
Parallel Lempel Ziv Coding
Shmuel Tomi Klein and Yair WisemanComputer Science Department, Bar-Ilan University, Ramat-Gan 52900, ISRAELftomi,wisemang@cs.biu.ac.il

AbstractWe explore the possibility of using multiple processors to improve the encoding anddecoding times of Lempel Ziv schemes. A new layout of the processors, based on afull binary tree, is suggested and it is shown how LZSS and LZW can be adaptedto take advantage of such parallel architectures. The layout is then generalizedto higher order trees. Experimental results show an improvement in compressionover the standard method of parallelization and an improvement in time over thesequential method.Key words: Data Compression, Lempel-Ziv algorithms, parallel algorithms
1 IntroductionCompression methods are often partitioned into static and dynamic methods.The static methods assume that the �le to be compressed has been generatedaccording to a certain model which is �xed in advance and known to bothcompressor and decompressor. The model could be based on the probabilitydistribution of the di�erent characters or more generally of certain variablelength substrings that appear in the �le, combined with a procedure to parsethe �le into a well determined sequence of such elements. The encoded �lecan then be obtained by applying some statistical encoding function, such asHu�man or arithmetic coding. Information about the model is either assumedto be known (such as the distribution of characters in English text), or maybe gathered in a �rst pass over the �le, so that the compression process mayonly be performed in a second pass.Many popular compression methods, however, are adaptive in nature. Theunderlying model is not assumed to be known, but discovered during thesequential processing of the �le. The encoding and decoding of the i-th elementis based on the distribution of the i�1 preceding ones, so that compressor andPreprint submitted to Elsevier Science 16 May 2004

decompressor can work in synchronization without requiring the transmittalof the model itself. Examples of adaptive methods are the Lempel-Ziv (LZ)methods and their variants, but there are also adaptive versions of Hu�manand arithmetic coding.We wish to explore the possibility of using multiple processors to improve theencoding and decoding times. In [7] this has been done for static Hu�mancoding, focusing in particular on the decoding process. The current work in-vestigates how parallel processing could be made pro�table for Lempel Zivcoding.Previous work on parallelizing compression includes [1, 2, 3], which deal withLZ compression, [5], relating to Hu�man and arithmetic coding, and [4]. Aparallel method for the construction of Hu�man trees can be found in [8].Our work concentrates on LZ methods, in particular a variant of LZ77, [14],known as LZSS, and a variant of LZ78, [15], known as LZW. In LZSS, [10],the encoded �le consists of a sequence of items each of which is either asingle character, or a pointer of the form (o�, len) which replaces a string oflength len that appeared o� characters earlier in the �le. Decoding of such a�le is thus a very simple procedure, but for the encoding there is a need tolocate longest reoccurring strings, for which sophisticated data structures likehash tables or binary trees have been suggested. In LZW, [11], the encoded�le consists of a sequence of pointers to a dictionary , each pointer replacinga string of the input �le that appeared earlier and has been put into thedictionary. Encoder and decoder must therefore construct identical copies ofthe dictionary.The basic idea of parallel coding is partitioning the input �le of size N into nblocks of sizeN=n and assigning each block to one of the n available processors.For static methods the encoding is then straightforward, but for the decoding,it is the compressed �le that is partitioned into equi-sized blocks, so theremight be a problem of synchronization at the block boundaries. This problemmay be overcome by inserting dummy bits to align the block boundaries withcodeword boundaries, which causes a negligible overhead if the block size islarge enough. Alternatively, in the case of static Hu�man codes, one mayexploit their tendency to resynchronize quickly after an error, to devise aparallel decoding procedure in which each processor decodes one block, but isallowed to over
ow into one or more following blocks until synchronization isreached, [7].For dynamic methods one is faced with the additional problem that the en-coding and decoding of elements in the i-th block may depend on elements ofsome previous blocks. Even if one assumes a CREW architecture, in which allthe processors share some common memory space which can be accessed inparallel, this would still be essentially equivalent to a sequential model. This is2

so because elements dealt with by processor i at the beginning of block i mayrely upon elements at the end of block i � 1 which have not been processedyet by processor i � 1; thus processor i can in fact start its work only afterprocessor i� 1 has terminated its own.The easiest way to implement parallelization in spite of the above problem isto let each processor work independently of the others. The �le is thus par-titioned into n blocks which are encoded and decoded without any transferof data between the processors. If the block size is large enough, this solutionmay even be recommendable: most LZ methods put a bound on the size ofthe history taken into account for the current item, and empirical tests showthat the additional compression, obtained by increasing this history beyondsome reasonable size, rapidly tends to zero. The cost of parallelization wouldtherefore be a small deterioration in compression performance at the blockboundaries, since each processor has to \learn" the main features of the �leon its own, but this loss will often be tolerated as it may allow to cut theprocessing time by a factor of n. In [6] the authors suggest letting each pro-cessor keep the last characters of the previous block and thereby improve theencoding speed, but each block must then be larger than the size of the historywindow. On the other hand, putting a lower bound on the size N=n of eachblock e�ectively puts an upper bound on the number of processors n whichcan be used for a given �le of size N , so we might not fully take advantage ofall the available computing power.We therefore turn to the question how to use n processors, even when the sizeof each block is not very large. In the next section we propose a new parallelcoding algorithm, based on a time versus compression e�ciency tradeo� whichis related to the degree of parallelization. On the one extreme, for full paral-lelization, each of the n processors works independently, which may sharplyreduce the compression gain if the size of the blocks is small. On the otherextreme, all the processors may communicate, forcing delays that make thisvariant as time consuming as a sequential algorithm. The suggested tradeo�is based on a hierarchical structure of the connections between the processors,each of which depending at most on logn others. The task can be performedin parallel by n processors in logn sequential stages. There will be a deterio-ration in the compression ratio, but the loss will be inferior to that incurredwhen all n processors are independent.In contrast to Hu�man coding, for which parallel decoding could be appliedregardless of whether the possibility of having multiple processors at decodingtime was known at the time of encoding, there is a closer connection betweenencoding and decoding for LZ schemes. We therefore need to deal also with theparallel encoding scheme, and we assume that the same number of processorsis available for both tasks. 3

Note, however, that one cannot assume simultaneously equi-sized blocks forboth encoding and decoding. If encoding is done with blocks of �xed size, theresulting compressed blocks are of variable lengths. So one either has to storea vector of indices to the starting point of each processor in the compressed�le, which adds an unnecessary storage overhead, or one performs a priorithe compression on blocks of varying size, such that the resulting compressedblocks are all of roughly the same size. To get blocks of exactly the same sizeand to achieve byte alignment, one then needs to pad each block with a smallnumber of bits, but in this case the loss of compression due to this paddingis generally negligible. Moreover, the second alternative is also the preferredchoice for many speci�c applications. For instance, in an Information Retrievalsystem built on a large static database, compression is done only once, so thespeedup of parallelization may not have any impact, whereas decompression ofselected parts is required for each query to be processed, raising the importanceof parallel decoding.2 A tree-structured hierarchy of processorsThe suggested form of the hierarchy is that of a full binary tree, similarly toa binary heap. This basic form has already been mentioned in [6], but theway to use it as presented here is new. The input �le is partitioned into nblocks B1; : : : ; Bn, each of which is assigned to one of the available processors.Denote the n processors by P1; : : : ; Pn, and assume, for the ease of description,that n + 1 is a power of 2, that is n = 2r � 1 for some r. Processor P1 is atthe root of the tree and deals with the �rst block. As there is no need to\point into the future", communication lines between the processors may beunidirectional, permitting a processor with higher index to access processorswith lower index, and in particular their local memories, but not vice versa.Restricting this to a tree layout yields a structure in which P2i and P2i+1 canaccess the memory of Pi, for 1 � i � (n � 1)=2. Figure 1 shows this layoutfor n = 15, the arrows indicating the dependencies between the processors.The numbers indicate both the indices of the blocks and of the correspondingprocessors.
5

10

4

98

2

11 12

6

13 14 15

7

3

1

Figure 1: Simple tree layout 5

10

4

98

2

11 12

6

13 14 15

7

3

1
1

1

1

1 2 3 4

2

2

3 4

5 6 7 8Figure 2: Layer-by-layer layoutThe compression procedure for LZSS works as follows: P1 starts at the begin-4

ning of block B1, which is stored in its memory. Once this is done, P2 andP3 start simultaneously their work on B2 and B3 respectively, both searchingfor reoccurring strings �rst within the block they have been assigned to, andthen extending the search back into block B1. As mentioned above, P2 canaccess the local memory of P1 where B1 is stored, without disturbing P1'swork. In general, after Pi has �nished the processing of block Bi, processorsP2i and P2i+1 start scanning simultaneously their corresponding blocks. Thecompression of the �le is thus not necessarily done layer by layer, e.g., P12 andP13 may start compressing blocks B12 and B13, even if P5 is not yet done withB5.Note that while the blocks B2 and B1 are contiguous, this is not the case for B3and B1, so that the (o�, len) pairs do not necessarily point to close previousoccurrences of a given string. This might a�ect compression e�ciency, as oneof the reasons for the good performance of LZ methods is the tendency ofmany �les to repeat certain strings within the close vicinity of their initialoccurrences. For processors and blocks with higher indices, the problem iseven aggravated. The experimental section below brings empirical estimatesof the resulting loss.The layout suggested in Figure 1 is obviously wasteful, as processors of thehigher layers stay idle after having compressed their assigned block. The num-ber of necessary processors can be reduced by half, or, which is equivalent,the block size for a given number of processors may be doubled, if one allowsa processor to deal with multiple blocks. The easiest way to achieve this isdisplayed in Figure 2, where the numbers in the nodes are the indices of theblocks, and the boldface numbers near the nodes refer to the processors. Pro-cessors 1; : : : ; 2j are assigned sequentially, from left to right, to the blocks oflayer j, j = 0; 1; : : : ; r � 1. This simple way of enumerating the blocks has,however, two major drawbacks: refer, e.g., to block B9 which should be com-pressed by processor P2. First, it might be that P1 �nishes the compressionof blocks B2 and B4, before P2 is done with B3. This causes an unnecessarydelay, B9 having to wait until P2 processes both B3 and B5, which could beavoided if another processor would have been assigned to B9, for example oneof those that has not been used in the upper layers. Moreover, the problem isnot only one of wasted time: P2 stores in its memory information about theblocks it has processed, namely B3 and B5. But the compression of B9 doesnot depend on these blocks, but only on B4, B2 and B1. The problem thus isthat the hierarchical structure of the tree is not inherited by the dependenciesbetween the processors.To correct this de�ciency of the assignment scheme, each processor will con-tinue working on one of the o�springs of its current block. For example, onecould consistently assign a processor to the left child block of the currentblock, whereas the right child block is assigned to the next available newly5

used processor. More formally, let Sij be the index of the processor assignedto block j of layer i, where i = 0; : : : ; r� 1 and j = 1; : : : ; 2i, then S01 = 1 andfor i > 0 and j = 1; : : : ; 2i�1,Si2j�1 = Si�1j and Si2j = 2i�1 + j:The �rst layers are thus processed, from left to right, by processors with in-dices: (1), (1,2), (1, 3, 2, 4), (1, 5, 3, 6, 2, 7, 4, 8), etc. Figure 3(a) depictsthe new layout of the blocks, the rectangles indicating the sets of blocks pro-cessed by the same processor. This structure induces a corresponding tree ofprocessors, depicted in Figure 3(b).
3

3

2

4

8
15

7

1413
7

6

12

1

5

10 11
6

9
5

8

4

2

1

(a) Tree of blocks 3

5

4

7

6

8
1 2

(b) Tree of processorsFigure 3: New hierarchical structureAs a results of this method, processor Pi will start its work with block B2i�1,and then continue with B4i�2, B8i�4, etc. In each layer, the evenly indexedblocks inherit their processors from their parent block, and each of the oddlyindexed blocks starts a new sequence of blocks with processors that have notbeen used before.The memory requirements of the processors have also increased by this newscheme, and space for the data of up to log2 n blocks has to be stored. However,most of the processors deal only with a few blocks. To evaluate the averagenumber of blocks to be memorized, amortized over the m processors, supposea full binary tree with r levels is used, so that there are n = 2r � 1 nodesand m = 2r�1 = (n + 1)=2 processors are needed. Then processor P1 has tostore information about r blocks, processor P2 about r � 1 blocks, the nexttwo processors need only space corresponding to r�2 blocks, etc. The averageamortized number of blocks to be referred to by a processor is therefore1m 0@r + r�1Xj=1(r � j)2j�11A = 2r � 12r�1 = 2� 1m;that is, less than 2.For the encoding and decoding procedures, we need a fast way to convert theindex of a block into the index of the corresponding processor, i.e., a function6

f , such that f(i) = j if block Bi is coded by processor Pj . De�ne r(i) as thelargest power of 2 that divides the integer i, that is, r(i) is the length of thelongest su�x consisting only of zeros of the binary representation of i.Claim: f(i) = 12 � i2r(i) + 1�:Proof: By induction on i. For i = 1, we get f(1) = 1, which is correct.Assume the claim is true up to i � 1. If i is odd, r(i) = 0 and the formulagives f(i) = (i+1)=2. As has been mentioned above, any oddly indexed blockis the starting point of a new processor and indeed processor P(i+1)=2 starts atblock Bi. If i is even, block Bi is coded by the same processor as its parentblock Bi=2, for which the inductive assumption applies, and we getf(i) = f(i=2) = 12 i=22r(i=2) + 1! = 12 � i2 2r(i)�1 + 1� = 12 � i2r(i) + 1� ;so that the formula holds also for i.2.1 Parallel coding for LZSSWe now turn to the implementation details of the encoding and decodingprocedures for LZSS. Since the coding is done by stages, the parallel co-routines will invoke themselves the depending o�springs. For the encoding,the procedure PLZSS-encode(i; j) given in Figure 4 will process block Bi withprocessor Pj , where j = f(i). The whole process is initialized by a call toPLZSS-encode(1,1) from the main program.Each routine starts by copying the text of the current block into the memoryof the processor, possibly adding to texts of previous blocks that have beenstored there. As in the original LZSS, the longest substring in the history issought that matches the su�x of the block starting at the current position. Thesearch for this substring can be accelerated by several techniques, and one ofthe fastest is by use of a hash table, [13]. The longest substring is then replacedby a pair (o�set, length), where o�set is the distance (in characters) from thecurrent position to the longest previous match, and length is the length ofthe match; if, however, length is too small (2 or 3 in implementations of [13],such as the patent [12], which is the basis of Microsoft's DoubleSpace), thena single character is sent to output and the current position is shifted by oneto the right.In our case, the search is not limited to the current block, but extends back-wards to the parent blocks in the hierarchy, possibly up to the root. For exam-ple, referring to Figure 3, the encoding of block B13 will search also through7

PLZSS-encode(i; j)f append text of Bi to memory of Pjcur � 1while cur < jBijf S � su�x of Bi starting at curind � iwhile ind > 0f access memory of Pf(ind) andrecord occurrences in Bind matching a pre�x of Sind � bind=2cgif longest occurrence not long enoughf encode single character cur � cur + 1 gelsef encode as (o�set, length) cur � cur + len ggperform inparallel 8<: if 2i � n PLZSS-encode(2i; j)if 2i+ 1 � n PLZSS-encode(2i+ 1; i+ 1)g Figure 4: Parallel LZSS encoding for block Bi by processor PjB6, B3 and B1, and thus access the memory of the processors P7, P2, P2 andP1, respectively. That is, the \text" in which earlier occurrences of substringsof B13 are searched is de�ned as the concatenation of the texts of blocks B1,B3, B6 and B13, though physically these texts are not contiguously stored.The values of o�set refer to the distances in this concatenated text.Note that the size of the history window is limited by some constant W inmany implementations of LZSS. In our general description, we do not imposeany such limit, but in fact, the encoding of any element is based on a historyof size at most log2 n � the block size, where n is the number of blocks inthe tree. Therefore, when the entire history is scanned to �nd the longestoccurrence of a pre�x of S, the scanning direction could be just as well topdown rather than bottom up as in Figure 4. The reason for using a bottom upscan is that this applies also in the case the history window is limited; indeed,if only a part of the history is to be processed, it should be those blocks thatare closest to S, to keep the values of o�set as small as possible and becausethe main assumption of LZSS is that there is locality of reference.For the decoding, recall that we assume that the encoded blocks are of equalsize Blocksize. The decoding routine can thus address earlier locations as ifthe blocks, that are ancestors of the current block in the tree layout, werestored contiguously. Any element of the form (o�set, length) in block Bi canpoint back into a block Bj , with j = bi=2bc for b = 0; 1; : : : ; blog2 ic, and the8

index of this block can be calculated byb � d(o�set� cur + 1)=Blocksizee;where cur is the index of the current position in block Bi. The formal decodingprocedure is given in Figure 5.PLZSS-decode(i; j)f cur � 1while there are more items to decodef if next item is a characterf store the character cur � cur + 1 gelse // the item is (o�, len)f if o� < cur // pointer within block Bicopy len characters, starting at position cur�o�else // pointer to earlier blockf b � d(o�� cur + 1)=Blocksizeet � (o�� cur) mod Blocksizecopy len characters, starting at position tin block Bbi=2bc which is stored in Pf(bi=2bc)gcur � cur + lenggperform inparallel 8<: if 2i � n PLZSS-decode(2i; j)if 2i+ 1 � n PLZSS-decode(2i+ 1; i+ 1)g Figure 5: Parallel LZSS decoding for block Bi on processor PjThe input of the decoding routine is supposed to be a �le consisting of asequence of items, each being either a single character or a pointer of the form(o�set, length); cur is the current index in the currently reconstructed block.2.2 Parallel coding for LZWEncoding and decoding for LZW is similar to that of LZSS, with a few di�er-ences. While for LZSS, the \dictionary" of previously encountered strings is infact the text itself, LZW builds a continuously growing table Table, which neednot be transmitted, as it is synchronously reconstructed by the decoder. Thetable is initialized to include the set of single characters composing the text,which is often assumed to be ASCII. If, as above, we denote by S the su�xof the text in block Bi starting at the current position, then the next encodedelement will be the index of the longest pre�x R of S for which R 2Table, and9

the next element to be adjoined to Table will be the shortest pre�x R0 of Sfor which R0 =2Table; R is a pre�x of R0 and R0 extends R by one additionalcharacter.During the encoding process of Bi, one therefore needs to access the tables inBi itself and in the blocks which are ancestors of Bi in the tree layout, but theorder of access has to be top down rather than in the LZSS case, for whichthe order can be either top down or bottom up, as explained earlier. For eachi, we therefore need a list listi of the indices of the blocks accessed on theway from the root to block Bi, that is, listi[ind] is the number whose binaryrepresentation is given by the ind leftmost bits of the binary representationof i. For example, list13 = [1; 3; 6; 13].To encode a new element P , it is �rst searched for in Table of B1, and ifnot found there, then in Table of Blisti[2], which is stored in the memory ofprocessor Pf(listi[2]), etc. However, storing only the elements in the tables maylead to errors. To illustrate this, consider the following example, referring againto Figure 3.Suppose that the longest pre�x of the string abcde appearing in the Tableof B1 is abc. Suppose we later encounter abcd in the text of block B2. Thestring abcd will thus be adjoined to the same Table, since both B1 and B2are processed by the same processor P1. Assume now that the texts of bothblocks B5 and B3 start with abcde. While for B5 it is correct to store abcdeas the �rst element in its Table, the �rst element to be stored in the Tableof B3 should be abcd, since the abcd in the memory of P1 was generated byblock B2, whereas B3 only depends on B1.To avoid such errors, we need a kind of a \time stamp", indicating at whatstage an element has been added to a Table. If the elements are stored sequen-tially in these tables, one only needs to record the indices of the last elementfor each block. But implementations of LZW generally use hashing to main-tain the tables, so one cannot rely on deducing information from its physicallocation, and each element has to be marked individually. The easiest way isto store with each string P also the index i of the block which caused theaddition of P . This would require log2 n bits for each entry. One can howevertake advantage of the fact that the elements stored by di�erent blocks Bi inthe memory of a given processor correspond to di�erent indices ind in thecorresponding lists listi. It thus su�ces to store with each element the indexin listi rather than i itself, so that only log2log2 n bits are needed for eachentry. The formal encoding and decoding procedures are given in Figures 6and 7, respectively.The parallel LZW encoding refers to the characters in the input block asbelonging to a vector Bi[cur], with cur giving the current index. If x and y10

PLZW-encode(i; j)f ! � Bi[1]cur � 2while cur � jBijf ind � 1while listi[ind] � if while cur < jBij and(!Bi[cur]; ind) 2 Table stored in Pf(listi[ind])f ! � !Bi[cur]cur � cur + 1last � indgind � ind+ 1gindx � index(!) in Table of Pf(listi[last])store (indx; last) in memory of Pjstore (!Bi[cur]; ind) in Table in memory of Pj! � Bi[cur]cur � cur + 1gperform inparallel 8<: if 2i � n PLZW-encode(2i; j)if 2i+ 1 � n PLZW-encode(2i+ 1; i+ 1)g Figure 6: Parallel LZW encoding for block Bi on processor Pjare strings, then xy denotes their concatenation. As explained above, since theTable corresponding to block Bi is stored in the memory of a processor whichis also accessed by other blocks, each element stored in the Table needs anidenti�er indicating the block from which it has been generated. The elementsin the Table are therefore of the form (string, identi�er).The output of LZW encoding is a sequence of pointers, which are the indicesof the encoded elements in the Table. In our case, these pointers are of theform (index, identi�er). There is, however, no deterioration in the compressione�ciency, as the additional bits needed for the identi�er are saved in therepresentation of the index, which addresses a smaller range.For simplicity, we do not go into details of handling the incremental encodingof the indices, and over
ow conditions when the Table gets full. It can be doneas for the serial LZW.The parallel LZW decode routine assumes that its input is a sequence ofelements of the form (index, identi�er). The empty string is denoted by �.The algorithm in Figure 7 is a simpli�ed version of the decoding, which does11

PLZW-decode(i; j)f cur � 1old � �while cur � number of items in block Bif (indx; ind) � Bi[cur]access Table in Pf(listi[ind]) at index indxand send string str found there to outputif old 6= �store (old �rst [str], dlog2(i+ 1)e) in Table of Pjold � strcur � cur + 1gperform inparallel 8<: if 2i � n PLZW-decode(2i; j)if 2i+ 1 � n PLZW-decode(2i+ 1; i+ 1)g Figure 7: Parallel LZW decoding for block Bi on processor Pjnot work in case the current element to be decoded was the last one to beadded to the Table. This is also a problem in the original LZW decoding andcan be solved here in the same way. The details have been omitted to keepthe emphasis on the parallelization.
3 Higher order treesIn this section, we wish to explore possible tradeo�s that can be achieved bygeneralizing the binary tree layout to trees of higher order k > 2, in whicheach node has k children. Once a processor is done with a given block, it willstart to work on the block's leftmost child, while k � 1 new processors willstart their work on the remaining o�springs. Passing to higher order trees mayyield several advantages. For instance, the depth of a k-ary tree is only logk n,so that the chain of dependencies is shorter than in the binary case, and thusless information need be stored per processor. Moreover, after the ith parallelstep, the number of blocks that have been dealt with is Pij=1 kj�1, so a givenblock is reached faster when k is larger.To measure the level of exploitation of the m available processors, de�ne autilzation factor as the average fraction of the processors which are active. Atthe lowest level of the tree, all the processors are busy; at the level just abovethe lowest, only 1k of the processors are active, etc. It would thus seem, at �rstsight, that if we assume that each level has the same expected execution time,the average utilization factor would be proportional to P� 1k�i �! 1 + 1k�1 ,which is a decreasing function of k. But this did not take into account that12

the number of levels decreases when k increases. The average time spent oneach level being 1logk n , we get that the average utilization factor is1logk n logk nXi=0 �1k�i �! 1log2 n k log2 kk � 1 ;which is an increasing function of k for k � 2, suggesting that a higher or-der tree layout may be advantageous for better utilization of the availableresources.The average number of blocks to be memorized, amortized over the m proces-sors, is evaluated as follows. One processor works on level 0, k � 1 additionalones on level 1, k(k � 1) more are added at the next level, etc. The totalnumber of processors is thereforem = 1 + (k � 1) r�2Xj=0 kj = kr�1:Processor P1 has to store information about r blocks, processor P2 to Pk aboutr � 1 blocks, the next k(k � 1) processors need only space corresponding tor � 2 blocks, and the next k2(k � 1) processors only to r � 3 blocks, etc. Thetotal required space, when summed over all the processors, is thenr + r�1Xj=1(r � j)kj�1(k � 1) = kr � 1k � 1 :Amortizing this space over the m processors, we get as average required mem-ory per processor: kr � 1(k � 1)kr�1 = 1 + 1� 1mk � 1 ;which is decreasing with k. So from the point of view of local space require-ments, it is also worth passing to higher order trees.However, all these advantages calling for larger k are counterbalanced by thefact that with increasing k, the hierarchical layout tends increasingly to beequivalent to using m independent processors, a�ecting the compression e�-ciency when the block size is small. Indeed, the LZ compression schemes takeadvantage of the fact that certain strings tend to reoccur shortly after a �rstappearance, and this locality of reference is disturbed by connecting blockswhich are not adjacent. In our case, for a �xed block size, the distance, in the�le, between blocks treated by the same processor, is increasing with k, so wemight expect better compression with lower k. In the next section, we bringempirical results comparing the compression performance for various valuesof k. 13

In a straightforward generalization of the binary case, the blocks would benumbered sequentially top down, left to right, so that the children of block Biwould be the blocks Bk(i�1)+1+t for t = 1; : : : ; k. The correspondence betweenblocks and processors would then be given as follows: if Sij is the index of theprocessor assigned to block j of layer i, where i = 0; : : : ; r�1 and j = 1; : : : ; ki,then S01 = 1 andfor i > 0 and j = 1; : : : ; ki�1; Sik(j�1)+1 = Si�1jand for t = 2; : : : ; k Sik(j�1)+t = ki�1 + (k � 1)(j � 1) + t� 1:For example, for k = 3, we would get as order of processors, from left to right,for the �rst layers:: (1), (1, 2, 3), (1, 4, 5, 2, 6, 7, 3, 8, 9), etc. Figure 8 depictsthis layout of the blocks, for k = 3, on a tree with 4 layers, in similar form asin Figure 3(a).
1

2 3 4

5 6 7 8 9

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

10 11 12 13

1

2 3

4 5 6 7 8 9

Figure 8: Hierarchical structure of ternary treeAs above for the binary case, we would need a function fk(i) converting theindex of a block into that of the corresponding processor for the k-ary tree,i.e., fk(i) = j if block Bi is coded by processor Pj . This function would begiven by fk(i) = 8>><>>: fk �i+ k � 2k � if i mod k = 2i� li� 2k m if i mod k 6= 2The particular case k = 2 coincides with the formula given earlier if oneinterprets the condition i mod 2 = 2 as standing for i is even. Indeed, one getsthen that f2(i) = f2(i=2) for even i, and f2(i) = (i+ 1)=2 if i is odd.However, with a sequential numbering of the blocks, the parent-child relationsof the blocks are not trivially obvious from their indices. This is a disad-vantage, since one needs a direct way to address ancestors in the LZ codingroutines. One could of course prepare for each index i of a block, a list listi assuggested above in Section 2.2, giving the sequence of the indices of the blocksaccessed from the root to block Bi; but for the ternary case, we would get,14

for example, list21 = [1; 2; 7; 21], which is not trivially related to the ternaryrepresentation of the index 21, as listi for the binary case was related to thebinary representation of i.To rectify this de�ciency, the following new numbering of the blocks in a k-ary layout is suggested: the blocks in layer i, i = 0; : : : ; r � 1, will be indexedfrom left to right by ki + j, j = 0; : : : ; ki � 1. For example, for k = 3, thesequence of indices will be 1; 3; 4; 5; 9; 10; : : : ; 17; 27; 28; : : : ; 53; 81; 82; : : :. Themain property of this way of enumerating the blocks is that the followingrelation holds between a block and its o�springs: if � is the representationof the index of the given block in the standard k-ary numeration system,then the representations of the indices of the k children of this block are�0; �1; : : : ; �(k � 1). Note that for k = 2, the new numbering coincides withthe sequential numbering of Section 2.Another way to look at it is by considering the layout as a full k-ary trie,labelled in a similar way as su�x trees: the edges emanating from a givennode are labelled, from left to right, by 0; 1; : : : ; k � 1, the root is labelledby the empty string �, and each node x is labelled by the concatenation ofthe labels on the edges of the unique path from the root to x. Here we havemerely pre�xed each of these node-labels by a leading 1, to avoid ambiguitieswhen the labels are considered as numbers rather than k-ary strings. Withoutthe leading 1s, the labels of the nodes of the leftmost branch of the treewould be �; 0; 00; 000; : : :, pre�xing the 1 turns them into di�erent numbers1; 10; 100; : : :. As an example, consider the block B897 in a 5-ary tree. Thechain of blocks leading to it is B1; B7; B35; B179 and B897, and their indices, in5-ary, are 1, 12, 120, 1204, 12042, respectively.One can therefore readily generalize the binary based LZ coding routines bynoting that the ancestors of block Bi are the blocks Bbi=kbc, for b = 1; 2; : : :.The new de�nition of the function fk(i), giving the index of the processordealing with block Bi is as follows: let t(i) = blogk ic be the length of thek-ary representation of i not including the leading 1, so that t(i) is in factthe index of the layer in which block Bi occurs, and let r(i), as above, be thelength of the longest su�x consisting only of zeros in the k-ary representationof i.Claim: fk(i) = bkt(i)�r(i)�1c+ (k � 1) $i� kt(i)kr(i)+1 %+ ikr(i) mod k.Proof: By induction on the relevant values of i. For i = 1, the �rst componentis bk0�0�1c = 0 (in fact, the
oor operator is only needed in this special case,as for i > 1, this component will always be an integer), the second componentis 0 and the third is 1, so we get fk(1) = 1 for all k.Assume the claim is true up to i�1 and consider �rst a node with index i > 115

to which a new processor is assigned; the index i of this node is then such thati mod k 6= 0, so that r(i) = 0. The node appears on level t(i) in the tree andthe number of processors used in the t(i) levels above the current one is kt(i)�1,which accounts for the �rst component. The relative index of node i withinlayer t(i) is i�kt(i). This layer can be partitioned into groups of k nodes, eachgroup including the child nodes of one of the nodes of layer t(i)� 1. Since weassume here that i � kt(i) is not divisible by k, the number of groups to theleft of the one to which node i belongs is b(i� kt(i))=kc, and each such groupcontributes k� 1 new processors, as only the �rst node in each group inheritsthe processor of the parent node; this accounts the for the second component.What still need to be added is the relative index of node i within the groupit belongs to, and this index is i mod k.If i is a multiple of k, then Bi is dealt with by the same processor as its parentnode Bi=k. Noting that t(i=k) = t(i) � 1, r(i=k) = r(i) � 1, and that we canapply the inductive assumption for i=k < i, we get thatfk(i) = fk(i=k) = kt(i)�1�(r(i)�1)�1+(k�1) $i=k � kt(i)�1k(r(i)�1)+1 %+ i=kk(r(i)�1) mod k;and the right hand side reduces to the formula given in the claim, which showsthat it holds also for i.A way relating the function fk(i) to the k-ary representation of i is the fol-lowing: �rst, delete the longest su�x consisting only of zeros; de�ne A as theremaining string from which the rightmost k-ary digit, denoted C, has beenremoved, and de�ne B as the string obtained from A by removing its leading1. Then fk(i) = A+ (k � 2)B + C:Returning to the above example, we get f5(897) = 12045+ 3 � 2045+ 2 = 343.The generalizations of the LZ coding routines given in the previous section,both for LZSS and LZW, both encode and decode, are now straightforward.In particular, there are k parallel recursive calls of the form
perform inparallel

8>>>>>>>><>>>>>>>>:
if ki � n PLZ-code(ki; fk(ki))if ki+ 1 � n PLZ-code(ki+ 1; fk(ki+ 1))...if ki+ k � 1 � n PLZ-code(ki+ k � 1; fk(ki+ k � 1))16

4 Experimental resultsWe now report on some experiments on �les in di�erent languages: the Bible(King James Version) in English, the Bible in Hebrew and the Dictionnairephilosophique of Voltaire in French. Table 1 �rst brings the sizes of the �lesin MB and to what size they can be reduced by LZSS and LZW, expressed inpercent of the sizes of the original �les. We consider three algorithms: the se-rial one, using a single processor and yielding the compressed sizes in Table 1,but being slow; a parallel algorithm we refer to as standard , where each blockis treated independently of the others; and the new parallel algorithm pre-sented herein, with k = 2, which exploits the hierarchical layout. The columnsheaded Time in Table 1 compare the new algorithm with the serial and thestandard parallel ones. The time measurements were taken on a Sun 450 withfour UltraSPARC{II 248 MHz processors sharing a common memory, whichallowed a layout with 7 blocks. For the serial algorithms, the code providedby [9] has been used, with a maximal dictionary size of 32K for LZW and ahistory bu�er of 4K for LZSS. The values are in seconds and correspond toLZW, which turned out to give better compression performance than LZSS inour case. The improvement is obviously not expected to be 4-fold, due to theoverhead of the parallelization, but on the examples the time is generally cutto less than half. Size TimeFull compressed by compression decompressionLZSS LZW Serial Stand. New Serial Stand. NewEng Bib 3.860 41.6 36.6 5.508 1.513 2.296 3.653 1.081 1.504Heb Bib 1.471 51.7 44.7 2.134 0.645 0.853 1.488 0.382 0.566Voltaire 0.529 49.0 40.6 0.770 0.227 0.380 0.456 0.190 0.310Table 1: Size and time measurements on test �lesFor the compression performance, we �rst compare the standard parallel ver-sion with the new one for k = 2. Both are equivalent to the serial algorithm ifthe block size is chosen large enough, as in [6]. The graphs in Figure 9 showthe sizes of the compressed �les in MB as functions of the block size (in bytes),for both LZSS and LZW. We see that for large enough blocks (larger than thehistory bu�er) the loss relative to a serial algorithm with a single processor isnegligible (about 1%) for both the standard and the new methods. However,when the blocks become shorter, the compression gain in the independentmodel almost vanishes, whereas with the new processor layout the decreasein compression performance is much slower. For blocks as small as 128 bytes,running a standard parallel compression achieves only about 1{4% compres-sion for LZSS and about 12{15% for LZW, while with the new layout thismight be reduced by some additional 30{40%.17

0

0.5

1

1.5

2

2.5

3

3.5

4

64 256 1K 4K 16K 64K 256K 1M 4M

C
om

pr
es

se
d

si
ze

 (
M

B
)

Block size (bytes)

LZSS

English Bible standard
English Bible new

Hebrew Bible standard
Hebrew Bible new
Voltaire standard

Voltaire new

0

0.5

1

1.5

2

2.5

3

3.5

4

64 256 1K 4K 16K 64K 256K 1M 4M

C
om

pr
es

se
d

si
ze

 (
M

B
)

Block size (bytes)

LZW

English Bible standard
English Bible new

Hebrew Bible standard
Hebrew Bible new

Voltaire standard
Voltaire new

Figure 9: Size of compressed �le as function of block sizeThe graphs in Figure 10 compare the compression performance of the higherorder layouts corresponding to 3 � k � 5, with those of the binary layout andwith the standard parallel algorithm, using the English Bible �le as example.As expected, for LZSS, the compression gets worse with increasing k, forall block sizes, and for �xed k, compression is a decreasing function of theblock size, for all k. For LZW this is also the general trend, though there aresmall
uctuation. Interestingly, for the smaller block sizes, the graphs of thehierarchic methods, even with k = 5, are much closer to each other than theyare to the graph of the standard parallel method, which implies that higherorder layouts might be worth looking at if small blocks are required. A possiblereason for the di�erence between LZSS and LZW is that in the former, blocksare processed bottom up in our implementation, so that for �xed block sizebut with increasing k, the referenced reoccurring strings are farther away, thustend to yield lower savings. The same would be true also for LZW, but for it,processing has been done top down; if the �rst few blocks are representativeof the whole �le, they will contain \good" strings to be used in subsequentblocks, so compression might be less a�ected by the choice of k than in theLZSS case.

1

1.5

2

2.5

3

3.5

4

64 256 1K 4K 16K 64K 256K 1M 4M

C
om

pr
es

se
d

si
ze

 (
M

B
)

Block size (bytes)

LZSS

binary
k=3
k=4
k=5

standard

1

1.5

2

2.5

3

3.5

4

64 256 1K 4K 16K 64K 256K 1M 4M

C
om

pr
es

se
d

si
ze

 (
M

B
)

Block size (bytes)

LZW

binary
k=3
k=4
k=5

standard

Figure 10: E�ect of higher order layoutsWe conclude that the simple hierarchical layout might allow us to considerablyreduce the size of the blocks that are processed in parallel without paying toohigh a price in compression performance. As a consequence, if a large number18

of processors is available, it enables a better utilization of their full combinedcomputing power.References[1] Belinskaya D., De Agostino S., Storer J.A., Near OptimalCompression with Respect to a Static Dictionary on a Practical Mas-sively Parallel Architecture, Proc. Data Compression Conference DCC{95, Snowbird, Utah IEEE Computer Society Press (1995) 172{181.[2] De Agostino S., Storer J.A., Parallel Algorithms for Optimal Com-pression using Dictionaries with the Pre�x Property, Proc. Data Com-pression Conference DCC{92, Snowbird, Utah IEEE Computer SocietyPress (1992) 52{61.[3] Gonzalez Smith M.E., Storer J.A., Parallel Algorithms for DataCompression, Journal of the ACM 32(2) (1985) 344{373.[4] Hirschberg D.S., Stauffer L.M., Parsing Algorithms for Dictio-nary Compression on the PRAM, Proc. Data Compression ConferenceDCC{94, Snowbird, Utah IEEE Computer Society Press (1994) 136{145.[5] Howard P.G., Vitter J.S., Parallel lossless image compression usingHu�man and arithmetic coding, Proc. Data Compression ConferenceDCC{92, Snowbird, Utah (1992) 299{308.[6] Iwata K., Morii M., Uyematsu T., Okamoto E., A simple paral-lel algorithm for the Ziv-Lempel encoding, IEICE Trans. FundamentalsE81{A (1998) 709{712.[7] Klein S.T., Wiseman Y., Parallel Hu�man decoding with applica-tions to JPEG �les, The Computer Journal 46(5)(2003) 487{497.[8] Larmore L.L., Przytycka T.M., Constructing Hu�man Trees inParallel, SIAM Journal of Computing 24(6) (1995) 1163{1169.[9] Nelson M., The Data Compression Book, M & T Publishing, Inc.,(1991)[10] Storer J.A., Szymanski, T.G., Data compression via textual sub-stitution, Journal of the ACM 29 (1982) 928{951.[11] Welch T.A., A technique for high-performance data compression,IEEE Computer 17 (1984) 8{19.[12] Whiting D.L., George G.A., Ivey G.E., Data Compression Appa-ratus and Method, U.S. Patent 5,126,739 (1992).[13] Williams R.N., An extremely fast Ziv-Lempel data compression al-gorithm, Proc. Data Compression Conference DCC{91, Snowbird, Utah(1991) 362{371.[14] Ziv J., Lempel A., A universal algorithm for sequential data compres-sion, IEEE Trans. on Inf. Th. IT{23 (1977) 337{343.[15] Ziv J., Lempel A., Compression of individual sequences via variable-rate coding, IEEE Trans. on Inf. Th. IT{24 (1978) 530{536.19

