
Dynamic Determination of Variable Sizes
of Chunks in a Deduplication System∗

Michael Hirscha, Shmuel T. Kleinb, Dana Shapirac, Yair Toaffa

aToga Networks, Hod Hasharon, Israel
mikizvi@gmail.com, Yair.Toaff@gmail.com

bDepartment of Computer Science, Bar Ilan University, Ramat Gan, Israel
tomi@cs.biu.ac.il

cComputer Science Department, Ariel University, Israel
shapird@ariel.ac.il

Abstract

Deduplication is a special case of data compression in which repeated chunks
of data are stored only once. The input data is cut into chunks and a
cryptographically strong hash value of each (different) chunk is stored. To
restrict the influence of small inserts and deletes to local perturbations,
the chunk boundaries are usually defined in a data dependent way, which
implies that the chunks are of variable length. Usually, the chunk sizes
may spread over a large range, which might have a negative impact on the
storage performance. This can be dealt with by imposing artificial lower and
upper bounds. This paper proposes an alternative by which the chunk size
distribution is controlled in a natural way. Some analytical and experimental
results are given.

Keywords: Deduplication, compression, chunk size

1. Introduction

Deduplication is a lossless data compression technique that is somewhat
similar to the classical first method of Lempel and Ziv [14] known as LZ1
or LZ77: the size of an input file is reduced by trying to replace a substring

∗This is an extended version of a paper that has been presented at the Prague Stringol-
ogy Conference (PSC’15) in 2015, and appeared in its Proceedings, 78–89.

Preprint submitted to Discrete Applied Mathematics July 31, 2018

starting at the current position, by a pointer to some earlier occurrence, if it
exists. The pointers are of the form (offset, len), where offset is the number of
characters in the original text one has to go backwards to find the beginning
of the substring to be replaced, and len is its length. Compression is achieved
because the pointers need less space for their representation than the strings
they substitute. Here is an example, taken from Friedrich Schiller’s poem
Das Lied von der Glocke:

von-der-Stirne-heiß-rinnen-muß-der-Schweiß- · · ·

could be replaced by

von-der-Stirne-heiß-rin(11,2)(23,2)mu(11,2)(27,5)chw(23,4) · · · ,

Deduplication takes this basic idea a step further to a larger scale, in which
the elements to be replaced are not just short substrings but entire blocks of
data, referred to as chunks. Obviously, the handling of larger text blocks has
also disadvantages since the probability of finding identical blocks decreases,
and the application area of deduplication is therefore quite different from
that of standard lossless compression. For instance, purely random data
cannot be compressed at all. There are, however, applications in which even
such incompressible files, if they appear more than once, may yield some
savings. An example could be a large backup system, in which the entire
available electronic storage of some corporation has to be copied and saved
at regular time intervals for security reasons and to prevent the loss of data.
The special feature of such backup data is that only a small fraction of it
differs from the previously stored backup. Deduplication handles also such
files, by storing duplicates only once. The challenge is, of course, to locate
as much of the duplicated data as possible.

One of the approaches to build a deduplication system is by means of
Content Addressable Storage. Partition the input database, which is of-
ten called the repository , into fixed or variable sized chunks and apply a
cryptographically strong hash function h, e.g., SHA-1 or MD5, on each of
these input chunks. That is, if Ci and Cj are different, the probability for
h(Ci) = h(Cj) is so low that one can safely ignore it. Equal hash values
may thus be assumed to imply identical chunks. The different hash values,
along with the addresses of the corresponding chunks, are stored in a fast-
to-access data structure, like a hash table or a B-Tree [9, 12], as depicted
in Figure 1 showing an example scenario of a deduplication system. The
chunk C4 starts at address 420 and applying the hash h on C4 yields the
value a = 36844; the address 420 is therefore stored in the hash table at
entry a.

2

When a fresh copy of the data is given, e.g., for a weekly or even daily
backup, the new data, often called a version, is also partitioned into similar
chunks. The hash value of each of these new chunks is searched for in the
table, and if it is found, one may conclude that the new chunk is an exact
copy of a previous one, so all one needs to store is a pointer to the earlier
occurrence. For our example, if for a new version chunk D we also get
h(D) = a, the address 420 is retrieved from the hash table, and we conclude
that D is identical to the chunk starting at 420, which is C4. There are also
approaches to deduplication which relax the request for identical chunks
and replace one chunk by another even if they are only similar , adding of
course also the (few) differences to enable the recovery of the original data
[1, 2, 10, 11].

220

280

380

420

500

36842

36843

36844

36845

36846

36847

36848

C1

C2

C3

C4 h(C4) = 36844

420

Text Chunks Hash Table

Figure 1: Schematic view of a deduplication system.

A simple approach would be to choose the chunk size as a constant.
However, this results in a high sensitivity to small insertions and deletions.
Indeed, even a single added or omitted byte could shift all subsequent chunk
boundaries accordingly, invalidating the hash approach. The solution is to
let the boundary of the chunk to be dependent on the content itself, which
implies variable length chunks.

A general paradigm for cutting the data string consisting of a sequence of
bytes s1s2 · · · into pieces is to use a so-called rolling hash, which calculates
a hash value for any consecutive sequence of k bytes. We shall refer to such
a sequence as a seed . Starting with the byte indexed k, each byte can be
considered as the last of a seed. The condition for deciding whether the last

3

byte of the seed, sj , with j ≥ k, will also be the last byte of the current
chunk, is that

h(sj−k+1sj−k+2 · · · sj) = C,

where h is the hash function and C is some constant chosen from the set
of values {h(i)}. Since hash functions are supposed to return uniformly
distributed values, the probability of this occurring is 1/M , where M is the
size of the set of possible hash values, and it is independent of the specific
value C chosen. The expected size of the chunks is then M . However, in
practice, the sizes of the chunks may greatly vary, which is why it is necessary
to impose lower and upper limits. For example, if we aim at an average size
of 4K, we might not even check at the beginning, thereby assuring that the
chunk size will not be below, say, 1K. Similarly, if the condition has not
been fulfilled by any seed and we reach already a chunk size of, say, 8K, we
might just cut the chunk at this point, regardless of the hash value.

While this strategy will indeed force the chunk size to be between 1K and
8K in our example, these extreme values are “artificial” cutoff points. They
impose breaks in the flow of data that are not robust and not reproducible
in the case of relatively small inserts or deletes. In general, the distribution
of segment sizes is geometric. Cutting off an arbitrary section at the start
actually eliminates a very large number of potential segment boundaries.
Chopping the tail at an arbitrary size cuts a tail of infinite length, affecting
the mean segment size more than would be expected.

Furthermore, segmentation techniques based on these rules produce a
very inconvenient distribution of segment sizes because of their geometric
distribution. There are a very large number of very small segments and a sig-
nificant number of very large segments. This stresses the storage subsystem
of a program that must store and index these segments.

The problem of segmentation has been the subject of much literature,
one of the first being [8]. A brief survey can be found in [4]. Some of the
approaches, e.g. [3] are more rigorous. A good description of segmentation
appears in the text of [7].

Here we propose a method that tries to rectify the shortcomings of min-
imal and maximal segment size, while also providing segment sizes that are
bunched around the mean size. The basic idea is a new way of text segmenta-
tion, in which the probability of declaring a segment boundary changes with
the number of bytes read since the previously declared segment boundary.
This enables us to control the segment size distribution with much greater
accuracy than what is possible with existing segmentation techniques.

Initially, it is highly unlikely (but still possible) that a boundary will be

4

declared. This means that there are very few small segments, and hence
no need to impose an artificial minimum segment size. As more bytes pass
since the end of the previous segment, the criterion for declaring a segment
is relaxed. By relaxing the criterion eventually completely, we encourage the
distribution to tail off as sharply or as loosely as we need. This means that
no artificial maximal segment size is needed. This property is especially
important, because data may contain very long sequences (e.g., stretches
of blanks or zeros) that may not trigger declaring a segment boundary.
These can safely be chopped at an artificial maximal size without affecting
deduplication.

This relaxation of the segmentation criteria is strictly defined as a family
of functions such that each later member “includes” all the previous ones.
This provides robustness to inserts and deletes. By tuning this relaxation, we
are able to produce approximately any segment size distribution we prefer.
We may choose one tailored to the needs of the storage subsystem that must
store the unique segments.

In the next section, we present the details of the proposed method and
extend the ideas in Section 3 to the usage of fractional bits. Finally, Section 4
brings some experimental results.

2. New segmentation procedure

Instead of working with a single hash function h and a single constant C,
we shall use a sequence of functions and constants hi and Ci, i = 1, 2, . . . , n,
fulfilling the following conditions:

1. All functions are easy to calculate;

2. there exists an increasing sequence of probabilities p1, p2, . . . , pn such
that for any seed S of fixed length k, Pr(hi(S) = Ci) = pi, where Pr()
denotes the probability function;

3. the conditions are inclusive in the sense that

∀S ∀j > i hi(S) = Ci −→ hj(S) = Cj .

The sequence of functions hi is then used to partition the potential
chunk that is being built into three regions, delimited by the four values
AL, PL, PU , AU , corresponding to the absolute lower, preferred lower, pre-
ferred upper and absolute upper limits for the occurrence of the (right) chunk
boundary, as depicted in Figure 2 below. The target value of the expected
size, E, is indicated by the black bar. Preferably, we want this value to fall
between PL and PU , however, we might tolerate exceeding these limits, but

5

not below AL and not above AU . This is achieved by choosing one of the
indices j0, 1 < j0 < n, and setting pj0 = 1/E. Recall that our procedure
for cutting the chunk being built at the current position is checking whether
hj(S) = Cj , where S is the seed extending up to the current position, and re-
peating this test for every byte, i.e., considering overlapping seeds. We shall
use the same function hj0 while the chunk size is in the preferred (grey)
zone, between PL and PU . However, the range between AL and PL will
be partitioned into sub-intervals in which the hash functions used are, in
order, h1, h2, . . . , hj0−1, and similarly, the range between PU and AU will be
partitioned into sub-intervals in which the hash functions used are, in order,
hj0+1, . . . , hn. By setting the last probability pn = 1, the test for hn has
probability 1 to succeed, therefore AU is indeed an upper limit.

E PU AUPLAL

1 1K 4K 5K 6K

Figure 2: Possible regions for chunk boundaries.

The main advantage of the proposed method is then that the chunk size
needs no artificial lower or upper limits, because these limits are obtained
in a natural and consistent way, so that the chunking mechanism can be
applied without all the drawbacks mentioned above.

The method works because of the chosen conditions on the sequence
of hash functions. The first condition is a basic requirement of any hash
function. The second condition lets us define the cut-off condition differently
depending on the number of the already accumulated bytes in the current
chunk: we shall start with a very low probability of setting the boundary
of the chunk, so that very small chunks will almost surely not appear. The
closer we get to the target size, say 4K, the larger the probability will get,
and within a range to be chosen around the ideal chunk size, say, between 1K
and 5K, the probability will be constant. Once we have passed this upper
limit, the cut-off probability will start rising, so that it will get increasingly
difficult to extend the chunk further. An absolute upper size of the chunk
can be imposed by defining pn = 1, that is, the first seed considered when
getting to the last function will be declared as being the last seed of the
current chunk.

The third condition deals with inserts and deletes. This is best explained

6

by considering Figure 3 below. The top line represents two consecutive
chunks of the original data. Suppose now that a short sequence of new
bytes is inserted, as in the middle line of the figure. There is of course the
possibility that one of the newly added seeds will fulfill the cut-off condition,
but if the inserted block is small, the probability for this to happen is so
small that it can be safely ignored. If no new boundary has been declared,
the seed S which ended at position A in the original layout has been pushed
further to position B, which implies that the test applied on it is hj(S) = Cj

for some j > i, therefore S will be declared as boundary and subsequent
chunks will not be affected.

S

S

S

AC B D

original

insert

delete

Figure 3: Schematic representation of the effect of insert and delete.

If some bytes have been deleted from the first chunk, as displayed in the
lowest line of the figure, the seed S is moved to an earlier position C, so
the condition checked on it, ht(S) = Ct for some t ≤ i, might be stricter
than before. It is thus possible that the boundary at level C will be missed.
But depending on the number of deleted bytes, the condition might also be
the same (if t = i), or, if i − t is small, the probability of getting even this
cut-off point might not be too low. In any case, even if this chunk limit is
lost, it is possible that the next one, which has now been moved backwards
to position D, is still to the right of A, so it will be caught.

An implementation can set the limiting values as shown in Figure 2. To
define the sequence of functions hi, we first choose a random large prime
number P . In practice, since arithmetic will be performed modulo P and
given that typical CPUs at present mostly have 64-bit capabilities, it will
be convenient to restrict ourselves to 64-bit operations, implying P < 264.
If we were to choose a new random prime in every calculation, as is done
for the Karp-Rabin pattern matching [6], there would be no need to impose
also a lower limit on P , since the probability of repeatedly choosing small

7

primes is negligible (for a number to be “small”, several of its randomly
chosen leading bits have to be zero) . But in our case, since the intention is
to use a single prime for the entire system, we should prevent a bad choice
by imposing also, say, that P > 260. This assures that P has at least 60
significant bits, without being too restrictive, since the number of primes
in the given range is of the order of 255. Let r1, r2, . . . , rn be a decreasing
sequence of integers, subject to the constraints

32 = r1 > r2 > · · · > rj0−1 > rj0 = log2E > rj0+1 > · · · > rn−1 > rn = 0,

where E is the target value for the expected size defined earlier, the functions
hi, for i = 1, 2, . . . , n, will then be defined as

hi(S) = (S mod P) mod 2ri ,

in other words, hi(S) are the ri rightmost bits of the remainder of S modulo
P .

The next step is to choose a random 32-bit constant C, and to define

Ci = C mod 2ri ,

that is, the Ci are the ri rightmost bits of C. Theoretically, we could have
chosen the Ci at random, if indeed the hash functions gave uniformly dis-
tributed values. Practically, it will be convenient to have all the Ci as suffixes
of different lengths of the same binary string, which enables us to fulfill the
third of the set of conditions defined at the beginning of this section.

In our particular implementation, we choose the following parameters:

n = 18, j0 = 11, r11 = 12,

(r1, . . . , r10) = (32, 30, 28, 26, 24, 22, 20, 18, 16, 14),

(r12, . . . , r18) = (11, 9, 7, 5, 3, 1, 0).

Figure 4 is a plot of the number of bits involved in the hashing (which
is minus the log of the probability of declaring the current position as a
boundary point) as function of the current size of the chunk being built.
We see that we start with a very low probability, 2−32, which gradually gets
larger (i.e., the number of bits decreases). The sizes of the corresponding
ranges start with 2 bytes for 32 bits and 2 bytes for 30 bits, and then double
at each step (4 bytes for 28 bits, 8 bytes for 26 bits, . . . , 512 bytes for 14
bits). This corresponds to the range from AL to PL and spans exactly 1K.
Then from 1K to 5K we stay with 12 bits, that is, probability 2−12, and then

8

continue increasing the probabilities, this time on ranges that start with 512
bytes for 11 bits, then halving to 256 bytes for 9 bits, up to 64 bytes for 5
bits, 32 bytes for 3 bits and 31 bytes for 1 bit. There is also a possibility
for 0 bits, but a range of only 1 byte is assigned, since it guarantees success
at the first try. This partition of the interval corresponds to the example
values given in the bottom line of Figure 2.

Denote by wi the number of times the procedure is applied with ri if it
still continues, that is, no boundary for the current chunk has yet been set.
We then have for this example setting:

(w1, . . . , wn) = (2, 2, 4, 8, . . . , 512,4096, 512, 256, 128, 64, 32, 31, 1),

where w11 corresponding to rj0 has been boldfaced.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000

Figure 4: Plotting probability of declaring a boundary as function of
chunk size.

Denote the length of a given chunk by L, which is a random vari-
able whose expected value we are interested in. To evaluate the expected
size of the chunk for the given settings, we shall use the formula E(L) =∑AU

i=1 Pr(L ≥ i). The probability of getting a chunk size L which is ≥M is
the probability of getting failures on the first M trials, and can be evaluated
as follows. Let k be the index of the range to which the current size M
belongs, that is, given M , we find k which satisfies

rk−1 > M ≥ rk.

9

We can then calculate the probability as:

Pr(L ≥M) =
[k−1∏
t=1

(
1− 2−rt

)wt
] (

1− 2−rk
)M−∑k−1

t=1 rt .

Figure 5 displays these cumulative probabilities for our example distribution.
For these values, we get as expected value for the chunk size: E(L) = 3744.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

Figure 5: Cumulative probabilities Pr(L ≥M).

 0

 0.0005

 0.0010

 0.0015

 0.0020

 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100

Figure 6: Individual probabilities Pr(L = M).

10

The individual probabilities can be derived from the cumulative ones by

Pr(L = M) = Pr(L ≥M)− Pr(L ≥M − 1).

The hedgehog shaped graph in Figure 6 gives the tail of these probabilities
for our example distribution. The spikes in this plot are due to the discrete
nature of the distribution: using an integral number of bits for every test, the
resulting probability function will not be continuous at integer points. If we
prefer getting a continuous bell shaped Gaussian curve, we need to perform
the tests with ri bits without restricting the ri to be integers. This calls for
trying to deal with fractional bits or at least to simulate the behavior of the
probability function as if fractional bits could be compared. This is done in
the following section.

3. Cutting chunks using fractional bits

The hash functions used were of the form S mod P , where S is a sequence
of k consecutive bytes considered as the binary representation of one large
integer of length 8k bits, and P is some large prime number that has been
chosen arbitrarily, but is fixed throughout the process. To simulate the
fractional bits, let us first decide how fine grained the resolution ought to
be. This is done by deciding on a step size ε, where the discrete steps
correspond to ε = 1, and we could impose, e.g., ε = 10−3. We thus need
d−log2εe additional bits in our hash values. Suppose we want to simulate
the hashing as if it were working on ` bits, where ` is not an integer. Define
the fractional part of ` as f = `− b`c, then 0 < f < 1. We shall use either
b`c or d`e bits, by first comparing just the b`c first bits, and checking also
the b`c + 1st bit with probability f ′. This probability f ′ will be chosen as
follows. Since we are simulating a sequence of Bernoulli trials, we want the
probability of failure to be

2−` = 2−(b`c+f) = 2−b`c · 2−f .

On the other hand, comparing only b`c bits, and the additional bit with
probability f ′, we get as probability for failure

(1− f ′)2−b`c + f ′2−b`c−1.

Equating the two, we can derive f ′ as function of f :

f ′ = 2− 2−f+1.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f
2-2**(-f+1)

Figure 7: Plotting f ′ = 2− 2−f+1.

Figure 7 plots the value of f ′ as function of f and shows that f ′ is only
slightly larger. For example, to simulate a comparison on b`c + 1

2 bits, we

should compare the additional bit with probability f ′ = 2−
√

2 = 0.586.
A first thought about how to implement the comparison of the b`c+ 1st

bit with probability f ′ could be to generate a random number r between
0 and 1, and then perform the additional comparison if and only if r ≤
f ′. Such a strategy would, however, hurt the consistency of the chunking
procedure: if the same chunk reoccurs, this would not guarantee the same
decision at the comparisons of the last seeds of length b`c + 1 for both
occurrences, so the system could fail in detecting a chunk that might be
deduplicated. To rectify this, instead of r, one should rather use a number
r′ depending solely on the currently processed chunk, similarly to a pseudo-
random number generator. For example, consider an arbitrary, yet constant,
subsequence of the bits currently forming the processed chunk S, denote the
number represented by this subsequence as S′, choose a random large prime
Q, which is different from the prime P chosen earlier, and then set the
threshold probability to be

r′ =
(S′ + |S|) mod Q

Q
,

where the current length of the chunk has been added to avoid a bias in the
case of long stretches of zeros.

As alternative, the probability f ′ can be simulated by exploiting the
unused bits generated by the hashing function. Suppose the (first) hash
function h we apply on each seed S returns a 64-bit value. Since only at
most 32 bits of them are actually used by the functions hi, r could be defined

12

by a some fixed subset of the remaining bits.
Once the question of how to process fractional bits has been handled,

the next step was to define the number of bits used in the sequence of hash
functions as a continuous decreasing function. The first option would be to
decrease the number of bits linearly from 32 to 0, in 4K steps. This, however,
gives a quite narrow distribution of the chunk sizes, which all fall between
roughly 2K and 3600, with average 3026. Starting with less than 32 bits,
but leaving the 4K steps, reduces the average and broadens the bell shaped
distribution. If we aim at getting an average chunk size of 2K, we should
start at 18.3 bits. Decreasing this number in 4K regular steps to 0 yields then
the solid line plots in the graphs of Figures 8(a)–(c). Figure 8(a) shows the
decrease in the number of bits used in the hashing function, as a continuous
function of the number of bytes in the current chunk. Figures 8(b) and
8(c) are the corresponding cumulative and individual probabilities for the
possible chunk sizes, i.e., Pr(L ≥ M) and Pr(L = M) for a size M of a
chunk, 1 ≤M ≤ 5000.

The decrease of the number of bits could also be chosen proportional
to the harmonic sum rather than linearly, as would be suggested by Zipf’s
law [13], which is supposed to describe the distribution of many real-life
phenomena. If Bi denotes the (not necessarily integral) number of bits used
to decide if the cutoff point should be after the i-th byte, then we have, for
example, Bk = 32 (recall that k is the size of the seed), and for i ≥ k,

Bi+1 = Bi −
32

i ·Hn
,

where Hn is the n-th harmonic number, equal to lnn−0.577. For n = 4K =
4096, we have Hn = 8.895. This would exhibit a steeper decrease at the
beginning but the difference between consecutive steps would be decreasing
by itself.

The plots corresponding to the harmonic decrease appear as dashed lines
in the graphs of Figures 8(a)–(c). Using again 4K steps to decrease the
number of bits harmonically from 32 to 0 gave a nicely symmetrical bell
shaped curve for the distribution of the chunk lengths, but the average was
low at 487, and practically all the values were smaller than 1K. To move
the average further up and broaden the curve, the decreasing steps could be
multiplied by some constant α > 1, so that one gets

Bi+1 = Bi −
32

α · i ·Hn
.

The dashed line in the plots correspond to α = 1 and the dotted lines to
α = 1.34, which yielded an average chunk size of 2K. The first few elements

13

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000

bits - linear

bits - harmonic

bits - harmonic * 1.34

Figure 8(a): Continuous number of bits in hash function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

Pr(L>=M) - linear
Pr(L>=M) - harmonic

Pr(L>=M) - harmonic * 1.34

Figure 8(b): Cumulative probabilities for continuous decrease.

 0

 0.001

 0.002

 0 1000 2000 3000 4000 5000

Pr(L=M) - linear
Pr(L=M) - harmonic

Pr(L=M) - harmonic * 1.34

Figure 8(c): Individual probabilities for continuous decrease.

14

of the Bi sequence are then 32, 29.32, 27.97, 27.08, 26.41, etc, but even after
5900 steps, the number of bits used is still about 7.14.

We also experimented with other decreasing functions than the harmonic
sum, e.g., having the difference Bn − Bn+1 between consecutive bit-sizes
proportional to 1/

√
n, log n/n, and others, but the harmonic decrease with

parameter α gave the best results.

4. Experimental results

The setup for deduplication experiments in order to get some idea on
the performance of new proposed ideas presents challenges. While there are
well established test cases which have been agreed upon in the compres-
sion community, like the Calgary or the Canterbury [5] corpora, there is no
equivalent for deduplication tests. The reason is mainly that the perfor-
mance does not depend on the nature of the files, but rather on the their
repetitiveness. Thus even an individual file containing random data, which
cannot be compressed, may still profit from deduplication if it or any of its
sub-parts appear more than once in the repository.

All chunks Unique chunks
chunking strategy number avg std number avg std

in million bytes in million bytes

constant 2.0 2708 3014 1.2 2952 3087
variable probability 2.1 2620 1532 1.3 2664 1492
with fractional bits 1.8 3078 1592 1.2 3118 1553

Table 1: Details on the different chunking procedures.

The other problem is that for deduplication to be interesting, there is
a need to handle huge corpora. As there is no possibility to find data that
could be deemed to be representative, the experimental results are presented
as examples only, without claiming that one could extrapolate from them
information on the performance in general. Nevertheless, the results on
our real-life tests may be considered as support, if not as evidence, for the
feasibility of our approach.

Our test files were a collection of different Ubuntu Linux OS variants
and versions1 of total size 5.05 GB. This repository was first processed by a

1Ubuntu server .vdi files, versions 10.04.2, 11.10, 12.04, 12.10

15

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2000 4000 6000 8000 10000 12000

Figure 9(a): Chunk distribution with constant cutoff probability.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2000 4000 6000 8000 10000 12000

Figure 9(b): Chunk distribution with varying cutoff probability,
using integral bits.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2000 4000 6000 8000 10000 12000

Figure 9(c): Chunk distribution with varying cutoff probability,
using fractional bits.

16

chunking procedure using a constant probability for setting the boundaries,
aiming at an average chunk size of about 2K. Then the experiment was
repeated with the varying cutoff conditions proposed herein. For all settings,
a seed size of 48 bytes = 384 bits was chosen. The maximal length was set
to AU = 6K. Table 1 gives some statistical details.

As can be seen, average and standard deviation are very close for the
constant variant, as is expected for an exponential distribution. For the
variable probabilities, corresponding to integral or fractional bits, the stan-
dard deviation is much smaller, indicating that most values are closer to the
mean, which is about 2600 to 3K. The plots in Figures 9(a), 9(b) and 9(b)
are histograms showing the distribution of the chunk sizes obtained by these
procedures for the unique chunks, Figure 9(a) using the constant cutoff con-
dition, and Figures 9(b) and 9(c) corresponding to the procedure proposed
in this work based on varying probabilities to declare a chunk boundary,
the former using only integral bits, the latter allowing also fractional bits,
as explained above. The y axis gives the number of chunks as a function
of a given size x on the x-axis. Although the average chunk size for Fig-
ure 9(a) was close to 3K, there was a very long tail in the distribution with
the constant condition, and we display here only the values up to a size of
12K, where there were still around 70 occurrences for any chunk size. In
spite of the fluctuations due to various anomalies of the real-life input data,
the exponentially decreasing trend of the function in Figure 9(a) is clearly
noticeable.

By contrast, the distribution in Figure 9(b) corresponding to varying
cutoff conditions is hedgehog shaped with an underlying Gaussian bell curve,
and in the plot of Figure 9(c), the continuous bell shape is evident.

5. Conclusion

This paper is concerned with the determination of chunk boundaries
in a deduplication system. Fixed sized chunks can be ruled out because
of the problems they cause in the cases of even small inserts and deletes.
Previous work proposes variable length chunks, where the chunk boundaries
are defined in a data dependent way. This implies that the chunk sizes are
often spread over a large range, which might have a negative impact on the
storage performance. The contribution of this work is a dynamic method to
set chunk boundaries by which the chunk size distribution is controlled in a
natural way.

The idea is to define a sequence of hash functions that are related to the
bits of some randomly chosen numbers. To achieve smooth distributions, the

17

work has been extended to simulate the behavior of fractional bits, which,
to the best of our knowledge, have not been treated so far in this context.
All the methods have been tested on a real life database of several Ubuntu
Linux OS variants.

References

[1] Aronovich L., Asher R., Bachmat E., Bitner H., Hirsch M.,
Klein S.T., The design of a similarity based deduplication System,
Proc. SYSTOR’09 , Haifa, (2009) 1–14.

[2] Aronovich L., Asher R., Harnik D., Hirsch M., Klein S.T.,
Toaff Y., Similarity based deduplication with small data chunks,
Discrete Applied Mathematics 212 (2016) 10–22.

[3] Bjørner N., Blass A., Gurevich Y., Content-dependent chunking
for differential compression, the local maximum approach, Journal of
Computer and System Sciences 76(3–4) (2010) 154–203.

[4] Cai B., Zhang F.L., Wang C., Research on chunking algorithms of
data de-duplication, Proceedings of the 2012 International Conference
on Communication, Electronics and Automation Engineering, Xi’an,
China, Advances in Intelligent Systems and Computing 181 (2013)
1019–1025.

[5] http://corpus.canterbury.ac.nz/

[6] Karp R.M., Rabin M.O., Efficient randomized pattern-matching
algorithms, IBM Journal of Research and Development , 31(2) (1987)
249–260.

[7] Moulton G.H., Whitehill S.B., Hash file system and method for
use in a commonality factoring system, U.S. Pat. No. 6,704,730, issued
March 9, 2004.

[8] Muthitacharoen A., Chen B., Mazières D., A low-bandwidth
network file system, Proc. of the 18th ACM Symposium on Operating
System Principles, Banff, Alberta (2001) 174–187.

[9] Quinlan S., Dorward S., Venti: A new approach to archival stor-
age, Proceedings of FAST’02, the 1st USENIX Conference on File and
Storage Technologies , Monterey, CA (2002) 89–101.

18

[10] Song B., Xiao L., Qin G., Ruan L., Qiu S., A deduplication
algorithm based on data similarity and delta encoding, in Geo-Spatial
Knowledge and Intelligence, Springer, Singapore, (2017) 245–253.

[11] Xia W., Jiang H., Feng D., Hua Y., Similarity and locality based
indexing for high performance data deduplication, IEEE Trans. Com-
puters 64(4), (2015) 1162–1176.

[12] Zhu B., Li K., Patterson H., Avoiding the disk bottleneck in the
Data Domain deduplication file system, Proceedings of FAST’08, the
6th USENIX Conference on File and Storage Technologies, San Jose,
CA (2008) 279–292.

[13] Zipf G.K., The psycho-biology of language, Boston, Houghton (1935).

[14] Ziv J., Lempel A., A universal algorithm for sequential data com-
pression, IEEE Trans. on Information Theory 23 (1977) 337–343.

19

