, reducing the complexity to O(n).

In a typical setting, a very large repository, say, of the order of 1 PB = 250

bytes, will be partitioned into chunks of fixed or variable size, for example of
(average) size 16 MB, to each of which one or more signatures are assigned.
The details of the deduplication algorithm are not relevant to our current
discussion and the interested reader is referred to [2]. The signature of a
chunk is usually some function of the set of hash values produced for each
consecutive substring of k bytes within the chunk. The length k of these
substrings, which we call seeds, may be 512 or more, so that the evaluation
might put a serious burden on the processing time.

Given a chunk C = x1x2 · · ·xn, where the xi denote characters of an
alphabet Σ, we wish to apply the hash function h on the set of substrings
Bi of C of length k, Bi = xixi+1 · · ·xi+k−1 being the substring starting at
the i-th character of C. The constant time, however, for the evaluation
of Bi is based on the fact that one may use the value obtained earlier for
Bi−1, and this is obviously not true for the first value to be used. That is,
B1 needs an evaluation time proportional to k. For the example above, we
would get 226, that is, about 64 million chunks, for each of which we process
the first seed of size 512 bytes. This scenario is depicted in Figure 1, where
the chunks are separated by vertical bars, and the first seeds, for which the
signature has to be evaluated, appear as small black squares.

Figure 1: First seeds for every chunk of the repository

Moreover, in deduplication systems based on similarity rather than on
identity, once a chunk of the reference has been identified as being similar to
a chunk of the version, a more fine-grained comparison of the two is needed.
Figure 2 is a schematic representation of the following typical scenario: given
are two chunks which are already known to be similar, we need to identify

2

as many of their matching parts as possible. To this end, the reference is
partitioned into a sequence of non-overlapping seeds, and a hash value of
each of these seeds is evaluated and stored in a table HR. As to the version,
the hash value of every seed at every possible byte offset is calculated and
potential matches are located in HR. If a match is found, say, HV [i] =
HR[j], it is almost certain that the string vivi+1 · · · vi+k−1 is identical to
r(j−1)k+1r(j−1)k+2 · · · rjk, so the strings can be accessed and we shall try to
extend the match to the left and right of these seeds.

Since the rolling hash property does not apply to the seed-by-seed eval-
uations of the reference, each substring of size k requires a O(k) processing
time. The techniques in this paper are aimed at speeding up the initial-
ization and non-overlapping hashing operations using local parallelism, by
means of the availability of several processors.

HR[3]

. . .

. . .

HV[1]

HR[2]

HV[2]
HV[3]

HV[4]
HV[5] . . .

HR[1]
Reference

Version

Figure 2: Searching for matching parts in similar chunks

The hash function we consider in this work is the remainder function
modulo a prime number P , h(B) = B mod P , which is well known for yield-
ing close to uniform distributions on many real-life input distributions. We
interchangeably use B to denote a character string and the integer value
represented by the binary string obtained by concatenating the ascii code-
words of the characters forming B. For example, the string ABC would be
in ascii 010000010100001001000011, so we would identify the string with
the value 4,276,803. Two main improvements to the standard computation
of the modulus are suggested: the first constructs a hierarchical structure
enabling the use of several processors in parallel; the second exploits the
fact that the computation can be performed iteratively to speed it up by
calculating what we shall call pseudo-hashes.

2. Hierarchical evaluation of the remainder function

Consider the input string B partitioned into m subblocks of d bits each,
denoted A[0], . . . , A[m− 1], where m = 2r is a power of 2, and d is a small
integer, so that d bits can be processed as an indivisible unit, typically

3

d = 32 or 64. Given also is a large constant number P of length up to d
bits, that will serve as modulus. Typically, but not necessarily, P will be a
prime number, and for our application it is convenient to choose P close to
a power of 2. For example, one could use m = 64, d = 64 and P = 255− 55.
We would like to split the evaluation of B mod P so as to make use of the
possibility to evaluate functions of the A[i] in parallel on m independent
processors p0, p1, . . . , pm−1, which should yield a speedup. We have

B mod P =

(
m−1∑
i=0

A[i]× 2d(m−1−i)

)
mod P

Considering it as a polynomial (set x = 2d , then B =
∑m−1

j=0 A[m− 1−
j]xj), we can use Horner’s rule to evaluate it iteratively. We first need the
constant C defined by

C = 2d mod P.

Note then that if we have a string D of 2d bits and we want to evaluate
D = D mod P , then we can write D = D1 × 2d +D2, where D1 and D2 are
the leftmost, respectively rightmost d bits of D. We get that

D = D1 × 2d +D2 = D1 × C +D2.

Generalizing to m blocks of d bits each, we get the iterative procedure
of Figure 3.

Iterative evaluation of B mod P

R ←− 0
for i ←− 0 to m− 1 do

R ←− (R× C +A[i]) mod P (1)

Figure 3: Iterative evaluation of B mod P

A further improvement can then be obtained by passing to a hierarchical
tree structure and exploiting the parallelism repeatedly in logm layers, using
the m available processors. In Step 0, the m processors are used to evaluate
A[i] mod P , for 0 ≤ i < m, in parallel. This results in m residues, which
can be stored in the original place of the m blocks A[i] themselves, since P
is assumed to fit into d bits. For our example values of m, d and P , only 55
of the 64 bits would be used.

In Step 1, only m
2 processors are used (it will be convenient to use those

with even indices), and each of them works, in parallel, on two adjacent
blocks: p0 working on A[0] and A[1], p2 working on A[2] and A[3], and
generally p2k working on A[2k] and A[2k + 1], for k = 0, 1, . . . , m2 − 1. The
work to be performed by each of these processors is what has been described

4

earlier for the block D. Again, the results will be stored in-place, that is,
right-justified in 2d-bit blocks, of which only the rightmost d bits (or less,
depending on P), will be affected.

Hierarchical evaluation of B mod P

for k ←− 0 to m− 1 do
A[k] ←− A[k] mod P

for i ←− 1 to r do
for k ←− 0 to m

2i − 1 do
use processor p2ik to evaluate, in parallel,

A[2ik + 2i − 1]←−
(
A[2ik + 2i−1 − 1]× C[i] +A[2ik + 2i − 1]

)
mod P

Figure 4: Hierarchical parallel evaluation of B mod P

In Step 2, the m
4 processors whose indices are multiples of 4 are used, and

each of them is applied, in parallel, on two adjacent blocks of the previous
stage. That is, we should have applied now p0 on A[0]A[1] and A[2]A[3],
etc., but in fact we know that A[0] and A[2] contain only zeros, so we can
simplify and apply p0 on A[1] and A[3], and in parallel p4 on A[5] and A[7],
and generally, p4k working on A[4k+1] and A[4k+3], for k = 0, 1, . . . , m4 −1.
Again, the work to be performed by each of these processors is what has
been described earlier for the block D since we are combining two blocks,
with the difference that the new constant C should now be 22d mod P = C2.
The results will be stored right-justified in 4d-bit blocks, of which, as before,
only the rightmost d bits or less will be affected.

Continuing with further steps will yield a single operation after logm
iterations. Note that the overall work is not reduced by this hierarchical
approach, since the total number of applications of the procedure on block
pairs is m

2 + m
2 + · · · = m−1, just as for the sequential evaluation. However,

if we account only once for operations that are executed in parallel, the
number of evaluations is reduced to logm, which should result is a significant
speedup.

Summarizing, we first evaluate an array of constants

C[i] = C2i−1 = 2d×2i−1

to be used in step i for i = 1, 2, . . . ,m− 1. This is easily done noticing that
C[1] = C and C[i+1] = C[i]2 for i ≥ 1. The parallel procedure is then given
in Figure 4, and a schematic view of the evaluation layers can be found in
Figure 5.

5

. . .

. . .

. . .

. . .

. . .

Step 0

Step 1

Step 3

Step 2

Step log m

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[m-1]

0 1 2 3 4 5 6 7

1 3

3

5 7

7

7

m-1

m-1

m-1

m-1

m-1

Figure 5: Schematic representation of the hierarchical evaluation

3. Avoiding overflows

The algorithm as described above dealt with integers of d bits length.
We shall, for the ease of description, use the values d = 64 and P = 255−55
in the sequel, which correspond to real-life applications, but all the ideas
can easily be generalized to any other appropriate values. When two 64 bit
integers are multiplied as R × C in equation (3), even though the result is
sought modulo P , which is a 55-bit integer, one temporarily needs 128-bit
arithmetic, which yields a serious slowdown of the performance.

One might think that to circumvent this, it suffices to work with smaller
blocks, say, of d = 32 bits only. This will double the number of iterations,
but could still result in a gain, if during multiplications the 64 bit limit is
never exceeded. For the parallel implementation, the logarithmic number of
parallel steps would only increase by 1. However, reducing d does not yet
solve the problem, because R is a 55-bit integer, so when multiplied by the
updated constant C = 232 mod P = 232, we can get up to 87 bits. In order
to get all the integers in this evaluation to be of length at most 64 bits (the
maximum is reached when multiplying R × C), so that no special 128-bit
arithmetic would be needed, R has to be split and the modulus has to be
applied not only at the end of each iteration.

Note that while we now assume that d = 32, the values of R are still
stored in 64 bit integers. The way of splitting the 8 bytes representing R
will be into the 23 rightmost bits and the complementing 41 leftmost bits.
In fact, since the involved numbers are residues of modP , where P is a 55
bit prime, the number of least significant non-zero bits in the left part is

6

only 55− 23 = 32. The representation of R is therefore

R = RL × 223 +RR,

where RL are the 41 (in fact, only 32) leftmost and RR are the 23 rightmost
bits of R, so

R× C = R× 232 = RL × 255 +RR × 232,

and since 255 mod P = 255 mod (255 − 55) = 55, we get that

R× C +A[i] = RL × 55 +RR × 232 +A[i].

Revised iterative evaluation

R ←− 0
for i ←− 0 to m− 1 do

RL ←− R / 223

RR ←− R mod 223

R ←− RL × 55 +RR × 232 +A[i]
end-for
if R > P then

R ←− R− P
if R > P then

R ←− R− P

Figure 6: Iterative evaluation without mod

The algorithm for revised evaluation is given in Figure 6. Note that
the mod P operation within the loop has been removed, and replaced by
two mod operations following the loop. We thus call the intermediate val-
ues pseudo-remainders. The correctness of the procedure is based on the
following

Theorem: The value of R is smaller than 256, that is, fits into 56 bits, at the
end of each iteration.

Proof: By induction on i, the index of iteration. For i = 0, at the beginning
of the iteration, R and thus also RL and RR are 0. The value of R at the
end of iteration 0 is therefore A[0], which has only 32 bits, less than 56.

Suppose the assumption is true at the end of iteration i, and consider the
beginning of iteration i + 1. RR has at most 23 bits by definition, and RL

has at most 56− 23 = 33 bits by the inductive assumption. Hence RR× 232

is of length at most 55 bits, and so is RR×232+A[i], since the 32 rightmost
bits of RR × 232 are zero. The binary representation of 55 uses 6 bits, so
RL×55 is of length at most 33+6 = 39 bits. At the end of the iteration, the
length of R, obtained by adding a 39 bit number to a 55 bit number, must

7

therefore be at most 56, and this limit is achieved only if a carry propagates
beyond the leftmost bit of RR × 232.

It follows from the Theorem that there is no overflow if we remove the
repeated application of the modulo operator, and only perform a single (and
rarely, two) modulus at the end of the iteration. This is the purpose of the
last four lines. Since at the end, R < 256 = 2P + 110, the modulus can be
replaced by subtraction. If P ≤ R < 2P , then R mod P = R − P . For the
rare cases in which 2P ≤ R < 2P +110 (only 110 out of the possible almost
256 values of R), a second subtraction of P will be necessary.

To understand how all the mod operations within the iteration could be
saved, recall that our objective was to calculate B mod P . It would thus
suffice, mathematically speaking, to apply a single mod operation after hav-
ing calculated B, but in practice, such an evaluation is not feasible, because
we are dealing here with a m×d bit long number, which cannot be handled.
The classical solution, generally used in modular exponentiation algorithms
[6], is to exploit the properties of the modulo function, to repeatedly apply
the modulus to subparts of the formula, so as to never let the operands
on which the modulus has to be applied grow above the limit permitted
by the hardware at hand. For example, representing B as a polynomial
B =

∑m
j=1A[m− j]xj−1, where we have set x = 232, using Horner’s rule, we

get

B =

(
· · ·
((

A[0]x+A[1]
)
x+A[2]

)
x+ · · ·

)
x+A[m− 1],

where after each multiplication and addition, mod P is applied, so if we start
with d bit numbers, at no stage of the evaluation do we use numbers larger
than 2d bits. This was the approach in Section 2, and had as drawback
that such a large number of modulo applications is expensive. The current
suggestion reverts the process and removes again the internal modulo ap-
plications, but not entirely, since this would get us back to handling m× d
bit numbers. Rather, it removes only a part of the internal operations, but
leaves the cheap ones, basing ourselves on the fact that we work modulo a
prime which is very close to a power of 2, namely P = 255−55 in our exam-
ple, but one can find such primes for any given exponent, see [3]. We thus
get that 255 mod P = 55 in our case, an extremely small number relative to
P , which can be used to decompose blocks into adjacent subblocks at a low
price.

The algorithm presents a tradeoff between applying the remainder func-
tion only once (cheap but unfeasible because of the size of the numbers
involved), and applying it repeatedly in every iteration (resulting in small
numbers, but computationally expensive). We apply it only once (rarely

8

twice) at the end, but managed by an appropriate decomposition of the
numbers to remove the moduli and still force all the involved numbers to be
small.

Note that this technique can not be applied generally in situations where
the modulus is chosen as a large random prime number, as often done
in cryptographic applications, since it critically depends on the fact that
255 mod P is a small number. In our case, it uses only 6 bits, and the
Theorem would still hold for values needing up to 22 bits, in which case
RL× (255 mod P) is of length at most 33+22 = 55 bits. The sum of two 55
bit numbers would then still fit into the 56 bits claimed in the induction. But
for 23 bits, we could already overflow into 57 bits. If P is a random prime
number of 55 bits, the expected length of 255 mod P is 54 bits and will only
extremely rarely fit into 22 bits. The application field of the technique is
thus when repeated evaluations are needed, all modulo a constant P , which
can therefore be chosen as some convenient prime just a bit smaller than
a given power of two. This is the case in rolling hashes of the Rabin-Karp
type we consider here.

4. Adapting the hierarchical method

We now turn to adapting the hierarchical method, which can be used
in parallel with m processors, to 64-bit arithmetic to improve processing
time. The input is a sequence of n = 2m blocks of d = 64 bits each. The
hierarchical evaluation is done in m = log n layers, with layer i processing
what we shall call superblocks, consisting of 2i original d-bit blocks, i =
0, 1, . . . ,m − 1. The scenario at layer i, for the superblock indexed k, k =
0, 1, . . . , n

2i
− 1, is given in the upper part of Figure 7.

A[2ik+2i−1]A[2ik+2i−1−1]

Figure 7: Schematic representation of superblocks

The superblock consists of two halves, and only the rightmost block (in
fact, only its 55 rightmost bits) in each half is non-zero. The evaluation com-
bines the two non-zero values and puts the output back into the rightmost
block, using the command

A[2ik + 2i − 1]←−
(
A[2ik + 2i−1 − 1]× C[i] +A[2ik + 2i − 1]

)
mod P.

9

The values C[i] = C2i−1 = 264×2i−1 can be calculated as C[1] = 264 mod

P and C[i+ 1] = C[i]2 for i > 1 . For P = 255 − 55, these values are given
in Table 1.

i C[i] bits
1 28,160 15
2 792,985,600 30
3 16,336,612,484,973,479 55
4 8,143,640,278,601,598 55
5 5,745,742,201,926,802 55
6 16,594,324,020,821,548 55

Table 1: Constants for hierarchical evaluation

We thus need more than 64 bits to evaluate A[2ik + 2i−1 − 1]× C[i] for
i > 1. To fit into the 64-bit arithmetic constraint, we propose two strategies.
The first is a generic one, that can be applied to any values of the param-
eters, and processes each layer in the same way. The second achieves some
additional savings by adapting the specific values in our running example
differently in each of the layers.

4.1. General uniform adaptation of the parameter values

The first iteration (layer 0), which applies the modulus on the original
64 bit blocks to produce 55 bit numbers, can be kept without change. For
the higher layers, the input of which are two non-adjacent 55-bit blocks
A[2ik + 2i−1 − 1] and A[2ik + 2i − 1], the latter can be used as is, but the
former has to be multiplied, so we split the block into 11 subblocks of length
5 bits, as depicted in the lower part of Figure 7.

Denote the 11 blocks forming A[2ik + 2i−1 − 1], from right to left, by
E[k, i, j], j = 0, 1, . . . , 10, which gives

A[2ik + 2i−1 − 1] =
10∑
j=0

E[k, i, j]× 25j .

In addition, prepare a two dimensional table CC[i, j] for the above values
of i and j, defined by

CC[i, j] = C[i]× 25j .

Then

A[2ik+2i−1−1]×C[i]+A[2ik+2i−1] =
10∑
j=0

E[k, i, j]×CC[i, j]+A[2ik+2i−1].

10

Each term in the summation uses at most 5 + 55 = 60 bits, so the sum of
the 12 terms uses at most 60 + ⌈log 12⌉ = 64 bits, as requested. In fact,
since the elements E[k, i, j] all belong to a small set {0, 1, . . . , 31}, one can
precompute a three dimensional table CCC[i, j, p] defined, for p = 0, . . . , 31
by

CCC[i, j, p] = CC[i, j]× p = C[i]× 25j × p.

This reduces then the right hand side of the summation above to

10∑
j=0

CCC [i, j, E[k, i, j]] +A[2ik + 2i − 1].

Table 2 brings some sample lines for P = 255− 55 and selected values of
i, j and p. Note that for p = 0, all values are 0, and for p = 1 and j = 0,
we get the values C[i] of Table 1. Note also the small value obtained for

(i, j, p) = (1, 9, 2): indeed, C[1] · 25×9 · 2 = 264 246 = 255
2
= 552 = 3025.

p 1 2 3 · · · 30 31
i j

0 28160 56320 84480 844800 872960
1 901120 1802240 2703360 27033600 27934720
2 28835840 57671680 86507520 865075200 893911040

1 3 922746880 1845493760 2768240640 27682406400 28605153280
.
.
.
9 18014398509483500 3025 18014398509486494 45375 18014398509528844
10 48400 96800 145200 1452000 1500400
0 792985600 1585971200 2378956800 23789568000 24582553600
1 25375539200 50751078400 76126617600 761266176000 786641715200
2 812017254400 1624034508800 2436051763200 24360517632000 25172534886400

2 3 25984552140800 51969104281600 77953656422400 779536564224000 805521116364800
.
.
.
9 42592000 85184000 127776000 1277760000 1320352000
10 1362944000 2725888000 4088832000 40888320000 42251264000

.

.

.
0 16594324020821548 33188648041643096 13754175043500731 29455359378115571 10020886379973206
1 26615210400794754 17201623782625595 7788037164456436 5822777606636534 32437988007431288
2 23024401389262129 10020005759560345 33044407148822474 6184898317549523 29209299706811652

6 3 16204904077109868 32409808154219736 12585915212365691 17772761066765171 33977665143875039
.
.
.
9 20453807581727657 4878818144491401 25332625726219058 1124678129443189 21578485711170846
10 6003496273934590 12006992547869180 18010488821803770 35989700142182048 5964399397152725

Table 2: Sample lines of the 3-dimensional table CCC

To take this idea of tabulating even a step further, note that the elements
in the table are computed only once, so this could be done offline, and there,
128-bit operations could be permitted. Instead of partitioning A[2ik+2i−1−
1] into 11 blocks of 5 bits each, any other partition into ⌈55/q⌉ blocks of q bits
each could be considered, if we were willing to extend the table CCC[i, j, p]
to the 2q possible values of q-bit strings. Taking, for example, q = 11, we
get 5 blocks of 11 bits and would have to consider 2048 possible values of p
in CCC[i, j, p]. The number of bits needed to represent CC[i, j] × p would
then be 55 + 11 = 66, but this is evaluated only once, and what will finally

11

be stored (and used afterwards) is CC[i, j]× p, which again needs only 55
bits; the sum of six 55-bit numbers fits into 58 bits, so there is no overflow.

The number of elements needed in the table CCC is m ×
⌈
55
q

⌉
× 2q.

Table 3 brings the size of the table for a few sample values of q, for m = 6
as in our example. The number of 64-bit operations for the evaluation of
each new value is equal to the number of blocks b: there are b+ 1 terms to
be added, but only x− 1 additions are needed to add x terms.

q # blocks # lines # entries Actual size
3 19 8 912 6.2 K
4 14 16 1344 9.1 K
5 11 32 2112 14.4 K
6 10 64 3840 26.3 K
7 8 128 6144 42 K
8 7 256 10752 74 K
9 7 512 21504 147 K
10 6 1024 36864 252 K
11 5 2048 61440 420 K
12 5 4096 122880 840 K
16 4 65536 1572864 10.5 M
20 3 1048576 18874368 126 M

Table 3: Size of auxiliary table for various values of q

We can thus choose the value of q according to the required tradeoff:
the lower q, the less storage is needed for the CCC tables, but the more
operations have to be performed. Taking for example values of q from 5 to
7, the tables would fit into 50K, but 8 to 11 operations have to be performed.

4.2. Specific adaptation of the parameter values for m = 6 and d = 64

0 55 64 110 119 127

D11

D12

D13

Figure 8: Layer 1: two blocks of 64 bits each

The tradeoffs in Table 3 lead to the following suggestions for the lower
layers. Consider layer 1, consisting of superblocks of 128 bits. Figure 8
represents the layout after iteration 0, in which two 55-bit strings have been
evaluated (in grey in the figure). We partition the superblock as indicated,
which yields as value:

D = D11 × 2110 +D12 × 255 +D13.

12

0 128 161 255

D21

D23

D24
55 183

D22

165

Figure 9: Layer 2: two blocks of 128 bits each

0 256 511

D36
55 311

256 311 275 262 268 306

D33 D32 D31 D35 D34

Figure 10: Layer 3: two blocks of 256 bits each

D13 uses only 55 bits; D12 also needs 55 bits, but is multiplied by 255 mod
P = 55, which needs 6 bits, so together 61 bits; D11 needs 9 bits, and
multiplied by 2110 mod P = 552 = 3025, which needs 12 bits, so together 21
bits; their sum has therefore at most 62 bits, so only two 64-bit additions
are needed.

For layer 2, we need a different layout, given in Figure 9. The superblock
consists now of two subparts of 128 bits each. This partition yields the
following equality:

D = D21 × 2165 +D22 × 2161 +D23 × 2110 +D24.

D24 uses only 55 bits; D23 is of length 51 bits, but is multiplied by 2110 mod
P = 3025, which needs 12 bits, so together 63 bits; D22 is of length 4 bits,
and is multiplied by 2161 mod P , which needs 55 bits, so together 59 bits;
finally, D21 needs 18 bits, and is multiplied by 2165 mod P = 553 = 166375,
which needs 18 bits, so together 36 bits; their sum has therefore at most 64
bits, so only three 64-bit additions are needed.

In Layer 3, a superblock, now consisting of two halves of 256 bits each,
will be partitioned according to the layout given in Figure 10. The desired
value of D is then obtained by adding the following terms:

55 0 512 567 1023

512 518 524 530 536 542 546 550 561 567

D41 D42 D43 D45 D46 D44 D49 D48 D47 D40
Figure 11: Layer 4: two blocks of 512 bits each

13

D31 × 2306, in bits: 5 + 55 = 60
D32 × 2275, in bits: 31 + 29 = 60
D33 × 2268, in bits: 7 + 55 = 62
D34 × 2262, in bits: 6 + 55 = 61
D35 × 2256, in bits: 6 + 55 = 61
D36, in bits: 55

Their sum has at most 64 bits, and only five 64-bit additions are needed.
Finally, a possible partition for layer 4 is given in Figure 11, yielding the

value D as the sum of:

D41 × 2561, in bits: 6 + 55 = 61
D42 × 2550, in bits: 11 + 50 = 61
D43 × 2546, in bits: 4 + 55 = 59
D44 × 2542, in bits: 4 + 55 = 59
D45, . . . , D49 × (resp.) 2536, 2530, 2524, 2518, 2512, in bits: 6 + 55 = 61 each
D40, in bits: 55

Their sum has at most 64 bits, and only nine 64-bit additions are needed.
There is no sense in trying to extend this strategy also to level 5 and be-

yond; it would cost more than the 11 additions given in the generic solution
of Section 4.1. It is a matter of tradeoff to decide how many levels should
be treated by means of the special layouts given in Figures 8–11, and one
could apply this only to level 1, or to levels 1 and 2, etc. We consider the
amortized global cost for evaluating the signature, since only at the lowest
level, all the n processors are involved, and for the higher levels, specifically,
for level i, the number of working processors is only n/2i. The amortized
number of 64-bit additions if we use only the method of Section 4.1 is

1× n+ 11×
[n
2
+

n

4
+ · · ·

]
= n [1 + 11] = 12n.

If the special treatment is given only to level 1, the amortized cost will be

1× n+ 2× n

2
+ 11×

[n
4
+

n

8
+ · · ·

]
= n

[
1 + 1 +

11

2

]
= 7.5n.

If it is given up to levels 2, 3, and 4, the cost will be, respectively

1× n+ 2× n

2
+ 3× n

4
+ 11×

[n
8
+

n

16
+ · · ·

]
= n

[
1 + 1 +

3

4
+

11

4

]
= 5.5n,

1×n+2×n

2
+3×n

4
+5×n

8
+11×

[n
16

+
n

32
+ · · ·

]
= n

[
1 + 1 +

3

4
+

5

8
+

11

8

]
= 4.75n,

n+2
n

2
+3

n

4
+5

n

8
+9

n

16
+11

[n
32

+ · · ·
]
= n

[
1 + 1 +

3

4
+

5

8
+

9

16
+

11

16

]
= 4.625n.

14

5. Experimental results

We have compared the above methods on randomly chosen input texts,
several GB of our exchange database. Actually, the exact choice of the test
data is not relevant, because the number of remainder operations performed
is not data dependent.

WS M2 X5 GPU
baseline 114 139 168 595
hierarchical 229 200 377 1896
pseudo remainders 582 256 1067 2327

Table 4: Experimental comparison of performance

The following methods were tested: as baseline, we took a regular itera-
tive evaluation, processing single bytes, that is, d = 8. In all our tests, the
size of B was m = 212 = 4096 bits or 512 bytes. The next method was a hi-
erarchical implementation, according to Figure 4, with blocks of size d = 64,
and using 128-bit arithmetic where necessary. Finally, we also ran the re-
vised iterative method of Figure 6 using pseudo remainders, with d = 32 and
64-bit operations only.

The tests were run on several platforms: WS: a 3.2GHz Intel PC Work-
station, M2: an IBM 3850M2 server (2.93 GHz Intel Xeon X7350), X5:
an IBM 3850X5 server (2.27 GHz Intel Xeon X7560), and GPU: an Nvidia
GeForce GTX 465 graphics board, using copy to/from device. The results
are presented in Table 4, all values giving the number of MB processed per
second.

References

[1] B. Zhu, K. Li, and H. Patterson: Avoiding the disk bottleneck in the data
domain deduplication file system. Proc. FAST’08, the 6th USENIX Conference
on File And Storage Technologies, 2008, pp. 279–292.

[2] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and S.T.
Klein: The design of a similarity based deduplication system. Proc. of the
SYSTOR’09 Conference, 2009, pp. 1–14.

[3] Primes just less than a power of two: http://primes.utm.edu/lists/2small/.

[4] R.M. Karp and M.O. Rabin: Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 1987, pp. 249–260.

[5] S. Quinlan and S. Dorward: Venti: A new approach to archival storage.
Proc. FAST’02, the 1st USENIX Conference on File And Storage Technologies,
2002, pp. 89–101.

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest: Introduction to Algo-
rithms, MIT Press, 1990.

15

