
to appear in ACM Trans. on Information Systems 7, (July 1989)Storing Text Retrieval Systems on CD-ROM:Compression and Encryption ConsiderationsShmuel T. Klein, Abraham Bookstein, Scott DeerwesterCommittee on Information StudiesUniversity of Chicago1100 E 57 St, Chicago, IL 60637The �rst and third authors were partially supported by a fellowship of the Ameritech FoundationThe authors are members of the Textual Information Retrieval and Analysis (TIRA) research groupAbstract: The emergence of the CD-ROM as a storage medium for full-textdatabases raises the question of the maximum size database that can be containedby this medium. As an example, the problem of storing the Tr�esor de la LangueFran�caise on a CD-ROM is examined in this paper. The text alone of this databaseis 700 MB long, more than a CD-ROM can hold. But in addition the dictionaryand concordance needed to access this data must be stored. A further constraintis that some of the material is copyrighted, and it is desirable that such materialbe di�cult to decode except through software provided by the system. Pertinentapproaches to compression of the various �les are reviewed and the compression ofthe text is related to the problem of data encryption: speci�cally, it is shown that,under simple models of text generation, Hu�man encoding produces a bit-stringindistinguishible from a representation of coin ips.Categories and Subject Descriptors: E.3 E.4 H.3.2 J.5General terms: Algorithms, SecurityAdditional Key Words and Phrases: Full-text storage, Hu�man coding, CD-ROM, bit-mapsAuthors' e-mail addresses:Klein: tomi@cerberus.uchicago.eduBookstein: bkst@cerberus.uchicago.eduDeerwester: scott@cerberus.uchicago.edu

1. Motivation and IntroductionUntil a few years ago, large full-text information retrieval systems could onlybe operated on powerful mainframes. Then the personal microcomputer becamemore popular and information retrieval software was adapted to this smaller device,which, however, had only a relatively small memory and therefore could not be usedfor very large systems. Recently, the CD-ROM (compact disc { read only memory)optical disc medium has become widespread, permitting access by a PC to very largeamounts of storage at very low cost. It is thus possible to transfer large databasesfrom the mainframes, where they used to be kept, to the cheaper PC's. This createsnew challenges of e�cient data handling. On one hand, retrieval algorithms have tobe improved since computation power is usually reduced; on the other hand, eventhough the storage capacity of a CD is huge (550 to 725 MB), it is still limited andcannot be expanded. Therefore sophisticated compression methods are now needed,perhaps more than ever. In certain cases, the additional savings of a few percent instorage space, which before may not have been considered to be worth the e�ort,can be critical to the task of transferring a large system to a single CD-ROM. Forif, when transferring the database, there is even a very small overow, two discswill be necessary, requiring either the addition of a new disc drive or that discs arechanged physically; both solutions are inconvenient.CD-ROMs di�er from magnetic media, and the di�erences must be taken intoaccount when designing retrieval algorithms. Access time is much higher and thedata transfer rate is lower, suggesting that we try to minimize the number of seeksand to increase the amount of data transferred with each read operation (see Ci-chocki & Ziemer [10] and Christodoulakis & Ford [9]). In this paper, however, weare not concerned with creating new methods specially adapted to the new technol-ogy; rather we consider various compression techniques for the di�erent �les whichtypically appear in a full text information retrieval system containing a large nat-ural language database. The obvious advantage of data compression is to reducethe size of a �le. There is however also a gain in processing speed since the ef-{ 2 {

fect of compressing the text is to be able to transfer an increased amount of datawith every read command. This is particularly important for CD-ROMs, with theirslow read-operations. The time spent on decompression (which is done in the fastmemory) is usually small compared to the savings in I/O operations.The subject of this paper was directly motivated by our work with the Tr�esorde la Langue Fran�caise (TLF). The University of Chicago, by means of the projectfor American and French Research on the TLF (ARTFL), has been designated theU.S. depository of this large French database, covering the literature, history andscience of France from the eighteenth century to today, though there are also somemedieval texts in ancient French. The database consists of roughly 2600 texts witha total of about 112 million words. Recently, the French government, which ownsthe database, has decided to mount the TLF on CD-ROM | a priori an almostimpossible task, as the text alone, without the necessary indices, now spans some700 MB. In this paper we show that, perhaps with certain restrictions, it can bedone, for the TLF and for other systems with similar characteristics and the sameorder of magnitude of size.In the next section we investigate compression techniques for the most impor-tant �le of any full text retrieval system: the text-�le. Also important for us is theissue of the cryptographic security of storing the text in compressed form, as mightbe required for copyrighted material, and propose a new heuristic which yields bothhigh compression and security. In Section 3 we review compression methods forother �les which are typically found in a retrieval system. In the usual approach tofull text retrieval, the processing of queries does not directly involve the original text�les (in which key words may be located using some pattern matching technique),but rather the auxiliary dictionary and concordance �les. The dictionary is the listof all the di�erent words appearing in the text and is usually ordered alphabetically.The concordance contains, for every word of the dictionary, the lexicographicallyordered list of references to all its occurrences in the text; it is accessed via thedictionary, which contains for every word a pointer to the corresponding list in the{ 3 {

concordance.Finally, we also consider the compression of auxiliary �les, like �les of largesparse bit-maps. All the above methods are in process of being applied to the TLFdatabase.2. Storing the text2.1 Compression and encryptionThe most important �le of any full text retrieval system is the text-�le itself,which, because of its lack of structure, is also the most di�cult to compress. Thereare several problems in storing the text on a CD. First, for a large full-text retrievalsystem, the �le may be too big. The 700 MB of the text of TLF wouldn't �ton a CD, even before the concordance and the other �les are added. The secondproblem is related to copyrighted material. Since the database is supposed to bewidely distributed, one should try to prevent illegal use. For instance, the Frenchgovernment, which stands behind the program of mounting TLF on a CD-ROM,also wishes to restrict the printout of retrieved locations to at most 300 characters.There is therefore a need to encrypt the text such that readable text can be producedonly by means of the supplied software.One way of dealing with both of these problems is by using advanced methodsfor data compression. Beside the obvious advantage of reducing the size of the �le,data compression also provides de facto data encryption. A text in natural languagecan be compressed by removing or at least reducing its redundancies. For example,in English, the letter q is almost always followed by u, in German sc is almostalways followed by h, and in French yi is almost always followed either by ons or byez. The knowledge of these redundancies is of great help when trying to decipheran encrypted text known to be in a given natural language. If the ciphertext lookslike a random binary string, its decryption will be very hard without knowing thecode. We are therefore looking for a compression technique, the output of which{ 4 {

can be considered as a good approximation to a random string.Encryption and compression are in fact intimately related, in that it is re-dundancy in the text that permits decryption. More formally, suppose a string Sbecomes, upon compression, a string s. The source generating S has entropy HS.If s has all the information of S, it too must have information content HS . If sis a bit-string of length `, with each bit occurring independently with probability12 , its entropy will be ` bits, the maximum that a string of ` bits could obtain.Thus any string of less than ` bits will lose information, and a technique which,for a given source, produces a random bit-string also achieves maximum compres-sion. But a random bit-string is, without further information, impossible to decrypt.Thus the objective of making the encoded text impossible to decipher and the taskof producing maximum compression are equivalent. Below we shall further discusscompression and its interrelation with encryption.2.2 Some known compression techniquesOne of the best known compression techniques is due to Hu�man [21], which fora given probability distribution is optimal in that it achieves a minimum redundancycode. There is however a problem in choosing the elements to be encoded. If wechoose the characters, we could get at most 48% compression for English text. Thisis based on the assumption that in the uncompressed form we would use one byte,i.e. 8 bits, per character, and on the distribution for the 26 characters given byHeaps [20], which yields a code of 4.185 bits per character on the average; if weinclude spaces and punctuation signs, compression e�ectiveness would deteriorate.We could get 52.5% compression (3.804 bits per character) if we encode characterpairs instead of isolated characters, but at the cost of a much larger table. Toencode character triplets, we would need more than 17000 entries in the decodingtable! Most implementations of Hu�man compression, for example the scheme usedin the UNIX pack command, are based on encoding the individual characters. Belowwe shall refer to such a scheme as simple Hu�man coding.{ 5 {

Another popular compression technique is the Ziv & Lempel [32] method andits variants (Welch [31], Jakobsson [22]), in which a string S is compressed byreplacing some of its sub-strings T by pointers to previous occurrences of T in S.The method is adaptive and thus needs only one pass over the string: the encode anddecode routines dynamically construct a dictionary of sub-strings which is accessedusing some hashing strategy. The UNIX compress command applies Ziv & Lempelcompression to its argument. Since blocks of variable length are encoded, thesemethods often are superior to Hu�man coding based on �xed length sub-strings.For example, using the Hebrew text of the Pentateuch (one byte per character),Hu�man coding achieves 47.6% compression, while we get 57.6% compression withthe Ziv & Lempel method.Nevertheless, while adaptive methods are preferred in some real-time applica-tions and for communication, they are not suitable for storing a large body of statictext. In large information retrieval systems, the text is usually not decrypted se-quentially from the beginning of the �le, but rather short passages are decrypted atvarious points arrived at by means of preceding pointer manipulation. This cannotbe done using the Ziv & Lempel method for two reasons: (1) the dictionary bymeans of which the text is decoded is not permanently stored but constructed bya sequence of operations starting with the beginning of the text; (2) identical partsof the original text do not always have identical counterparts in the compressed�le. Therefore when one wishes to locate a string S in a compressed text T usingsome pattern matching technique, one needs �rst to decompress T , whereas if thecompression method, like simple Hu�man coding, always encodes each item in thesame way, one could instead compress S and search for it in the compressed text.We thus need for our application a code which is �xed for the entire text.Hu�man codes can be adapted to improve compression if we realize that weare not bound to use �xed length blocks as basic units to be encoded. One couldfor example also choose some of the most frequent words (the, of, and, : : :) oreven word sequences (of the, once upon a time, : : :) as a single unit, as well{ 6 {

as frequent word fragments (ing, tion, : : :). Moreover, we can encode stringsthat are themselves the result of previous compression operations. For example,one could add repetition factors for long strings of blanks or zeros, indicators forcapital letters (which rarely appear in the middle of a word, unless it is writtenonly in upper case), etc. Once the set of elements to be encoded is chosen, thedecomposition of the text into those elements is not always trivial because of thepossibility of overlaps, but good algorithms exist (see Wagner [29], or Storer [27,Chapter 5.4]). Because of the possibility of overlaps, the problem of optimallychoosing the sub-strings or other elements to encode seems not to be tractable:even if we restrict ourselves to the pre�xes and su�xes of words appearing in thetext, and if these are to be encoded by �xed length pointers to a table, the problemof choosing an optimal set has been shown by Fraenkel, Mor & Perl [19] to be NP-complete. With Hu�man coding we have the additional complication of having avariable length encoding: for �xed length encodings, the storage savings due to theencoding of each element, which is what we are trying to maximize, is simply equalto (frequency�(length of element�size of pointer)). However, for Hu�man coding,the length of the codeword, which plays a role analoguous to that of the pointerfor �xed length encoding, is itself related to the probability of occurrence of theencoded element; this most likely will increase the complexity of the procedure. Weare thus justi�ed in looking for heuristics which yield good compression in practicalapplications, as for example in Rubin [26]. Recall that our application is to a static,large full-text information retrieval system, for which the compression process isperformed only once. We therefore can take as much time as needed on the �netuning of the parameters of the compression procedures.In spite of their optimality, Hu�man codes are not very popular with pro-grammers, for two reasons: �rst, the required bit-manipulations are not suitablefor smooth programming in most high level languages; and second, Hu�man codesare extremely error sensitive: a single wrong bit may propagate and render the bitstream after the error useless. A method is presented in [8] which overcomes the{ 7 {

�rst objection by using decoding tables which are prepared in a preprocessing stage.These tables can also be adapted to our case, where variable-length input blocks areencoded, and enable e�cient high-level language implementation. As to the sen-sitivity of Hu�man codes to errors, the physical encoding algorithm on CD-ROMtakes care of it and provides error correction even if the errors occur in bursts (seeDavies [11]).2.3 Text compression yielding good encryptionThe heuristic we are proposing is related to the problem mentioned above ofusing compression also as a data encryption method. We �rst need some de�nitions.A dyadic probability distribution is a distribution where each probability is an in-tegral power of 2�1. For example, the probability distribution (2�2; 2�2; 2�2; 2�3;2�4; 2�4) is dyadic. Though a real life distribution S is rarely dyadic, we will useas an approximation to S the dyadic distribution which yields the same Hu�mantree as S. In Longo & Galasso [25], the set of probability distributions over a �nitealphabet is given a \pseudometric", and an upper bound is derived for the dis-tance from any probability distribution to the dyadic distribution giving the sameHu�man tree.For n encodable objects, the Hu�man algorithm assigns to every probabilitydistribution (p1; : : : ; pn) an integer vector of codeword lengths (l1; : : : ; ln) such thatPni=1 pili is minimized over the set of li's for potential encodings; the li also satisfythe condition that Pni=1 2�li = 1, that is, the code is complete (see Knuth [23,Exercise 2.3.4.5{3]). One can thus de�ne the class of all probability distributionsyielding the same lengths vector, and this class can be identi�ed by the stringhn1; n2; : : : ; n`i, where ni is the number of codewords of length i. Such a stringis called a quantized source in Ferguson & Rabinowitz [14], or simply source inthe sequel. The following theorem brings su�cient conditions for getting a nearlyrandom string as output from the Hu�man algorithm; below we assume a sourcewith n characters, where characters are generated independently and the probability{ 8 {

of the r-th character is pr, for fprg a dyadic distribution.Lemma. In a dyadic distribution, the elements combined at any stage in the Hu�-man tree construction have equal probability.Proof: If n = 2, the distribution must be (12 ; 12), so the lemma is true. Supposeit is true for n� 1, and let (p1; : : : ; pn) be a dyadic distribution with pn�1 = 2�j �pn = 2�i being the two smallest probabilities. Suppose pn�1 > pn, or equivalentlyj < i; then only in the binary representation of pn is there a 1 in the i-th positionto the right of the \binary point", so that Pnt=1 pt cannot possibly sum up to 1;thus pn�1 = pn and pn�1 + pn = 2�i+1, which is also a power of 2. Thereforethe probability distribution fp1; : : : ; pn�2; (pn�1 + pn)g, which is used in the nextiteration of the Hu�man process, is a dyadic distribution for n � 1 elements, andthe inductive hypothesis applies.Theorem. Let � be an alphabet with a dyadic probability distribution such thatthe appearance of the elements of � in a text T is mutually independent. Then theHu�man encoding process on T produces a string which is indistinguishible from arandom binary string with probability of a 1-bit being equal to 12 .Proof: We show that the digits of the Hu�man encoded string can be consideredas the outcome of a sequence of Bernoulli trials with probability 12 , that is Pr(xi =0 j x1 � � �xi�1) = 12 . Consider the i-th digit xi of the string. The probabilitythat this digit is 1 or 0 depends on our position p in the decoding tree after thei � 1 �rst digits. If we are at the root, xi is the �rst digit of the next codeword.From the lemma we know that the probabilities of all the codewords with a leading0-digit add up to 12 ; since we are assuming that the appearance of codewords ismutually independent we get Pr(xi = 0 j S; p is the root position) = 12 , where Sdenotes the string of preceding characters. Suppose then that the position p withinthe tree after the decoding of the i � 1 �rst digits is some internal node v onlevel ` of the Hu�man tree, with ` > 0, i.e. v is not the root. We �rst note that{ 9 {

Pr(xi = 0 j x1 � � �xi�1) = Pr(xi = 0 j S; xi�` � � �xi�1) = Pr(xi = 0 j xi�` � � �xi�1)by the independence assumption. But our lemma asserts the last probability is 12 .Thus in fact xi is 0 or 1 with probability 12 , independently of the current position,i.e. independently of x1; : : : ; xi�1.This result is quite surprising if we note that we are e�ectively producing arandom string by concatenating variable length codewords which are very closelyrelated: their set is �nite and they form a complete pre�x code. Moreover, everyHu�man code has this property, even though the number of di�erent Hu�man codesfor a given distribution may be huge. In fact, the number of complete pre�x codesfor a given source hn1; : : : ; n`i is shown in [17] to beỲi=1�2i �Pi�1j=1 2i�jnjni �:For example, the source of the distribution of the English alphabet, as given inHeaps [20], is h0; 0; 2; 7; 7; 5; 1; 1; 1; 2i, and there are 127,733,760 di�erent codes forthis source, all of which would yield the above randomness result if the conditionsof independence and dyadicity were met.The restriction to a dyadic distribution was needed for the proof of the theorem,but is not critical in actual applications. For an adequate approximation, it su�cesto choose a large enough \alphabet", �, of elements which are to be encoded, andto avoid bias during the Hu�man tree construction. That is, one should not, forexample, systematically assign the digit 0 to the branch with lower probability andthe digit 1 to the other branch at each step of the algorithm, but rather use somerandomizing function for this choice, which does not a�ect the optimality of theHu�man code.It is more di�cult to choose � such that the independence condition of thetheorem is ful�lled. If �0 denotes the set of characters in a natural language text(including space and punctuation), its elements are strongly correlated. The mainidea of our heuristic is to construct a set �, starting from �0, by adding strings of{ 10 {

elements of �0 which are positively correlated, i.e. a string �1 � � ��m 2 ��0 shouldbe adjoined as element of � if and only ifPr(�1 � � ��m) > mYi=1Pr(�i): (1)Thus the strongest dependencies are incorporated into the alphabet itself. Extend-ing the alphabet in this manner at once reduces dependencies between successivecharacters and could improve compaction e�ectiveness.In practice, we would impose some small lower bound �1 on the di�erence ofthe terms in (1) in order to qualify a string as being really positively correlated.To improve compression, we also would restrict ourselves to strings �1 � � ��m theprobability of which exceeds some small threshold �2. The parameters �i are afunction of the total available space for the Hu�man tree.While including positively correlated strings in � might bring us closer to theideal of having independent elements, it is not obvious that it also improves com-pression. If Pr(xy) > Pr(x)Pr(y) for x; y 2 �0, it is true that the Hu�man algorithmcould assign a shorter codeword to the string xy than one gets from concatenatingthe strings corresponding to x and y. On the other hand, we now must updatethe individual probabilities, which can result in longer codewords for x and y thanbefore the update, though these now occur less frequently. Moreover, the number ofelements in � has increased, which also may have a negative e�ect on compression.We thus should only include those strings in � that actually improve compressionat least by some constant �3, so that the independence between the elements of �will only be approached. For a similar reason we didn't include negatively correlatedstrings, as we should if we are seeking real independence. But while the positivelycorrelated strings will include the most frequent bigrams, trigrams, words, etc., thenegatively correlated strings correspond to the rather rare character combinations.It is thus most likely not worth adding such strings, which anyway have a low proba-bility of occurrence and therefore almost no inuence on the compression e�ciency.The following algorithm is used for adjoining bigrams to �. The compression{ 11 {

obtained from Hu�man coding with �0 is denoted C. In the following pseudocode,we use � and od to close if and do clauses respectively.� �0for each bigram xy 2 �2 doif Pr(xy) > max(�2;Pr(x)Pr(y) + �1) then�0 � [fxygupdate probabilities of x and y as elements of �0compute Hu�man tree for �0 and new compression C 0if C 0 > C + �3 then� �0C C 0��odWhen continuing in a similar manner to consider the trigrams, there is no needto consider all the j�0j3 possible strings. Although conceivably a string xyz could ex-ist with both xy and yz negatively correlated but with Pr(xyz) > Pr(x)Pr(y)Pr(z),it is not probable that we will �nd such a string with signi�cant frequency in a nat-ural language text. We thus can restrict ourselves to extending the bigrams chosenin the �rst iteration. We then pass similarly to 4-grams, 5-grams, etc. Although thepotential number of n-grams is an exponentially growing function of n, the actualnumber of n-grams added to � will rapidly decrease with n, because the probabil-ities of the individual n-grams become smaller, and �2 will �lter out most of thecandidates. The heuristic is therefore certain to stop.An alternative to this bottom-up approach would be to start top-down byincluding in � some of the most frequent word combinations, then the most frequentwords, etc. This could speed up the process. In TLF for example, the word toujoursis one of the hundred most frequent in the database, but would have been added, if at{ 12 {

all, only in the iteration for the 8-grams if the preceding algorithm is used. However,the most frequent word combinations are not necessarily the most correlated ones.A method for automatically generating genuine idioms and other strongly correlatedexpressions, even if their frequency is small, is described in [7]. Finally, the mostpromising method is a hybrid one, including both described above. Starting with �which includes the individual characters �0 and some frequent words and phrases, wethen progress bottom-up. Special care is then required as we update the frequenciesafter each new element is adjoined to �.If we really were able to construct an alphabet � with a dyadic probabilitydistribution and with independent elements, the encoded string would be perfectlyrandom and its decryption would be impossible without some knowledge of the code.But even with real data, where the conditions are only approached, the compressedtext will be very similar to a random string and its decryption extremely hard. Inorder to get a feeling of what a Hu�man encoded string looks like, we have appliedsimple Hu�man coding to the text used as input �le to Knuth's TEX typesettingsystem for producing the �nal copy of this paper; the text (including the currentsentence) consisted of 57537 characters, and the Hu�man code was generated for 94di�erent characters, yielding an average codeword length of 4.863 bits. The encodedstring appears in Figure 1, where the digit 1 is represented by a black dot and thedigit 0 by a space.

Figure 1: Simple Hu�man encoding of English text{ 13 {

2.4 The cryptographic security of Hu�man codesEven if a closer examination of the encoded string reveals some regularities, animmense e�ort seems necessary to conduct a cryptographic attack. We should bearin mind that we are not seeking absolute secrecy as is required, for example, in somemilitary applications. In our case one needs only to make the cryptanalysis di�cultenough, so that the cost of required manpower and computation hours exceedsthe potential pro�t of breaking the code (see Konheim [24]). It seems that evensimple Hu�man coding comes close to that goal. However we also have to considerHu�man coding as a cryptographic system in which the \opponent" has access tosome ciphertext and corresponding plaintext. Since the plaintexts are literary workswhich are available to everyone, it is possible to get the decryption of short parts ofthe compressed data, which might be used to guess the code.Suppose, then, that we are given a binary string X = x1x2 � � �xn of which weknow that it is the Hu�man encoding of some string of characters C = c1 � � � cm.Suppose �rst that simple Hu�man coding was used, i.e., there is a codeword for eachci. As any binary string can be obtained with equal likelihood as any other from anyHu�man code, we have a priori no clues as to the boundaries of the codewords in X.An exhaustive search over all the partitions of X into m non-empty codewords hasto consider �n�1m � cases (see, for example, Feller [13, Section II.5]). Each of thesepartitions de�nes a sequence of m binary codewords (d1; : : : ; dm) which has to bechecked to satisfy the following two conditions:(1) the set fd1; : : : ; dmg of the di�erent codewords in the sequence is a pre�x set,i.e., no di is the pre�x of any other (the fdig are not necessarily a completecode, as not all the characters of the alphabet need appear in C);(2) the encoding de�ned by the sequence is consistent, that is, ci = cj if and onlyif di = dj , for all 1 � i; j � m.These conditions are easily checked, but the exponential number of partitions (mmust be fairly large to allow decryption) renders exhaustive search impossible. Fur-{ 14 {

thermore, in a realistic context, the value m may also be unknown.The number of partitions can be reduced from �n�1m � = O(nm) to O(km) ifone guesses an upper bound k to the length of a codeword. Normally, k will bea small integer. Indeed, suppose we have an enormous corpus like TLF, with 700million characters; then even if we encode a character which appears there onlyonce, the length of that character's encoding will be about log2(7 � 108) < 30.In actual applications the maximal depth of the Hu�man code rarely exceeds 20,even for large alphabets of hundreds of characters. The longest codeword of theHu�man code generated for the 378 bigrams of English text given in [20] has 13bits. Nonetheless, an attack with complexity O(km) is still formidable.A more promising attack would be to use the fact that we have fairly goodknowledge of the distribution of characters in natural language text. The probabil-ities can be estimated from analyzing even a small text. Let pi be the probabilityfor letter i in the sample; we can assume that the actual probability in the full textis not much di�erent. In any case, the length of the Hu�man code for this letterhas to be close to ` = hlog2 1pi i, where [x] denotes the integer closest to x; thus areasonable guess would be that the i-th letter is encoded by a string of length `� 1or ` or `+ 1. This reduces the number of cases to be checked to 3j�0j, which couldalready be feasible, especially when the given plaintext does not include all the j�0jdi�erent letters.In order to prevent such decryption attempts, which are all based on the as-sumption of simple Hu�man coding, variable length input blocks should be used, assuggested in the above heuristic. This puts the additional burden on the opponentof guessing not only the partition of the ciphertext X, but also that of the plaintextC. Exhaustive search is now again ruled out, so the opponent needs a di�erentapproach. He could search in X and in C for reoccurring patterns, for example byusing Weiner's [30] position tree algorithm (see also Aho, Hopcroft & Ullman [1,Section 9.5]), and then try to match the strings in X with strings of similar fre-quency and corresponding relative position in C. The algorithm is generally linear{ 15 {

in the length n of the input string (actually, one needs a quite arti�cial exampleof an input text to get an O(n2) complexity, see [1, Exercise 9.26]). Once the treeis constructed, one can easily respond to questions like: what is the longest, sec-ond longest, most frequent, etc. reoccurring substring. But this still requires somework, since a reoccurring substring is not necessarily a codeword. The �rst andlast few bits may be respectively the su�x and the pre�x of di�erent other code-words. Another complication is the fact that the longer the substring, the smallerthe corresponding probability, thus long reoccurring strings will be rather rare.As a countermeasure to the possible analysis of the ciphertext, we suggest en-crypting the Hu�man code itself using some very simple method. For example,choose a secret integer constant k and replace every k-th bit of the Hu�man codeby its logical complement. This change cannot be detected as it does not changethe distribution of 0's and 1's in the \random" Hu�man encoded string; there isno space overhead and the increase in decoding time is negligible. On the otherhand the complemented bits will break up regularities (and create some fake ones)rendering the analysis of the text impossible. If the opponent knows about thisadditional encoding scheme, however, he can guess k which must be small for themethod to be e�ective. Thus, instead of a single constant k, we choose a vector of `constants k1; : : : ; k`, all relatively small; the bits to be complemented are now cho-sen such that the lengths of the intervals between them form the periodic sequencek1; : : : ; k`; k1; k2; : : :. For example if ` = 10 and ki � 15, this multiplies the com-plexity of a cryptographic attack by 1015. The compressed �le cannot be accessedat every bit, but only at certain points like the beginning of a sentence. Thereforethe process of complementing the bits should start over again at every such entrypoint. An alternative, more general, approach is to choose a key of k bits and XORsuccessive blocks of k bits by this key. This does increase the cost of decryption,especially if the length of the key is not public.
{ 16 {

3. Storing the concordance, dictionary and bit-mapsAn e�cient way of storing the concordance of a large full-text system seems tobe the following. Enumerate the words sequentially from 1 to the number of wordsin the text, and use the index of a word W in the text as reference to its location;such references are called coordinates of W . This would mean for the TLF that thecoordinate of a word is some number between 1 and 112 million, so that 27 bitsare necessary to represent any coordinate. The expected size of the concordanceof TLF would then be about 360 MB. There are however two serious objections tosuch an encoding. First, with a sequential numbering, there is no information asto the sentence, paragraph, chapter and even book boundaries. It would thus notbe possible to process queries of the type: \retrieve all the occurrences of A and Bin the same sentence", unless we have some additional information. Even queriesimposing some upper bound on the number of words between A and B, which oftenoccur when searching for an expression, may generate non-relevant results, as we arecertainly not interested in locations where A appears towards the end of a paragraphand B near the beginning of the following one. It is thus preferable to describe alocation by referring to the hierarchical structure of the text. Every occurrence ofevery word in the database can be uniquely characterized by a sequence of numbersthat give its exact position in the text. In the TLF, for example, the sequenceconsists of the collection number c, the author number a (within the collection), thedocument number d (for each author), the part number p (in the document), thesentence number s (in the part) and the word number w (in the sentence). Thusthe coordinate of the occurrence is the hexatuple (c; a; d; p; s; w). At �rst sight, sucha hierarchical description seems wasteful, because each sub�eld of the coordinatemust be large enough to accommodate the maximal values to be stored; however, aconcordance of this form can be e�ciently compressed.The second objection to sequential numbering is that, perhaps surprisingly,it is not always the best way to compress the concordance. The way to retrieveinformation from the concordance is by reading blocks from the disc, which are{ 17 {

then scanned sequentially. We can thus use the sequential character of the accessto refer, for certain coordinates, to the coordinate just preceding it. For instance,words tend to appear in clusters, like the word coordinate, various forms of whichappeared twice in the preceding sentence and four times in this paragraph. Thusconsecutive coordinates would often share some common pre�x in a hierarchicalscheme (same collection, author, document, part, etc.) and these pre�xes need onlybe stored once. This is the pre�x-omission method (POM) described in [6], whereit is shown that its application to large concordances may yield storage savings thatsometimes exceed those of sequential numbering.The problem of compressing the concordance has been studied in [6]. The meth-ods proposed are extensions of POM, which is usually applied to large dictionaries.They are based on encoding the di�erent values in the coordinate in variable length�elds, because most of these values are small. For TLF there are 20 collections;the maximal values for the other �elds are: 41 for author, 52 for document, 455 forpart, 31216 for sentence and 2897 for word. We would thus need dlog2 2897e = 12bits to represent the largest possible value in a word-�eld, but only about 3% ofthe sentences are longer than 63 words; 99.7% of the sentences have less than 128words, so that 7 bits instead of 12 bits are su�cient for the word-�eld of almost allthe coordinates.The existence of \sentences" with thousands of words is due to the fact thatalmost no structural information is available in the TLF. The text has just beentyped in sequentially, and even the ends of paragraphs have not been marked. In thecurrent implementation the end of sentences are actually guessed by the presenceof a period, exclamation mark, etc. followed by a space. This is clearly not veryaccurate because of the existence of abbreviations and the French way of dealingwith direct speech. \hhParbleu!ii s'�ecria Mr. Dupont." will be parsed as threesentences! The fact that direct speech is usually not followed by a capitalized letteris of no help, because the TLF was originally typed in upper case characters only.This sentence de�ning heuristic works for the large majority of the text, but it{ 18 {

produces as a side-e�ect these super-long sentences; this e�ect is most pronouncedfor some modern poets, who use punctuation signs scarcely, if at all.Similarly, text components with tens of thousands of sentences are usuallyentire documents lacking any sub-division. Only about 2% of the parts containmore than 4000 sentences, so introducing arti�cial part divisions for some of thelongest documents might drastically reduce the maximum values that need to bestored.The method in [6] yielding the highest compression starts as follows: for a givencoordinate C, let `w; `s; : : : denote the length in bits of the binary representation,without leading zeros, of the values stored in the word-�eld, the sentence-�eld, : : : ofC. This constitutes a \length-tuple". The set of possible tuples (`c; `a; `d; `p; `s; `w)is then sorted by decreasing frequency of occurrence of that tuple. It turns out thata relatively small number of the length-tuples, say 255 or 511, describe almost allthe length combinations of coordinates in the entire concordance. Therefore everycoordinate is pre�xed by a �xed length header giving the index of the correspondinglength-tuple in the table. If the coordinate is one of those with a rare lengthscombination, it is either stored uncompressed, or processed in another way. If it isin the table, only the signi�cant digits of the coordinate components need be stored,as the length-tuple indicates the sub�eld boundaries. If, for the ease of computermanipulation, we restrict ourselves in the uncompressed coordinate to �elds thelengths of which are multiples of half-bytes, 8 bytes will be needed for a coordinateof the TLF. The above method yields compression close to 50% (see [6] for details),so we can expect the size of a compressed coordinate to be about 4 bytes on theaverage, or about 430 MB for the compressed concordance. This might still be toomuch, leaving only about 120 MB on the CD-ROM for the text and the other �les.A complete concordance includes every word in the text. One can achieve bettersavings by removing the most frequent words. These include articles, prepositions,etc., which are likely to appear almost anywhere and have little information content.For TLF, the coordinates of the hundred most frequent words (of a dictionary of{ 19 {

roughly 360,000 words) constitute 54% of the concordance. This does not meanthat the concordance from which the coordinates of these so-called stop-words areremoved will shrink to 46% of its previous size, because it is for these high frequencywords that POM yields the best results. We can however assume that 5 bytes willbe su�cient for the average coordinate of the 51.5 million non stop-words, resultingin a concordance of about 250 MB in size. It should however be noted that theremoval of stop-words, while appropriate for languages like English, cannot easilybe applied to languages like Hebrew, in which most of the words are homographic.For example, at the Responsa Retrieval Project (RRP), which has a database ofabout 60 million words of text written mainly in Hebrew and Aramaic (see forexample [15] or [3]), no stop-words are de�ned and all the words are searchable,including some with hundreds of thousands of occurrences. For the French databaseof TLF, a request was received for locating all the occurrences of un de ces (thephrase \one of these") in the works of Andr�e Gide; all three keywords in this queryare stop-words!But even if we had enough space on the disc, it is not evident that in a CD-ROM application, it would be desirable to include the stop-words in the concordance.Recall that access times and transfer rates for CD-ROMs are worse than for magneticmedia; the coordinates of a very frequent word may span hundreds of blocks, andhaving to read these blocks can seriously deteriorate the response time. It mightthus be preferable for our application to process a query �rst by ignoring the stop-words; this typically yields up to a few hundred locations, each of which couldthen be scanned for occurrences of the stop-words of the query. For most queries,this approach will speed up the processing. However, for certain queries, like unde ces, this procedure may require a complete scan of the full text. As queriescomprising only stop-words seem to be rather exceptional, this method of usingpattern matching for the stop-words is a practical alternative to a method relyingon the concordance alone.The dictionary of a full text retrieval system is much smaller than the text or{ 20 {

the concordance, usually only a few megabytes in size. Since consecutive entriesusually share some leading letters, POM yields good results here (about 40% onthe dictionary of RRP). A combinatorial compression method for dictionaries hasbeen suggested in Fraenkel & Mor [18], which achieves up to 48% savings on anEnglish dictionary. Bratley & Choueka [2] suggest that the regular dictionary ofa full text system be replaced by a so-called permuted dictionary, which is largerthan the conventional one, but which enables the use of variable length \don't-care"characters in the formulation of a query. Thus pre�x, su�x and in�x truncatedterms can be e�ciently processed. The compression technique proposed in [2] forthe permuted dictionary is again POM, and the compressed size of this �le for TLFis about 18 MB.For certain systems, a di�erent approach to query processing is possible. Theidea is to replace the concordance of a system having ` documents by a set ofbit-maps of �xed length `. Given some �xed ordering of the documents, a bit-mapB(W) is constructed for every distinct wordW of the database, where the i-th bit ofB(W) is 1 if W occurs in the i-th document, and is 0 otherwise. Processing queriesthen reduces to performing logical OR/AND operations on binary sequences, whichis e�ciently done on most machines, instead of merge/collate operations on moregeneral sequences. If we allow more complex queries that refer to the exact positionof the keywords relative to each other, the concordance is still needed; however,bit-maps may be useful in this case too. The way in which bit-maps, used togetherwith a concordance, can enhance the retrieval process for large full text systemshas been studied in [5], where the maps are used to eliminate a priori parts of thetext that cannot possibly contain a solution to the given query. Since these bit-maps are extremely sparse, they can be compressed very e�ciently. For example, ahierarchical compression method for sparse bit-vectors is proposed in Vallarino [28].The initial vector v0 is partitioned into blocks of equal size and a new vector v1 isconstructed, with one bit for each block of v0. A bit in v1 is set to 0 only if thecorresponding block in v0 consists only of zeros. Then the process is repeated for{ 21 {

v1, forming v2, and so on. At each stage, when storing vi, all blocks correspondingto 0's in vi+1 are dropped. The method is improved in [4] by pruning as wellsome of the branches of the hierarchy which ultimately point to very few 1-bits. Adi�erent method suggested in [16] combines Hu�man coding with run-length codingfor blocks of zeros. The methods in [4] and [16] yield compression of up to 94% ona set of bitmaps constructed at RRP.A di�erent kind of bit-map �le is a so-called signature-�le (see for exampleFaloutsos & Christodoulakis [12]). Here the text is partitioned into relatively smallparts P , each of which is assigned a signature, which is a function of the words inP . Similarly, the signature of the keywords of the query is computed and comparedwith the elements of the signature �le; this matching procedure allows us to discarda large number of non-qualifying parts. In order to minimize the probability of afalse drop, the probability of 1-bits in the signature should be 12 , so the �le canhardly be compressed.The di�erence between the bit-map or signature �le and the others is that theyare not absolutely necessary to the retrieval system, but can improve processingtime. Also their size is exible; the larger we choose to build them, the better dis-crimination they allow and the faster the algorithms will be. The general policy forour CD-ROM application should therefore be: store the text, dictionary and con-cordance as e�ciently as possible, then choose the parameters for bit-maps and/orsignatures so as to �ll up the remaining space.Table 1: Overview of compression methodsFile Full size Compression Compressed size ReferencesText 700 65% 245 [26], this paperConcordance 400 40% 240 [6]Dictionary 45 40% 18 [2], [18]Bit-Maps 800 95% 40 [28], [4], [16]Table 1 summarizes the methods discussed above. The columns entitled Full{ 22 {

size and Compressed size give the approximate sizes of the �les for TLF in mega-bytes. For the bit-maps, the assumption is that the database is partitioned into80,000 parts, to each of which corresponds one bit-position; thus a single map isabout 10 Kbytes long. We further assume that these maps are constructed for 80,000words, the others occurring rarely enough in the text so that the corresponding bit-maps can be constructed while processing a query. For this example we get a totalof 543 MB, which shows that the Tr�esor de la Langue Fran�caise can be transferredto a single CD-ROM.
Acknowledgments: We wish to thank Donald Zi�, head programmer for the ARTFLproject, for his participation in discussions preliminary to this paper, and for extractingand providing crucial information from the TLF. We are also indebted to the members ofthe Institut National de la Langue Fran�caise for posing the problem that motivated ourresearch.
References[1] Aho A.V., Hopcroft J.E., Ullman J.D., The Design and Analysis of ComputerAlgorithms, Addison-Wesley, Reading, MA (1974).[2] Bratley P., Choueka Y., Processing truncated terms in document retrieval sys-tems, Inf. Processing & Management 18 (1982) 257{266.[3] Choueka Y., Full text systems and research in the humanities, Computers and theHumanities XIV (1980) 153{169.[4] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved hierarchical bit-vector compression in document retrieval systems, Proc. 9-th ACM-SIGIR Conf.,Pisa (1986) 88{97. { 23 {

[5] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved techniques forprocessing queries in full-text systems, Proc. 10-th ACM-SIGIR Conf., New Orleans(1987) 306{315.[6] Choueka Y., Fraenkel A.S., Klein S.T., Compression of concordances in full-text retrieval systems, Proc. 11-th ACM-SIGIR Conf., Grenoble (1988) 597{612.[7] Choueka Y., Klein S.T., Neuvitz E., Automatic retrieval of frequent idiomaticand collocational expressions in a large corpus, J. Assoc. Literary and LinguisticComputing, Vol. 4 (1983) 34{38.[8] Choueka Y., Klein S.T., Perl Y., E�cient variants of Hu�man codes in highlevel languages, Proc. 8-th ACM-SIGIR Conf., Montreal (1985) 122{130.[9] Christodoulakis S., Ford, Analysis of retrieval performance and fundamental per-formance tradeo�s for CLV optical discs, Proc. ACM-SIGMOD Conference (1988).[10] Cichocki E.M., Ziemer S.M., Design considerations for CD-ROM retrieval soft-ware, J. Amer. Soc. Inf. Sc. 39 (1988) 43{46.[11] Davies D.H., The CD-ROM medium, J. Amer. Soc. Inf. Sc. 39 (1988) 34{42.[12] Faloutsos C., Christodoulakis S., Signature �les: An access method for docu-ments and its analytical performance evaluation, ACM Trans. on O�ce Inf. Systems2 (1984) 267{288.[13] Feller W., An Introduction to Probability Theory and Its Applications, Vol I, JohnWiley & Sons, Inc., New York (1950).[14] Ferguson T. J., Rabinowitz J. H., Self-synchronizing Hu�man codes,IEEE Trans. on Inf. Th. IT{30 (1984) 687{693.[15] Fraenkel A.S., All about the Responsa Retrieval Project you always wanted toknow but were afraid to ask, expanded summary, Jurimetrics J. 16 (1976) 149{156.[16] Fraenkel A.S., Klein S.T., Novel compression of sparse bit-strings, CombinatorialAlgorithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin (1985)169{183.[17] Fraenkel A.S., Klein S.T., Bidirectional Hu�man coding, Tech. Rep. CS87{02,The Weizmann Institute of Science (1987), submitted for publication.{ 24 {

[18] Fraenkel A.S., Mor M., Combinatorial compression and partitioning of largedictionaries, The Computer Journal 26 (1983) 336{343.[19] Fraenkel A.S., Mor M., Perl Y., Is text compression by pre�xes and su�xespractical? Acta Informatica 20 (1983) 371{389.[20] Heaps H.S., Information Retrieval, Computational and Theoretical Aspects, Aca-demic Press, New York (1978).[21] Hu�man D., A method for the construction of minimum redundancy codes, Proc.of the IRE 40 (1952) 1098{1101.[22] Jakobsson M., One pass text compression with a subword dictionary, J. Amer.Soc. for Inf. Sc. 39 (1988) 262{269.[23] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental Algorithms,Addison-Wesley, Reading, Mass. (1973).[24] Konheim A.G., Cryptography, A Primer, John Wiley & Sons, New York (1981).[25] Longo G., Galasso G., An application of informational divergence to Hu�mancodes, IEEE Trans. on Inf. Th. IT{28 (1982) 36{43.[26] Rubin F., Experiments in text �le compression, Comm. ACM 19 (1976) 617{623.[27] Storer J.A., Data Compression, Methods and Theory, Computer Science Press,Rockville, Maryland (1988).[28] Vallarino O., On the use of bit-maps for multiple key retrieval, SIGPLAN Notices,Special Issue Vol. II (1976) 108{114.[29] Wagner R.A., Common phrases and minimum space text storage, Comm. ACM16 (1973) 148{152.[30] Weiner P., Linear pattern matching algorithms, Proc. 14-th IEEE Symp. on Switch-ing and Automata Theory (1973) 1{11.[31] Welch T.A., A technique for high-performance data compression, IEEE Computer17 (June 1984) 8{19.[32] Ziv J., Lempel A., A universal algorithm for sequential data compression, IEEETrans. on Inf. Th. IT{23 (1977) 337{343.{ 25 {

