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1. INTRODUCTION AND BACKGROUND

Text compression techniques are often divided into sta-
tistical methods, such as Huffman coding (Huffman
1952), or arithmetic coding (Witten et al. 1987), and
dictionary methods, based generally on the work of
Lempel and Ziv (Ziv and Lempel 1977, Ziv and Lem-
pel 1978). The statistical methods assign codewords to
the elements making up the text, the lengths of these
codewords depending on the frequencies of the corre-
sponding elements. Dictionary methods replace vari-
able length substrings of the text by (shorter) pointers
to a dictionary in which a collection of such substrings
has been stored. Depending on the application and the
implementation details, each method can outperform
the other, as long as only the compression savings are
of concern.

There are, however, other criteria by which the var-
ious compression methods should be compared. While
the primary concern is generally to reduce the size of
the given file as much as possible, the time complexity
of the coding routines may also be a relevant factor.
For certain applications, such as data transmission over
a communication channel, both coding and decoding
ought to be fast. For other applications, like the stor-
age of the various files in a large static full text infor-
mation retrieval system, compression and decompres-
sion are not symmetrical tasks. Compression is done
only once, while building the system, whereas decom-
pression is needed during the processing of every query
and directly affects response time. One may thus use
extensive and costly preprocessing for compression, pro-
vided reasonably fast decompression methods are pos-
sible. Finally, the internal memory requirements of a
proposed algorithm may also be an important criterion,
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in particular on small machines.

In LZ77 (Ziv and Lempel 1977) and its variants, the
dictionary is in fact the previously scanned text, and
pointers to it are of the form (d, £), where d is an offset
(the number of characters from the current location to
the previous occurrence of a substring matching the one
that starts at the current location), and £ is the length
of the matching string. There is therefore no need to
store an explicit dictionary.

One of the problems of LZ77 is how to locate previ-
ous occurrences of substrings in the text. The simple
method of scanning the whole text backwards for each
processed character might be prohibitively slow. Many
alternatives have been suggested, including, among oth-
ers, the use of binary trees (Bell 1986), hashing (Brent
1987, Williams 1991), and Patricia trees (Fiala and
Greene 1989).

The question of how to parse the original text into
a sequence of substrings is a problem common to all
dictionary based compression techniques. An optimal
technique for a static dictionary is mentioned in Wag-
ner 1973. Storer and Szymanski 1982 give an opti-
mal parsing algorithm for the sliding window method,
and Hirschberg and Stauffer 1994 present parallel algo-
rithms for optimal parsing. Generally, for static dic-
tionary techniques, the parsing is done by a greedy
method, i.e., at any stage, the longest matching ele-
ment from the dictionary is sought, though non-greedy
methods have also been considered (see Horspool 1995)
and are used, e.g., in the popular gzip program. A
greedy approach gives good compression (Katajainen
and Raita 1992), and is easy to implement by means of
a trie, but is not necessarily optimal. Because the ele-
ments of the dictionary are often overlapping, a differ-
ent way of parsing might yield better compression. For
example, assume the dictionary consists of the strings
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D = {abc, ab, cdef, d, de, ef, £} and that the text is
S = abcdef; assume further that the elements of D are
encoded by some fixed-length code, which means that
[log,(|D])] bits are used to refer to any of the elements
of D; then parsing S by a greedy method, trying to
match always the longest available string, would yield
abc-de-f, requiring 3 codewords, whereas a better par-
tition would be ab-cdef, requiring only 2. Moreover,
for dynamic techniques such as LZ77 variants, for which
the dictionary is the encoded text itself, finding at each
step the longest matching string may be just as time
consuming as finding the optimal parsing.

The various dictionary compression methods differ
also by the way they encode the elements. This is most
simply done by a fixed length code, as in the above ex-
ample. A more involved technique (Fiala and Greene
1989), uses a static variable length encoding of the d
and ¢ values. Pushing this idea even further, one may
use a dynamic variable length code, optimally adapting
itself to the frequencies of the occurrences of the differ-
ent values of d and ¢: Brent (Brent 1987), suggests the
use of Huffman coding for the (d, ¢) pairs.

We are concerned here with a way of optimally pars-
ing the text, which may be applied to a process called
recompression. There are many systems today that of-
fer on-the-fly, very fast, compression of files of any kind.
These systems are used to better exploit available disk
space, by compressing any file before writing it to the
disk. But this is only attractive if the time spent on
compression is hardly noticeable, and similarly, decom-
pression must be fast, so that a compressed file may be
read without delay. Recompression is useful in a situ-
ation where a number of files have already been com-
pressed by the fast method, and the user wishes now
to reorganize the data on his disk into a more compact
form. Time is less critical for this reorganization pro-
cess, and the new compression algorithm might in fact
be independent of the former and start from scratch.
But the constraint is that the new encoded form of the
recompressed file must be compatible with the origi-
nal encoding, so that the same decompression method
may be used. In other words, a single decoding routine
should be able to process a file, regardless of it having
been compressed or recompressed.

The method described below has already been men-
tioned (Schuegraf and Heaps 1974, Katajainen and
Raita 1989), and achieves optimal recompression in the
sense that once the method for encoding the elements is
given, it finds the optimal way of parsing the text into
such elements. Obviously, different encoding methods
might yield different optimal parsings. Returning to the
above example of the dictionary D and text S, if the
elements abc, d, de, ef, f, ab, cdef of D are encoded
respectively by 1, 2, 3, 4, 5, 6 and 6 bits, then the pars-
ing abc-de-f would need 9 bits for its encoding, and for
the encoding of the parsing ab-cdef, 12 bits would be

needed. The best parsing, however, for the given code-
word lengths, is abc-d-ef, which is neither a greedy
parsing, nor does it minimize the number of codewords,
and requires only 7 bits.

The way to search for the optimal parsing is by reduc-
tion to a well-known graph theoretical problem. This
approach is, however, not recommended in Schuegraf
and Heaps 1974, because it is too time-consuming. In
Katajainen and Raita 1989, sub-optimal solutions are
suggested to improve the execution time.

It should be emphasized that the optimality of the
algorithm referred to in this paper is only relative to a
given encoding method for the elements into which the
original string has been parsed. The resulting method
is not claimed to be globally optimal, and using an-
other scheme, one might well get better compression.
The contribution of this paper is a variant of the op-
timal algorithm that is efficient in terms of both time
and space: a pruning technique is applied to the graph,
which generally reduces the number of both edges and
vertices, but still enables the evaluation of an optimal
solution for the original graph.

The optimal method and its new variant apply to any
static dictionary based compression method with static
(fixed or variable length) encoding. The elements to be
encoded can be of any kind: strings, characters, (d, )
pairs, etc, and any combination thereof. The proposed
technique thus improves a very broad range of different
methods, many of which have been published in the
scientific literature or as patents.

In the next section we mention some simple recom-
pression methods and present the new method and im-
plementation details. Examples of encoding functions
that have been used and satisfy the required conditions
are given in Section 3. Section 4 presents some experi-
mental results.

2. RECOMPRESSION

Every recompression algorithm corresponds to another
tradeoff between the speed of the encoding process and
the compression efficiency. Consider a given location
in the text, to be encoded by a dictionary compres-
sion method. At certain locations, there might be more
than one possible choice for the dictionary element to be
substituted for the following characters. The algorithm
used for scanning the dictionary (linear search, binary
search, hashing, etc.) induces an order on the dictionary
elements. The range of tradeoff alternatives extends
from finding, relative to the ordering at hand, the first
appropriate element (fastest method, but yielding infe-
rior compression), through considering the k first such
elements of the dictionary, for some integer £ > 1, and
choosing the best element among these, up to scanning
all possible alternatives and selecting the locally opti-
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mal element (slower, but giving improved compression).

2.1. Simple recompression methods

For LZ77 and many of its variants, the (d,f) =
(distance, length) pointers are restricted to d < N for
some fixed N, that is, a string is considered as recur-
rent only if its previous occurrence is within a finite
window of fixed size preceding the current location. A
simple recompression heuristic is therefore to increase
N, which increases the probability of finding a good
earlier match. However, the compression performance
is not necessarily improved, since [log, N bits are used
to encode d.

In Bell 1986, Fiala and Greene 1989, Whiting et al.
1992, the previous occurrences of the current substring
are searched for by means of hashing: the current two
(or three) characters are hashed to a location in a hash
table, which contains a pointer to the previous occur-
rence of a couple (or triplet) of characters that hashed
to the same location. Since hash functions are not in-
jective, different character pairs or triplets may hash to
the same location. It is thus possible that the hash ta-
ble does not provide a pointer to a previous occurrence,
although such an occurrence might exist. There are
several ways to use simple recompression in this case.
Using a larger hash table will reduce the number of col-
lisions and thereby increase the probability of locating
a string if it appeared earlier. Taking this idea a step
further, and if enough memory space is available, one
could get rid of the hashing altogether, and keep, say,
for every possible character pair, a pointer to its last
occurrence.

In the basic LZ77 algorithm, the longest substring is
sought which matches the current characters. In the
implementations using hashing, this is usually approx-
imated by finding first a matching pair or triplet, and
then trying to extend the match as far as possible. This
obviously does not guarantee that the longest match
will be detected. For instance, if the text that has al-
ready been scanned is T' = .. .abcde. . .abcx. .., and the
following characters are abcde, then applying hashing
to the character pair ab will yield, in the better case,
a pointer to the last occurrence of ab, which can only
be extended to form a 3-character match, whereas a 5-
character match would have been possible; in the worse
case, even that 3-character match will be missed, if an-
other character pair, different from ab but yielding the
same hash value, has appeared after abcx in T.

The compression efficiency can be improved, if not
only the last occurrence is remembered, but the k last
occurrences, for some constant & > 1. For example, one
could store pointers to the k last occurrences of each
character, using a cyclic list for each. The drawback of
this method is that the same number of memory loca-

tions is reserved for each character, whereas in many
applications, in particular in natural language texts,
certain characters appear much more frequently than
others.

Combining this idea of saving multiple references
with the hashing approach above, one could store a
cyclic list of k£ elements for each entry of the hash ta-
ble, or, which is equivalent, have k different hash tables
of identical size. If a good hashing function is chosen,
the distribution of the hashed addresses will be close
to uniform, even if the single character distribution is
not. In case there is a strong bias even after hashing,
one could use linked lists for each entry of the hash ta-
ble, thus allowing lists of varying length (up to some
predetermined upper limit, induced by the time con-
straints), without wasting memory locations. However,
since hashing functions are non-injective, all the above
lists may now contain pointers to different elements.

Consider for example the following scheme: assume
the character set consists of the 256 possible 8-bit
strings, that a hash table of 2'2 = 4K entries is used,
and that hashing is to be applied on character pairs.
One could then hash by truncating the two least signif-
icant bits of each character, i.e.:

h(az---ajag, by ---bibg) = ag---asby---bs.

If the addresses in the lists are stored in 16-bit words,
one could even remove the ambiguity resulting from
the hashing, by explicitly storing the truncated bits
a1agbibg in each element of the list. This leaves 12
bits for the address itself, which is equivalent to setting
N, the size of the window into which back references
should point, to 4K.

In the next section we consider even better recom-
pression, which recognizes the fact that the longest-
matching-string heuristic not necessarily yields an op-
timal partition.

2.2. Improved optimal recompression

Consider a text string S consisting of a sequence of n
characters 5155 - - - Sy, each character S; belonging to a
fixed alphabet ¥. Substrings of S are referenced by their
limiting indices, i.e., S;---S; is the substring starting
at the i-th character in S, up to and including the j-th
character. We wish to compress S by means of a dictio-
nary D, which is a set of character strings {01, 02,...},
with o; € ¥T. The dictionary may be explicitly given
and finite, as in the example in the introduction, or it
may be potentially infinite, e.g., for the LZ77 variants,
where any previously occurring string can be referenced.

The compression process consists of two independent
phases: parsing and encoding. In the parsing phase,
the string S is broken into a sequence of consecutive
sub-strings, each belonging to the dictionary D, i.e., an
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increasing sequence of indices ig = 0,141,142, . .. is found,
such that
S = 58-S, = Si--8; Sijp1---Siy e,

with S;;4y1---Si;,, € D for j = 0,1,.... One way to
assure that at least one such parsing exists is to force
the dictionary D to include each of the individual char-
acters of ¥. The second phase is based on an encoding
function A : D — {0, 1}*, that assigns to each element
of the dictionary a binary string, called its encoding.
The assumption on A is that it produces a code which
is uniquely decipherable (UD). This is most easily ob-
tained by a fixed length code, but such a code is only
possible for a finite dictionary, and even then it is only
efficient from the compression point of view if the dis-
tribution of the occurrences of the elements of D in S
is nearly uniform. Compression can often be improved
by the use of variable-length codes, assigning shorter
codewords to elements with higher probability of oc-
currence. A sufficient condition for a code being UD is
to choose it as a prefix code (see Even 1979).

The problem is the following: given the dictionary
D and the encoding function A, we are looking for
the optimal partition of the text string S, i.e., the se-
quence of indices 41,is,... is sought, that minimizes

ZjZO |>\(Sij+1 U Sij+1)|'

To solve the problem, a directed, labeled graph G =
(V, E) is defined for the given text S. The set of vertices
isV={1,2,...,n,n+ 1}, with vertex ¢ corresponding
to the character S; for i < n, and n + 1 corresponding
to the end of the text; E is the set of directed edges: an
ordered pair (%, ), with 4 < j, belongs to E if and only
if the corresponding substring of the text, that is, the
sequence of characters S;---S;j_1, can be encoded as
a single unit. In other words, the sequence S;---S;j_1
must be a member of the dictionary, or more specifically
for LZ77, if j > ¢ 4+ 1, the string S;---S;_1 must have
appeared earlier in the text. The label L;; is defined for
every edge (i,j) € E as |[A(S;---Sj—1)|, the number of
bits necessary to encode the corresponding member of
the dictionary, for the given encoding scheme at hand.
The problem of finding the optimal parsing of the text,
relative to the given dictionary and the given encoding
scheme, therefore reduces to the well-known problem of
finding the shortest path in G from vertex 1 to vertex
n+ 1.

Dijkstra’s algorithm (Dijkstra 1959), may be used to
find the shortest path. Its worst case complexity varies,
depending on the data structures used, from O(|V|?)
to O(|E| + |V]log|V]) (see Cormen et al. 1990), which
would be particularly disturbing for our intended ap-
plication. However, in our case the directed graph con-
tains no cycles, since all edges are of the form (i, 7) with
i < 7. Thus by a simple dynamic programming method,
the shortest path can be found in O(|E|). Nevertheless,
when the text includes long runs of repeated characters

(like strings of zeros or blanks), the number of possibili-
ties to parse these runs, and hence the number of edges,
is quadratic in the number of vertices. This motivated
the search for sub-optimal alternatives in Katajainen
and Raita 1989.

We suggest here to adhere to the optimal parsing,
and to circumvent the worst case behavior by combin-
ing the shortest path algorithm with a pruning method
intended to eliminate a priori such parts of the graph
that cannot possibly be part of an optimal path. The
pruning process may be applied in all cases for which
the labeling function L satisfies the triangle inequality,

Lij S sz + ij for all 'L.,k,j such that 'L.<k'<j,

which holds for many practical encoding schemes (see
next section for examples).

The set of edges F is constructed dynamically by the
algorithm itself. We start with £ = ), and adjoin, in
order, the edges emanating from vertices 1,2, ..., unless
they fail to pass the following test. When a vertex i is
reached, consider the set of its predecessors Pred(i) =
{j | (j,i) € E}. We then scan the substrings of the text
starting at S;. Suppose that the substring S; ---S;_1 is
a member of the dictionary, so that the pair (i,7) is a
candidate to be adjoined to E. Before adding this edge,
check if it is possible to reach vertex j directly from
every vertex in Pred (i), without passing through vertex
i. If so, then there is no need to add the edge (i, j) to E,
since, because of the triangle inequality, there is no loss
in taking the direct edge from the element of Pred(7)
to vertex j. However, if there is even one element in
Pred(i) that has no direct edge to j, then (4, 7) must be
added to FE.

If, after having checked all the edges emanating from
vertex i, none of these have been adjoined to E, then
there is no need to keep the vertex ¢ in the graph, since
it obviously cannot be part of an optimal path from
1 to n+ 1. Thus all the incoming edges on vertex i
may be pruned from the graph, and i itself may also be
eliminated.

The formal definition of the algorithm is given below.

The algorithm seems non-symmetric with regard to
the predecessors and successors of a vertex. This is
because the vertices are scanned sequentially. There-
fore, when processing vertex i, Pred(i) is already de-
fined, but not yet Succ(i) = {j | (¢,j) € E}, the set of
1’s successors. The set of the potential successors of 4,
Succ_Candidates(7), is defined as the set of those ver-
tices to which there would have been a direct edge if
no pruning were used. Some of these edges might ulti-
mately not be adjoined to the graph. Others might in
a first stage be added, but might later be deleted.

Note that the triangle inequality is a sufficient condi-
tion for reaching an optimal solution with the improved
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Algorithm Prune

{
E «— 0
V «— {1,...,n,n+1}
fori «— 1lton
{
Pred(i) «— {k | (k,i) € E}
Succ_Candidates(i) «— {j | Si---Sj—1 € D}
added_edge <+— FALSE
for all j € Succ_Candidates(z)
{
all_connected <— TRUE
for all k € Pred(:)
if (k,j)¢E
then all_connected <+— FALSE
if not all_connected then
{
E EU{(sz)}
added_edge <+— TRUE
}
if not added_edge then
{
V «— VvV \ {i}
E «— E \ {(j;%) | j € Pred(:)}
}
}
}

algorithm, but when the condition does not hold for ev-
ery triple (i, j, k), one can easily adapt the algorithm to
deal also with these cases: replace the test if (k,j) ¢ F
in the inner loop by

if (k,j) ¢ E or Ly > Ly + Lij.

In other words, even if we can reach j from all the pre-
decessors k of i, we still might have to add the edge
(i,7) to the graph.

Figure 1 displays a small example of a graph, cor-
responding to the text abbaabbabab, including all the
vertices and edges. We now assume that LZ77 is used.
The edges connecting vertices¢ toi+1,fori =1,..., n,
are labeled by the character S;. Note that the example
clearly displays the main problem with long recurring
strings: if S;---S;_1 did occur earlier, so did also all
its substrings S ---S¢, for i < k < £ < j, therefore
the corresponding sub-graph with vertices {7,...,j} is
a full graph. For example, the sub-graph on vertices
{5,6,7,8,9} corresponds to the second occurrence of
the string abba, and {9, 10,11, 12} corresponds to the
suffix bab. If such recurring strings form a major part of
the text, the number of edges might be ©(]V|?). Even
if such a time complexity is still acceptable, a quadratic
space complexity will often be prohibitive.

After having applied the pruning algorithm, many
edges may have been deleted, as well as some of the ver-
tices. Figure 2 depicts the graph obtained for the same
text as for Figure 1, but with the use of the pruning
algorithm. The character corresponding to the transi-
tion from vertex i to i+ 1 is indicated, even if the corre-
sponding edge has been deleted. Edges drawn as dotted
lines were first adjoined to the graph, but later deleted
because there was no edge emanating from their end-
points. In this example, the number of edges was first
reduced from 21 to 14, and finally to 10.

The example also indicates how the algorithm could
be improved. Note that since all the successors of 10
are also successors of 9, the triangle inequality in fact
implies that the edge (9,10) could also be eliminated.
The reason this is not done in the algorithm is because
the loop with running index k, passing over the pre-
decessors, is internal to the loop with running index 7,
passing over the potential successors. Therefore, when
(9,10) is adjoined, the set of the successors of 10 is not
known yet. An additional loop checking also such cases
might further improve the algorithm, but is not neces-
sarily justified.

The routine evaluating then the shortest path from 1
to n + 1 uses an array SPL(7), for storing the Shortest
Path Length from 1 to i. In iteration i, the values of
SPL(j) for j < i are already known. The algorithm
now scans only those vertices and edges that remain
after the pruning process.

Shortest path

SPL(1) «+— 0
for: +— 2ton+1
if i € V then

{
SPL(i) +— o0
for all j € Pred(z)
{
t +— SPL(])'FLJZ
if SPL(i) > ¢t then
SPL(i) «— ¢t
}
}

Since for each i and j for which the edge (j,i) re-
mained in the graph, the label L;; is referenced exactly
once by the shortest path algorithm, its time complex-
ity is clearly O(|E|), E referring here to the dynamically
built (reduced) set of edges.
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Figure 1:

Figure 2:

2.3. Implementation Details

One problem in the implementation is to have an easy
way to keep track of the predecessors of each vertex.
The natural way to implement the graph is by keeping,
for each vertex, its successor list. This requires only
space O(|E|), as opposed to ©(|V|?) for keeping the
graph as an incidence matrix. One way to get access to
the predecessors is to invert the successor list globally,
and keep both successor and predecessor lists. But we
need the predecessor list already during the construc-
tion of the graph, which requires a dynamic method. A
possible alternative for getting the elements of Pred (i) is
thus to check, for all values j < i, whether ¢ € Succ(j).
This, however, requires time ©(|V|?) if no other bound
for j is known.

If no pruning is used, every preceding vertex may
be a predecessor of the current vertex i, but in fact,
when scanning backwards, we may stop as soon as a
vertex is found which is not connected to i, since the
predecessors of a vertex must immediately precede it.
When the pruning algorithm is applied, the fact that the
predecessors of a vertex immediately precede it is not
necessarily true. For example, in the graph of Figure 2,
Pred(12) = {9,10}. Nevertheless, we show that the
predecessors still form a contiguous block, so that while
scanning backwards, once at least one predecessor j of

Original graph corresponding to text abbaabbabab

Graph for text abbaabbabab after pruning

i has been detected, we may continue sequentially to
j—1,j— 2, etc., and stop as soon as the first vertex
j — k is found, with k£ > 0, which is not a predecessor
of 1.

For the theorems below, we need to differentiate be-
tween two kinds of predecessors and successors of the
vertices. There are two kinds of edges missing from
the graph: those that have not been added at all (the
edges which appear in Figure 1, but are missing from
Figure 2), and those that have been added, but were
deleted later (the dotted edges of Figure 2). Define
Pred’(i) as the set of vertices which were predecessors
of i at some stage of the algorithm, and Succ’(i) as the
set of vertices which were successors of ¢ at some stage
of the algorithm. The sets Pred(i) = {j | (j,i) € E}
and Succ(i) = {j | (¢,j) € E} defined earlier refer to
the vertices which are predecessors or successors of i
even after the algorithm has completed its task. Clearly,
Pred(i) C Pred’(¢) and Succ(i) C Succ’(7).

THEOREM 1. If pruning is used, then for each node
x, Succ’(z) consists of consecutive elements, i.e.:
|[Suce’(z)]=k — 3Fj>0
Succ’(z) ={z+j+1l,z+j+2,...,2+j+k}

Proof: By induction on z. For z = 0, Succ’(0) = {1}.
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Suppose the claim is true for indices smaller than z,
and let y be the largest index such that y € Succ’(x)
but y — 1 ¢ Succ’(z). If y = = + 1, then Succ’(x) is a
contiguous block of the numbers immediately following
x. Suppose then that y > 2 + 2. We have to show that
z is not connected to any vertex t < y — 1. The fact
that y is in Succ’(z) means that the string S, ---Sy_1
appeared earlier, and thus also its prefix S, --- S, _» ap-
peared earlier. Therefore the reason that y — 1 is not
in Succ’(z) must be that the edge (z,y — 1) has not
been added to the graph because of the pruning pro-
cess. That is, for all z € Pred’(z), the edge (z,y — 1)
did exist. So since for each of these z, both  and y — 1
belong to Succ’(z), it follows from the inductive hypoth-
esis that all elements ¢ such that x <t <y — 1 are also
in Succ’(z). But then, by the pruning process, the edge
(z,t) will not be added. [ |

THEOREM 2. If pruning is used, then for each node
x > 0, Pred’(x) consists of consecutive elements, i.e.:

|Pred’(z)]=k — 3j>0
Pred’(z)={x—j—k,...,.o —j — 2,2 —j — 1}.

Proof: By induction on z. For z =1, Pred’(1) = {0}.
Suppose the claim is true for indices smaller than z,
and let y be the smallest index such that y € Pred’(x)
but y + 1 ¢ Pred’(z). If y =  — 1, then Pred’(z) is a
contiguous block of the numbers immediately preceding
x. Suppose then that y <z — 2. We have to show that
no vertex ¢ > y + 1 is connected to z. The fact that
y € Pred’(z) means that the string Sy - - - S;—1 appeared
earlier, and thus also its suffix Sy ---S;_1. Therefore
the reason that y+1 is not in Pred’(z) must be that the
edge (y+ 1, ) has not been added to the graph because
of the pruning process. That is, for all z € Pred’(y+ 1),
the edge (z,z) did exist, hence

2 € Pred’(z). (1)

But this means that both y + 1 and z are in Succ’(z);
therefore, either y + 2 = z, in which case the proof is
completed, or if y + ¢ < z, then by Theorem 1, y + ¢ is
also in Succ’(z), which is a set of consecutive numbers.
It follows that

z € Pred’(y + t). (2)

So since all the elements in Pred’(y + 1) have a direct
edge to y + t, it follows from the pruning process that
the edge (y + 1,y + ) will not be added to the graph,
ie.,

y+1¢ Pred’(y +t). (3)

We want to show that there is no edge from y + ¢ to
z. Obviously, the string Sy 1 - - - S;—1 could be encoded,
since it is a suffix of S, ---S;_1 which can be encoded,
so we have to show that (y + ¢,z) will not be added
because of the pruning. In other words, we need to show

that all elements in Pred’(y + ¢) have an edge to . We
know this fact already for the elements of Pred’(y + 1).
So suppose there is an element

2" € Pred’(y +t) — Pred’(y + 1) (4)

which is not connected to =. Then the string
Sz ---Syst—1 has appeared, so did also the string
Sy -+ Sy; thus the fact that 2z’ ¢ Pred’(y + 1) is due
to the pruning process. That is, all 2" € Pred’(2') are
connected to y + 1, thus 2" € Pred’(y + 1). But these
2" are smaller than 2, hence applying the inductive hy-
pothesis to Pred’(y + 1), it follows that every element z
of Pred’(y+1) is smaller than 2, since 2’ ¢ Pred’(y+1).

But every element z of Pred’(y+1) is also in Pred’(x)
by (1) and 2’ is not in Pred’(z). It follows that 2’ is
larger than all these z and that there must be an el-
ement 2", z < 2" < 2’ such that 2" € Pred’(z) and
2" +1 ¢ Pred’(z). But since y has been chosen as the
smallest number having this property, we must have
2" >y and therefore 2z’ > y + 1. But 2’ € Pred’(y + t)
by (4) and y + 1 ¢ Pred’(y + t) by (3), so that in fact
2 >y+1.

We have thus found three numbers z < y+1 < 2’ such
that the first and the third belong to Pred’(y + t) by
(2) and (4) respectively, whereas the second does not by
(3); this is a contradiction to the inductive hypothesis,
by which Pred’(y + t) is a set of consecutive numbers.

We conclude that there cannot possibly be an ele-
ment 2’ as defined in (4), which is not connected to z.
Therefore, all elements in Pred’(y + t) are connected to
x, so by the pruning process, the edge (y + ¢, z) will not
be added to the graph. [ |

The fact that the previous theorem is about Pred’(x)
and not about Pred(z) is no real restriction, since any-
way, the stage where the algorithm has to scan the pre-
decessors of a vertex z is prior to the moment where
any edges incident on z may be deleted.

As a consequence of Theorem 2, we can keep track of
all sets Pred(i) by storing two arrays, PF[i] and PL[i],
giving, respectively, the indices of the first and last of
the predecessors of i. The inner loop on k in Algo-
rithm Prune, which checks if all predecessors of i may
be connected to j, can thus be replaced by the question
whether the interval [PF[i], PL[{]] is included in the in-
terval [PF[j], PL[j]], which is simply done by checking
that

PF[i] > PF[j] A PL[i < PL[jl.

Should this not be the case, the edge (i, ) will be ad-
joined to E, and the vectors for j will be updated: if this
is the first appearance of an edge incident on j, PF[j]
is set to ¢; in any case, PL[j] is set to i. Both time and
space of the Prune Algorithm are thus O(|E’|), where
E' is the reduced set of edges.
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3. ENCODING FUNCTION EXAMPLES

This section brings examples of algorithms that have
been proposed and are used in commercial compression
systems. We show that their encoding functions A\ obey
the triangle inequality, which is a sufficient condition
for applying the above pruning algorithm.

The first example, based on Whiting et al. 1992,, is a
variant of LZ77 known as LZSS, Storer and Szymanski
1982, using hashing on character pairs to locate (the be-
ginning of) recurrent strings, like in Williams 1991. The
output of the compression process is thus a sequence
of elements, each being either a single (uncompressed)
character, or an offset-length pair (d, ). The elements
are identified by a flag bit, so that a single character
is encoded by a zero, followed by the 8-bit ASCII rep-
resentation of the character, and the encoding of each
(d,?) pair starts with a 1. The method, referred to
hereafter as Algorithm S, may easily be improved by
recompression: a hashing function is not one-to-one, so
that a character pair may be missed, even if it appeared
earlier; even if the pair is located, the resulting match-
ing string is not necessarily the longest possible; finally,
even the longest match would not guarantee global op-
timality of the parsing.

The sets of possible offsets and lengths are split into
classes as follows: let B,,(n) denote the standard m-bit
binary representation of n (with leading zeros if neces-
sary), then, denoting the encoding scheme by Ag:

_ (1Bi(d)  ifd <127
As(offset d) = { 0By (d)  if 127 < d < 2047
By(f —2) if2<e<4
11B5(¢ - 5) if5<0<7
As(length £) = 9 1117y [(=1)/151 B, (¢ — 8) mod 15)
if £>38

For example, the first few length encodings are: 00,
01, 10, 1100, 1101, 1110, 11110000, 11110001, ...,
11111110, 111111110000, etc. Including the flag-bit,
each offset is thus encoded by 9 or 13 bits, and the
number of bits used to encode the length ¢ is 2[£] for
¢ < 8 and it is 4|'l1+—58] for £ > 8. It is of course wasteful
to use an encoding of linearly growing length for the
values of £, but the decoding speed is enhanced, since
only half-byte blocks are processed (except for £ < 4).

THEOREM 3.
inequality.

The function g satisfies the triangle

Proof: Let E; and E> be two consecutive elements en-
coded by the algorithm, where F; may be either a single
character, or a string of characters encoded by an (off-
set, length) pair (d, £). Denote by E the concatenation
of F, with E,, and assume that E may be encoded

as a single element. Let L(x) be the function giving
the length, in bits, of the encoding Ag(z), where, as
above, we shall apply L to both the offset or the length
part, or even to an element FE;. We have to show that
L(E) < L(E1) + L(E»).

Case 1: Both E; are single characters, then L(E;) =
L(E») =9. But E is a string of two characters and
will be encoded by an (d,f) pair. The offset part
is encoded by at most 13 bits, the length part by
exactly two bits (since £ = 2). Thus L(F) < 13+2 <
9+ 9.

Case 2: One of the E; is a single character, the other a
string encoded by (d, £). Then there exists a d’ such
that E is encoded by (d’,¢+ 1). Thus

L(Ey1) + L(Ez) — L(E) >
9+ 9+ L) — (13+L(£+1)) >1,

since the difference in the lengths of the encodings of
consecutive lengths ¢ and £ 4+ 1 never exceeds 4 bits.

Case 3: Both E; are strings, encoded by (d;,¥;), re-

spectively. Then there exists a d' such that E is
encoded by (d', £y + (2).
If both ¢, and /> are smaller than 8, then they are
encoded together by at least 4 bits, but £, + £> is
at most 14, so it is encoded by at most 8 bits. If,
say, £1 is smaller than 8, but /5 is not, then they
are encoded together by at least L(¢3) + 2 bits, but
£y + {5 is at most £ + 7, so it is encoded by at most
L(¢3) + 4 bits. If both ¢; are larger than 7, then

l +8 ly + 8
>
L(ly) + L) > 4< = + B > and
Lt + ) < 4(%“),

so that L(fy + €2) — (L(f1) + L(f2)) < 4— 22 < 2.
Thus for all values of ¢; and ¢5, L({; + ¢5) exceeds
L(¢y) + L(¢3) by at most 4 bits. Therefore

L(Fy) + L(By) — L(F) >

(9+L(¢) +(9+ L)) — (13+ L(fy +42)) > 1. 1

The second example comes from the on-the-fly com-
pression routine recently included in a popular operat-
ing system, and will be referred to as Algorithm M. It is
again based on Williams 1991, but uses simpler hashing
and a different encoding scheme \jp;. Single characters
are again encoded by 9 bits, and the sets of offsets and
lengths are encoded as follows:

1Bg(d — 1)
01Bs(d — 65)
11By1(d — 321)

if1<d<64
if 64 < d < 320
if 320 < d < 2368

A (offset d) =
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0 if =2

Ut 0 B;j(€—2—27)
if 27 <0 —2 < 20FL
for j =0,1,2,...

A (length £) =

For example, the first few length encodings are: 0, 10,
1100, 1101, 111000, 111001, 111010, 111011, 11110000,
etc. Offsets are thus encoded by 8, 11 or 14 bits, and
the number of bits used to encode the lengths £ is 1 for
£ =2 and 2[log, (¢ — 1)] for £ > 2.

THEOREM 4.
inequality.

The function Ap; satisfies the triangle

Proof: We use the same notations as for Theorem 3,
L(z) standing now for |Ays(z)|, and consider the same
three cases.

Case 1: L(E))+ L(E;) =949 > 14+ 1> L(d,2) =
L(E).

Case 2: L(E )+ L(E;)—L(E) > 9+ (8+ L(¢¥)) — (14 +
L(¢+ 1)) > 1, since the difference in the lengths of
the encodings of consecutive lengths £ and £+ 1 never
exceeds 2 bits.

Case 3: For the case /1 = /fy = 2, we have
L(length 2)+ L(length 2)— L(length 4) = 1+1—-4 =
—2. 1If, say, /4 = 2 and ¢ > 2, then we note
that L(¢s + 2) exceeds L(¢2) by at most 2 bits, thus
L(length 2) + L(¢y) — Ll +2) > 1 -2 = —-1. If
both /; are larger than 2, then using the fact that
the logarithmic functions are sub-additive, we get

L(4y) + L(ly) — L(ty + £3)
> 2(logy (6 — 1) +1logy(f2 — 1)
— (logy (1 + €2 — 1) + 1))
> 2(logy(ly + £ —2) —logy(f1 + 42 — 1)+ 1)

S (1og2 (1 - ,,H%) + 1) > 1.3562,

the last inequality following from the fact that
log,(1 — 1) is increasing with n, and we consider
here values n > 5. Thus for all values of ¢; and /5,
L(¢y + ¢5) exceeds L(¢1) + L({2) by at most 2 bits.

Therefore

L(Ey) + L(Es) — L(E) >
(8+ L(f1)) + (8+ L(fs)) — (14 + L(fy + ¢2)) > 0. N

Remark: A newer variant of the second example ex-
tends the size of the window into which a back-reference
may point. The last range of Aps(offset d) is then en-
coded by 11Bja(d — 321) if 320 < d < 4416, so that
offsets may be encoded by up to 15 bits. This, however,
affects the triangle inequality. In the special case when
two consecutive strings ab and cd appeared earlier at
distances d; and dy, both < 64, but the concatenated

string abcd appeared earlier at a distance d3 > 320, en-
coding the string abed requires L(dz,4) = 15 + 4 bits,
which is larger than L(dy,2)+L(d»,2) = (84+1)+(8+1)
bits, needed to encode the pairs ab and cd individu-
ally. As mentioned above, the Prune algorithm may be
adapted to deal with such cases too.

4. EXPERIMENTAL RESULTS

To illustrate the performance of the proposed algorithm,
we have applied it to files of several types. A first class
consists of texts in various natural languages. We took
the first 1000 lines of the following files: for English,
Finnish and German — the book of Genesis; for French
— the Dictionnaire Philosophique by Voltaire; for He-
brew — the Brahot tractate of the Babylonian Talmud.
The second set consists of non-textual files. The first
four are taken from the Calgary corpus (see Bell et al.
1990): paperl — a paper including formatting com-
mands; progl — Lisp source code; trans — transcript
of a terminal session; bib — a bibliographic file. The
last file in this set is moricons.d11, which is part of the
standard MS—Windows 3.1 library.

Table 1 is a comparative chart of the compression ra-
tios for the sample files. The column headed Size gives
the size of the file in bytes. The next four columns
give the relative size of the compressed file, expressed
as a percentage of the full file, for Algorithms M and S,
the longest match heuristic (LMH) and the optimal al-
gorithm, respectively. Recall that we deal here with
optimal parsing relative to a given coding function; the
method used for the optimal parsing here is the one of
Algorithm M. The last column contains the compression
results obtained by gzip, tuned for maximal compres-
sion, and has been added for comparison purposes only,
since gzip uses another encoding scheme and is thus
not, a recompression technique in the sense used in this

paper.

For all five algorithms, the files were processed by
clusters of 8K bytes, as is done in the commercial sys-
tems. The values for Algorithms M and S were ob-
tained by simulating their hashing, parsing and coding,
rather than by applying the commercial software pack-
ages. The latter report only approximate results, and
have some additional overhead, so that the simulated
values are better by a few percent. This also explains
that the ratios for Algorithm M consistently improve
those for Algorithm S, whereas the performance of the
commercial counterparts are generally roughly equiv-
alent. On our examples, recompression by the longest
match heuristic reduced the file sizes by 17-27% relative
to the compression by Algorithm M, so the recompres-
sion savings on the commercial systems would be even
larger. The optimal parsing then saves an additional
3-6%. With gzip, compression could still be improved
by 10-15%, except for the moricons file, for which the
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File Size Alg. M | Alg. S | LMH | Optimal || gzip
English 36521 54.9 58.2 42.3 39.9 35.9
French 53580 64.8 71.8 51.1 48.1 43.0
Finnish 34615 59.6 64.9 45.1 42.6 38.3
German | 55121 59.6 64.5 47.0 44.5 40.4
Hebrew 48193 62.1 69.9 51.2 48.6 43.9
paperl 53161 64.0 68.6 49.3 47.0 41.8

progl 71646 45.4 46.5 33.1 314 27.0

trans 93695 49.0 50.5 39.0 37.5 31.7

bib 111261 | 65.6 67.9 51.6 49.1 42.8
moricons || 118864 | 34.3 38.6 26.7 25.8 25.6

Table 1: Comparison of compression ratios on sample files

improvement was only 0.8%.

File Time Space
Opt | Prune Opt Prune

English 0.75 0.39 220357 28.9
French 1.55 1.12 222270 47.9
Finnish 1.22 0.47 203772 29.3
German 2.15 1.07 282662 32.9
Hebrew 1.50 1.05 235260 33.7
paperl 1.33 0.76 287574 294
progl 3.05 0.94 1187012 | 10.7
trans 3.94 0.83 2031230 7.2
bib 2.55 1.52 626136 25.2
moricons || 10.02 | 1.57 5320050 | 16.8

Table 2: Comparison of time and internal space

Table 2 lists some time and space measurements. The
algorithms were run on a Sparc 10. The values cor-
respond to the time, in seconds, to find the optimal
path in the full graph (Opt) and in the reduced graph
(Prune). The algorithm for the full graph is generally
1.5 to 3 times slower than on the pruned graph, and
more than 6 times in the extreme case on the moricons
file. Moreover, the Prune algorithm drastically reduces
the internal memory requirements. The column for
Space headed Opt gives the number of edges in the
full graph; the last column gives the percentage of the
edges remaining in the pruned graph. Note that while

the graphs have similar sizes for the textual files, they
are much larger for the others, where long strings re-
occur frequently. For example, even though progl is
only 35% larger than paperl, it generates more than
four times as many edges. This is because progl con-
tains many long runs of semicolons, and frequent long
variable names.

5. CONCLUSION

The new technique improves the time and space require-
ments of an algorithm that is optimal under the con-
straint of a given encoding function, and may thus effi-
ciently enhance many of the dictionary based encoding
methods that have been suggested. Our experimental
results show an additional 20%-30% savings obtained
by the optimal recompression algorithm, relative to the
on-the-fly methods. A large part of these savings is due
to simple improvements of the parsing strategy, but 3—
6% can be attributed to the use of the optimal method
instead of the longest match heuristic. However, even a
minor improvement might be worthwhile in certain ap-
plications, and has certainly theoretical value, since one
can show that it cannot be further improved under our
constraints of a predetermined decoding procedure. But
because of its complexity, the optimal technique was of-
ten not considered worth the effort for the modest im-
provement it yielded. The contribution of this paper is
the reduction of the time and space requirements of the
optimal algorithm. The Prune algorithm thus permits,
at low cost in time and space, to replace sub-optimal
compression heuristics by an optimal method.
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