
E�cient Optimal Recompression�Shmuel T. KleinDepartment of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan 52900, IsraelTel: (972{3) 531 8865 Fax: (972{3) 535 3325 e-mail: tomi@cs.biu.ac.ilAn e�cient variant of an optimal algorithm is presented, which reorganizes datathat has been compressed by some on-the-y compression method, into a morecompact form, without changing the decoding procedure. The algorithm acceleratesand improves the space requirements of a known technique based on a reduction toa graph-theoretic problem, by reducing the size of the graph, without a�ecting thee�ciency of the solution that is optimal for the given encoding method. The newmethod can e�ectively improve any static dictionary compression scheme using astatic encoding method, and in particular some LZ77 variants.Received July 19961. INTRODUCTION AND BACKGROUNDText compression techniques are often divided into sta-tistical methods, such as Hu�man coding (Hu�man1952), or arithmetic coding (Witten et al. 1987), anddictionary methods, based generally on the work ofLempel and Ziv (Ziv and Lempel 1977, Ziv and Lem-pel 1978). The statistical methods assign codewords tothe elements making up the text, the lengths of thesecodewords depending on the frequencies of the corre-sponding elements. Dictionary methods replace vari-able length substrings of the text by (shorter) pointersto a dictionary in which a collection of such substringshas been stored. Depending on the application and theimplementation details, each method can outperformthe other, as long as only the compression savings areof concern.There are, however, other criteria by which the var-ious compression methods should be compared. Whilethe primary concern is generally to reduce the size ofthe given �le as much as possible, the time complexityof the coding routines may also be a relevant factor.For certain applications, such as data transmission overa communication channel, both coding and decodingought to be fast. For other applications, like the stor-age of the various �les in a large static full text infor-mation retrieval system, compression and decompres-sion are not symmetrical tasks. Compression is doneonly once, while building the system, whereas decom-pression is needed during the processing of every queryand directly a�ects response time. One may thus useextensive and costly preprocessing for compression, pro-vided reasonably fast decompression methods are pos-sible. Finally, the internal memory requirements of aproposed algorithm may also be an important criterion,�Partially supported by grant 8560195 of the Israeli Ministryof Science and Arts.

in particular on small machines.In LZ77 (Ziv and Lempel 1977) and its variants, thedictionary is in fact the previously scanned text, andpointers to it are of the form (d; `), where d is an o�set(the number of characters from the current location tothe previous occurrence of a substring matching the onethat starts at the current location), and ` is the lengthof the matching string. There is therefore no need tostore an explicit dictionary.One of the problems of LZ77 is how to locate previ-ous occurrences of substrings in the text. The simplemethod of scanning the whole text backwards for eachprocessed character might be prohibitively slow. Manyalternatives have been suggested, including, among oth-ers, the use of binary trees (Bell 1986), hashing (Brent1987, Williams 1991), and Patricia trees (Fiala andGreene 1989).The question of how to parse the original text intoa sequence of substrings is a problem common to alldictionary based compression techniques. An optimaltechnique for a static dictionary is mentioned in Wag-ner 1973. Storer and Szymanski 1982 give an opti-mal parsing algorithm for the sliding window method,and Hirschberg and Stau�er 1994 present parallel algo-rithms for optimal parsing. Generally, for static dic-tionary techniques, the parsing is done by a greedymethod, i.e., at any stage, the longest matching ele-ment from the dictionary is sought, though non-greedymethods have also been considered (see Horspool 1995)and are used, e.g., in the popular gzip program. Agreedy approach gives good compression (Katajainenand Raita 1992), and is easy to implement by means ofa trie, but is not necessarily optimal. Because the ele-ments of the dictionary are often overlapping, a di�er-ent way of parsing might yield better compression. Forexample, assume the dictionary consists of the stringsThe Computer Journal, Vol. 40, No. 5, 1997



2 Shmuel T. KleinD = fabc, ab, cdef, d, de, ef, fg and that the text isS = abcdef; assume further that the elements of D areencoded by some �xed-length code, which means thatdlog2(jDj)e bits are used to refer to any of the elementsof D; then parsing S by a greedy method, trying tomatch always the longest available string, would yieldabc-de-f, requiring 3 codewords, whereas a better par-tition would be ab-cdef, requiring only 2. Moreover,for dynamic techniques such as LZ77 variants, for whichthe dictionary is the encoded text itself, �nding at eachstep the longest matching string may be just as timeconsuming as �nding the optimal parsing.The various dictionary compression methods di�eralso by the way they encode the elements. This is mostsimply done by a �xed length code, as in the above ex-ample. A more involved technique (Fiala and Greene1989), uses a static variable length encoding of the dand ` values. Pushing this idea even further, one mayuse a dynamic variable length code, optimally adaptingitself to the frequencies of the occurrences of the di�er-ent values of d and `: Brent (Brent 1987), suggests theuse of Hu�man coding for the (d; `) pairs.We are concerned here with a way of optimally pars-ing the text, which may be applied to a process calledrecompression. There are many systems today that of-fer on-the-y, very fast, compression of �les of any kind.These systems are used to better exploit available diskspace, by compressing any �le before writing it to thedisk. But this is only attractive if the time spent oncompression is hardly noticeable, and similarly, decom-pression must be fast, so that a compressed �le may beread without delay. Recompression is useful in a situ-ation where a number of �les have already been com-pressed by the fast method, and the user wishes nowto reorganize the data on his disk into a more compactform. Time is less critical for this reorganization pro-cess, and the new compression algorithm might in factbe independent of the former and start from scratch.But the constraint is that the new encoded form of therecompressed �le must be compatible with the origi-nal encoding, so that the same decompression methodmay be used. In other words, a single decoding routineshould be able to process a �le, regardless of it havingbeen compressed or recompressed.The method described below has already been men-tioned (Schuegraf and Heaps 1974, Katajainen andRaita 1989), and achieves optimal recompression in thesense that once the method for encoding the elements isgiven, it �nds the optimal way of parsing the text intosuch elements. Obviously, di�erent encoding methodsmight yield di�erent optimal parsings. Returning to theabove example of the dictionary D and text S, if theelements abc, d, de, ef, f, ab, cdef of D are encodedrespectively by 1, 2, 3, 4, 5, 6 and 6 bits, then the pars-ing abc-de-f would need 9 bits for its encoding, and forthe encoding of the parsing ab-cdef, 12 bits would be

needed. The best parsing, however, for the given code-word lengths, is abc-d-ef, which is neither a greedyparsing, nor does it minimize the number of codewords,and requires only 7 bits.The way to search for the optimal parsing is by reduc-tion to a well-known graph theoretical problem. Thisapproach is, however, not recommended in Schuegrafand Heaps 1974, because it is too time-consuming. InKatajainen and Raita 1989, sub-optimal solutions aresuggested to improve the execution time.It should be emphasized that the optimality of thealgorithm referred to in this paper is only relative to agiven encoding method for the elements into which theoriginal string has been parsed. The resulting methodis not claimed to be globally optimal, and using an-other scheme, one might well get better compression.The contribution of this paper is a variant of the op-timal algorithm that is e�cient in terms of both timeand space: a pruning technique is applied to the graph,which generally reduces the number of both edges andvertices, but still enables the evaluation of an optimalsolution for the original graph.The optimal method and its new variant apply to anystatic dictionary based compression method with static(�xed or variable length) encoding. The elements to beencoded can be of any kind: strings, characters, (d; `)pairs, etc, and any combination thereof. The proposedtechnique thus improves a very broad range of di�erentmethods, many of which have been published in thescienti�c literature or as patents.In the next section we mention some simple recom-pression methods and present the new method and im-plementation details. Examples of encoding functionsthat have been used and satisfy the required conditionsare given in Section 3. Section 4 presents some experi-mental results.2. RECOMPRESSIONEvery recompression algorithm corresponds to anothertradeo� between the speed of the encoding process andthe compression e�ciency. Consider a given locationin the text, to be encoded by a dictionary compres-sion method. At certain locations, there might be morethan one possible choice for the dictionary element to besubstituted for the following characters. The algorithmused for scanning the dictionary (linear search, binarysearch, hashing, etc.) induces an order on the dictionaryelements. The range of tradeo� alternatives extendsfrom �nding, relative to the ordering at hand, the �rstappropriate element (fastest method, but yielding infe-rior compression), through considering the k �rst suchelements of the dictionary, for some integer k > 1, andchoosing the best element among these, up to scanningall possible alternatives and selecting the locally opti-The Computer Journal, Vol. 40, No. 5, 1997



Efficient Optimal Recompression 3mal element (slower, but giving improved compression).2.1. Simple recompression methodsFor LZ77 and many of its variants, the (d; `) =(distance, length) pointers are restricted to d � N forsome �xed N , that is, a string is considered as recur-rent only if its previous occurrence is within a �nitewindow of �xed size preceding the current location. Asimple recompression heuristic is therefore to increaseN , which increases the probability of �nding a goodearlier match. However, the compression performanceis not necessarily improved, since dlog2Ne bits are usedto encode d.In Bell 1986, Fiala and Greene 1989, Whiting et al.1992, the previous occurrences of the current substringare searched for by means of hashing: the current two(or three) characters are hashed to a location in a hashtable, which contains a pointer to the previous occur-rence of a couple (or triplet) of characters that hashedto the same location. Since hash functions are not in-jective, di�erent character pairs or triplets may hash tothe same location. It is thus possible that the hash ta-ble does not provide a pointer to a previous occurrence,although such an occurrence might exist. There areseveral ways to use simple recompression in this case.Using a larger hash table will reduce the number of col-lisions and thereby increase the probability of locatinga string if it appeared earlier. Taking this idea a stepfurther, and if enough memory space is available, onecould get rid of the hashing altogether, and keep, say,for every possible character pair, a pointer to its lastoccurrence.In the basic LZ77 algorithm, the longest substring issought which matches the current characters. In theimplementations using hashing, this is usually approx-imated by �nding �rst a matching pair or triplet, andthen trying to extend the match as far as possible. Thisobviously does not guarantee that the longest matchwill be detected. For instance, if the text that has al-ready been scanned is T = : : :abcde: : :abcx: : : , and thefollowing characters are abcde, then applying hashingto the character pair ab will yield, in the better case,a pointer to the last occurrence of ab, which can onlybe extended to form a 3-character match, whereas a 5-character match would have been possible; in the worsecase, even that 3-character match will be missed, if an-other character pair, di�erent from ab but yielding thesame hash value, has appeared after abcx in T .The compression e�ciency can be improved, if notonly the last occurrence is remembered, but the k lastoccurrences, for some constant k > 1. For example, onecould store pointers to the k last occurrences of eachcharacter, using a cyclic list for each. The drawback ofthis method is that the same number of memory loca-

tions is reserved for each character, whereas in manyapplications, in particular in natural language texts,certain characters appear much more frequently thanothers.Combining this idea of saving multiple referenceswith the hashing approach above, one could store acyclic list of k elements for each entry of the hash ta-ble, or, which is equivalent, have k di�erent hash tablesof identical size. If a good hashing function is chosen,the distribution of the hashed addresses will be closeto uniform, even if the single character distribution isnot. In case there is a strong bias even after hashing,one could use linked lists for each entry of the hash ta-ble, thus allowing lists of varying length (up to somepredetermined upper limit, induced by the time con-straints), without wasting memory locations. However,since hashing functions are non-injective, all the abovelists may now contain pointers to di�erent elements.Consider for example the following scheme: assumethe character set consists of the 256 possible 8-bitstrings, that a hash table of 212 = 4K entries is used,and that hashing is to be applied on character pairs.One could then hash by truncating the two least signif-icant bits of each character, i.e.:h(a7 � � � a1a0 ; b7 � � � b1b0) = a7 � � � a2b7 � � � b2:If the addresses in the lists are stored in 16-bit words,one could even remove the ambiguity resulting fromthe hashing, by explicitly storing the truncated bitsa1a0b1b0 in each element of the list. This leaves 12bits for the address itself, which is equivalent to settingN , the size of the window into which back referencesshould point, to 4K.In the next section we consider even better recom-pression, which recognizes the fact that the longest-matching-string heuristic not necessarily yields an op-timal partition.2.2. Improved optimal recompressionConsider a text string S consisting of a sequence of ncharacters S1S2 � � �Sn, each character Si belonging to a�xed alphabet �. Substrings of S are referenced by theirlimiting indices, i.e., Si � � �Sj is the substring startingat the i-th character in S, up to and including the j-thcharacter. We wish to compress S by means of a dictio-nary D, which is a set of character strings f�1; �2; : : :g,with �i 2 �+. The dictionary may be explicitly givenand �nite, as in the example in the introduction, or itmay be potentially in�nite, e.g., for the LZ77 variants,where any previously occurring string can be referenced.The compression process consists of two independentphases: parsing and encoding. In the parsing phase,the string S is broken into a sequence of consecutivesub-strings, each belonging to the dictionary D, i.e., anThe Computer Journal, Vol. 40, No. 5, 1997



4 Shmuel T. Kleinincreasing sequence of indices i0 = 0; i1; i2; : : : is found,such thatS = S1S2 � � �Sn = S1 � � �Si1 Si1+1 � � �Si2 � � � ;with Sij+1 � � �Sij+1 2 D for j = 0; 1; : : :. One way toassure that at least one such parsing exists is to forcethe dictionary D to include each of the individual char-acters of �. The second phase is based on an encodingfunction � : D �! f0; 1g�, that assigns to each elementof the dictionary a binary string, called its encoding.The assumption on � is that it produces a code whichis uniquely decipherable (UD). This is most easily ob-tained by a �xed length code, but such a code is onlypossible for a �nite dictionary, and even then it is onlye�cient from the compression point of view if the dis-tribution of the occurrences of the elements of D in Sis nearly uniform. Compression can often be improvedby the use of variable-length codes, assigning shortercodewords to elements with higher probability of oc-currence. A su�cient condition for a code being UD isto choose it as a pre�x code (see Even 1979).The problem is the following: given the dictionaryD and the encoding function �, we are looking forthe optimal partition of the text string S, i.e., the se-quence of indices i1; i2; : : : is sought, that minimizesPj�0 j�(Sij+1 � � �Sij+1)j.To solve the problem, a directed, labeled graph G =(V;E) is de�ned for the given text S. The set of verticesis V = f1; 2; : : : ; n; n+ 1g, with vertex i correspondingto the character Si for i � n, and n+ 1 correspondingto the end of the text; E is the set of directed edges: anordered pair (i; j), with i < j, belongs to E if and onlyif the corresponding substring of the text, that is, thesequence of characters Si � � �Sj�1, can be encoded asa single unit. In other words, the sequence Si � � �Sj�1must be a member of the dictionary, or more speci�callyfor LZ77, if j > i + 1, the string Si � � �Sj�1 must haveappeared earlier in the text. The label Lij is de�ned forevery edge (i; j) 2 E as j�(Si � � �Sj�1)j, the number ofbits necessary to encode the corresponding member ofthe dictionary, for the given encoding scheme at hand.The problem of �nding the optimal parsing of the text,relative to the given dictionary and the given encodingscheme, therefore reduces to the well-known problem of�nding the shortest path in G from vertex 1 to vertexn+ 1.Dijkstra's algorithm (Dijkstra 1959), may be used to�nd the shortest path. Its worst case complexity varies,depending on the data structures used, from O(jV j2)to O(jEj + jV j log jV j) (see Cormen et al. 1990), whichwould be particularly disturbing for our intended ap-plication. However, in our case the directed graph con-tains no cycles, since all edges are of the form (i; j) withi < j. Thus by a simple dynamic programming method,the shortest path can be found in O(jEj). Nevertheless,when the text includes long runs of repeated characters

(like strings of zeros or blanks), the number of possibili-ties to parse these runs, and hence the number of edges,is quadratic in the number of vertices. This motivatedthe search for sub-optimal alternatives in Katajainenand Raita 1989.We suggest here to adhere to the optimal parsing,and to circumvent the worst case behavior by combin-ing the shortest path algorithm with a pruning methodintended to eliminate a priori such parts of the graphthat cannot possibly be part of an optimal path. Thepruning process may be applied in all cases for whichthe labeling function L satis�es the triangle inequality,Lij � Lik + Lkj for all i; k; j such that i < k < j;which holds for many practical encoding schemes (seenext section for examples).The set of edges E is constructed dynamically by thealgorithm itself. We start with E = ;, and adjoin, inorder, the edges emanating from vertices 1; 2; : : :, unlessthey fail to pass the following test. When a vertex i isreached, consider the set of its predecessors Pred(i) =fj j (j; i) 2 Eg. We then scan the substrings of the textstarting at Si. Suppose that the substring Si � � �Sj�1 isa member of the dictionary, so that the pair (i; j) is acandidate to be adjoined to E. Before adding this edge,check if it is possible to reach vertex j directly fromevery vertex in Pred(i), without passing through vertexi. If so, then there is no need to add the edge (i; j) to E,since, because of the triangle inequality, there is no lossin taking the direct edge from the element of Pred(i)to vertex j. However, if there is even one element inPred(i) that has no direct edge to j, then (i; j) must beadded to E.If, after having checked all the edges emanating fromvertex i, none of these have been adjoined to E, thenthere is no need to keep the vertex i in the graph, sinceit obviously cannot be part of an optimal path from1 to n + 1. Thus all the incoming edges on vertex imay be pruned from the graph, and i itself may also beeliminated.The formal de�nition of the algorithm is given below.The algorithm seems non-symmetric with regard tothe predecessors and successors of a vertex. This isbecause the vertices are scanned sequentially. There-fore, when processing vertex i, Pred(i) is already de-�ned, but not yet Succ(i) = fj j (i; j) 2 Eg, the set ofi's successors. The set of the potential successors of i,Succ Candidates(i), is de�ned as the set of those ver-tices to which there would have been a direct edge ifno pruning were used. Some of these edges might ulti-mately not be adjoined to the graph. Others might ina �rst stage be added, but might later be deleted.Note that the triangle inequality is a su�cient condi-tion for reaching an optimal solution with the improvedThe Computer Journal, Vol. 40, No. 5, 1997



Efficient Optimal Recompression 5Algorithm Prunef E  � ;V  � f1; : : : ; n; n + 1gfor i  � 1 to nf Pred(i)  � fk j (k; i) 2 EgSucc Candidates(i)  � fj j Si � � �Sj�1 2 Dgadded edge  � FALSEfor all j 2 Succ Candidates(i)f all connected  � TRUEfor all k 2 Pred(i)f if (k; j) =2 Ethen all connected  � FALSEgif not all connected thenf E  � E [ f(i; j)gadded edge  � TRUEggif not added edge thenf V  � V n figE  � E n f(j; i) j j 2 Pred(i)ggggalgorithm, but when the condition does not hold for ev-ery triple (i; j; k), one can easily adapt the algorithm todeal also with these cases: replace the test if (k; j) =2 Ein the inner loop byif (k; j) =2 E or Lkj > Lki + Lij :In other words, even if we can reach j from all the pre-decessors k of i, we still might have to add the edge(i; j) to the graph.Figure 1 displays a small example of a graph, cor-responding to the text abbaabbabab, including all thevertices and edges. We now assume that LZ77 is used.The edges connecting vertices i to i+1, for i = 1; : : : ; n,are labeled by the character Si. Note that the exampleclearly displays the main problem with long recurringstrings: if Si � � �Sj�1 did occur earlier, so did also allits substrings Sk � � �S`, for i � k � ` < j, thereforethe corresponding sub-graph with vertices fi; : : : ; jg isa full graph. For example, the sub-graph on verticesf5; 6; 7; 8; 9g corresponds to the second occurrence ofthe string abba, and f9; 10; 11; 12g corresponds to thesu�x bab. If such recurring strings form a major part ofthe text, the number of edges might be �(jV j2). Evenif such a time complexity is still acceptable, a quadraticspace complexity will often be prohibitive.

After having applied the pruning algorithm, manyedges may have been deleted, as well as some of the ver-tices. Figure 2 depicts the graph obtained for the sametext as for Figure 1, but with the use of the pruningalgorithm. The character corresponding to the transi-tion from vertex i to i+1 is indicated, even if the corre-sponding edge has been deleted. Edges drawn as dottedlines were �rst adjoined to the graph, but later deletedbecause there was no edge emanating from their end-points. In this example, the number of edges was �rstreduced from 21 to 14, and �nally to 10.The example also indicates how the algorithm couldbe improved. Note that since all the successors of 10are also successors of 9, the triangle inequality in factimplies that the edge (9,10) could also be eliminated.The reason this is not done in the algorithm is becausethe loop with running index k, passing over the pre-decessors, is internal to the loop with running index j,passing over the potential successors. Therefore, when(9,10) is adjoined, the set of the successors of 10 is notknown yet. An additional loop checking also such casesmight further improve the algorithm, but is not neces-sarily justi�ed.The routine evaluating then the shortest path from 1to n + 1 uses an array SPL(i), for storing the ShortestPath Length from 1 to i. In iteration i, the values ofSPL(j) for j < i are already known. The algorithmnow scans only those vertices and edges that remainafter the pruning process.
Shortest pathf SPL(1)  � 0for i  � 2 to n+ 1if i 2 V thenf SPL(i)  � 1for all j 2 Pred(i)f t  � SPL(j) + Ljiif SPL(i) > t thenSPL(i)  � tggg
Since for each i and j for which the edge (j; i) re-mained in the graph, the label Lji is referenced exactlyonce by the shortest path algorithm, its time complex-ity is clearlyO(jEj), E referring here to the dynamicallybuilt (reduced) set of edges.The Computer Journal, Vol. 40, No. 5, 1997
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12 bFigure 2: Graph for text abbaabbabab after pruning2.3. Implementation DetailsOne problem in the implementation is to have an easyway to keep track of the predecessors of each vertex.The natural way to implement the graph is by keeping,for each vertex, its successor list. This requires onlyspace O(jEj), as opposed to �(jV j2) for keeping thegraph as an incidence matrix. One way to get access tothe predecessors is to invert the successor list globally,and keep both successor and predecessor lists. But weneed the predecessor list already during the construc-tion of the graph, which requires a dynamic method. Apossible alternative for getting the elements of Pred(i) isthus to check, for all values j < i, whether i 2 Succ(j).This, however, requires time �(jV j2) if no other boundfor j is known.If no pruning is used, every preceding vertex maybe a predecessor of the current vertex i, but in fact,when scanning backwards, we may stop as soon as avertex is found which is not connected to i, since thepredecessors of a vertex must immediately precede it.When the pruning algorithm is applied, the fact that thepredecessors of a vertex immediately precede it is notnecessarily true. For example, in the graph of Figure 2,Pred(12) = f9; 10g. Nevertheless, we show that thepredecessors still form a contiguous block, so that whilescanning backwards, once at least one predecessor j of

i has been detected, we may continue sequentially toj � 1, j � 2, etc., and stop as soon as the �rst vertexj � k is found, with k > 0, which is not a predecessorof i.For the theorems below, we need to di�erentiate be-tween two kinds of predecessors and successors of thevertices. There are two kinds of edges missing fromthe graph: those that have not been added at all (theedges which appear in Figure 1, but are missing fromFigure 2), and those that have been added, but weredeleted later (the dotted edges of Figure 2). De�nePred'(i) as the set of vertices which were predecessorsof i at some stage of the algorithm, and Succ'(i) as theset of vertices which were successors of i at some stageof the algorithm. The sets Pred(i) = fj j (j; i) 2 Egand Succ(i) = fj j (i; j) 2 Eg de�ned earlier refer tothe vertices which are predecessors or successors of ieven after the algorithm has completed its task. Clearly,Pred(i) � Pred'(i) and Succ(i) � Succ'(i).Theorem 1. If pruning is used, then for each nodex, Succ'(x) consists of consecutive elements, i.e.:jSucc'(x)j = k ! 9j � 0Succ'(x) = fx+ j + 1; x+ j + 2; : : : ; x+ j + kgProof: By induction on x. For x = 0, Succ'(0) = f1g.The Computer Journal, Vol. 40, No. 5, 1997



Efficient Optimal Recompression 7Suppose the claim is true for indices smaller than x,and let y be the largest index such that y 2 Succ'(x)but y � 1 =2 Succ'(x). If y = x + 1, then Succ'(x) is acontiguous block of the numbers immediately followingx. Suppose then that y � x+ 2. We have to show thatx is not connected to any vertex t < y � 1. The factthat y is in Succ'(x) means that the string Sx � � �Sy�1appeared earlier, and thus also its pre�x Sx � � �Sy�2 ap-peared earlier. Therefore the reason that y � 1 is notin Succ'(x) must be that the edge (x; y � 1) has notbeen added to the graph because of the pruning pro-cess. That is, for all z 2 Pred'(x), the edge (z; y � 1)did exist. So since for each of these z, both x and y� 1belong to Succ'(z), it follows from the inductive hypoth-esis that all elements t such that x < t < y � 1 are alsoin Succ'(z). But then, by the pruning process, the edge(x; t) will not be added.Theorem 2. If pruning is used, then for each nodex > 0, Pred'(x) consists of consecutive elements, i.e.:jPred'(x)j = k ! 9j � 0Pred'(x) = fx� j � k; : : : ; x� j � 2; x� j � 1g:Proof: By induction on x. For x = 1, Pred'(1) = f0g.Suppose the claim is true for indices smaller than x,and let y be the smallest index such that y 2 Pred'(x)but y + 1 =2 Pred'(x). If y = x � 1, then Pred'(x) is acontiguous block of the numbers immediately precedingx. Suppose then that y � x� 2. We have to show thatno vertex t � y + 1 is connected to x. The fact thaty 2 Pred'(x) means that the string Sy � � �Sx�1 appearedearlier, and thus also its su�x Sy+1 � � �Sx�1. Thereforethe reason that y+1 is not in Pred'(x) must be that theedge (y+1; x) has not been added to the graph becauseof the pruning process. That is, for all z 2 Pred'(y+1),the edge (z; x) did exist, hencez 2 Pred'(x): (1)But this means that both y + 1 and x are in Succ'(z);therefore, either y + 2 = x, in which case the proof iscompleted, or if y + t < x, then by Theorem 1, y + t isalso in Succ'(z), which is a set of consecutive numbers.It follows that z 2 Pred'(y + t): (2)So since all the elements in Pred'(y + 1) have a directedge to y + t, it follows from the pruning process thatthe edge (y + 1; y + t) will not be added to the graph,i.e., y + 1 =2 Pred'(y + t): (3)We want to show that there is no edge from y + t tox. Obviously, the string Sy+t � � �Sx�1 could be encoded,since it is a su�x of Sy � � �Sx�1 which can be encoded,so we have to show that (y + t; x) will not be addedbecause of the pruning. In other words, we need to show

that all elements in Pred'(y+ t) have an edge to x. Weknow this fact already for the elements of Pred'(y+1).So suppose there is an elementz0 2 Pred'(y + t)� Pred'(y + 1) (4)which is not connected to x. Then the stringSz0 � � �Sy+t�1 has appeared, so did also the stringSz0 � � �Sy; thus the fact that z0 =2 Pred'(y + 1) is dueto the pruning process. That is, all z00 2 Pred'(z0) areconnected to y + 1, thus z00 2 Pred'(y + 1). But thesez00 are smaller than z0, hence applying the inductive hy-pothesis to Pred'(y+1), it follows that every element zof Pred'(y+1) is smaller than z0, since z0 =2 Pred'(y+1).But every element z of Pred'(y+1) is also in Pred'(x)by (1) and z0 is not in Pred'(x). It follows that z0 islarger than all these z and that there must be an el-ement z00, z � z00 < z0 such that z00 2 Pred'(x) andz00 + 1 =2 Pred'(x). But since y has been chosen as thesmallest number having this property, we must havez00 � y and therefore z0 � y + 1. But z0 2 Pred'(y + t)by (4) and y + 1 =2 Pred'(y + t) by (3), so that in factz0 > y + 1.We have thus found three numbers z < y+1 < z0 suchthat the �rst and the third belong to Pred'(y + t) by(2) and (4) respectively, whereas the second does not by(3); this is a contradiction to the inductive hypothesis,by which Pred'(y + t) is a set of consecutive numbers.We conclude that there cannot possibly be an ele-ment z0 as de�ned in (4), which is not connected to x.Therefore, all elements in Pred'(y+ t) are connected tox, so by the pruning process, the edge (y+ t; x) will notbe added to the graph.The fact that the previous theorem is about Pred'(x)and not about Pred(x) is no real restriction, since any-way, the stage where the algorithm has to scan the pre-decessors of a vertex x is prior to the moment whereany edges incident on x may be deleted.As a consequence of Theorem 2, we can keep track ofall sets Pred(i) by storing two arrays, PF[i] and PL[i],giving, respectively, the indices of the �rst and last ofthe predecessors of i. The inner loop on k in Algo-rithm Prune, which checks if all predecessors of i maybe connected to j, can thus be replaced by the questionwhether the interval [PF[i];PL[i]] is included in the in-terval [PF[j];PL[j]], which is simply done by checkingthat PF[i] � PF[j] ^ PL[i] � PL[j]:Should this not be the case, the edge (i; j) will be ad-joined to E, and the vectors for j will be updated: if thisis the �rst appearance of an edge incident on j, PF[j]is set to i; in any case, PL[j] is set to i. Both time andspace of the Prune Algorithm are thus O(jE0j), whereE0 is the reduced set of edges.The Computer Journal, Vol. 40, No. 5, 1997



8 Shmuel T. Klein3. ENCODING FUNCTION EXAMPLESThis section brings examples of algorithms that havebeen proposed and are used in commercial compressionsystems. We show that their encoding functions � obeythe triangle inequality, which is a su�cient conditionfor applying the above pruning algorithm.The �rst example, based on Whiting et al. 1992,, is avariant of LZ77 known as LZSS, Storer and Szymanski1982, using hashing on character pairs to locate (the be-ginning of) recurrent strings, like in Williams 1991. Theoutput of the compression process is thus a sequenceof elements, each being either a single (uncompressed)character, or an o�set-length pair (d; `). The elementsare identi�ed by a ag bit, so that a single characteris encoded by a zero, followed by the 8-bit ASCII rep-resentation of the character, and the encoding of each(d; `) pair starts with a 1. The method, referred tohereafter as Algorithm S, may easily be improved byrecompression: a hashing function is not one-to-one, sothat a character pair may be missed, even if it appearedearlier; even if the pair is located, the resulting match-ing string is not necessarily the longest possible; �nally,even the longest match would not guarantee global op-timality of the parsing.The sets of possible o�sets and lengths are split intoclasses as follows: let Bm(n) denote the standard m-bitbinary representation of n (with leading zeros if neces-sary), then, denoting the encoding scheme by �S :�S(o�set d) = � 1B7(d) if d � 1270B11(d) if 127 < d � 2047�S(length `) = 8>><>>: B2(`� 2) if 2 � ` � 411B2(`� 5) if 5 � ` � 7(1111)d(`�7)=15eB4((`� 8) mod 15)if ` � 8For example, the �rst few length encodings are: 00,01, 10, 1100, 1101, 1110, 11110000, 11110001, : : :,11111110, 111111110000, etc. Including the ag-bit,each o�set is thus encoded by 9 or 13 bits, and thenumber of bits used to encode the length ` is 2d 4̀e for` < 8 and it is 4d `+815 e for ` � 8. It is of course wastefulto use an encoding of linearly growing length for thevalues of `, but the decoding speed is enhanced, sinceonly half-byte blocks are processed (except for ` � 4).Theorem 3. The function �S satis�es the triangleinequality.Proof: Let E1 and E2 be two consecutive elements en-coded by the algorithm, where Ei may be either a singlecharacter, or a string of characters encoded by an (o�-set, length) pair (d; `). Denote by E the concatenationof E1 with E2, and assume that E may be encoded

as a single element. Let L(x) be the function givingthe length, in bits, of the encoding �S(x), where, asabove, we shall apply L to both the o�set or the lengthpart, or even to an element Ei. We have to show thatL(E) � L(E1) + L(E2).Case 1: Both Ei are single characters, then L(E1) =L(E2) = 9. But E is a string of two characters andwill be encoded by an (d; `) pair. The o�set partis encoded by at most 13 bits, the length part byexactly two bits (since ` = 2). Thus L(E) � 13+2 <9 + 9.Case 2: One of the Ei is a single character, the other astring encoded by (d; `). Then there exists a d0 suchthat E is encoded by (d0; `+ 1). ThusL(E1) + L(E2)� L(E) �9 + (9 + L(`))� (13 + L(`+ 1)) � 1;since the di�erence in the lengths of the encodings ofconsecutive lengths ` and `+1 never exceeds 4 bits.Case 3: Both Ei are strings, encoded by (di; `i), re-spectively. Then there exists a d0 such that E isencoded by (d0; `1 + `2).If both `1 and `2 are smaller than 8, then they areencoded together by at least 4 bits, but `1 + `2 isat most 14, so it is encoded by at most 8 bits. If,say, `1 is smaller than 8, but `2 is not, then theyare encoded together by at least L(`2) + 2 bits, but`1 + `2 is at most `2 +7, so it is encoded by at mostL(`2) + 4 bits. If both `i are larger than 7, thenL(`1) + L(`2) � 4�`1 + 815 + `2 + 815 � andL(`1 + `2) � 4�`1 + `2 + 815 + 1� ;so that L(`1 + `2) � (L(`1) + L(`2)) � 4 � 3215 < 2.Thus for all values of `1 and `2, L(`1 + `2) exceedsL(`1) + L(`2) by at most 4 bits. ThereforeL(E1) + L(E2)� L(E) �(9 + L(`1)) + (9 + L(`2))� (13 + L(`1 + `2)) � 1:The second example comes from the on-the-y com-pression routine recently included in a popular operat-ing system, and will be referred to as Algorithm M. It isagain based on Williams 1991, but uses simpler hashingand a di�erent encoding scheme �M . Single charactersare again encoded by 9 bits, and the sets of o�sets andlengths are encoded as follows:�M (o�set d) =8<: 1B6(d� 1) if 1 � d � 6401B8(d� 65) if 64 < d � 32011B11(d� 321) if 320 < d � 2368The Computer Journal, Vol. 40, No. 5, 1997



Efficient Optimal Recompression 9�M (length `) = 8>><>>: 0 if ` = 21j+1 0 Bj(`� 2� 2j)if 2j � `� 2 < 2j+1;for j = 0; 1; 2; : : :For example, the �rst few length encodings are: 0, 10,1100, 1101, 111000, 111001, 111010, 111011, 11110000,etc. O�sets are thus encoded by 8, 11 or 14 bits, andthe number of bits used to encode the lengths ` is 1 for` = 2 and 2dlog2(`� 1)e for ` > 2.Theorem 4. The function �M satis�es the triangleinequality.Proof: We use the same notations as for Theorem 3,L(x) standing now for j�M (x)j, and consider the samethree cases.Case 1: L(E1) + L(E2) = 9 + 9 > 14 + 1 � L(d; 2) =L(E).Case 2: L(E1)+L(E2)�L(E) � 9+(8+L(`))� (14+L(` + 1)) � 1, since the di�erence in the lengths ofthe encodings of consecutive lengths ` and `+1 neverexceeds 2 bits.Case 3: For the case `1 = `2 = 2, we haveL(length 2)+L(length 2)�L(length 4) = 1+1�4 =�2. If, say, `1 = 2 and `2 > 2, then we notethat L(`2 + 2) exceeds L(`2) by at most 2 bits, thusL(length 2) + L(`2) � L(`2 + 2) � 1 � 2 = �1. Ifboth `i are larger than 2, then using the fact thatthe logarithmic functions are sub-additive, we getL(`1) + L(`2)� L(`1 + `2)� 2 (log2(`1 � 1) + log2(`2 � 1)� (log2(`1 + `2 � 1) + 1))� 2 (log2(`1 + `2 � 2)� log2(`1 + `2 � 1) + 1)= 2�log2 �1� 1`1+`2�1�+ 1� � 1:3562;the last inequality following from the fact thatlog2(1 � 1n ) is increasing with n, and we considerhere values n � 5. Thus for all values of `1 and `2,L(`1 + `2) exceeds L(`1) + L(`2) by at most 2 bits.ThereforeL(E1) + L(E2)� L(E) �(8 + L(`1)) + (8 + L(`2))� (14 + L(`1 + `2)) � 0:Remark: A newer variant of the second example ex-tends the size of the window into which a back-referencemay point. The last range of �M (o�set d) is then en-coded by 11B12(d � 321) if 320 < d � 4416, so thato�sets may be encoded by up to 15 bits. This, however,a�ects the triangle inequality. In the special case whentwo consecutive strings ab and cd appeared earlier atdistances d1 and d2, both � 64, but the concatenated

string abcd appeared earlier at a distance d3 > 320, en-coding the string abcd requires L(d3; 4) = 15 + 4 bits,which is larger than L(d1; 2)+L(d2; 2) = (8+1)+(8+1)bits, needed to encode the pairs ab and cd individu-ally. As mentioned above, the Prune algorithm may beadapted to deal with such cases too.4. EXPERIMENTAL RESULTSTo illustrate the performance of the proposed algorithm,we have applied it to �les of several types. A �rst classconsists of texts in various natural languages. We tookthe �rst 1000 lines of the following �les: for English,Finnish and German | the book of Genesis ; for French| the Dictionnaire Philosophique by Voltaire; for He-brew | the Brahot tractate of the Babylonian Talmud.The second set consists of non-textual �les. The �rstfour are taken from the Calgary corpus (see Bell et al.1990): paper1 | a paper including formatting com-mands; progl | Lisp source code; trans | transcriptof a terminal session; bib | a bibliographic �le. Thelast �le in this set is moricons.dll, which is part of thestandard MS{Windows 3.1 library.Table 1 is a comparative chart of the compression ra-tios for the sample �les. The column headed Size givesthe size of the �le in bytes. The next four columnsgive the relative size of the compressed �le, expressedas a percentage of the full �le, for Algorithms M and S,the longest match heuristic (LMH) and the optimal al-gorithm, respectively. Recall that we deal here withoptimal parsing relative to a given coding function; themethod used for the optimal parsing here is the one ofAlgorithmM. The last column contains the compressionresults obtained by gzip, tuned for maximal compres-sion, and has been added for comparison purposes only,since gzip uses another encoding scheme and is thusnot a recompression technique in the sense used in thispaper.For all �ve algorithms, the �les were processed byclusters of 8K bytes, as is done in the commercial sys-tems. The values for Algorithms M and S were ob-tained by simulating their hashing, parsing and coding,rather than by applying the commercial software pack-ages. The latter report only approximate results, andhave some additional overhead, so that the simulatedvalues are better by a few percent. This also explainsthat the ratios for Algorithm M consistently improvethose for Algorithm S, whereas the performance of thecommercial counterparts are generally roughly equiv-alent. On our examples, recompression by the longestmatch heuristic reduced the �le sizes by 17{27% relativeto the compression by Algorithm M, so the recompres-sion savings on the commercial systems would be evenlarger. The optimal parsing then saves an additional3{6%. With gzip, compression could still be improvedby 10{15%, except for the moricons �le, for which theThe Computer Journal, Vol. 40, No. 5, 1997



10 Shmuel T. KleinFile Size Alg. M Alg. S LMH Optimal gzipEnglish 36521 54.9 58.2 42.3 39.9 35.9French 53580 64.8 71.8 51.1 48.1 43.0Finnish 34615 59.6 64.9 45.1 42.6 38.3German 55121 59.6 64.5 47.0 44.5 40.4Hebrew 48193 62.1 69.9 51.2 48.6 43.9paper1 53161 64.0 68.6 49.3 47.0 41.8progl 71646 45.4 46.5 33.1 31.4 27.0trans 93695 49.0 50.5 39.0 37.5 31.7bib 111261 65.6 67.9 51.6 49.1 42.8moricons 118864 34.3 38.6 26.7 25.8 25.6Table 1: Comparison of compression ratios on sample �lesimprovement was only 0.8%.File Time SpaceOpt Prune Opt PruneEnglish 0.75 0.39 220357 28.9French 1.55 1.12 222270 47.9Finnish 1.22 0.47 203772 29.3German 2.15 1.07 282662 32.9Hebrew 1.50 1.05 235260 33.7paper1 1.33 0.76 287574 29.4progl 3.05 0.94 1187012 10.7trans 3.94 0.83 2031230 7.2bib 2.55 1.52 626136 25.2moricons 10.02 1.57 5320050 16.8Table 2: Comparison of time and internal spaceTable 2 lists some time and space measurements. Thealgorithms were run on a Sparc 10. The values cor-respond to the time, in seconds, to �nd the optimalpath in the full graph (Opt) and in the reduced graph(Prune). The algorithm for the full graph is generally1.5 to 3 times slower than on the pruned graph, andmore than 6 times in the extreme case on the moricons�le. Moreover, the Prune algorithm drastically reducesthe internal memory requirements. The column forSpace headed Opt gives the number of edges in thefull graph; the last column gives the percentage of theedges remaining in the pruned graph. Note that while

the graphs have similar sizes for the textual �les, theyare much larger for the others, where long strings re-occur frequently. For example, even though progl isonly 35% larger than paper1, it generates more thanfour times as many edges. This is because progl con-tains many long runs of semicolons, and frequent longvariable names.5. CONCLUSIONThe new technique improves the time and space require-ments of an algorithm that is optimal under the con-straint of a given encoding function, and may thus e�-ciently enhance many of the dictionary based encodingmethods that have been suggested. Our experimentalresults show an additional 20%{30% savings obtainedby the optimal recompression algorithm, relative to theon-the-y methods. A large part of these savings is dueto simple improvements of the parsing strategy, but 3{6% can be attributed to the use of the optimal methodinstead of the longest match heuristic. However, even aminor improvement might be worthwhile in certain ap-plications, and has certainly theoretical value, since onecan show that it cannot be further improved under ourconstraints of a predetermined decoding procedure. Butbecause of its complexity, the optimal technique was of-ten not considered worth the e�ort for the modest im-provement it yielded. The contribution of this paper isthe reduction of the time and space requirements of theoptimal algorithm. The Prune algorithm thus permits,at low cost in time and space, to replace sub-optimalcompression heuristics by an optimal method.The Computer Journal, Vol. 40, No. 5, 1997
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