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Abstract: The performance of data compression on a large static text may be
improved if certain variable-length strings are included in the character set for
which a code is generated. A new method for extending the alphabet is presented,
based on a reduction to a graph-theoretic problem. A related optimization prob-
lem is shown to be NP-complete, a fast heuristic is suggested, and experimental
results are presented.

1 Introduction and Background

Compression methods may be classified according to various criteria, such as
compression efficiency, speed, necessary space in RAM, etc. (see [32] or [6] for an
overview). The present work focuses on a static compression scheme, for which
we assume that the time restrictions on the encoding and decoding processes are
not symmetrical: we shall put no constraint on compression time, but require
very fast decompression. The corresponding scenario is that of a large full-text
information retrieval (IR) system, for which compression is usually performed
only once or periodically (but rarely), but which may be accessed frequently, so
that (possibly many) small parts of it need to be decompressed while the user
is waiting for responses to a query. The text of the IR system may be static,
like for the Encyclopædia Britannica, the Trésor de la Langue Française [11],
the Responsa Retrieval Project (RRP) [16, 14], etc., or it might be dynamically
increasing over time, like collections of news wire messages, newspapers, and
ultimately, the whole World Wide Web. The RRP mentioned above, one of the
oldest IR systems, was headed by Prof. Yaacov Choueka for many years and was
a major incentive for the present, as well as many related works.

Statistical compression methods, like Huffman or arithmetic coding, assume
that the text at hand is a sequence of data items, that will be encoded according
to their occurrence frequencies. These data items are generally single characters,
but sometimes more sophisticated models are used for which a character pair, a
word, or more generally, certain character strings, are considered to be an item.
Dictionary compression methods work by replacing the occurrence of certain
strings in the text by (shorter) pointers to some dictionary, which again may
be either static, fixed in advance (e.g., the most frequent words in English),
or dynamically adapted to the given text, like the various Lempel-Ziv methods
and their variants. The statistical methods working only on single characters



are often inferior to the dictionary methods from the compression point of view.
Nevertheless, they may be the preferred choice in IR applications, as they do
not require a sequential scan of the compressed file.

To improve the performance of the statistical methods, much larger alphabets
could be defined, as in theHuffword variant [17], in which every word, rather than
every character, is considered as an atomic element to be encoded. Another line
of investigation suggested to trade a part of the compression efficiency against
better processing abilities, including faster decoding and the possibility to search
directly in the compressed text [28, 12, 24]. Using large alphabets, the reduction
in compression is only a few percent, but decoding and searches are much faster.

The focus in this paper is again the compression ratio of statistical methods,
and we shall follow the approach in [9] and [10], and construct a meta-alphabet ,
which extends the standard alphabet by including also frequent variable-length
strings. The idea is that even if we assume a quite involved model for the text
generation process, there will always be strings deviating from this model. One
may thus improve the accuracy of the model by including such strings as indi-
visible items, called below meta-characters, into the extended alphabet.

Obviously, the larger the meta-alphabet, the better compression we may
expect. The problem then is that of an optimal exploitation of a given amount
of RAM, which puts a bound on the size of the dictionary. We shall assume
that this resource is limited, so that decompression at least should be possible
even on very weak machines. In addition, there is a problem with the selection
of the set of meta-characters, because the potential strings are overlapping. A
similar problem has been shown to be NP-complete under certain constraints
[18]. Several efficient greedy heuristics have been suggested in [3, 4]. They are
based on iteratively choosing the most promising string, and substituting all its
non-overlapping occurrences, except one, by a new meta-character. Other works
addressing the problem of compressing using a fixed alphabet can be found in
[26, 13, 8].

Our approach concentrates on the meta-alphabet itself, rather than on the
individual occurrences of its elements in the text. This enables a clean separa-
tion of the modeling (definition of the meta-alphabet) from the actual encoding
(choice of encoding and parsing methods), as advocated by [7]. Such a separation
allows the evaluation of the contribution of each part independently from the
other, by fixing the model and varying the encoding, or alternatively, by using
a given encoding scheme and applying it to various models. We strive in this
work to optimize the model or at least to make sound decisions in successive
approximations of such an optimum.

The paper is organized as follows: in the next section, we present a novel
approach to alphabet extension and show that a related optimization problem
is NP-complete. Section 3 deals with implementation issues and refinements
and suggests a fast heuristic, and Section 4 mentions some possible extensions.
Finally, we bring some experimental results in Section 5.



2 Definition of Meta-alphabet

The criterion for including a string of characters as a new meta-character into the
meta-alphabet is the expected savings we would incur by its inclusion. The exact
value is hard to evaluate, since the savings depend ultimately on the encoding
method, and for Huffman codes, say, the length of each codeword may depend
on all the others. Assume for simplicity in a first stage, that we shall use a fixed
length code to refer to any element of the meta-alphabet A, which contains
both single characters and the meta-characters. If |A| = D, any element can be
encoded by ⌈log2(D)⌉ bits.

Our approach starts by a reduction to a graph-theoretic problem in the fol-
lowing way. There will be a vertex for every possible character string in the text,
and vertices are connected by an edge if the corresponding strings are overlap-
ping. Both vertices and edges are assigned weights. The weight w(x) of a vertex
x will be the savings, measured in number of characters, obtained by including
x in A. The weight w(x, y) of an edge (x, y) will be the loss of such savings due
to the overlap between x and y. We are thus interested in a subset V ′ of the
vertices, not larger than some predetermined constant K, which maximizes the
overall savings ∑

x∈V ′

w(x) −
∑

x,y∈V ′

w(x, y). (1)

Formally, we are given a text T = t1t2 · · · tn, where each ti belongs to a finite
alphabet Σ; define a directed graph G = (V,E), where V is the set of all the
substrings of T , i.e., the strings ti · · · tj for 1 ≤ i ≤ j ≤ n, and there is a directed
edge from x = x1 · · ·xk to y = y1 · · · yℓ if some suffix of x is a prefix of y, i.e.,
there is a t ≥ 1 such that xk−t+j = yj for all 1 ≤ j ≤ t. For example, there will
be a directed edge from the string element to mention, corresponding to t = 4.
The weight of a vertex x is defined as

w(x) = freq(x)(|x| − 1),

where freq(x) is the number of occurrences of the string x in T , |a| denotes the
length (number of characters) of a string a, and the −1 accounts for the fact that
if the string x is selected as a meta-character, then for each occurrence of x, |x|
characters are saved, but one meta-character will be used, so we save only |x|−1
characters (recall that we assume a fixed-length code, so that the characters and
meta-characters are encoded by the same number of bits).

For strings x and y like above, define the super-string, denoted xy, as the
(shortest) concatenation of x with y, but without repeating the overlapping part,
i.e., xy = x1 · · ·xkyt+1 · · · yℓ, where t has been chosen as largest among all pos-
sible t’s. For example, if x is element and y is mention, then xy is elemention.
The weight of the directed edge from x to y is defined as

w(x, y) = freq(xy)(|y| − 1).

The reason for this definition is that if the text will be parsed by a greedy
method, it may happen that freq(xy) of the freq(y) occurrences of y will not



be detected, because for these occurrences, the first few characters of y will be
parsed as part of x.

In fact, assuming that the parsing of xy will always start with x in a greedy
method is an approximation. For it may happen that certain occurrences of
x will stay undetected because of another preceding string z, that has a non-
empty suffix overlapping with a prefix of x. To continue the example, suppose z
is steel, then zxy is steelemention, which could be parsed as zey. Moreover,
when the overlapping part itself has a prefix which is also a suffix, then choosing
the shortest concatenation in the definition of xy does not always correspond
to the only possible sequence of characters in the text. For example, if x is
managing and y is ginger, xy would be managinger, but the text could include
a string like managinginger. We shall however ignore such cases and keep the
above definition of w(x, y).

A first simplification results from the fact that we seek the subgraph induced
by the set of vertices V ′, so that either both directed edges (x, y) and (y, x) will
be included, if they both exist, or none of them. We can therefore consider an
equivalent undirected graph, defining the label on the (undirected) edge (x, y)
as

w(x, y) = freq(xy)(|y| − 1) + freq(yx)(|x| − 1).

For a text of n characters, the resulting graph has Θ(n2) vertices, and may
thus have Θ(n4) edges, which is prohibitive, even for small n. We shall thus try
to exclude a priori strings that will probably not be chosen as meta-characters.
The excluded strings are:

1. a string of length 1 (they are included anyway in A);
2. a string that appears only once in the text (no savings can result from these).

For example, consider the text

the-car-on-the-left-hit-the-car-i-left-on-the-road.

Using the above criteria reduces the set of potential strings to: {the-car-,
-on-the-, -left-}, and all their substrings of length > 1. If this seems still
too large, we might wish to exclude also

3. a string x that always appears as a substring of the same string y.

This would then purge the proper substrings from the above set, except the
string the-, which appears as substring of different strings. The rationale for
this last criterion is that it is generally preferable to include the longer string y
into the extended alphabet. This is, however, not always true, because a longer
string has potentially more overlaps with other strings, which might result in an
overall loss, as will be shown below.

Figure 1 depicts the graph of the above example, but to which we have
added on-the- as fifth string to the alphabet (in spite of it appearing always as
substring of -on-the-) because it will yield an example showing a deficiency
of criterion 3. Edges with weight 0 have been omitted, so there is no edge
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Figure 1: Graph for text
the-car-on-the-left-hit-the-car-i-left-on-the-road

between -left- and the-car-, or between on-the- and the-car-, because
the super-strings the-car-left- and on-the-car- do not appear; similarly,
there is no self-loop on the vertex x =-left-: even though the super-string
xx =-left-left- is defined, its frequency is zero. If we are looking for a set
of 3 meta-characters, the best of the

(
5
3

)
= 10 triplets is the-car-, -left-,

on-the-, yielding savings of 14 + 10 + 12 − 5 = 31 characters. Indeed, replac-
ing all occurrences of the meta-characters in the text reduces the number of
elements in the parsing from 50 to 19, of which 14 are single characters and 5
are meta-characters. However, one can see here that the criterion of excluding
a string x if it always appears as substring of y, does not assure optimality: if
we would choose the string on-the instead of on-the- as fifth vertex, the text
could be parsed as 16 instead of 19 elements.

There is, however, still a problem with the complexity of the algorithm. A
similar problem has been shown to be NP-complete in [30], but we bring here a
direct proof:

Theorem 1. The problem of finding a subgraph maximizing (1) is NP-complete.

Proof: One actually has to deal with the corresponding decision problem, which
we denote SDP (Substring Dictionary Problem). Given a graph G = (V,E), with
weights on both vertices and edges, and 3 non-negative constants K1, K2 and



K3, is there a subset of vertices V ′ ⊆ V , such that |V ′| ≤ K1,
∑

x∈V ′ w(x) ≥ K2

and
∑

x,y∈V ′ w(x, y) ≤ K3?
Once a guessing module finds the set V ′, the other conditions are easily

checked in polynomial time, so SDP ∈ NP. To show that SDP is also NP-hard,
the reduction is from Independent Set (IS) [19], defined by: given a graph G1 =
(V1, E1) and an integer L, does G1 contain an independent set of size at least L,
that is, does there exist a subset V ′

1 ⊆ V1, such that |V ′
1 | ≥ L, and such that if

x and y are both in V ′
1 , then (x, y) /∈ E1?

Given a general instance of IS, define the following instance of SDP: let G =
G1, define w(x) = 1 for all vertices x ∈ V , w(x, y) = 1 for all edges (x, y) ∈ E,
K1 = |V |, K2 = L and K3 = 0. Suppose that there is an independent set V ′

1 of
size at least L in G1. We claim that the same set also satisfies the constraints
for SDP. Indeed, |V ′

1 | = L ≤ K1,
∑

x∈V ′
1
w(x) = |V ′

1 | = L ≥ K2, and since in an

independent set, there are no edges between the vertices,
∑

x,y∈V ′
1
w(x, y) = 0 ≤

K3.
Conversely, suppose there is a set V ′ ⊆ V which fulfills the conditions of SDP

in the graph G. Then because the weight of each vertex is 1, it follows from the
second condition that there are at least K2 = L vertices in V ′. The choice of K3

as 0 in the third condition, together with the fact that the weight of each edge
is 1, implies that no two vertices of V ′ may be connected by an edge, that is, V ′

is an independent set.

Two problems have therefore to be dealt with: first, we need a fast procedure
for the construction of the graph, and second we seek a reasonable heuristic,
running fast enough to yield a practical algorithm, and still making better choices
than discarding any strings that overlap with one previously chosen.

3 Implementation Details

3.1 Graph Construction

Since we are looking for a special set of substrings of the given input text T ,
a position-tree or suffix-tree [5, 31] may be the data structure of choice for our
application, as it is in similar algorithms like, e.g., in [4]. The strings occurring
at least twice correspond to the internal nodes of the tree. As to condition 3.
above, if a string x occurs always as a prefix of y, the node corresponding to x
has only one child in the position tree, and will therefore not appear as a node
in the compacted form of the tree. Seeking the longest re-occurring strings, these
correspond, for each branch of the tree, to the lowest level of the internal nodes,
i.e., the parent nodes of the leaves. The other internal nodes of the compacted
tree correspond to strings that are prefixes of at least two different strings.
However, the set of strings corresponding to the internal nodes of the compacted
position tree might include more strings than those defined by conditions 1.–3.,
e.g., a string x that always appears as suffix of some other string y. Such strings
could be purged by using an auxiliary position tree, built for the reversed input
string, but empirical tests have shown that this may not be worth the effort.



The advantage of defining the set of vertices as corresponding to the internal
nodes of the position tree is that we get n, the length of the text, as immediate
bound for the number of vertices. Indeed, the branching factor of every internal
node in the compacted position tree is at least 2 (and for many nodes much larger
than that), so in the worst case, we have a full binary tree with n leaves, and
therefore n− 1 internal nodes. Figure 2 shows a part of the compacted position
tree for our example, where the black vertices correspond to the four strings left
after applying conditions 1.–3. above.
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Figure 2: Part of the compacted position tree

Compacted position trees can be constructed in time linear in the length of
the input text T . Also in linear time one could add to each vertex in the tree,
the number of times the corresponding string occurs in T [2]. Thus, the set of
vertices V and their labels can be constructed in time O(n).

As to the edges, it suffices to check for each string x corresponding to a vertex
vx whether there should be a directed edge from it to a vertex corresponding to
a string y. This will be the case if and only if the super-string xy exists. We have
thus to search the position tree for each of the |x| − 1 proper suffixes of x. If the
path in the position tree corresponding to one of these proper suffixes leads to
an internal node t, there will be an edge from vx to each of the vertices in the
subtree rooted by t.

If there is an upper limit K, independent of the size n of the text, on the
length of a string corresponding to a vertex, the number of edges in the graph
G will be linear. Indeed, a proper suffix of length i of x can be extended to
at most |Σ|K−i strings y such that xy exists, therefore the outdegree of x is
bounded by |Σ|K , which is a constant relative to n. Assuming the existence of
such an upper bound K is not unrealistic for real-life applications, where most
re-occurring strings will tend to be words or short phrases. Even if some long
strings re-occur, e.g., runs of zeros or blanks, it will often be the case that a
bound K exists for the lengths of all except a few strings, which will still yield a



linear number of edges. The following Theorem shows that such a linear bound
on the number of edges can not always be found.

Theorem 2. There are input texts T for which the corresponding graph G =
(V,E) satisfies |E| = Θ(|V |2).

Proof: Recall that a DeBruijn sequence of order k is a binary string Bk of length
2k, such that each binary string of length k occurs exactly once in Bk, when Bk

is considered as a circular string (see [15, Section 1.4]). For example, B3 could
be 00111010.

Consider the text T = CBk, where C is the suffix of length k−1 of Bk. Each
of the 2k possible binary strings of length k appears exactly once in CBk, so no
string of length longer than k appears more than once. Every binary sequence
of length k− 1 appears exactly twice in a DeBruijn sequence, and as sub-strings
of different strings of length k, thus there is a vertex in G for each of the 2k−1

strings of length k − 1. More generally, for 2 ≤ i < k (recall that strings of
length 1 do not generate vertices), there are 2i strings of length i that occur
more than once in T , and each of these strings of length < k is a substring of
more than one string of length k. The number of vertices in the graph is therefore∑k−1

i=2 2i = 2k − 4.
Consider one of the strings x, corresponding to a vertex vx, and denote

its rightmost bit by b. Then there must be edges from vx to at least all the
vertices corresponding to strings starting with b. There are 2i−1 strings of length
i starting with b, 2 ≤ i < k. Thus the number of edges emanating from vx is at
least

∑k−1
i=2 2i−1 = 2k−1 − 2. Therefore the total number of edges in the graph is

at least (2k − 4)(2k−1 − 2), which is quadratic in the number of vertices.

3.2 Heuristics for Finding a Good Sub-graph

The optimization problem has been shown above to be NP-complete, so there is
probably no algorithm to find an optimal solution in reasonable time. A family of
simple greedy heuristics that have previously been used (see, e.g., [11]) includes
the following steps:

1. Decide on a set S of potential strings and
calculate their weights w(x) for x ∈ S

2. Sort the set S by decreasing values of w(x)
3. Build the set A of the strings forming the meta-alphabet by
3.1 start with A empty
3.2 repeat until |A| is large enough or S is exhausted
3.2.1 x←− next string of sorted sequence S
3.2.2 if x does not overlap with any string in A, add it to A

The set S could be chosen as the set of all sub-strings of the text of length
up to some fixed constant k, or it might be generated iteratively, e.g., starting



with character pairs, purging the overlaps, extending the remaining pairs to
triplets, purging overlaps again, etc. Such a strategy of not allowing any overlaps
corresponds in our approach above to choosing an independent set of vertices.

To extend this greedy heuristic to include also overlapping strings, we have
to update the weights constantly. It is therefore not possible to sort the strings
by weight beforehand, and the data structure to be used is a heap. This will give
us at any stage access in time O(1) to the element x with largest weight W (x),
which should represent the expected additional savings we incur by adding x to
the set A, the currently defined meta-alphabet. W (x) is therefore w(x) if none of
the neighbors of x belongs to A, and it is more generally w(x)−

∑
y∈A w(x, y).

The proposed heuristic is thus as follows:

1. Define the set S as strings corresponding to the
internal nodes of the compacted position tree

2. for each x ∈ S define W (x)←− w(x)
3. build heap of elements W (x), with root pointing to maximal element
4. Build the set A of the strings forming the meta-alphabet by
4.1 start with A empty
4.2 repeat until |A| is large enough or heap is empty
4.2.1 x←− string with weight at root of heap
4.2.2 add x to A and remove W (x) from heap
4.2.3 repeat for all neighbors y of x in graph
4.2.3.1 W (y)←−W (y)− w(x, y)
4.2.3.2 if W (y) ≤ 0 remove W (y) from heap
4.2.3.3 else relocate W (y) in heap

Note that W (x) may indeed become negative, as can be seen when work-
ing through the example of Figure 1. This would mean that the potential gain
obtained from including x in A might be canceled because of the overlaps.

The complexity of the heuristic can be evaluated as follows: step 1. can be
done in time linear in the size n of the text as explained above. Let m = |S| be
the number of vertices. Steps 2. and 3. are O(m). Step 4.2.1 is O(1) and step 4.2.2

is O(logm). Any edge (x, y) of the graph is inspected at most once in the loop
of 4.2.3, and for each such edge, a value W (y) is either removed or relocated in
the heap in time O(logm). Thus the total time of step 4. is O(|E| logm). As we
saw in Theorem 2, |E| could be quadratic in m. But when W (y) is updated, it
may only decrease, so that its relocation in the heap can only be to a lower level.
The total number of updates for any W (y) is therefore bounded by the depth of
the heap, which implies that the complexity of step 4. is only O(m logm).

The Off-line heuristic of [4] has some similarities with the latter procedure,
but differs in various aspects. It also successively chooses new meta-characters
to be substituted, but it considers at each stage non-overlapping occurrences of
a given meta-character within the text, whereas the new heuristic above consid-
ers overlaps between different meta-characters rather than between their occur-
rences. That is, Off-line works directly on the text itself, while the new heuristic



tries to extract the meta-alphabet from the given graph, which models the text.
The advantage of Off-line is then the fact that its decisions are based on real
data and not on estimates, which yields very good compression performance, as
reported in [4]. The advantage of the present approach, on the other hand, is in
its focus on the model alone; this allows an independent subsequent application
of different encoding schemes.

4 Extensions

4.1 Variable Length Encodings

In our above description, we have made various simplifying assumptions. In a
more precise analysis, we shall try in a second stage to adapt the general strategy
to more complex — and more realistic — settings.

When defining the graph, we assumed that the elements of the meta-alphabet
are encoded by a fixed length code. Such a code will, however, be optimal only
if the occurrence distribution of the elements is close to uniform. Otherwise,
variable-length codes such as Huffman or arithmetic codes should be used. The
problem is then one of the correct definition of the graph weights, but the gener-
alization of the above method is not straightforward. We look for a set of strings
which are selected on the basis of the lengths of their encodings; the lengths de-
pend on their probabilities; these in turn are a function of the full set of strings,
which is the set we wish to define.

A possible solution to this chicken and egg problem is as follows. We first
estimate the average length, ℓ̂, of the strings s1, s2, . . . that will ultimately be
selected. This can be done by some rough rule of thumb or by applying the
heuristic iteratively. Clearly, if n = |T | is the length of the text and N is the
number of the selected strings, we have

n =

N∑
i=1

|si|freq(si).

Replacing now all |si| by their estimated average value ℓ̂, we get

n = ℓ̂

N∑
i=1

freq(si),

from which an estimate for the total frequency, W =
∑N

i=1 freq(si), of the
selected elements can be derived as

W =
n

ℓ̂
.

Hence, when defining the probabilities in the weights of the vertices and edges,
we shall use as approximation the frequency of a string divided by W , even
though this is not a real probability distribution, as the selected values will not



necessarily add up to 1. But the estimation bias is alleviated by the fact that
the probabilities are only needed to determine the lengths of the codewords. We
shall use − log2 p as approximation for the length of a codeword that appears
with probability p. This is exact for arithmetic coding, and generally close for
Huffman coding [27].

The new weights are not measured in number of characters, but in number
of bits. For a string x = x1 · · ·xr, the weight of the corresponding vertex will be

w(x) = freq(x)

(
−

r∑
i=1

log2
freq(xi)

W
+ log2

freq(x)

W

)
,

where freq(xi) are the frequencies of the individual characters making up the
string, and similarly for the weights w(x, y) of the edges. This is again an approx-
imation, as we compare the cost of using the string as a single element versus the
cost of using the constituent characters individually. So the string the would be
compared with the characters t, h and e, whereas in fact the alternative to the

could be using one of the substrings th or he. Once the set of meta-characters A
is determined by the heuristic, we can update our estimate for the average length
ℓ̂, and repeat the process iteratively. Even without a convergence guarantee, this
will be useful for the elimination of bad strings.

4.2 Markov process

Many authors have commented on the importance of source modeling for good
compression (see, e.g., [29]). We shall thus try to adapt the above techniques also
to more involved models. The model suggested in [9] is based on extending first
the alphabet, and then considering the sequence of meta-characters as generated
by a first-order Markov process; each element in the sequence is then Huffman
encoded according to its predecessor. The large overhead of the Markov process
can be dealt with by clustering [10] and by using canonical Huffman codes [22].
This approach yields, on large textual test files, compression factors that compete
well, and sometimes even beat, those of the best popular compression methods
such as gzip or PPM, even though only very simple heuristics have been used
for alphabet extension.

The problem in applying a Markov process to the definition of our graph
is that the weights of the vertices are not fixed any more, and can not even be
approached as done above for the variable length encoding, because the expected
savings at any vertex now depend on the edge through which the vertex is
accessed. The extension of our graph-based approach to deal with a Markov
model will be deferred to future work, but we bring in the experimental section
results of applying Markov based Huffman codes on the set of meta-characters
generated by the previous methods.

4.3 Non-greedy parsing

A similar problem to the latter is encountered when we abandon the assumption
that, once the meta-alphabet A is given, the text will be parsed greedily, i.e.,



by trying at each point to match the longest possible prefix of the remaining
text with one of the meta-characters. If the weights are known beforehand, an
optimal parsing can be found by a reduction to a shortest path problem [23].

Here again, we took a practical approach: instead of trying to generate a set
A which should be optimal under the constraint of optimal parsing, the processes
of alphabet construction and of the actual compression are separated. Once the
set A is obtained by the above methods and the length of the encoding of each
element can be evaluated, A is considered as fixed , and the optimal parsing for
the given weights is generated.

5 Experimental Results

Papers suggesting new compression methods often present comparative perfor-
mance charts on a large set of “standard” files like the Calgary or Canterbury
corpora [1]. Since the purpose of this work is not the presentation of a specific
heuristic, but rather of a general method for the improvement of static compres-
sion schemes, we restrict the experiments to only a few representative examples.
Three texts of varying lengths and different languages were chosen for the tests:
the King James version of the Bible in English, a French text by Voltaire called
Dictionaire philosophique and a lisp program progl from the Calgary corpus. Ta-
ble 1 lists the full sizes of these files in Mbytes, as well as the number of vertices
in the graph, as percentage of the number of leaves of the compacted position
tree.

Bible Voltaire progl

Full size 3.32 0.53 0.068
# vertices 55% 53% 64%

Table 1: Test file statistics

It should be noted that the final heuristic is a product of several layers of
approximations: the vertices of the graph do not cover all possible substrings,
the weights describe the gains and losses only under certain constraints, and the
heuristic does not necessarily find an optimal subset. It therefore made sense to
relax the requirements at various stages of the construction, and for example not
invest too much effort in the construction of the exact set of vertices, as many
of them are ultimately discarded anyway.

As mentioned earlier, the separation of the model for the construction of
the extended alphabet from the actual encoding applied to the elements of this
alphabet, allows an independent evaluation of the performance of the different
models. In the first set of experiments, we considered the weights in the graph



corresponding to fixed length encodings and generated the set of meta-characters
according to the second heuristic of Section 3.2. The meta-alphabet consisted of
the basic 256 ASCII characters, to which 256 more strings have been adjoined,
so that any meta-character could be encoded by 9 bits. The first line of Table 2
gives the sizes of these fixed-length encoded files, yielding a reduction of 40–60%.

Fixed length Bible Voltaire progl

Best strings for fixed 1.97 0.29 0.031

Best strings for variable 2.20 0.32 0.034

Most frequent words 2.39 0.40 0.048

Most frequent pairs 2.02 0.31 0.042

Table 2: Compression results for fixed-length encoding

The meta-alphabet used to produce the next line of the table is based on
the weights for the variable-length codewords of Section 4.1, but on which fixed-
length encoding was applied. As expected, the compression results are inferior
to those of the previous meta-alphabet.

To compare our method also with some simple techniques that are often
used, we produced, for each file, a list of the most frequent words, as well as
a list of the most frequent character bigrams. Each of these in turn were used
to define a new set of meta-characters, again extending the basic 256 elements
by 256 more. The last two lines of Table 2 refer to these meta-alphabets, which
gave lower savings.

Variable length Bible Voltaire progl

Best strings for fixed 1.48 0.23 0.0214

Best strings for variable 1.47 0.22 0.0212

Most frequent words 1.50 0.24 0.028

Most frequent pairs 1.73 0.26 0.036

Table 3: Compression results with Huffman coding

Table 3 are the corresponding results when Huffman coding is applied in-
stead of fixed length coding. Obviously, all the values are smaller than those in



the corresponding positions in Table 2. It can be seen that among the alterna-
tives tested, the meta-characters produced by the heuristic on the graph with
the weights corresponding to fixed length encoding indeed achieve the best com-
pression by fixed length encodings, while the meta-characters produced with the
weights of the variable length encoding are best when Huffman coding is applied.
It is noteworthy that when passing from the fixed length to the variable length
weights, the number of meta-characters in the parsing increases (this number is
proportional to the size, since fixed length encoding is used), and nevertheless,
the size of the corresponding Huffman encoded file is smaller. This is due to the
fact that the distribution of frequencies in the latter case is much skewer than in
the former, resulting in the overall gain. We also see that the differences between
the different methods are smaller than for Table 2, as Huffman coding tends to
partially correct the deficiencies of a bad choice of elements to be encoded.

The figures in Tables 2 and 3 are still far from the compression that can
be achieved with adaptive dictionary methods. For instance, the Bible file can
be reduced by LZW to 1.203 MB, by gzip to 1.022 MB, and by bzip to merely
0.74 MB. But recall that we are looking for a static method, which will allow
random and not only sequential access to the compressed file, so that these
dynamic methods are ruled out. On the other hand, using Huffman coding in
combination with a first order Markov model as in Section 4.2, may achieve
compression factors that can sometimes beat some of the dynamic methods.
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1.43simple Markov + Huffman

simple Huffman

full size

Figure 3: Comparative chart of the compression of the Bible file

Figure 3 schematically compares the various techniques on the Bible file. The
upper horizontal line corresponds to the full size, and the dotted and dashed lines
are produced by applying simple Huffman coding, and Huffman coding based on



a first order Markov model, respectively, on a standard 256 character alphabet.
The white histogram bars give the sizes of the compressed files when alphabet
extension is used, and the grey bars bring the values of the dynamic methods.
The leftmost two bars correspond to the values in Tables 1 and 2. By using
a larger extended alphabet, these can be improved: with 1024 meta-characters
(including the 256 basic ones), simple Huffman coding yields 1.29MB, which is
only 8% more than for LZW. But with a Markov model, one can get even below
one MB, which is better than gzip but still far from bzip; the value was obtained
with an extended alphabet of 512 meta-characters, and includes 60K of overhead
for the description of the model.

6 Concluding Remarks and Future Work

Alphabet extension is not new to data compression. However, the decision about
the inclusion into the alphabet of various strings, such as frequent words, phrases
or word fragments, has often been guided by some ad-hoc heuristic. The present
work aims at making this decision in a systematic, theoretically justifiable way.

There are still many more details to be taken care of, in particular, devising
more precise rules wherever approximations have been used. We have throughout
applied greedy decisions to simplify processing. Though such greedy heuristics
seem to give good results for the type of problem we consider here [20], we shall
try in another line of investigation to adapt other approximation schemes to our
case. The Independent Set optimization problem has been extensively studied,
and some good heuristics exist (see [21]). In particular, we can use the fact that
our graph has a low average vertex degree, and is of bounded vertex degree if we
put some constraints on the lengths of the strings we consider. Another problem
similar to ours, with edge weights but without weights on the vertices, has been
approximated in [25].
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