to appear in ACM Trans. on Information Systems 7, (July 1989)

Storing Text Retrieval Systems on CD-ROM:
Compression and Encryption Considerations

Shmuel T. Klein, Abraham Bookstein, Scott Deerwester

Committee on Information Studies
University of Chicago
1100 E 57 St, Chicago, IL 60637

The first and third authors were partially supported by a fellowship of the Ameritech Foundation

The authors are members of the Textual Information Retrieval and Analysis (TIRA) research group

Abstract: The emergence of the CD-ROM as a storage medium for full-text
databases raises the question of the maximum size database that can be contained
by this medium. As an example, the problem of storing the Trésor de la Langue
Francaise on a CD-ROM is examined in this paper. The text alone of this database
is 700 MB long, more than a CD-ROM can hold. But in addition the dictionary
and concordance needed to access this data must be stored. A further constraint
is that some of the material is copyrighted, and it is desirable that such material
be difficult to decode except through software provided by the system. Pertinent
approaches to compression of the various files are reviewed and the compression of
the text is related to the problem of data encryption: specifically, it is shown that,
under simple models of text generation, Huffman encoding produces a bit-string

indistinguishible from a representation of coin flips.

Categories and Subject Descriptors: E.3 E.4 H.3.2 J.5
General terms: Algorithms, Security

Additional Key Words and Phrases: Full-text storage, Huffman coding, CD-ROM, bit-maps

Authors’ e-mail addresses:

Klein: tomi@cerberus.uchicago.edu
Bookstein: bkst@cerberus.uchicago.edu
Deerwester: scott@cerberus.uchicago.edu

1. Motivation and Introduction

Until a few years ago, large full-text information retrieval systems could only
be operated on powerful mainframes. Then the personal microcomputer became
more popular and information retrieval software was adapted to this smaller device,
which, however, had only a relatively small memory and therefore could not be used
for very large systems. Recently, the CD-ROM (compact disc — read only memory)
optical disc medium has become widespread, permitting access by a PC to very large
amounts of storage at very low cost. It is thus possible to transfer large databases
from the mainframes, where they used to be kept, to the cheaper PC’s. This creates
new challenges of efficient data handling. On one hand, retrieval algorithms have to
be improved since computation power is usually reduced; on the other hand, even
though the storage capacity of a CD is huge (550 to 725 MB), it is still limited and
cannot be expanded. Therefore sophisticated compression methods are now needed,
perhaps more than ever. In certain cases, the additional savings of a few percent in
storage space, which before may not have been considered to be worth the effort,
can be critical to the task of transferring a large system to a single CD-ROM. For
if, when transferring the database, there is even a very small overflow, two discs
will be necessary, requiring either the addition of a new disc drive or that discs are

changed physically; both solutions are inconvenient.

CD-ROMs differ from magnetic media, and the differences must be taken into
account when designing retrieval algorithms. Access time is much higher and the
data transfer rate is lower, suggesting that we try to minimize the number of seeks
and to increase the amount of data transferred with each read operation (see Ci-
chocki & Ziemer [10] and Christodoulakis & Ford [9]). In this paper, however, we
are not concerned with creating new methods specially adapted to the new technol-
ogy; rather we consider various compression techniques for the different files which
typically appear in a full text information retrieval system containing a large nat-
ural language database. The obvious advantage of data compression is to reduce

the size of a file. There is however also a gain in processing speed since the ef-

- 92 —

fect of compressing the text is to be able to transfer an increased amount of data
with every read command. This is particularly important for CD-ROMs, with their
slow read-operations. The time spent on decompression (which is done in the fast

memory) is usually small compared to the savings in I/O operations.

The subject of this paper was directly motivated by our work with the Trésor
de la Langue Franc¢aise (TLF). The University of Chicago, by means of the project
for American and French Research on the TLF (ARTFL), has been designated the
U.S. depository of this large French database, covering the literature, history and
science of France from the eighteenth century to today, though there are also some
medieval texts in ancient French. The database consists of roughly 2600 texts with
a total of about 112 million words. Recently, the French government, which owns
the database, has decided to mount the TLF on CD-ROM — a priori an almost
impossible task, as the text alone, without the necessary indices, now spans some
700 MB. In this paper we show that, perhaps with certain restrictions, it can be
done, for the TLF and for other systems with similar characteristics and the same

order of magnitude of size.

In the next section we investigate compression techniques for the most impor-
tant file of any full text retrieval system: the text-file. Also important for us is the
issue of the cryptographic security of storing the text in compressed form, as might
be required for copyrighted material, and propose a new heuristic which yields both
high compression and security. In Section 3 we review compression methods for
other files which are typically found in a retrieval system. In the usual approach to
full text retrieval, the processing of queries does not directly involve the original text
files (in which key words may be located using some pattern matching technique),
but rather the auxiliary dictionary and concordance files. The dictionary is the list
of all the different words appearing in the text and is usually ordered alphabetically.
The concordance contains, for every word of the dictionary, the lexicographically
ordered list of references to all its occurrences in the text; it is accessed via the

dictionary, which contains for every word a pointer to the corresponding list in the

- 8 —

concordance.

Finally, we also consider the compression of auxiliary files, like files of large
sparse bit-maps. All the above methods are in process of being applied to the TLF

database.

2. Storing the text

2.1 Compression and encryption

The most important file of any full text retrieval system is the text-file itself,
which, because of its lack of structure, is also the most difficult to compress. There
are several problems in storing the text on a CD. First, for a large full-text retrieval
system, the file may be too big. The 700 MB of the text of TLF wouldn’t fit
on a CD, even before the concordance and the other files are added. The second
problem is related to copyrighted material. Since the database is supposed to be
widely distributed, one should try to prevent illegal use. For instance, the French
government, which stands behind the program of mounting TLF on a CD-ROM,
also wishes to restrict the printout of retrieved locations to at most 300 characters.
There is therefore a need to encrypt the text such that readable text can be produced

only by means of the supplied software.

One way of dealing with both of these problems is by using advanced methods
for data compression. Beside the obvious advantage of reducing the size of the file,
data compression also provides de facto data encryption. A text in natural language
can be compressed by removing or at least reducing its redundancies. For example,
in English, the letter q is almost always followed by u, in German sc is almost
always followed by h, and in French yi is almost always followed either by ons or by
ez. The knowledge of these redundancies is of great help when trying to decipher
an encrypted text known to be in a given natural language. If the ciphertext looks
like a random binary string, its decryption will be very hard without knowing the

code. We are therefore looking for a compression technique, the output of which

,4,

can be considered as a good approximation to a random string.

Encryption and compression are in fact intimately related, in that it is re-
dundancy in the text that permits decryption. More formally, suppose a string S
becomes, upon compression, a string s. The source generating S has entropy Hg.
If s has all the information of S, it too must have information content Hg. If s
is a bit-string of length /£, with each bit occurring independently with probability
%, its entropy will be £ bits, the maximum that a string of / bits could obtain.
Thus any string of less than ¢ bits will lose information, and a technique which,
for a given source, produces a random bit-string also achieves maximum compres-
sion. But a random bit-string is, without further information, impossible to decrypt.
Thus the objective of making the encoded text impossible to decipher and the task
of producing maximum compression are equivalent. Below we shall further discuss

compression and its interrelation with encryption.

2.2 Some known compression techniques

One of the best known compression techniques is due to Huffman [21], which for
a given probability distribution is optimal in that it achieves a minimum redundancy
code. There is however a problem in choosing the elements to be encoded. If we
choose the characters, we could get at most 48% compression for English text. This
is based on the assumption that in the uncompressed form we would use one byte,
i.e. 8 bits, per character, and on the distribution for the 26 characters given by
Heaps [20], which yields a code of 4.185 bits per character on the average; if we
include spaces and punctuation signs, compression effectiveness would deteriorate.
We could get 52.5% compression (3.804 bits per character) if we encode character
pairs instead of isolated characters, but at the cost of a much larger table. To
encode character triplets, we would need more than 17000 entries in the decoding
table! Most implementations of Huffman compression, for example the scheme used
in the UNIX pack command, are based on encoding the individual characters. Below

we shall refer to such a scheme as simple Huffman coding.

— 5 -

Another popular compression technique is the Ziv & Lempel [32] method and
its variants (Welch [31], Jakobsson [22]), in which a string S is compressed by
replacing some of its sub-strings 7" by pointers to previous occurrences of T in S.
The method is adaptive and thus needs only one pass over the string: the encode and
decode routines dynamically construct a dictionary of sub-strings which is accessed
using some hashing strategy. The UNIX compress command applies Ziv & Lempel
compression to its argument. Since blocks of variable length are encoded, these
methods often are superior to Huffman coding based on fixed length sub-strings.
For example, using the Hebrew text of the Pentateuch (one byte per character),
Huffman coding achieves 47.6% compression, while we get 57.6% compression with

the Ziv & Lempel method.

Nevertheless, while adaptive methods are preferred in some real-time applica-
tions and for communication, they are not suitable for storing a large body of static
text. In large information retrieval systems, the text is usually not decrypted se-
quentially from the beginning of the file, but rather short passages are decrypted at
various points arrived at by means of preceding pointer manipulation. This cannot
be done using the Ziv & Lempel method for two reasons: (1) the dictionary by
means of which the text is decoded is not permanently stored but constructed by
a sequence of operations starting with the beginning of the text; (2) identical parts
of the original text do not always have identical counterparts in the compressed
file. Therefore when one wishes to locate a string S in a compressed text T using
some pattern matching technique, one needs first to decompress 7T, whereas if the
compression method, like simple Huffman coding, always encodes each item in the
same way, one could instead compress S and search for it in the compressed text.

We thus need for our application a code which is fixed for the entire text.

Huffman codes can be adapted to improve compression if we realize that we
are not bound to use fixed length blocks as basic units to be encoded. One could
for example also choose some of the most frequent words (the, of, and, ...) or

even word sequences (of the, once upon a time, ...) as a single unit, as well

- 6 —

as frequent word fragments (ing, tion, ...). Moreover, we can encode strings
that are themselves the result of previous compression operations. For example,
one could add repetition factors for long strings of blanks or zeros, indicators for
capital letters (which rarely appear in the middle of a word, unless it is written
only in upper case), etc. Once the set of elements to be encoded is chosen, the
decomposition of the text into those elements is not always trivial because of the
possibility of overlaps, but good algorithms exist (see Wagner [29], or Storer [27,
Chapter 5.4]). Because of the possibility of overlaps, the problem of optimally
choosing the sub-strings or other elements to encode seems not to be tractable:
even if we restrict ourselves to the prefixes and suffixes of words appearing in the
text, and if these are to be encoded by fixed length pointers to a table, the problem
of choosing an optimal set has been shown by Fraenkel, Mor & Perl [19] to be NP-
complete. With Huffman coding we have the additional complication of having a
variable length encoding: for fixed length encodings, the storage savings due to the
encoding of each element, which is what we are trying to maximize, is simply equal
to (frequency x (length of element —size of pointer)). However, for Huffman coding,
the length of the codeword, which plays a role analoguous to that of the pointer
for fixed length encoding, is itself related to the probability of occurrence of the
encoded element; this most likely will increase the complexity of the procedure. We
are thus justified in looking for heuristics which yield good compression in practical
applications, as for example in Rubin [26]. Recall that our application is to a static,
large full-text information retrieval system, for which the compression process is
performed only once. We therefore can take as much time as needed on the fine

tuning of the parameters of the compression procedures.

In spite of their optimality, Huffman codes are not very popular with pro-
grammers, for two reasons: first, the required bit-manipulations are not suitable
for smooth programming in most high level languages; and second, Huffman codes
are extremely error sensitive: a single wrong bit may propagate and render the bit

stream after the error useless. A method is presented in [8] which overcomes the

-1 -

first objection by using decoding tables which are prepared in a preprocessing stage.
These tables can also be adapted to our case, where variable-length input blocks are
encoded, and enable efficient high-level language implementation. As to the sen-
sitivity of Huffman codes to errors, the physical encoding algorithm on CD-ROM
takes care of it and provides error correction even if the errors occur in bursts (see

Davies [11]).

2.3 Text compression yielding good encryption

The heuristic we are proposing is related to the problem mentioned above of
using compression also as a data encryption method. We first need some definitions.
A dyadic probability distribution is a distribution where each probability is an in-
tegral power of 271, For example, the probability distribution (2_2, 2-2 972 9-3
274, 2_4) is dyadic. Though a real life distribution S is rarely dyadic, we will use
as an approximation to S the dyadic distribution which yields the same Huffman
tree as S. In Longo & Galasso [25], the set of probability distributions over a finite
alphabet is given a “pseudometric”, and an upper bound is derived for the dis-
tance from any probability distribution to the dyadic distribution giving the same

Huffman tree.

For n encodable objects, the Huffman algorithm assigns to every probability
distribution (p1,...,pn) an integer vector of codeword lengths (1, ...,[,) such that
> i pil; is minimized over the set of [;’s for potential encodings; the I; also satisfy
the condition that > ;" ; 2=l = 1, that is, the code is complete (see Knuth [23,
Exercise 2.3.4.5-3]). One can thus define the class of all probability distributions
yielding the same lengths vector, and this class can be identified by the string
(n1,m2,...,ny), where n; is the number of codewords of length i. Such a string
is called a quantized source in Ferguson & Rabinowitz [14], or simply source in
the sequel. The following theorem brings sufficient conditions for getting a nearly
random string as output from the Huffman algorithm; below we assume a source

with n characters, where characters are generated independently and the probability

- 8 —

of the r-th character is p,, for {p,} a dyadic distribution.

Lemma. In a dyadic distribution, the elements combined at any stage in the Huff-

man tree construction have equal probability.

Proof: If n = 2, the distribution must be (%, %), so the lemma is true. Suppose
it is true for n — 1, and let (pq,...,pn) be a dyadic distribution with p,_; =277 >
pp = 270 being the two smallest probabilities. Suppose p,_1 > pn, or equivalently
J < %; then only in the binary representation of p,, is there a 1 in the i-th position
to the right of the “binary point”, so that > }* ; p; cannot possibly sum up to 1;
thus pp—1 = pn and pp—1 + pn = 271 which is also a power of 2. Therefore
the probability distribution {p1,...,pp—2, (Pn—1 + Pn)}, which is used in the next
iteration of the Huffman process, is a dyadic distribution for n — 1 elements, and

the inductive hypothesis applies. |

Theorem. Let ¥ be an alphabet with a dyadic probability distribution such that
the appearance of the elements of ¥ in a text T' is mutually independent. Then the
Huffman encoding process on T' produces a string which is indistinguishible from a

random binary string with probability of a 1-bit being equal to %

Proof: = We show that the digits of the Huffman encoded string can be considered
as the outcome of a sequence of Bernoulli trials with probability %, that is Pr(z; =
0| z1---mj—1) = % Consider the i-th digit z; of the string. The probability
that this digit is 1 or 0 depends on our position p in the decoding tree after the
t — 1 first digits. If we are at the root, x; is the first digit of the next codeword.
From the lemma we know that the probabilities of all the codewords with a leading
0-digit add up to %; since we are assuming that the appearance of codewords is
mutually independent we get Pr(z; = 0 | S,p is the root position) = %, where S
denotes the string of preceding characters. Suppose then that the position p within
the tree after the decoding of the z — 1 first digits is some internal node v on

level £ of the Huffman tree, with £ > 0, i.e. v is not the root. We first note that

-9 —

Pr(zi =0z -zj—1) =Pr(z; =0[S,z 2xj—1) =Pr(z;i =0 | mj—p---3-1)
by the independence assumption. But our lemma asserts the last probability is %
Thus in fact z; is 0 or 1 with probability %, independently of the current position,

i.e. independently of x1,...,2;_1. |

This result is quite surprising if we note that we are effectively producing a
random string by concatenating variable length codewords which are very closely
related: their set is finite and they form a complete prefix code. Moreover, every
Huffman code has this property, even though the number of different Huffman codes

for a given distribution may be huge. In fact, the number of complete prefix codes

for a given source (ny,...,ny) is shown in [17] to be
£ . ._1 c s
H <2Z - 2= J”J')_
i=1 i

For example, the source of the distribution of the English alphabet, as given in
Heaps [20], is (0,0,2,7,7,5,1,1,1,2), and there are 127,733,760 different codes for
this source, all of which would yield the above randomness result if the conditions

of independence and dyadicity were met.

The restriction to a dyadic distribution was needed for the proof of the theorem,
but is not critical in actual applications. For an adequate approximation, it suffices
to choose a large enough “alphabet”, 3, of elements which are to be encoded, and
to avoid bias during the Huffman tree construction. That is, one should not, for
example, systematically assign the digit 0 to the branch with lower probability and
the digit 1 to the other branch at each step of the algorithm, but rather use some
randomizing function for this choice, which does not affect the optimality of the

Huffman code.

It is more difficult to choose ¥ such that the independence condition of the
theorem is fulfilled. If ¥y denotes the set of characters in a natural language text
(including space and punctuation), its elements are strongly correlated. The main

idea of our heuristic is to construct a set 3, starting from Y, by adding strings of

— 10 -

elements of ¥ which are positively correlated, i.e. a string o1 ---oy, € X should

be adjoined as element of ¥ if and only if

Pr(oy---om) > H Pr(o;). (1)
=1

Thus the strongest dependencies are incorporated into the alphabet itself. Extend-
ing the alphabet in this manner at once reduces dependencies between successive

characters and could improve compaction effectiveness.

In practice, we would impose some small lower bound ¢; on the difference of
the terms in (1) in order to qualify a string as being really positively correlated.
To improve compression, we also would restrict ourselves to strings o1 ---o,, the
probability of which exceeds some small threshold e¢2. The parameters ¢; are a

function of the total available space for the Huffman tree.

While including positively correlated strings in > might bring us closer to the
ideal of having independent elements, it is not obvious that it also improves com-
pression. If Pr(xzy) > Pr(x)Pr(y) for z,y € X, it is true that the Huffman algorithm
could assign a shorter codeword to the string xzy than one gets from concatenating
the strings corresponding to z and y. On the other hand, we now must update
the individual probabilities, which can result in longer codewords for z and y than
before the update, though these now occur less frequently. Moreover, the number of
elements in ¥ has increased, which also may have a negative effect on compression.
We thus should only include those strings in 3 that actually improve compression
at least by some constant €3, so that the independence between the elements of X
will only be approached. For a similar reason we didn’t include negatively correlated
strings, as we should if we are seeking real independence. But while the positively
correlated strings will include the most frequent bigrams, trigrams, words, etc., the
negatively correlated strings correspond to the rather rare character combinations.
It is thus most likely not worth adding such strings, which anyway have a low proba-

bility of occurrence and therefore almost no influence on the compression efficiency.
The following algorithm is used for adjoining bigrams to . The compression

- 11 -

obtained from Huffman coding with ¥ is denoted C. In the following pseudocode,

we use fi and od to close if and do clauses respectively.

X+ 20
for each bigram zy € £2 do
if Pr(ry) > max(e2, Pr(z)Pr(y) +¢1) then
¥ YU {ay}
update probabilities of z and y as elements of ¥’
compute Huffman tree for ¥’ and new compression C’
if ¢’ > C+e3 then
Y Y
C+ '

od

When continuing in a similar manner to consider the trigrams, there is no need
to consider all the | X |3 possible strings. Although conceivably a string zyz could ex-
ist with both zy and yz negatively correlated but with Pr(zyz) > Pr(z)Pr(y)Pr(z),
it is not probable that we will find such a string with significant frequency in a nat-
ural language text. We thus can restrict ourselves to extending the bigrams chosen
in the first iteration. We then pass similarly to 4-grams, 5-grams, etc. Although the
potential number of n-grams is an exponentially growing function of n, the actual
number of n-grams added to ¥ will rapidly decrease with n, because the probabil-
ities of the individual n-grams become smaller, and ey will filter out most of the

candidates. The heuristic is therefore certain to stop.

An alternative to this bottom-up approach would be to start top-down by
including in 3 some of the most frequent word combinations, then the most frequent
words, etc. This could speed up the process. In TLF for example, the word toujours

is one of the hundred most frequent in the database, but would have been added, if at

- 12 —

all, only in the iteration for the 8-grams if the preceding algorithm is used. However,
the most frequent word combinations are not necessarily the most correlated ones.
A method for automatically generating genuine idioms and other strongly correlated
expressions, even if their frequency is small, is described in [7]. Finally, the most
promising method is a hybrid one, including both described above. Starting with ¥
which includes the individual characters ¥ and some frequent words and phrases, we
then progress bottom-up. Special care is then required as we update the frequencies

after each new element is adjoined to X.

If we really were able to construct an alphabet ¥ with a dyadic probability
distribution and with independent elements, the encoded string would be perfectly
random and its decryption would be impossible without some knowledge of the code.
But even with real data, where the conditions are only approached, the compressed
text will be very similar to a random string and its decryption extremely hard. In
order to get a feeling of what a Huffman encoded string looks like, we have applied
simple Huffman coding to the text used as input file to Knuth’s TEX typesetting
system for producing the final copy of this paper; the text (including the current
sentence) consisted of 57537 characters, and the Huffman code was generated for 94
different characters, yielding an average codeword length of 4.863 bits. The encoded
string appears in Figure 1, where the digit 1 is represented by a black dot and the
digit 0 by a space.

Figure 1: Simple Huffman encoding of English text

- 18 —

2.4 The cryptographic security of Huffman codes

Even if a closer examination of the encoded string reveals some regularities, an
immense effort seems necessary to conduct a cryptographic attack. We should bear
in mind that we are not seeking absolute secrecy as is required, for example, in some
military applications. In our case one needs only to make the cryptanalysis difficult
enough, so that the cost of required manpower and computation hours exceeds
the potential profit of breaking the code (see Konheim [24]). It seems that even
simple Huffman coding comes close to that goal. However we also have to consider
Huffman coding as a cryptographic system in which the “opponent” has access to
some ciphertext and corresponding plaintext. Since the plaintexts are literary works
which are available to everyone, it is possible to get the decryption of short parts of

the compressed data, which might be used to guess the code.

Suppose, then, that we are given a binary string X = z1x2 -z, of which we
know that it is the Huffman encoding of some string of characters C' = ¢ ---¢p,-
Suppose first that simple Huffman coding was used, i.e., there is a codeword for each
¢;. As any binary string can be obtained with equal likelihood as any other from any
Huffman code, we have a priori no clues as to the boundaries of the codewords in X.
An exhaustive search over all the partitions of X into m non-empty codewords has
to consider (ngll) cases (see, for example, Feller [13, Section IL.5]). Each of these
partitions defines a sequence of m binary codewords (dy,...,dy,) which has to be

checked to satisfy the following two conditions:

(1) theset {dy,...,dn} of the different codewords in the sequence is a prefix set,
i.e., no d; is the prefix of any other (the {d;} are not necessarily a complete

code, as not all the characters of the alphabet need appear in C);

(2) the encoding defined by the sequence is consistent, that is, ¢; = ¢; if and only

if d; =d;, for all 1 <i4,5 <m.

These conditions are easily checked, but the exponential number of partitions (m

must be fairly large to allow decryption) renders exhaustive search impossible. Fur-

,14,

thermore, in a realistic context, the value m may also be unknown.

The number of partitions can be reduced from (nn_ml) = O(n™) to O(k™) if
one guesses an upper bound k to the length of a codeword. Normally, & will be
a small integer. Indeed, suppose we have an enormous corpus like TLF, with 700
million characters; then even if we encode a character which appears there only
once, the length of that character’s encoding will be about logy(7 x 108) < 30.
In actual applications the maximal depth of the Huffman code rarely exceeds 20,
even for large alphabets of hundreds of characters. The longest codeword of the
Huffman code generated for the 378 bigrams of English text given in [20] has 13
bits. Nonetheless, an attack with complexity O (k™) is still formidable.

A more promising attack would be to use the fact that we have fairly good
knowledge of the distribution of characters in natural language text. The probabil-
ities can be estimated from analyzing even a small text. Let p; be the probability
for letter ¢ in the sample; we can assume that the actual probability in the full text
is not much different. In any case, the length of the Huffman code for this letter
has to be close to £ = [log2 pli]’ where [z] denotes the integer closest to x; thus a
reasonable guess would be that the ¢-th letter is encoded by a string of length ¢ — 1
or £ or £+ 1. This reduces the number of cases to be checked to 3|20|, which could
already be feasible, especially when the given plaintext does not include all the ||

different letters.

In order to prevent such decryption attempts, which are all based on the as-
sumption of simple Huffman coding, variable length input blocks should be used, as
suggested in the above heuristic. This puts the additional burden on the opponent
of guessing not only the partition of the ciphertext X, but also that of the plaintext
C. Exhaustive search is now again ruled out, so the opponent needs a different
approach. He could search in X and in C' for reoccurring patterns, for example by
using Weiner’s [30] position tree algorithm (see also Aho, Hopcroft & Ullman [1,
Section 9.5]), and then try to match the strings in X with strings of similar fre-

quency and corresponding relative position in C'. The algorithm is generally linear

— 15 —

in the length n of the input string (actually, one needs a quite artificial example
of an input text to get an O(n?) complexity, see [1, Exercise 9.26]). Once the tree
is constructed, one can easily respond to questions like: what is the longest, sec-
ond longest, most frequent, etc. reoccurring substring. But this still requires some
work, since a reoccurring substring is not necessarily a codeword. The first and
last few bits may be respectively the suffix and the prefix of different other code-
words. Another complication is the fact that the longer the substring, the smaller

the corresponding probability, thus long reoccurring strings will be rather rare.

As a countermeasure to the possible analysis of the ciphertext, we suggest en-
crypting the Huffman code itself using some very simple method. For example,
choose a secret integer constant £ and replace every k-th bit of the Huffman code
by its logical complement. This change cannot be detected as it does not change
the distribution of 0’s and 1’s in the “random” Huffman encoded string; there is
no space overhead and the increase in decoding time is negligible. On the other
hand the complemented bits will break up regularities (and create some fake ones)
rendering the analysis of the text impossible. If the opponent knows about this
additional encoding scheme, however, he can guess k£ which must be small for the
method to be effective. Thus, instead of a single constant k, we choose a vector of £
constants k1, ..., kp, all relatively small; the bits to be complemented are now cho-
sen such that the lengths of the intervals between them form the periodic sequence
ki,-..,kp,k1,ko,.... For example if / = 10 and k; < 15, this multiplies the com-
plexity of a cryptographic attack by 10'°. The compressed file cannot be accessed
at every bit, but only at certain points like the beginning of a sentence. Therefore
the process of complementing the bits should start over again at every such entry
point. An alternative, more general, approach is to choose a key of k£ bits and XOR
successive blocks of £ bits by this key. This does increase the cost of decryption,

especially if the length of the key is not public.

— 16 —

3. Storing the concordance, dictionary and bit-maps

An efficient way of storing the concordance of a large full-text system seems to
be the following. Enumerate the words sequentially from 1 to the number of words
in the text, and use the index of a word W in the text as reference to its location;
such references are called coordinates of W. This would mean for the TLF that the
coordinate of a word is some number between 1 and 112 million, so that 27 bits
are necessary to represent any coordinate. The expected size of the concordance
of TLF would then be about 360 MB. There are however two serious objections to
such an encoding. First, with a sequential numbering, there is no information as
to the sentence, paragraph, chapter and even book boundaries. It would thus not
be possible to process queries of the type: “retrieve all the occurrences of A and B
in the same sentence”, unless we have some additional information. Even queries
imposing some upper bound on the number of words between A and B, which often
occur when searching for an expression, may generate non-relevant results, as we are
certainly not interested in locations where A appears towards the end of a paragraph
and B near the beginning of the following one. It is thus preferable to describe a
location by referring to the hierarchical structure of the text. Every occurrence of
every word in the database can be uniquely characterized by a sequence of numbers
that give its exact position in the text. In the TLF, for example, the sequence
consists of the collection number ¢, the author number a (within the collection), the
document number d (for each author), the part number p (in the document), the
sentence number s (in the part) and the word number w (in the sentence). Thus
the coordinate of the occurrence is the hexatuple (¢, a,d, p, s, w). At first sight, such
a hierarchical description seems wasteful, because each subfield of the coordinate
must be large enough to accommodate the maximal values to be stored; however, a

concordance of this form can be efficiently compressed.

The second objection to sequential numbering is that, perhaps surprisingly,
it is not always the best way to compress the concordance. The way to retrieve

information from the concordance is by reading blocks from the disc, which are

— 17 -

then scanned sequentially. We can thus use the sequential character of the access
to refer, for certain coordinates, to the coordinate just preceding it. For instance,
words tend to appear in clusters, like the word coordinate, various forms of which
appeared twice in the preceding sentence and four times in this paragraph. Thus
consecutive coordinates would often share some common prefix in a hierarchical
scheme (same collection, author, document, part, etc.) and these prefixes need only
be stored once. This is the prefix-omission method (POM) described in [6], where
it is shown that its application to large concordances may yield storage savings that

sometimes exceed those of sequential numbering.

The problem of compressing the concordance has been studied in [6]. The meth-
ods proposed are extensions of POM, which is usually applied to large dictionaries.
They are based on encoding the different values in the coordinate in variable length
fields, because most of these values are small. For TLF there are 20 collections;
the maximal values for the other fields are: 41 for author, 52 for document, 455 for
part, 31216 for sentence and 2897 for word. We would thus need [logy 2897] = 12
bits to represent the largest possible value in a word-field, but only about 3% of
the sentences are longer than 63 words; 99.7% of the sentences have less than 128
words, so that 7 bits instead of 12 bits are sufficient for the word-field of almost all

the coordinates.

The existence of “sentences” with thousands of words is due to the fact that
almost no structural information is available in the TLF. The text has just been
typed in sequentially, and even the ends of paragraphs have not been marked. In the
current implementation the end of sentences are actually guessed by the presence
of a period, exclamation mark, etc. followed by a space. This is clearly not very
accurate because of the existence of abbreviations and the French way of dealing
with direct speech. “((Parbleu!)) s’écria Mr. Dupont.” will be parsed as three
sentences! The fact that direct speech is usually not followed by a capitalized letter
is of no help, because the TLF was originally typed in upper case characters only.

This sentence defining heuristic works for the large majority of the text, but it

— 18 —

produces as a side-effect these super-long sentences; this effect is most pronounced

for some modern poets, who use punctuation signs scarcely, if at all.

Similarly, text components with tens of thousands of sentences are usually
entire documents lacking any sub-division. Only about 2% of the parts contain
more than 4000 sentences, so introducing artificial part divisions for some of the
longest, documents might drastically reduce the maximum values that need to be

stored.

The method in [6] yielding the highest compression starts as follows: for a given
coordinate C, let /y, g, ... denote the length in bits of the binary representation,
without leading zeros, of the values stored in the word-field, the sentence-field, ... of
C. This constitutes a “length-tuple”. The set of possible tuples (£c, £q, g, {p, Lss bu)
is then sorted by decreasing frequency of occurrence of that tuple. It turns out that
a relatively small number of the length-tuples, say 255 or 511, describe almost all
the length combinations of coordinates in the entire concordance. Therefore every
coordinate is prefixed by a fixed length header giving the index of the corresponding
length-tuple in the table. If the coordinate is one of those with a rare lengths
combination, it is either stored uncompressed, or processed in another way. If it is
in the table, only the significant digits of the coordinate components need be stored,
as the length-tuple indicates the subfield boundaries. If, for the ease of computer
manipulation, we restrict ourselves in the uncompressed coordinate to fields the
lengths of which are multiples of half-bytes, 8 bytes will be needed for a coordinate
of the TLF. The above method yields compression close to 50% (see [6] for details),
so we can expect the size of a compressed coordinate to be about 4 bytes on the
average, or about 430 MB for the compressed concordance. This might still be too

much, leaving only about 120 MB on the CD-ROM for the text and the other files.

A complete concordance includes every word in the text. One can achieve better
savings by removing the most frequent words. These include articles, prepositions,
etc., which are likely to appear almost anywhere and have little information content.

For TLF, the coordinates of the hundred most frequent words (of a dictionary of

- 19 —

roughly 360,000 words) constitute 54% of the concordance. This does not mean
that the concordance from which the coordinates of these so-called stop-words are
removed will shrink to 46% of its previous size, because it is for these high frequency
words that POM yields the best results. We can however assume that 5 bytes will
be sufficient for the average coordinate of the 51.5 million non stop-words, resulting
in a concordance of about 250 MB in size. It should however be noted that the
removal of stop-words, while appropriate for languages like English, cannot easily
be applied to languages like Hebrew, in which most of the words are homographic.
For example, at the Responsa Retrieval Project (RRP), which has a database of
about 60 million words of text written mainly in Hebrew and Aramaic (see for
example [15] or [3]), no stop-words are defined and all the words are searchable,
including some with hundreds of thousands of occurrences. For the French database
of TLF, a request was received for locating all the occurrences of un de ces (the
phrase “one of these”) in the works of André Gide; all three keywords in this query

are stop-words!

But even if we had enough space on the disc, it is not evident that in a CD-
ROM application, it would be desirable to include the stop-words in the concordance.
Recall that access times and transfer rates for CD-ROMSs are worse than for magnetic
media; the coordinates of a very frequent word may span hundreds of blocks, and
having to read these blocks can seriously deteriorate the response time. It might
thus be preferable for our application to process a query first by ignoring the stop-
words; this typically yields up to a few hundred locations, each of which could
then be scanned for occurrences of the stop-words of the query. For most queries,
this approach will speed up the processing. However, for certain queries, like un
de ces, this procedure may require a complete scan of the full text. As queries
comprising only stop-words seem to be rather exceptional, this method of using
pattern matching for the stop-words is a practical alternative to a method relying

on the concordance alone.

The dictionary of a full text retrieval system is much smaller than the text or

— 920 —

the concordance, usually only a few megabytes in size. Since consecutive entries
usually share some leading letters, POM yields good results here (about 40% on
the dictionary of RRP). A combinatorial compression method for dictionaries has
been suggested in Fraenkel & Mor [18], which achieves up to 48% savings on an
English dictionary. Bratley & Choueka [2] suggest that the regular dictionary of
a full text system be replaced by a so-called permuted dictionary, which is larger
than the conventional one, but which enables the use of variable length “don’t-care”
characters in the formulation of a query. Thus prefix, suffix and infix truncated
terms can be efficiently processed. The compression technique proposed in [2] for
the permuted dictionary is again POM, and the compressed size of this file for TLF
is about 18 MB.

For certain systems, a different approach to query processing is possible. The
idea is to replace the concordance of a system having ¢ documents by a set of
bit-maps of fixed length . Given some fixed ordering of the documents, a bit-map
B(W) is constructed for every distinct word W of the database, where the i-th bit of
B(W) is 1 if W occurs in the i-th document, and is 0 otherwise. Processing queries
then reduces to performing logical OR/AND operations on binary sequences, which
is efficiently done on most machines, instead of merge/collate operations on more
general sequences. If we allow more complex queries that refer to the exact position
of the keywords relative to each other, the concordance is still needed; however,
bit-maps may be useful in this case too. The way in which bit-maps, used together
with a concordance, can enhance the retrieval process for large full text systems
has been studied in [5], where the maps are used to eliminate a priori parts of the
text that cannot possibly contain a solution to the given query. Since these bit-
maps are extremely sparse, they can be compressed very efficiently. For example, a
hierarchical compression method for sparse bit-vectors is proposed in Vallarino [28].
The initial vector v is partitioned into blocks of equal size and a new vector vy is
constructed, with one bit for each block of vg. A bit in vq is set to 0 only if the

corresponding block in vy consists only of zeros. Then the process is repeated for

- 921 —

v1, forming vg, and so on. At each stage, when storing v;, all blocks corresponding
to 0’s in v;41 are dropped. The method is improved in [4] by pruning as well
some of the branches of the hierarchy which ultimately point to very few 1-bits. A
different method suggested in [16] combines Huffman coding with run-length coding
for blocks of zeros. The methods in [4] and [16] yield compression of up to 94% on
a set of bitmaps constructed at RRP.

A different kind of bit-map file is a so-called signature-file (see for example
Faloutsos & Christodoulakis [12]). Here the text is partitioned into relatively small
parts P, each of which is assigned a signature, which is a function of the words in
P. Similarly, the signature of the keywords of the query is computed and compared
with the elements of the signature file; this matching procedure allows us to discard
a large number of non-qualifying parts. In order to minimize the probability of a
false drop, the probability of 1-bits in the signature should be %, so the file can
hardly be compressed.

The difference between the bit-map or signature file and the others is that they
are not absolutely necessary to the retrieval system, but can improve processing
time. Also their size is flexible; the larger we choose to build them, the better dis-
crimination they allow and the faster the algorithms will be. The general policy for
our CD-ROM application should therefore be: store the text, dictionary and con-
cordance as efficiently as possible, then choose the parameters for bit-maps and/or

signatures so as to fill up the remaining space.

Table 1: Overview of compression methods

File Full size | Compression | Compressed size References
Text 700 65% 245 [26], this paper
Concordance 400 40% 240 [6]
Dictionary 45 40% 18 (2], [18]
Bit-Maps 800 95% 40 [28], [4], [16]

Table 1 summarizes the methods discussed above. The columns entitled Full

— 929 _

size and Compressed size give the approximate sizes of the files for TLF in mega-
bytes. For the bit-maps, the assumption is that the database is partitioned into
80,000 parts, to each of which corresponds one bit-position; thus a single map is
about 10 Kbytes long. We further assume that these maps are constructed for 80,000
words, the others occurring rarely enough in the text so that the corresponding bit-
maps can be constructed while processing a query. For this example we get a total
of 543 MB, which shows that the Trésor de la Langue Francaise can be transferred
to a single CD-ROM.

Acknowledgments: We wish to thank Donald Ziff, head programmer for the ARTFL
project, for his participation in discussions preliminary to this paper, and for extracting
and providing crucial information from the TLF. We are also indebted to the members of
the Institut National de la Langue Franc¢aise for posing the problem that motivated our

research.

References

[1] Aho A.V., Hopcroft J.E., Ullman J.D., The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA (1974).

[2] Bratley P., Choueka Y., Processing truncated terms in document retrieval sys-

tems, Inf. Processing & Management 18 (1982) 257-266.

[3] Choueka Y., Full text systems and research in the humanities, Computers and the
Humanities XIV (1980) 153-169.

[4] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved hierarchical bit-
vector compression in document retrieval systems, Proc. 9-th ACM-SIGIR Conf.,
Pisa (1986) 88-97.

- 923 —

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved techniques for
processing queries in full-text systems, Proc. 10-th ACM-SIGIR Conf., New Orleans
(1987) 306-315.

Choueka Y., Fraenkel A.S., Klein S.T., Compression of concordances in full-
text retrieval systems, Proc. 11-th ACM-SIGIR Conf., Grenoble (1988) 597-612.

Choueka Y., Klein S.T., Neuvitz E., Automatic retrieval of frequent idiomatic
and collocational expressions in a large corpus, J. Assoc. Literary and Linguistic

Computing, Vol. 4 (1983) 34-38.

Choueka Y., Klein S.T., Perl Y., Efficient variants of Huffman codes in high
level languages, Proc. 8-th ACM-SIGIR Conf., Montreal (1985) 122-130.

Christodoulakis S., Ford, Analysis of retrieval performance and fundamental per-

formance tradeoffs for CLV optical discs, Proc. ACM-SIGMOD Conference (1988).

Cichocki E.M., Ziemer S.M., Design considerations for CD-ROM retrieval soft-
ware, J. Amer. Soc. Inf. Sc. 39 (1988) 43-46.

Davies D.H., The CD-ROM medium, J. Amer. Soc. Inf. Sc. 39 (1988) 34-42.

Faloutsos C., Christodoulakis S., Signature files: An access method for docu-
ments and its analytical performance evaluation, ACM Trans. on Office Inf. Systems

2 (1984) 267-288.

Feller W., An Introduction to Probability Theory and Its Applications, Vol I, John
Wiley & Sons, Inc., New York (1950).

Ferguson T. J., Rabinowitz J. H., Self-synchronizing Huffman codes,

IEEE Trans. on Inf. Th. IT—30 (1984) 687-693.

Fraenkel A.S., All about the Responsa Retrieval Project you always wanted to
know but were afraid to ask, expanded summary, Jurimetrics J. 16 (1976) 149-156.

Fraenkel A.S., Klein S.T., Novel compression of sparse bit-strings, Combinatorial
Algorithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin (1985)
169-183.

Fraenkel A.S., Klein S.T., Bidirectional Huffman coding, Tech. Rep. CS87-02,
The Weizmann Institute of Science (1987), submitted for publication.

~ 2} -

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Fraenkel A.S., Mor M., Combinatorial compression and partitioning of large

dictionaries, The Computer Journal 26 (1983) 336-343.

Fraenkel A.S., Mor M., Perl Y., Is text compression by prefixes and suffixes
practical? Acta Informatica 20 (1983) 371-389.

Heaps H.S., Information Retrieval, Computational and Theoretical Aspects, Aca-
demic Press, New York (1978).

Huffman D., A method for the construction of minimum redundancy codes, Proc.

of the IRE 40 (1952) 1098-1101.

Jakobsson M., One pass text compression with a subword dictionary, J. Amer.

Soc. for Inf. Sc. 39 (1988) 262-269.

Knuth D.E., The Art of Computer Programming, Vol I, Fundamental Algorithms,
Addison-Wesley, Reading, Mass. (1973).

Konheim A.G., Cryptography, A Primer, John Wiley & Sons, New York (1981).

Longo G., Galasso G., An application of informational divergence to Huffman

codes, IEEE Trans. on Inf. Th. IT—28 (1982) 36-43.
Rubin F., Experiments in text file compression, Comm. ACM 19 (1976) 617-623.

Storer J.A., Data Compression, Methods and Theory, Computer Science Press,

Rockville, Maryland (1988).

Vallarino O., On the use of bit-maps for multiple key retrieval, SIGPLAN Notices,
Special Issue Vol. IT (1976) 108-114.

Wagner R.A., Common phrases and minimum space text storage, Comm. ACM

16 (1973) 148-152.

Weiner P., Linear pattern matching algorithms, Proc. 14-th IEEE Symp. on Switch-
ing and Automata Theory (1973) 1-11.

Welch T.A., A technique for high-performance data compression, IEEE Computer
17 (June 1984) 8-19.

Ziv J., Lempel A., A universal algorithm for sequential data compression, IEEE

Trans. on Inf. Th. I'T—23 (1977) 337-343.

— 925 —

