Parallel Lempel Ziv Coding

Shmuel Tomi Klein and Yair Wiseman

Computer Science Department, Bar-Ilan University, Ramat-Gan 52900, ISRAEL
{tomi,wiseman} @cs.biu.ac.il

Abstract

We explore the possibility of using multiple processors to improve the encoding and
decoding times of Lempel Ziv schemes. A new layout of the processors, based on a
full binary tree, is suggested and it is shown how LZSS and LZW can be adapted
to take advantage of such parallel architectures. The layout is then generalized
to higher order trees. Experimental results show an improvement in compression
over the standard method of parallelization and an improvement in time over the
sequential method.

Key words: Data Compression, Lempel-Ziv algorithms, parallel algorithms

1 Introduction

Compression methods are often partitioned into static and dynamic methods.
The static methods assume that the file to be compressed has been generated
according to a certain model which is fixed in advance and known to both
compressor and decompressor. The model could be based on the probability
distribution of the different characters or more generally of certain variable
length substrings that appear in the file, combined with a procedure to parse
the file into a well determined sequence of such elements. The encoded file
can then be obtained by applying some statistical encoding function, such as
Huffman or arithmetic coding. Information about the model is either assumed
to be known (such as the distribution of characters in English text), or may
be gathered in a first pass over the file, so that the compression process may
only be performed in a second pass.

Many popular compression methods, however, are adaptive in nature. The
underlying model is not assumed to be known, but discovered during the
sequential processing of the file. The encoding and decoding of the i-th element
is based on the distribution of the ¢ — 1 preceding ones, so that compressor and

Preprint submitted to Elsevier Science 16 May 2004

decompressor can work in synchronization without requiring the transmittal
of the model itself. Examples of adaptive methods are the Lempel-Ziv (LZ)
methods and their variants, but there are also adaptive versions of Huffman
and arithmetic coding.

We wish to explore the possibility of using multiple processors to improve the
encoding and decoding times. In [7] this has been done for static Huffman
coding, focusing in particular on the decoding process. The current work in-
vestigates how parallel processing could be made profitable for Lempel Ziv
coding.

Previous work on parallelizing compression includes [1, 2, 3], which deal with
LZ compression, [5], relating to Huffman and arithmetic coding, and [4]. A
parallel method for the construction of Huffman trees can be found in [8].
Our work concentrates on LZ methods, in particular a variant of LZ77, [14],
known as LZSS, and a variant of LZ78, [15], known as LZW. In LZSS, [10],
the encoded file consists of a sequence of items each of which is either a
single character, or a pointer of the form (off, len) which replaces a string of
length len that appeared off characters earlier in the file. Decoding of such a
file is thus a very simple procedure, but for the encoding there is a need to
locate longest reoccurring strings, for which sophisticated data structures like
hash tables or binary trees have been suggested. In LZW, [11], the encoded
file consists of a sequence of pointers to a dictionary, each pointer replacing
a string of the input file that appeared earlier and has been put into the
dictionary. Encoder and decoder must therefore construct identical copies of
the dictionary.

The basic idea of parallel coding is partitioning the input file of size N into n
blocks of size N/n and assigning each block to one of the n available processors.
For static methods the encoding is then straightforward, but for the decoding,
it is the compressed file that is partitioned into equi-sized blocks, so there
might be a problem of synchronization at the block boundaries. This problem
may be overcome by inserting dummy bits to align the block boundaries with
codeword boundaries, which causes a negligible overhead if the block size is
large enough. Alternatively, in the case of static Huffman codes, one may
exploit their tendency to resynchronize quickly after an error, to devise a
parallel decoding procedure in which each processor decodes one block, but is
allowed to overflow into one or more following blocks until synchronization is
reached, [7].

For dynamic methods one is faced with the additional problem that the en-
coding and decoding of elements in the i-th block may depend on elements of
some previous blocks. Even if one assumes a CREW architecture, in which all
the processors share some common memory space which can be accessed in
parallel, this would still be essentially equivalent to a sequential model. This is

so because elements dealt with by processor ¢ at the beginning of block ¢ may
rely upon elements at the end of block ¢+ — 1 which have not been processed
yet by processor ¢ — 1; thus processor ¢ can in fact start its work only after
processor ¢ — 1 has terminated its own.

The easiest way to implement parallelization in spite of the above problem is
to let each processor work independently of the others. The file is thus par-
titioned into n blocks which are encoded and decoded without any transfer
of data between the processors. If the block size is large enough, this solution
may even be recommendable: most .Z methods put a bound on the size of
the history taken into account for the current item, and empirical tests show
that the additional compression, obtained by increasing this history beyond
some reasonable size, rapidly tends to zero. The cost of parallelization would
therefore be a small deterioration in compression performance at the block
boundaries, since each processor has to “learn” the main features of the file
on its own, but this loss will often be tolerated as it may allow to cut the
processing time by a factor of n. In [6] the authors suggest letting each pro-
cessor keep the last characters of the previous block and thereby improve the
encoding speed, but each block must then be larger than the size of the history
window. On the other hand, putting a lower bound on the size N/n of each
block effectively puts an upper bound on the number of processors n which
can be used for a given file of size N, so we might not fully take advantage of
all the available computing power.

We therefore turn to the question how to use n processors, even when the size
of each block is not very large. In the next section we propose a new parallel
coding algorithm, based on a time versus compression efficiency tradeoff which
is related to the degree of parallelization. On the one extreme, for full paral-
lelization, each of the n processors works independently, which may sharply
reduce the compression gain if the size of the blocks is small. On the other
extreme, all the processors may communicate, forcing delays that make this
variant as time consuming as a sequential algorithm. The suggested tradeoff
is based on a hierarchical structure of the connections between the processors,
each of which depending at most on logn others. The task can be performed
in parallel by n processors in logn sequential stages. There will be a deterio-
ration in the compression ratio, but the loss will be inferior to that incurred
when all n processors are independent.

In contrast to Huffman coding, for which parallel decoding could be applied
regardless of whether the possibility of having multiple processors at decoding
time was known at the time of encoding, there is a closer connection between
encoding and decoding for LZ schemes. We therefore need to deal also with the
parallel encoding scheme, and we assume that the same number of processors
is available for both tasks.

Note, however, that one cannot assume simultaneously equi-sized blocks for
both encoding and decoding. If encoding is done with blocks of fixed size, the
resulting compressed blocks are of variable lengths. So one either has to store
a vector of indices to the starting point of each processor in the compressed
file, which adds an unnecessary storage overhead, or one performs a priori
the compression on blocks of varying size, such that the resulting compressed
blocks are all of roughly the same size. To get blocks of exactly the same size
and to achieve byte alignment, one then needs to pad each block with a small
number of bits, but in this case the loss of compression due to this padding
is generally negligible. Moreover, the second alternative is also the preferred
choice for many specific applications. For instance, in an Information Retrieval
system built on a large static database, compression is done only once, so the
speedup of parallelization may not have any impact, whereas decompression of
selected parts is required for each query to be processed, raising the importance
of parallel decoding.

2 A tree-structured hierarchy of processors

The suggested form of the hierarchy is that of a full binary tree, similarly to
a binary heap. This basic form has already been mentioned in [6], but the
way to use it as presented here is new. The input file is partitioned into n
blocks By, ..., B,, each of which is assigned to one of the available processors.
Denote the n processors by P, ..., P,, and assume, for the ease of description,
that n + 1 is a power of 2, that is n = 2" — 1 for some r. Processor P; is at
the root of the tree and deals with the first block. As there is no need to
“point into the future”, communication lines between the processors may be
unidirectional, permitting a processor with higher index to access processors
with lower index, and in particular their local memories, but not vice versa.
Restricting this to a tree layout yields a structure in which P; and P;;; can
access the memory of P, for 1 < i < (n — 1)/2. Figure 1 shows this layout
for n = 15, the arrows indicating the dependencies between the processors.
The numbers indicate both the indices of the blocks and of the corresponding

Processors.
e 1
1
(] ©) (]
- : -
3 4 8
® & & & &6 O ©® ® & ®
FIGURE 1: Simple tree layout FIGURE 2: Layer-by-layer layout

The compression procedure for LZSS works as follows: P, starts at the begin-

ning of block B, which is stored in its memory. Once this is done, P; and
Ps start simultaneously their work on By and Bj respectively, both searching
for reoccurring strings first within the block they have been assigned to, and
then extending the search back into block B;. As mentioned above, P, can
access the local memory of P; where Bj is stored, without disturbing P;’s
work. In general, after P, has finished the processing of block B;, processors
Py and Ps;yq start scanning simultaneously their corresponding blocks. The
compression of the file is thus not necessarily done layer by layer, e.g., P> and
P13 may start compressing blocks By, and Bis, even if P is not yet done with
Bs.

Note that while the blocks B, and B; are contiguous, this is not the case for Bs
and By, so that the (off, len) pairs do not necessarily point to close previous
occurrences of a given string. This might affect compression efficiency, as one
of the reasons for the good performance of LZ methods is the tendency of
many files to repeat certain strings within the close vicinity of their initial
occurrences. For processors and blocks with higher indices, the problem is
even aggravated. The experimental section below brings empirical estimates
of the resulting loss.

The layout suggested in Figure 1 is obviously wasteful, as processors of the
higher layers stay idle after having compressed their assigned block. The num-
ber of necessary processors can be reduced by half, or, which is equivalent,
the block size for a given number of processors may be doubled, if one allows
a processor to deal with multiple blocks. The easiest way to achieve this is
displayed in Figure 2, where the numbers in the nodes are the indices of the
blocks, and the boldface numbers near the nodes refer to the processors. Pro-
cessors 1,...,27 are assigned sequentially, from left to right, to the blocks of
layer 7, 5 = 0,1,...,7 — 1. This simple way of enumerating the blocks has,
however, two major drawbacks: refer, e.g., to block By which should be com-
pressed by processor P%. First, it might be that P; finishes the compression
of blocks By and By, before P, is done with Bs. This causes an unnecessary
delay, By having to wait until P processes both B3 and Bs, which could be
avoided if another processor would have been assigned to By, for example one
of those that has not been used in the upper layers. Moreover, the problem is
not only one of wasted time: P, stores in its memory information about the
blocks it has processed, namely Bz and Bs. But the compression of By does
not depend on these blocks, but only on By, B> and B;. The problem thus is
that the hierarchical structure of the tree is not inherited by the dependencies
between the processors.

To correct this deficiency of the assignment scheme, each processor will con-
tinue working on one of the offsprings of its current block. For example, one
could consistently assign a processor to the left child block of the current
block, whereas the right child block is assigned to the next available newly

used processor. More formally, let S; be the index of the processor assigned
to block j of layer 4, where i = 0,...,r —1and j = 1,...,2%, then S? = 1 and
fori>0and j=1,.... 201

Sy =871 and Sp =271+

The first layers are thus processed, from left to right, by processors with in-
dices: (1), (1,2), (1, 3, 2, 4), (1, 5, 3, 6, 2, 7, 4, 8), etc. Figure 3(a) depicts
the new layout of the blocks, the rectangles indicating the sets of blocks pro-
cessed by the same processor. This structure induces a corresponding tree of
processors, depicted in Figure 3(b).

1?
¢

5]

(a) Tree of blocks (b) Tree of processors
FIGURE 3: New hierarchical structure

As a results of this method, processor P; will start its work with block Bs; 1,
and then continue with By; o, Bg; 4, etc. In each layer, the evenly indexed
blocks inherit their processors from their parent block, and each of the oddly
indexed blocks starts a new sequence of blocks with processors that have not
been used before.

The memory requirements of the processors have also increased by this new
scheme, and space for the data of up to log, n blocks has to be stored. However,
most of the processors deal only with a few blocks. To evaluate the average
number of blocks to be memorized, amortized over the m processors, suppose
a full binary tree with r levels is used, so that there are n = 2" — 1 nodes
and m = 27! = (n + 1)/2 processors are needed. Then processor P; has to
store information about r blocks, processor P, about r — 1 blocks, the next
two processors need only space corresponding to — 2 blocks, etc. The average
amortized number of blocks to be referred to by a processor is therefore

1 -1 o 2" — 1 1
— (T‘+Z(7’—j>2j 1) = 51 :2—_\

m = m

that is, less than 2.

For the encoding and decoding procedures, we need a fast way to convert the
index of a block into the index of the corresponding processor, i.e., a function

f. such that f(i) = j if block B; is coded by processor P;. Define r(i) as the
largest power of 2 that divides the integer i, that is, r(7) is the length of the
longest suffix consisting only of zeros of the binary representation of <.

1/ i

CLAIM: f(i) = 5 (W + 1>.

PRrROOF: By induction on i. For ¢ = 1, we get f(1) = 1, which is correct.
Assume the claim is true up to ¢ — 1. If 7 is odd, (i) = 0 and the formula
gives f(i1) = (1+1)/2. As has been mentioned above, any oddly indexed block
is the starting point of a new processor and indeed processor F;41)/2 starts at
block B;. If i is even, block B; is coded by the same processor as its parent
block B;/,, for which the inductive assumption applies, and we get

)) 1 /2 1 1 1 :
16 = 162 = 5 (52 41) = 2 (1) = 3 (5 +1).

so that the formula holds also for <. [

2.1 Parallel coding for LZSS

We now turn to the implementation details of the encoding and decoding
procedures for LZSS. Since the coding is done by stages, the parallel co-
routines will invoke themselves the depending offsprings. For the encoding,
the procedure PLZSS-encode(i, j) given in Figure 4 will process block B; with
processor P;, where j = f(i). The whole process is initialized by a call to
PLZSS-encode(1,1) from the main program.

Each routine starts by copying the text of the current block into the memory
of the processor, possibly adding to texts of previous blocks that have been
stored there. As in the original LZSS, the longest substring in the history is
sought that matches the suffix of the block starting at the current position. The
search for this substring can be accelerated by several techniques, and one of
the fastest is by use of a hash table, [13]. The longest substring is then replaced
by a pair (offset, length), where offset is the distance (in characters) from the
current position to the longest previous match, and length is the length of
the match; if, however, length is too small (2 or 3 in implementations of [13],
such as the patent [12], which is the basis of Microsoft’s DoubleSpace), then
a single character is sent to output and the current position is shifted by one
to the right.

In our case, the search is not limited to the current block, but extends back-
wards to the parent blocks in the hierarchy, possibly up to the root. For exam-
ple, referring to Figure 3, the encoding of block B;; will search also through

PLZSS-encode(i, 7)
{

append text of B; to memory of P;
cur +— 1
while cur < |B;]

{

S +— suffix of B; starting at cur

ind <~— 1
while ind > 0
{

access memory of P;,q) and
record occurrences in B;,; matching a prefix of S
ind «— [ind/2]

}

if longest occurrence not long enough

{ encode single character cur «— cur+1 }
else
{ encode as (offset, length) cur «— cur+len }

}

perform in if 20 <n PLZSS-encode(2i, j)
parallel if 2i+1<n PLZSS-encode(2i +1,i+ 1)

FI1GURE 4: Parallel LZSS encoding for block B; by processor P;

Bg, By and By, and thus access the memory of the processors Pr, P, P» and
Py, respectively. That is, the “text” in which earlier occurrences of substrings
of Bj3 are searched is defined as the concatenation of the texts of blocks Bj,
B3, Bg and By3, though physically these texts are not contiguously stored.
The values of offset refer to the distances in this concatenated text.

Note that the size of the history window is limited by some constant W in
many implementations of LZSS. In our general description, we do not impose
any such limit, but in fact, the encoding of any element is based on a history
of size at most log, n x the block size, where n is the number of blocks in
the tree. Therefore, when the entire history is scanned to find the longest
occurrence of a prefix of S, the scanning direction could be just as well top
down rather than bottom up as in Figure 4. The reason for using a bottom up
scan is that this applies also in the case the history window is limited; indeed,
if only a part of the history is to be processed, it should be those blocks that
are closest to S, to keep the values of offset as small as possible and because
the main assumption of LZSS is that there is locality of reference.

For the decoding, recall that we assume that the encoded blocks are of equal
size Blocksize. The decoding routine can thus address earlier locations as if
the blocks, that are ancestors of the current block in the tree layout, were
stored contiguously. Any element of the form (offset, length) in block B; can
point back into a block B;, with j = |i/2°] for b = 0,1, ..., [log, 7], and the

index of this block can be calculated by
b <— [(offset — cur + 1)/ Blocksize],

where cur is the index of the current position in block B;. The formal decoding
procedure is given in Figure 5.

PLZSS-decode(i, j)
{

cur +— 1
while there are more items to decode

if next item is a character
{ store the character cur «— cur+1 }
else // the item is (off, len)

{

if off < cur // pointer within block B;
copy len characters, starting at position cur—off
else // pointer to earlier block

{ b <— [(off — cur + 1)/ Blocksize|
t «— (off — cur) mod Blocksize
copy len characters, starting at position ¢
in block B|;/os| which is stored in Ppr(|; /1)

}

cur <— cur +len

}

perform in if 2¢ S n PLZSS—deCOde(Ql,])
paralle if 2i+1<n PLZSS-decode(2i+ 1,i+ 1)

F1GURE 5: Parallel LZSS decoding for block B; on processor P;

The input of the decoding routine is supposed to be a file consisting of a
sequence of items, each being either a single character or a pointer of the form
(offset, length); cur is the current index in the currently reconstructed block.

2.2 Parallel coding for LZW

Encoding and decoding for LZW is similar to that of LZSS, with a few differ-
ences. While for LZSS, the “dictionary” of previously encountered strings is in
fact the text itself, LZW builds a continuously growing table Table, which need
not be transmitted, as it is synchronously reconstructed by the decoder. The
table is initialized to include the set of single characters composing the text,
which is often assumed to be ASCIL. If, as above, we denote by S the suffix
of the text in block B; starting at the current position, then the next encoded
element will be the index of the longest prefix R of S for which R € Table, and

the next element to be adjoined to Tuble will be the shortest prefix R’ of S
for which R’ ¢ Table; R is a prefix of R’ and R’ extends R by one additional
character.

During the encoding process of B;, one therefore needs to access the tables in
B; itself and in the blocks which are ancestors of B; in the tree layout, but the
order of access has to be top down rather than in the LZSS case, for which
the order can be either top down or bottom up, as explained earlier. For each
1, we therefore need a list [ist; of the indices of the blocks accessed on the
way from the root to block B;, that is, list;[ind] is the number whose binary
representation is given by the ind leftmost bits of the binary representation
of 7. For example, list;3 = [1,3,6, 13].

To encode a new element P, it is first searched for in Table of B;, and if
not found there, then in Table of By 2, which is stored in the memory of
processor Pris,[2)). etc. However, storing only the elements in the tables may
lead to errors. To illustrate this, consider the following example, referring again
to Figure 3.

Suppose that the longest prefix of the string abcde appearing in the Table
of B; is abc. Suppose we later encounter abcd in the text of block Bs. The
string abed will thus be adjoined to the same Tuable, since both B; and B,
are processed by the same processor P;. Assume now that the texts of both
blocks Bs and Bs start with abcde. While for By it is correct to store abcde
as the first element in its Table, the first element to be stored in the Table
of Bs should be abcd, since the abed in the memory of P, was generated by
block Bs, whereas Bz only depends on Bj.

To avoid such errors, we need a kind of a “time stamp”, indicating at what
stage an element has been added to a Table. If the elements are stored sequen-
tially in these tables, one only needs to record the indices of the last element
for each block. But implementations of LZW generally use hashing to main-
tain the tables, so one cannot rely on deducing information from its physical
location, and each element has to be marked individually. The easiest way is
to store with each string P also the index ¢ of the block which caused the
addition of P. This would require log, n bits for each entry. One can however
take advantage of the fact that the elements stored by different blocks B; in
the memory of a given processor correspond to different indices ind in the
corresponding lists list;. It thus suffices to store with each element the index
in list; rather than ¢ itself, so that only log,log,n bits are needed for each
entry. The formal encoding and decoding procedures are given in Figures 6
and 7, respectively.

The parallel LZW encoding refers to the characters in the input block as
belonging to a vector B;[cur], with cur giving the current index. If x and y

10

PLZW-encode(i, j)
{

W Bi[l]
cur — 2
while cur < |B;|

{

ind +— 1
while list;[ind] <1

{

while cur < |B;| and
{ (wBi[cur],ind) € Table stored in Pp(st,ind))

w — wB;[cur]
cur «— cur—+1
last +— ind

}
ind «— ind+1

}

indr «— indez(w) in Table of Ptjst[1ast))
store (indz,last) in memory of P;

store (wB;[cur],ind) in T'able in memory of P;
w <— Bjcur]

cur <— cur+1

}

perform in if 20<n PLZW-encode(2i, j)
parallel if 2+ 1<n PLZW-encode(2i +1,i + 1)

FIGURE 6: Parallel LZW encoding for block B; on processor P;

are strings, then xy denotes their concatenation. As explained above, since the
Table corresponding to block B; is stored in the memory of a processor which
is also accessed by other blocks, each element stored in the Tuble needs an
identifier indicating the block from which it has been generated. The elements
in the Table are therefore of the form (string, identifier).

The output of LZW encoding is a sequence of pointers, which are the indices
of the encoded elements in the Table. In our case, these pointers are of the
form (index, identifier). There is, however, no deterioration in the compression
efficiency, as the additional bits needed for the identifier are saved in the
representation of the index, which addresses a smaller range.

For simplicity, we do not go into details of handling the incremental encoding
of the indices, and overflow conditions when the Tuble gets full. It can be done
as for the serial LZW.

The parallel LZW decode routine assumes that its input is a sequence of

elements of the form (indez, identifier). The empty string is denoted by A.
The algorithm in Figure 7 is a simplified version of the decoding, which does

11

PLZW-decode(i, j)
{

cur <— 1
old +— A
while cur < number of items in block B;

{

(indx,ind) <— B;[cur]
access Table in Pyjs,[ind)) at index indz
and send string str found there to output
if old £ A
store (old first[str], [logs(i + 1)]) in Table of P;
old +— str
cur <— cur+1

}

perform in If 21 S n PLZ‘/V-deCOde(2Z,])
parallel if 20+1<n PLZW-decode(2i+1,i+ 1)

FI1GURE 7: Parallel LZW decoding for block B; on processor P;

not work in case the current element to be decoded was the last one to be
added to the Table. This is also a problem in the original LZW decoding and
can be solved here in the same way. The details have been omitted to keep
the emphasis on the parallelization.

3 Higher order trees

In this section, we wish to explore possible tradeoffs that can be achieved by
generalizing the binary tree layout to trees of higher order £ > 2, in which
each node has £ children. Once a processor is done with a given block, it will
start to work on the block’s leftmost child, while & — 1 new processors will
start their work on the remaining offsprings. Passing to higher order trees may
yield several advantages. For instance, the depth of a k-ary tree is only log, n,
so that the chain of dependencies is shorter than in the binary case, and thus
less information need be stored per processor. Moreover, after the ¢th parallel
step, the number of blocks that have been dealt with is Z;Zl k1, so a given
block is reached faster when £ is larger.

To measure the level of exploitation of the m available processors, define a
utilzation factor as the average fraction of the processors which are active. At
the lowest level of the tree, all the processors are busy; at the level just above
the lowest, only % of the processors are active, etc. It would thus seem, at first
sight, that if we assume that each level has the same expected execution time,

the average utilization factor would be proportional to 3 (%)Z — 1+ ﬁ7

which is a decreasing function of k. But this did not take into account that

12

the number of levels decreases when k increases. The average time spent on

each level being loglkn’ we get that the average utilization factor is

k

1 1%”<1>i . 1 klog, k

log, n = logon k—1"
which is an increasing function of £ for £ > 2, suggesting that a higher or-
der tree layout may be advantageous for better utilization of the available

resources.

The average number of blocks to be memorized, amortized over the m proces-
sors, is evaluated as follows. One processor works on level 0, £ — 1 additional
ones on level 1, k(k — 1) more are added at the next level, etc. The total
number of processors is therefore

r—2
m=1+k-1)> kK = k"
j=0

Processor P, has to store information about r blocks, processor P, to P, about
r — 1 blocks, the next k(k — 1) processors need only space corresponding to
r — 2 blocks, and the next &%(k — 1) processors only to r — 3 blocks, etc. The
total required space, when summed over all the processors, is then

r—1) - kr—1
’I“-l—Z(T‘—])/{?] (k—1) =)
o E—1

Amortizing this space over the m processors, we get as average required mem-
OTY per processor:

kr—1 B 1+1—%
(k—1)k—1 k—17

which is decreasing with k. So from the point of view of local space require-
ments, it is also worth passing to higher order trees.

However, all these advantages calling for larger &k are counterbalanced by the
fact that with increasing k, the hierarchical layout tends increasingly to be
equivalent to using m independent processors, affecting the compression effi-
ciency when the block size is small. Indeed, the LZ compression schemes take
advantage of the fact that certain strings tend to reoccur shortly after a first
appearance, and this locality of reference is disturbed by connecting blocks
which are not adjacent. In our case, for a fixed block size, the distance, in the
file, between blocks treated by the same processor, is increasing with £, so we
might expect better compression with lower k. In the next section, we bring
empirical results comparing the compression performance for various values

of k.

13

In a straightforward generalization of the binary case, the blocks would be
numbered sequentially top down, left to right, so that the children of block B;

would be the blocks Bj(i—1)414+ for t = 1,..., k. The correspondence between
blocks and processors would then be given as follows: if S; is the index of the
processor assigned to block j of layer i, whered = 0,...,r—land j = 1,... k",

then SY =1 and

fori>0and j=1,..., ki_l’ Slic(j—l)+1 = 5;71
and fort=2,....k Sig—nae =F T HE=1(G - 1)+t - 1.

For example, for & = 3, we would get as order of processors, from left to right,
for the first layers:: (1), (1, 2, 3), (1,4, 5, 2,6, 7, 3, 8, 9), etc. Figure 8 depicts
this layout of the blocks, for k£ = 3, on a tree with 4 layers, in similar form as
in Figure 3(a).

1

Lo
G

FIGURE 8: Hierarchical structure of ternary tree

As above for the binary case, we would need a function fi(i) converting the
index of a block into that of the corresponding processor for the k-ary tree,
i.e., fy(i) = j if block B; is coded by processor P;. This function would be
given by

I3 <Z+’vk—2> it imod k=2
(i) = ,
i— [t if imodk # 2
The particular case k = 2 coincides with the formula given earlier if one

interprets the condition ¢ mod 2 = 2 as standing for ¢ is even. Indeed, one gets

then that fy(i) = fo(i/2) for even i, and fo(i) = (i +1)/2 if 7 is odd.

However, with a sequential numbering of the blocks, the parent-child relations
of the blocks are not trivially obvious from their indices. This is a disad-
vantage, since one needs a direct way to address ancestors in the LZ coding
routines. One could of course prepare for each index 7 of a block, a list [ist; as
suggested above in Section 2.2, giving the sequence of the indices of the blocks
accessed from the root to block B;; but for the ternary case, we would get,

14

for example, listy; = [1,2,7,21], which is not trivially related to the ternary
representation of the index 21, as list; for the binary case was related to the
binary representation of i.

To rectify this deficiency, the following new numbering of the blocks in a k-
ary layout is suggested: the blocks in layer ¢, ¢t = 0,...,r — 1, will be indexed
from left to right by k' + j, 5 = 0,...,k" — 1. For example, for k = 3, the
sequence of indices will be 1,3,4,5.9,10,...,17,27,28,...,53,81,82,.... The
main property of this way of enumerating the blocks is that the following
relation holds between a block and its offsprings: if « is the representation
of the index of the given block in the standard k-ary numeration system,
then the representations of the indices of the k children of this block are
a0,al,...,a(k —1). Note that for & = 2, the new numbering coincides with
the sequential numbering of Section 2.

Another way to look at it is by considering the layout as a full k-ary trie,
labelled in a similar way as suffix trees: the edges emanating from a given
node are labelled, from left to right, by 0,1,...,k — 1, the root is labelled
by the empty string A, and each node z is labelled by the concatenation of
the labels on the edges of the unique path from the root to z. Here we have
merely prefixed each of these node-labels by a leading 1, to avoid ambiguities
when the labels are considered as numbers rather than k-ary strings. Without
the leading 1s, the labels of the nodes of the leftmost branch of the tree
would be A, 0,00,000,..., prefixing the 1 turns them into different numbers
1,10, 100,.... As an example, consider the block Bgg; in a 5-ary tree. The
chain of blocks leading to it is By, B7, Bss, B179 and Bsggr, and their indices, in
5-ary, are 1, 12, 120, 1204, 12042, respectively.

One can therefore readily generalize the binary based LZ coding routines by
noting that the ancestors of block B; are the blocks By;/s|, for b =1,2,....
The new definition of the function fi(i), giving the index of the processor
dealing with block B; is as follows: let ¢(i) = |log,i| be the length of the
k-ary representation of ¢ not including the leading 1, so that ¢(i) is in fact
the index of the layer in which block B; occurs, and let (i), as above, be the
length of the longest suffix consisting only of zeros in the k-ary representation
of 1.

CLAIM: fili) = (KOO 4 (k- 1) { J + g mod k.

PRrROOF: By induction on the relevant values of 7. For ¢ = 1, the first component
is [£°707!] = 0 (in fact, the floor operator is only needed in this special case,
as for ¢ > 1, this component will always be an integer), the second component
is 0 and the third is 1, so we get f(1) = 1 for all .

Assume the claim is true up to 7 — 1 and consider first a node with index ¢ > 1

15

to which a new processor is assigned; the index ¢ of this node is then such that
i mod k # 0, so that r(i) = 0. The node appears on level ¢(i) in the tree and
the number of processors used in the (4) levels above the current one is &)1,
which accounts for the first component. The relative index of node ¢ within
layer t(i) is i — k'), This layer can be partitioned into groups of k nodes, each
group including the child nodes of one of the nodes of layer (i) — 1. Since we
assume here that i — k%) is not divisible by k, the number of groups to the
left of the one to which node i belongs is | (i — k%) /k], and each such group
contributes k& — 1 new processors, as only the first node in each group inherits
the processor of the parent node; this accounts the for the second component.
What still need to be added is the relative index of node ¢ within the group
it belongs to, and this index is ¢ mod &.

If 7 is a multiple of £, then B; is dealt with by the same processor as its parent
node B;/. Noting that ¢(i/k) = t(i) — 1, 7(i/k) = r(i) — 1, and that we can
apply the inductive assumption for i/k < i, we get that

, . L)1) ik — k01 i/k
fiu(@) = fuli/k) = KO- 100D 1+(/€_1){ EoEE + =D mod F,

and the right hand side reduces to the formula given in the claim, which shows
that it holds also for 7.]

A way relating the function fr(i) to the k-ary representation of i is the fol-
lowing: first, delete the longest suffix consisting only of zeros; define A as the
remaining string from which the rightmost k-ary digit, denoted C| has been
removed, and define B as the string obtained from A by removing its leading
1. Then

fuli) = A+ (k = 2)B +C.

Returning to the above example, we get f5(897) = 12045 4 3 - 2045 + 2 = 343.

The generalizations of the LZ coding routines given in the previous section,
both for LZSS and LZW, both encode and decode, are now straightforward.
In particular, there are £k parallel recursive calls of the form

if ki<n PLZ-code(ki, fi.(ki))
perform in ifki+1<n PLZ—COdG(/{?i +1, fk(k,”& + 1))

parallel

if ki+k—1<n PLZ-code(ki+Fk—1, fe(ki+k—1))

16

4 Experimental results

We now report on some experiments on files in different languages: the Bible
(King James Version) in English, the Bible in Hebrew and the Dictionnaire
philosophique of Voltaire in French. Table 1 first brings the sizes of the files
in MB and to what size they can be reduced by LZSS and LZW, expressed in
percent of the sizes of the original files. We consider three algorithms: the se-
rial one, using a single processor and yielding the compressed sizes in Table 1,
but being slow; a parallel algorithm we refer to as standard, where each block
is treated independently of the others; and the new parallel algorithm pre-
sented herein, with &£ = 2, which exploits the hierarchical layout. The columns
headed Time in Table 1 compare the new algorithm with the serial and the
standard parallel ones. The time measurements were taken on a Sun 450 with
four UltraSPARC-II 248 MHz processors sharing a common memory, which
allowed a layout with 7 blocks. For the serial algorithms, the code provided
by [9] has been used, with a maximal dictionary size of 32K for LZW and a
history buffer of 4K for LZSS. The values are in seconds and correspond to
LZW, which turned out to give better compression performance than LZSS in
our case. The improvement is obviously not expected to be 4-fold, due to the
overhead of the parallelization, but on the examples the time is generally cut
to less than half.

Size Time
Full compressed by compression decompression

LZSS LZW Serial Stand. New Serial Stand. New

Eng Bib 3.860 41.6 36.6 5.508 1.513 2.296 3.653 1.081 1.504
Heb Bib 1.471 51.7 44.7 2134 0.645 0.853 1.488 0.382 0.566
Voltaire 0.529 49.0 40.6 0.770 0.227 0.380 0.456 0.190 0.310

TABLE 1: Size and time measurements on test files

For the compression performance, we first compare the standard parallel ver-
sion with the new one for k£ = 2. Both are equivalent to the serial algorithm if
the block size is chosen large enough, as in [6]. The graphs in Figure 9 show
the sizes of the compressed files in MB as functions of the block size (in bytes),
for both LZSS and LZW. We see that for large enough blocks (larger than the
history buffer) the loss relative to a serial algorithm with a single processor is
negligible (about 1%) for both the standard and the new methods. However,
when the blocks become shorter, the compression gain in the independent
model almost vanishes, whereas with the new processor layout the decrease
in compression performance is much slower. For blocks as small as 128 bytes,
running a standard parallel compression achieves only about 1-4% compres-
sion for LZSS and about 12-15% for LZW, while with the new layout this
might be reduced by some additional 30-40%.

17

LZSS LzZw
English Bible standard —

" English Bible standard —

English Bible new ---- English Bible new ----
351 Hebrew Bible standard - { 351 Hebrew Bible standard - {
Hebrew Bible new Hebrew Bible new
Voltaire = standard --- Voltaire standard ---
3r Voltaire new --- 3r Voltaire new ---

Compressed size (MB)
N
Compressed size (MB)
N

1 1
os| sl
0 - 0

4K 16K 64K 256K ™M am 64 256 1K 4K 16K 64K 256K M am
Block size (bytes) Block size (bytes)

FIGURE 9: Size of compressed file as function of block size

64 256 1K

The graphs in Figure 10 compare the compression performance of the higher
order layouts corresponding to 3 < k < 5, with those of the binary layout and
with the standard parallel algorithm, using the English Bible file as example.
As expected, for LZSS, the compression gets worse with increasing k&, for
all block sizes, and for fixed k, compression is a decreasing function of the
block size, for all k. For LZW this is also the general trend, though there are
small fluctuation. Interestingly, for the smaller block sizes, the graphs of the
hierarchic methods, even with & = 5, are much closer to each other than they
are to the graph of the standard parallel method, which implies that higher
order layouts might be worth looking at if small blocks are required. A possible
reason for the difference between LZSS and LZW is that in the former, blocks
are processed bottom up in our implementation, so that for fixed block size
but with increasing k, the referenced reoccurring strings are farther away, thus
tend to yield lower savings. The same would be true also for LZW, but for it,
processing has been done top down; if the first few blocks are representative
of the whole file, they will contain “good” strings to be used in subsequent
blocks, so compression might be less affected by the choice of k& than in the
LZSS case.

LZSS LZw
4 T T T T 4 T T T T T
binary — binary —
k=3 k=3
k=4 - k=4 -
351 5 k=5 B 351 k=5
AN standard --- \ standard ---
@ 3t o 3t
= =
[[
» o
‘% 25 g 25
<A 5
E Ll g 5l
(@] O
15 15
1 1

64 256 1K 4K 16K 64K 256K M am 64 256 1K 4K 16K 64K 256K ™M am
Block size (bytes) Block size (bytes)

FI1GURE 10: Effect of higher order layouts

We conclude that the simple hierarchical layout might allow us to considerably
reduce the size of the blocks that are processed in parallel without paying too
high a price in compression performance. As a consequence, if a large number

18

of processors is available, it enables a better utilization of their full combined
computing power.

References

[1] BELINSKAYA D., DE AcosTINO S., STORER J.A., Near Optimal
Compression with Respect to a Static Dictionary on a Practical Mas-
sively Parallel Architecture, Proc. Data Compression Conference DCC-
95, Snowbird, Utah IEEE Computer Society Press (1995) 172-181.

[2] DE AGOSTINO S., STORER J.A., Parallel Algorithms for Optimal Com-
pression using Dictionaries with the Prefix Property, Proc. Data Com-
pression Conference DCC-92, Snowbird, Utah IEEE Computer Society
Press (1992) 52-61.

[3] GonzALEZ SMITH M.E., STORER J.A., Parallel Algorithms for Data
Compression, Journal of the ACM 32(2) (1985) 344 373.

[4] HIRSCHBERG D.S., STAUFFER L.M., Parsing Algorithms for Dictio-
nary Compression on the PRAM, Proc. Data Compression Conference
DCC-94, Snowbird, Utah IEEE Computer Society Press (1994) 136-145.

[5] HOwARD P.G., VITTER J.S., Parallel lossless image compression using
Huffman and arithmetic coding, Proc. Data Compression Conference
DCC-92, Snowbird, Utah (1992) 299-308.

(6] IwaTa K., Morun M., UvEMAaTsU T., OkamoTo E.; A simple paral-
lel algorithm for the Ziv-Lempel encoding, IEICE Trans. Fundamentals
E81-A (1998) 709-712.

[7] KLEIN S.T., WisSEMAN Y., Parallel Huffman decoding with applica-
tions to JPEG files, The Computer Journal 46(5)(2003) 487 497.

[8] LARMORE L.L.; PrzyTYCcKA T.M., Constructing Huffman Trees in
Parallel, STAM Journal of Computing 24(6) (1995) 1163-1169.

[9] NELSON M., The Data Compression Book, M & T Publishing, Inc.,
(1991)

[10] STORER J.A., SzyYMANSKI, T.G., Data compression via textual sub-
stitution, Journal of the ACM 29 (1982) 928-951.

[11] WELcH T.A., A technique for high-performance data compression,
IEEE Computer 17 (1984) 8-19.

[12] WHITING D.L.; GEORGE G.A., IVEY G.E., Data Compression Appa-
ratus and Method, U.S. Patent 5,126,739 (1992).

[13] WiLLiams R.N., An extremely fast Ziv-Lempel data compression al-
gorithm, Proc. Data Compression Conference DCC-91, Snowbird, Utah
(1991) 362-371.

[14] Z1v J., LEMPEL A., A universal algorithm for sequential data compres-
sion, IEEE Trans. on Inf. Th. IT-23 (1977) 337 343.

[15] Z1v J., LEMPEL A., Compression of individual sequences via variable-
rate coding, IEEE Trans. on Inf. Th. IT-24 (1978) 530-536.

19

