
The Computer Journal 36 (1993) 668{678
Bounding the Depth of Search TreesAviezri S. Fraenkel and Shmuel T. KleinDepartment of Applied MathematicsThe Weizmann Institute of ScienceRehovot, Israel

May 1987
ABSTRACTFor an ordered sequence of n weights, Hu�man's algorithm con-structs in time and space O(n) a search tree with minimum average pathlength, or, which is equivalent, a minimum redundancy code. However,if an upper bound B is imposed on the length of the codewords, thebest known algorithms for the construction of an optimal code havetime and space complexities O(Bn2). A new algorithm is presented,which yields sub-optimal codes, but in time O(n log n) and space O(n).Under certain conditions, these codes are shown to be close to optimal,and extensive experiments suggest that in many practical applications,the deviation from the optimum is negligible.

1. Motivation and IntroductionWe consider the set B(n; b) of extended binary trees with n leaves, labelled 1 ton, and with depth � b, henceforth called b-restricted trees. An extended binary treeis a binary tree in which every internal node has two sons (here, and in what follows,we use the terminology of Knuth [16, pp. 399{405]). For a given set of weights wi,1 � i � n, and a given bound B � dlog2 ne, the problem is to �nd a tree in B(n;B)which minimizes the weighted path length Pni=1 wili, where li is the length (numberof edges) of the path from the root to leaf i.A possible application is the construction of a binary pre�x-code with minimalaverage codeword length and subject to the additional constraint that no codewordhas length exceeding B. Here wi is the frequency of the element which will beencoded by the i-th codeword. Another application is the organization of a �le of nrecords, which are stored at the leaves of a binary search tree; wi is the probabilityof record i being requested, and the problem is to minimize the average search timesuch that no search takes more than B comparisons.The approach is recommended by Gilbert [8] for the case of inaccurately knownprobabilities wi: if some of the wi are signi�cantly underestimated, Hu�man's well-known procedure [13] would assign long codewords to the corresponding elementsand the code thus obtained may be fairly ine�cient. Another possible applicationof bounding the depth of a tree is to reduce the external path length L =Pni=1 li, aquantity which appears in the complexity function of many algorithms. In the worstcase, L is O(n2) and on the average (with all trees equally likely) O(npn) (see [16]),but imposing a bound B = O(log n) on the depth reduces L to be O(n logn). In[3] this approach is suggested to improve the space requirements of a method whichallows e�cient decoding of Hu�man codes without bit-manipulations.When there is no bound imposed, or equivalently, when B � n�1, our problemis solved by Hu�man's algorithm, which can be implemented in time O(n logn) (seefor example Van Leeuwen [21]) and space O(n). In fact, the dominating part of thetime complexity is sorting the weights wi, requiring time
(n logn). If the weightsare already given in order, the algorithm can be implemented in time linear in n.However, no simple procedure is known which extends Hu�man's algorithm to theproblem with bounded depth.The solution proposed by Gilbert [8] is an exhaustive search through all thepossible trees in B(n;B), which is not feasible for even moderately large values ofn and B. Hu and Tan [12] provide a nonenumerative algorithm, in which, however,both time and space complexities grow exponentially with the bound B. A similaridea is used by Van Voorhis [22], but using dynamic programming he solves theproblem in O�(B� log2 n)n2�; this bound applies for both time and space. A com-pletely di�erent dynamic programming solution is given by Garey [7] with O(Bn2)time and space complexity. Garey's algorithm is based on a procedure proposed byGilbert & Moore [9] for alphabetical encodings, using time O(n3). The latter pro-{ 2 {

cedure was improved by Knuth [15] to O(n2) in an application to optimum binarysearch trees, for which records can be stored also in internal nodes, but with norestriction on the depth of the tree. Garey shows how to extend Knuth's method tothe depth-restricted case.The following reformulation of the problem will be useful. We are given anordered sequence of n weights w1 � � � � � wn, and a bound B � dlog2 ne; theproblem is to �nd a sequence of integers li, which minimizes Pni=1 wili subject tothe constraints li � B and nXi=1 2�li = 1: (1)McMillan [18] has shown that the lengths li of the binary codewords of any uniquelydecipherable (UD) code C must satisfy P 2�li � 1; the equality (1) is a su�cientcondition for the completeness of the code C, which means that adjoining any binarystring c =2 C yields a code C[fcg which is not UD. In an application to binary searchtrees, li is the level of the leaf with weight wi in a tree T , and (1) is equivalent toT being an extended binary tree (see [16, Exercise 2.3.4.5{3]).The di�cult part of the construction of an optimal code or tree is to �nd theintegers li. Once they are given, the i-th codeword of an optimal code can be chosenas the li �rst bits to the right of the \binary point" in the binary representation ofPi�1j=1 2�lj (see [9, Theorem 11]). We shall use throughout the languages of codes(codewords and their lengths) and trees (leaves and their levels) interchangeably.Our interest in this problem was stimulated by the following re
ections:(1) The construction of an optimal B-restricted tree requires O(Bn2) time andspace using the methods of either [22] or [7] (actually, the space complexity forGarey's method can be lowered to O(n2)). On the other hand, if B is large enough,Hu�man's algorithm solves the problem in time O(n logn) and space O(n). Thisdiscontinuity in the complexities of two problems at points where they should coin-cide, suggests that before applying dynamic programming, the optimal unrestrictedHu�man tree should be constructed. If the depth K of the latter is � B, this treeis optimal also for the restricted case and we have a signi�cant improvement; ifhowever B < K, we can still apply the methods of [22] or [7], with no change in theorder of magnitude of their complexities.(2) For the case B < K, we would expect that the closer B is to K, the greateris the similarity between the restricted and the unrestricted trees. For example theHu�man tree, based on the distribution of the characters of the English alphabet, asgiven by Heaps [10], has depth K = 10 with the lengths of the paths correspondingto the four least frequent characters being 8, 9, 10 and 10. If we choose B = 9,each of these four characters will be on the lowest level of the optimal 9-restrictedtree, and the other characters will remain on the same level as in the unrestrictedtree. Hence in this case, the restricted tree is obtained from Hu�man's tree by the{ 3 {

rearrangement of a small subtree. For B = 8, there are already 6 elements whichmust be rearranged, and for B = 7, there are 11. Therefore, we would intuitively�nd it more natural if an algorithm for the construction of an optimal B-restrictedtree would require time proportional to K �B, rather than to B.These thoughts suggest the following type of procedures for our problem:Step 1: Apply Hu�man's algorithm for the given sequence of weights; let Kbe the depth of the Hu�man tree H .Step 2: If K � B, we are done. OtherwiseStep 3: Reduce the depth of the tree to B by local rearrangements in theHu�man tree.Note that the main problem with the optimal algorithms is their space com-plexity. While it can sometimes be justi�ed to spend O(Bn2) time to get an optimalcode, a quadratic space complexity for an application with large n may often be pro-hibitive. We thus feel that a sub-optimal algorithm with considerably lower spacerequirements can be justi�ed, especially when it is also fast and easy to implement.In the next section, we present such an algorithm, based on the above re
ections,producing sub-optimal trees, but in linear time and space, provided the frequenciesare already ordered. In Section 3, some re�nements of the method are suggested,which have time complexity O(n logn) with no change in the space complexity.Tests run on a large variety of \real-life" weight-distributions, described in Section4, show that often the optimum is actually achieved, or that the deviation from theoptimum is very small.2. Sub-optimal trees with bounded depthAfter the Hu�man tree has been constructed, the rearrangements proposed inStep 3 must be applied to every branch of the tree extending below level B. Forexample, the subtree in Figure 1(a) could be replaced by that in Figure 1(b). Theroot of the subtree which is rearranged in this example is on level B � 2, whichis the lowest possible level at which the rearrangement may be started. For otherexamples, the subtree will be rooted on a higher level, as for example in Figure 2.{ 4 {

(a) (b) (a) (b)Figure 1: Minimal Rearrangement Figure 2: Larger ExampleIt would help to have all the branches extending below level B concentrated inthe same area of the tree, so as to minimize the size of the subtree which includesall these branches. Hu�man's original algorithm, however, does not assure thisproperty. We therefore replace Step 1 by:Step 1a: Evaluate the optimal lengths li using Hu�man's algorithm (recall thatsince w1 � � � � � wn, we may assume l1 � � � � � ln).Step 1b: Construct an extended binary tree in which the leaves are, in orderfrom left to right, on levels l1; : : : ; ln.An algorithm for Step 1b can be found in Schwartz & Kallik [20]. Alternatively,the tree can be generated in linear time by the procedure BUILD, which will beuseful later. BUILD passes sequentially over the vector of lengths li and simulates adepth �rst traversal of a binary tree, which is built by the procedure itself, i.e., whenpassing to a left or right son which was not yet de�ned, a new node is generatedand linked into the tree. During this traversal, every time a level is reached whichequals the current value of li, the procedure passes to li+1 and considers the currentnode v as a leaf (thus the next node to be visited will be the father of v). Theprocedure stops after having generated the node corresponding to ln. For a formaldescription of BUILD refer to the Appendix. Henceforth we will assume that everyHu�man tree and all the extended binary trees mentioned in the sequel satisfy theorder requirement of Step 1b.Algorithm ROTOur algorithm for the construction of aB-restricted tree consists of Steps 1a, 1b,2 and 3. The following procedure is used for Step 3. Starting at the rightmost leafr of the Hu�man tree (corresponding to the lowest weight, hence being at level K),we climb upwards in order to �nd the root of the subtree which will be rearranged.{ 5 {

For any node x of the tree, let D(x) denote its level, let T (x) denote the subtreerooted at x and N(x) the number of leaves in T (x). During the construction of theHu�man tree, D and N can recursively be de�ned by:D(x) = � 0 if x is the root;1 +D�father(x)� otherwise.N(x) = � 1 if x is a leaf;N�left(x)� +N�right(x)� otherwise.We seek an ancestor q of the leaf r, such that T (q) can be rearranged into a subtreeof depth B � D(q), and such that q is as close to r as possible. This is obtainedby considering sequentially the father of r, then the father's father, etc., until anancestor q is found for which N(q) � 2B�D(q): (2)In the worst case we climb all the way to the root, which satis�es (2) since B �dlog2 ne. After having found the node q, T (q) is transformed into a complete binarytree. First, the lengths li are updated to B � 1 or B, for n�N(q) < i � n, so thatli�1 � li and so as to satisfy (1).Then we again apply the procedure BUILD which builds a binary tree when thelevels of its leaves are given. In this case, when q is not the root, there is even noneed to restart the construction from scratch, since the structure of the Hu�mantree is altered only in the subtree T (q). The construction passes sequentially froml1 to ln, so one can use the previously built Hu�man tree and apply the procedureBUILD only for ln�N(q)+1; : : : ; ln.Because the ReorganizationOf the sub-Tree resembles the ROTations in AVL-trees, we call this the ROT Algorithm. If the weights wi are already given in order,the time and space complexities of the ROT Algorithm are obviously O(n).
(a) Hu�man tree (b) 3-bounded tree (c) better 3-bounded treeFigure 3: Example for non-optimality of the algorithmLet T �(q) be the sub-tree which replaces T (q) after this transformation, andlet H� denote the tree obtained from the Hu�man tree H by replacing T (q) byT �(q). Since all the leaves, whose level exceeded B in the original tree H , belong to{ 6 {

T (q), it follows that H� is a B-restricted tree. However, H� is not always optimal.For example, suppose the weights are (w1; : : : ; w5) = (9; 6; 4; 2; 2). They correspondto a degenerate Hu�man tree with (l1; : : : ; l5) = (1; 2; 3; 4; 4) which is depicted inFigure 3(a) and has path lengthPwili = 49. If we want to use the above algorithmto bound the depth of the tree to B = 3, the resulting length-vector is (1; 3; 3; 3; 3)with path length 51 (Figure 3(b)), whereas there exists a better solution (2; 2; 2; 3; 3)with path length 50 (Figure 3(c)).But for small values of n, like in this example, there is no problem to use Garey'salgorithm or even an exhaustive search. We now show that also for large n, thereis, under certain circumstances, only a small deviation in the performance of ROTfrom the possible optimum.The idea is to look at the size of the subtree T (q) which will be rearranged.Obviously this size depends on the imposed bound B, but it depends also on theskewness of the distribution. If the smallest probabilities di�er only slightly, thenthere are possibly many nodes on the lowest levels of the Hu�man tree (and thus ofT (q)). Hence N(q), the number of leaves of T (q), may be large, even if the boundB is close to K, the natural depth of the tree. On the other hand, great di�erencesin the smallest probabilities tend to produce Hu�man trees with only a few nodeson each of the lowest levels. The following theorem gives a su�cient condition forthe algorithm to be close to optimal, in terms of a relation between the size of therearranged subtree and its shape. Let us express the number of leaves N(q) of T (q)by n�, for some 0 < � � 1. Let R be the level of the leftmost leaf of T (q). TheHu�man tree being �xed, the rightmost leaf of T (q) is on level K, thus R can serveas measure for the proximity of the shape of T (q) to that of a full binary tree. De�nes by R = s log2 n.Theorem 1. If s > 1:44�, then the di�erence between the average path length ofthe optimal tree and that of the tree obtained from algorithm ROT tends to 0 asn!1.Proof: For technical reasons, we shall use probabilities pi instead of weights wi(pi = wi=Pnj=1 wj), so that P pili will be the average path length. Let LH , LOand LR respectively denote the average path length in the (unrestricted) Hu�mantree, the B-restricted optimal tree and the B-restricted tree obtained by AlgorithmROT. Clearly LH � LO � LR: (3)The quantity we wish to bound is LR � LO, but for the given conditions, we showthat even LR �LH is small. After the rearrangement of T (q), some leaves are on adi�erent level than before. Let Ci denote this di�erence (level in T �(q) � level inT (q)) for the leaf labelled i. ThenLR � LH � Xfi :Ci>0g piCi: (4){ 7 {

The subtree T (q) is transformed into a complete binary tree, thusCi � log2N(q) = � log2 n (5)holds for any i. On the other hand, since we assume that all the leaves in T (q) werein the Hu�man tree on levels � R = s log2 n, it follows from Katona & Nemetz [14,Theorem 1], that pi < 1=FR+1, where Fj is the j-th Fibonacci number. By [16,Exercise 1.2.1{4], we getpi < � 1��R�1 = ��s log2 n = �n0:694s ; (6)where � = (1+p5)=2 is the golden ratio. The number of summands in (4) is clearlybounded by N(q) = n�. Putting this together, we haveLR � LH < ��n� log2 nn0:694s < 2 log2 nn0:694s�� ;which tends to zero when s > 1:44� and n!1.In particular, suppose that T (q) is almost the entire tree, sayN(q) = n�C lognfor some constant C (for example if li = i for 1 � i � logn and B = O(log n)), thechange in the average path length will still be small if R > 1:44 log2(n � C logn).If T (q) is only a small subtree, say N(q) = C logn, then the di�erence will tend tozero even for R > 1:44 (log logn+ logC).The bounds in Theorem 1 are not very tight. The negative part on the righthand side of (4), Pfi :Ci<0g piCi, was omitted, and the number of positive sum-mands can be shown to be at most N(q)=3. In (5), at most 2j�1 of the Ci can belog2N(q) � j, for j � 1, moreover if one of the Ci is log2N(q) � 1, then at mostone can be log2N(q) � 2, etc. The upper bound on pi in (6) is an extreme case;generally, pi will be much smaller. It should also be noted that the imposed newdepth B appears implicitly in the Theorem, since for a �xed Hu�man tree of depthK, N(q) is an increasing function and R a non-increasing function of K �B.When the conditions of Theorem 1 are not satis�ed, this is often due to asevere restriction on the depth, which causes extended changes in the structure ofthe Hu�man tree. In such cases, there may be a signi�cant di�erence between LHand LR. However, our experimental results (see Section 4) suggest that the majorpart of this di�erence must be attributed to LO�LH , whereas LR�LO is still verysmall. { 8 {

3. Re�nementsWe shall specify only how to change the li, since once they are �xed, thecorresponding tree is de�ned. Obviously, we are restricted to changes in li which donot violate (1).There are many possibilities to improve the algorithm presented in the previoussection. For example, one could further climb upwards in the tree, and not stop atthe �rst node q, which satis�es (2). The subtree T (q) to be rearranged would thenbe larger, but if it is still small enough, one could choose the optimal among all thepossible rearrangements. The number of possible rearrangements can be found inTable VII of [8]. But even when the smallest subtree T (q) is chosen, there may beother possible rearrangements than the complete binary tree. For example, supposeN(q) = 9; then the complete binary tree of depth 4 would have its leaves on levels3; : : : ; 3; 4; 4. However, for certain weight distributions, the tree with leaves on levels1; 4; : : : ; 4 may be preferable. There is a natural trade-o� between the amount ofadditional work one is willing to invest and the proximity to the optimum, but ourexperiments suggest that mostly, too large an e�ort cannot be justi�ed. Since ourmain concern is the simplicity of the algorithm, we propose only the following twore�nements.3.1 Smoothing the transition pointConsider the Hu�man code corresponding to the unrestricted tree which wasconstructed in Step 1b in x2, and write the codewords one below the other, sequen-tially from the shortest to the longest. Schematically, this column of codewords willhave a more or less trapezoidal form (Figure 4(a)). While rearranging the subtreeT (q), some codewords become longer and others are shortened, so the rearrange-ment can be interpreted as changing a lower part of the trapezoid into a \rectangle"(Figure 4(b)).
(a) Hu�man tree (b) after bounding (c) after smoothingFigure 4: Schematic representation of the changes in the treeSince the codewords which do not belong to T (q) are not changed, there maybe a great di�erence between ln�N(q) and ln�N(q)+1, although the corresponding{ 9 {

probabilities di�er perhaps only slightly. In Figure 4(b) this is symbolized by the\discontinuity" at the transition point between the rectangle and the trapezoidabove it. Our �rst re�nement will be to try to \smooth the edge", as depicted inFigure 4(c), of course only if such a transformation reduces the average codewordlength.Let m = n�N(q) be the index of the last codeword which is not in T (q) (the\lower base" of the trapezoid). The smoothing action will in practice be achievedby incrementing lm and decrementing the lengths of the �rst few codewords of therectangle. Two cases can occur: lm+1 = lm+2, i.e., the two leftmost leaves in T �(q)are on the same level, or lm+2 = lm+1 + 1, because T �(q) is a full binary tree. Inthe former case we perform:lm lm + 1lm+1 lmlm+2 lm+2 � 1:Figures 5(a) and 5(b) show a part of the tree, resp. before and after these changes.In the latter case, a fourth statement must be added, so as to reestablish the equalityin (1): lm+3 lm+3 � 1,which is well-de�ned, since T �(q) contains at least four leaves (Figures 5(c) and5(d)).

(a) (b) (c) (d)Figure 5: Changes in the tree for \smoothing" the transition pointThese changes are justi�ed only whenwm < (lm+1 � lm � 1)wm+1 + wm+2 + (lm+2 � lm+1)wm+3;where wm+1 is multiplied by the di�erence of levels of the leaf m + 1 before andafter the change, and wm+3 is only added if lm+2 6= lm+1.{ 10 {

3.2 Transfer to adjacent blocksThe following re�nement is based on the ideas of [8, Theorem 4]. As in theprevious section, we consider that the codewords are written one below the otherin order of non-increasing weights. Let Er denote the block of codewords of lengthr, and let t(r) and b(r) be resp. the indices of the top and bottom element in Er.Suppose there are at least two elements in Er and Er�2 is not empty. Ifwb(r�2) < wt(r) + wt(r)+1;then we can reduce the average codeword length by executing:lb(r�2) lb(r�2) + 1lt(r) lt(r) � 1lt(r)+1 lt(r)+1 � 1:Let us call this sort of update (operating on elements of di�erent blocks) an updateof Type I.Suppose there are at least three elements in Er. Ifwt(r) > wb(r)�1 + wb(r);then we can reduce the average codeword length by executing:lt(r) lt(r) � 1lb(r)�1 lb(r)�1 + 1lb(r) lb(r) + 1:This sort of update (operating on elements of the same block) will be called anupdate of Type II. Note that after both types of updates, the equality in (1) issatis�ed.
before after before afterType I Type IIFigure 6: Schematic representation of updates of Types I and IIFigure 6 shows updates of both types; the current block in each case is indicatedby the boldface lines, the codewords which are transferred are indicated by thedotted lines. { 11 {

The question is now in which order these updates should be executed. If wewant to assure a sequence of updates such that at its conclusion no further updateof Type I or II is possible for any block, then we cannot simply process the blocksEr in a single pass: while executing a Type II update in block Er , codewords aretransferred to blocks both above and below Er. These transfers can in turn causefurther updates in both Er�1 and Er+1, and so on. Therefore, we could for examplestart with EB and proceed bottom-up, passing from Er to Er�1, except when therewas a Type II update in Er, in which case we return to Er+1. Unfortunately, thereare two serious objections to this approach.First, we have no reasonable bound on the number of steps the algorithm willexecute. Theoretically it is possible that a certain codeword will be passed severaltimes back and forth between adjacent blocks. We know that the number of updatesis �nite, since after each of them, Pwili is decreased at least byminfxij = jwi � wj � wj+1j : 1 � i < j < n and xij > 0g:But the number of updates can be
(n2), as for Garey's algorithm (nevertheless,the use of the new algorithm can still be justi�ed in certain cases, since the spacecomplexity is reduced from quadratic to linear).Secondly, even if all the possible updates were executed, this does not guar-antee that the optimum is achieved. As example, take the weights to be the �rstfew Fibonacci numbers, say (w1; : : : ; w14) = (377; 244; : : : ; 3; 2; 1; 1). The corre-sponding Hu�man code has li = i for 1 � i � 13 and l14 = 13. If we imposea bound B = 6, the lengths vector is changed by the �rst part of the algorithmto (1; 2; 5; 5; 5; 5; 6; : : : ; 6), with Pwili = 2777. The smoothing action of x3.1 thenchanges the vector to (1; 3; 3; 4; 5; 5; 6; : : : ; 6) and reduces Pwili to 2633. But now,no block of codewords satis�es the conditions necessary for either type of update,and on the other side, the minimum of Pwili is 2599, which is obtained by thelengths vector (2; 2; 3; 3; 4; 4; 6; : : : ; 6).The �rst objection motivated us to design a single pass algorithm for the up-dates, even at the price of missing some of them; the second objection justi�ed thisapproach, since anyhow, even a more sophisticated scanning procedure does notassure optimality. We now describe informally the procedure for updates of Type Iand II (the formal algorithm appears in the Appendix).Process the blocks Er sequentially, starting with r = B and decreasing r aftereach iteration. For a given block Er , try �rst to execute an update of Type I; if itsucceeded, repeat, until no Type I update is possible any more. Now try Type IIupdates (except for r = B, since codewords of length B + 1 are not allowed) andexecute as many as possible. After each update, the limits of the a�ected blocks(Er�2, Er�1 and Er for Type I, Er�1, Er and Er+1 for Type II) are accordinglyrede�ned. This terminates the current iteration and we pass to Er�1.Note that if a codeword is lengthened by a Type II update, it is not handledany more. { 12 {

In order to bound the time complexity of this procedure, let us consider thecodeword x, corresponding to wj for some �xed 1 � j � n. The codeword x changespossibly several times its length during the execution of the updates.Lemma. Immediately after the i-th time the codeword x was shortened in anupdate of Type I, the number of codewords above x in the same block is at least(3=2)i�1.Proof: By induction on i. For i = 1, suppose x was transferred from Er toEr�1; there is another element y, which was transferred from Er�2 to the top ofEr�1. Even if Er�1 was initially empty and if x was the top element of Er, thereis, after the update, (3=2)0 = 1 element above x in Er�1.Suppose the lemma is true for i, and that after the i-th time x is shortenedin a Type I update, x belongs to Er and has R elements above it in this block.Assume the next Type I shortening transfers x from Eh to Eh�1, for some h � r.It follows that the transfers of x from Es to Es�1, for h < s � r, were all duringupdates of Type II. However, Type II updates process the elements of a block Essequentially from the top downwards, so that if x is transferred to Es�1, so werethe elements above x in Es. Therefore the number of elements above x in thesame block, immediately after having transferred x, cannot decrease, and there areR0 � R elements above x in Eh. Since x passes from Eh to Eh�1 during a Type Iupdate, this is true also for the R0 elements above x, because there is no Type Iupdate after a Type II update in the same block. For every pair of elements whichare transferred from Eh to Eh�1, there is a third element which is transferred fromEh�2 to Eh�1, and which will also be above x in Eh�1. Thus the total number ofelements above x in Eh�1 is at least32R0 + 1 if R0 is even32 (R0 � 1) + 2 if R0 is odd) � 32R0 � 32 �32�i�1 = �32�i :Theorem 2. The number of steps of the update algorithm is O(n logn).Proof: We count the number of updates, since there is a constant amount ofwork for each of them. If a codeword x is lengthened in a Type II update, it istransferred, together with an adjacent codeword, into a block which has alreadybeen handled by the algorithm. Thus the total number of Type II updates cannotexceed n=2. From the lemma we know that the number of times the i-th codewordcan be shortened in a Type I update is at most blog3=2 ic+1, thus an upper boundon the total number of Type I updates is n+Pni=1blog3=2 ic = O(n logn).Theorem 2 provides an upper bound for a theoretical worst case distribution;actually the total number of updates never exceeded 0:4n in all our experiments.{ 13 {

One could ask why we have chosen a bottom-up scan, from the longest code-words to the shorter ones. Alternatively, a top-down scan would start with the blockof shortest codewords, and proceed to the longer ones. The de�nition of a Type Iupdate must then be changed to act on the bottom element of Er and the two topelements of Er+2, instead of the two top elements of Er and the bottom elementof Er�2. When only a small part of the tree is rearranged, there are no possibleupdates in the upper blocks, since these are identical to the blocks in the Hu�mancode, for which the codewords have optimal lengths. Thus a top-down scan yieldsupdates only in the last few blocks, if at all. On the other hand, a bottom-up scanstarts precisely at the blocks which are di�erent from the corresponding blocks inthe Hu�man code, and by updates of Type I, the changes can propagate also toblocks above those of the reorganized subtree.Another question may be why for a given block, the updates of Type I precedethose of Type II. In a Type II update, two elements of the current block are trans-ferred to a block with higher index, to which the algorithm will not return any more.Thus even if this transfer possibly allows another update, it will not be done. Onthe other hand, all the elements transferred in an update of Type I belong to blockswhich are going to be handled later. Therefore, when coming to reduce the num-ber of updates we are possibly missing, we try to minimize the number of Type IIupdates. Clearly, every Type I update executed from Er decreases the chance thatthere will be afterward a Type II update in Er.We have implemented both the bottom-up and the top-down approaches. Asexpected, the former gave generally better results, even though there were somerare exceptions. We have also experimented with non-sequential scans, returning topreviously visited blocks if they were changed by updates in the current block. Forthis variant, the di�erence between top-down and bottom-up was even smaller, andin any case, the total number of updates was smaller than 0:6n.4. Examples and Experimental ResultsThe new method signi�cantly improves the time and space complexities of theoptimal algorithms, but its usefulness in many practical applications depends onthe actual loss in compression e�ciency. There is however a problem in choosing anadequate model for a \typical" probability distribution. Lacking any other informa-tion, one often assumes a uniform probability distribution, but the correspondingHu�man code is of �xed length, so that the problem addressed in this work is notrelevant. Another well-known distribution is Zipf's law, de�ned by the weightswi = Hn=i, for 1 � i � n, where Hn = Pnj=1(1=j) is the n-th harmonic number.This law is believed to govern the distribution of the most common words in a largenatural language text. The corresponding Hu�man tree is not very skew, becausethere are no great di�erences between the smallest weights. For example, the depthK of the Hu�man tree for Zipf's law with n = 100 and n = 200 is respectively 9 and10. Imposing as bound B = K � 1, the relative increase of the average codeword{ 14 {

length when using the new algorithm instead of the optimal one is of 0.06% forn = 100 and of 0.03% for n = 200. For B = K � 2 (which is the minimal possibledepth on these examples), the corresponding results are 0.74% and 1.42%.Even though these �gures can be considered as close to optimal, we feel thatZipf's law is not a representative example of a distribution on which one wishes toapply an algorithm for bounding the depth of a tree. Indeed, when there are manynodes on the lowest level as in this case, there can be a signi�cant di�erence betweenthe B-restricted and the non-restricted optimal trees, even when B is close to K.A more typical application would be a case where B is chosen by some technicalconstraint which is independent of K, and for which there is only a small number ofnodes on levels > B; e.g., if one wishes to store the list of codewords in a table, itmay be desirable to �t every codeword in one or two bytes. At the other end of thespectrum, the bound B = dlog2 ne will seldom be requested. The main reason forusing variable length codes, in spite of their complicated processing, is their reducedstorage requirements. Generally, this advantage is almost lost with such a bound,so one will rarely prefer this alternative to the simple and almost as e�cient �xedlength code.We have therefore decided to test the compression e�ciency of the new methodempirically on various \real-life" weight distributions, similarly to Knuth [17], whochecked his dynamic Hu�man coding algorithm on, e.g., a �le of Grimm's FairyTales. For any given set of n weights, the Hu�man tree was built, with depth K.Using then Garey's algorithm, the optimal B-restricted trees were constructed forall possible values of B, dlog2 ne � B � K � 1. Finally the optimal trees werecompared �rst with the trees obtained by the ROT Algorithm of x2, then with theimproved trees based on the re�nements of x3.The �rst class of sets of weights consists of probability distributions of thecharacters of the alphabet for various natural languages. The distribution of the26 letters of English is in Heaps [10]; the distribution of the 29 letters of Finnish isfrom Pesonen [19]; the distribution for French (including blank) is from Brunet [2];for German, the distribution of 30 letters (including blank and Umlaute) is givenin Bauer & Goos [1]; for Hebrew (30 letters including two kinds of apostrophesand blank), we have computed the distribution using the database of the ResponsaRetrieval Project (see for example Fraenkel [4]) of about 40 million Hebrew and Ara-maic words; the distribution for Italian (26 letters) can be found in Gaines [6], andfor Russian (32 letters) in Herdan [11]. The results for this �rst set are summarizedin Table 1. { 15 {

Statistics 5 6 7 8 9 10 11 12 13 144.1852 opt 0.01 0.30 opt optEnglish 10 opt 0.01 opt opt opt4.0449 opt 0.96 1.69 0.70 0.45 0.18 0.12 0.01 opt 0.00Finnish 15 opt opt opt opt opt opt 0.02 opt opt opt3.9708 1.61 1.14 opt 0.12 0.04 0.03French 11 opt opt opt opt 0.03 opt4.1479 opt 0.44 0.71 0.12 0.15 0.01 optGerman 12 opt 0.14 0.11 opt 0.07 0.01 opt4.2851 opt opt 0.01 optHebrew 9 opt opt opt opt4.0000 opt 1.06 0.48 0.21 opt optItalian 11 opt 0.03 0.00 0.17 opt opt4.4480 0.42 0.11 0.04Russian 9 0.09 opt optTable 1: Experimental results | Distribution of letters in natural languagesThe �rst column contains statistical information for each language: the averagelength of a codeword for the unrestricted Hu�man tree and below the natural depthof this tree. The following columns correspond each to another value of the boundB, which appears in the header line. For each language and each column, twovalues are listed: the upper one is the relative increase (in percent) of the averagecodeword length when the ROT Algorithm of x2 is used instead of Garey's optimalalgorithm, i.e., using the notation of Theorem 1: (LR=LO � 1)� 100. The numberlisted below is the corresponding result when the improved algorithm of x3 is used.When the optimum is reached, this is indicated by the letters opt, hence if an entrycontains 0.00, this means that the algorithm is sub-optimal, but that the deviationfrom the minimum is smaller than 0.005%. These explanations apply also to thetwo following tables.The second class of weight distributions included larger sets: the distributionof bigrams in English and Hebrew. For English, the probabilities given in [10] are oflow precision (10�4), therefore the number of character-pairs which have \non-zero"probability is only 378; for Hebrew, we have computed the distribution with highprecision (10�10) and got 743 pairs with non-zero probability. Table 2 summarizesthe experiments on the bigrams. { 16 {

Statistics 9 10 11 12 13 14 157.6085 2.82 1.25 0.05 0.03English 13 0.00 0.01 0.03 0.008.0370 6.54 1.44 0.23 0.06 0.09 0.01Hebrew 23 0.25 0.03 0.04 0.01 0.00 0.0016 17 18 19 20 21 220.01 0.01 0.00 0.00 0.00 0.00 0.00Hebrew con't 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 2: Experimental results | Distribution of bigramsIn order to test distributions of another kind, we have computed the frequencyof appearance of di�erent symbols in 5762 source lines of PLI programs. The num-ber of di�erent characters was 59, but more than 2=3 of this �le consisted of blanks.Therefore we have also evaluated the distribution of a similar �le, for which leadingand trailing blanks in each record were omitted. The �rst line of Table 3, headedPLI+, corresponds to the distribution with leading and trailing blanks, the sec-ond line, headed PLI�, corresponds to the distribution after having omitted theseblanks.In the following method for the compression of sparse bit-vectors, Hu�mancoding is applied to items of a completely di�erent nature: �rst the given vectors arepartitioned into bytes (8-bit blocks), then statistics are collected on the frequency ofappearance of the elements of a set S, consisting of the 255 possible non-zero bytesto which t elements fa0; : : : ; at�1g have been adjoined; the latter represent the �rstt basis elements of a numeration system, e.g., f1; 2; 4; 8; : : :g for the standard binarynumeration system. The idea is to consider the length k of each run of 0-bytes,and to \decompose" k uniquely as a linear combination of the basis elements ai.Finally, Hu�man codes are assigned to the elements of S; to the di�erent non-zero bytes correspond di�erent codewords, and every run of 0-bytes is encoded bythe codewords of the corresponding basis elements. The set of basis elements is aparameter; various choices are suggested in [5], where this method is described inmore detail. { 17 {

Statistics 6 7 8 9 10 11 12 13 14 152.6757 14.1 opt 0.60 0.38 0.04 0.06 0.01 0.00 opt 0.00PLI+ 16 opt opt opt 0.08 0.04 0.02 0.01 0.00 opt 0.004.8518 2.34 0.59 0.80 0.11 0.07 0.02 0.01 opt optPLI� 15 opt 0.59 opt opt 0.00 0.00 0.00 opt opt4.6992 51.6 8.13 1.12 0.06 optPOW2 14 13.8 4.40 0.91 0.02 opt5.0513 43.0 25.1 1.09 0.03 optFIB2 14 9.70 3.87 0.77 0.03 optTable 3: Experimental results | PLI and compression of bit-vectorsFor the present application, we have chosen the standard binary numerationsystem (third line of Table 3, headed POW2) and the binary Fibonacci numerationsystem (see [16], Exercise 1.2.8{34), the basis elements of which are Fibonacci num-bers (fourth line of Table 3, headed FIB2). The statistics were collected from 56588bit-vectors of 42272 bits each, which were constructed at the Responsa Project: eachvector serves as an \occurrence map" for a di�erent word, the bit-position referringto the number of the document, where the value at position i is 1 if and only if thegiven word appears in the i-th document.The experiments show that actually the optimal value is often reached, and inthe great majority of the cases, the deviation from the optimum is smaller than 1%.The rare exceptions are usually when the bound B has its minimal possible value,but, as was pointed out earlier, in this case one will rather use a �xed length code.Therefore the method presented herein is an attractive alternative in situationswhere n is large (so that the optimal method is not only very time-consuming, butoften even not feasible, because of the quadratic space complexity), and B is closeto the natural depth of the Hu�man tree | a case for which the optimal algorithmtakes its longest time. For example, due to the space requirements, we could runGarey's algorithm on the Hebrew bigrams only by night and batch; choosingB = 17,the job took about 18 minutes of CPU on our IBM 3081. On the other hand, usingour sub-optimal method we got in a few seconds, on-line, a result which exceededthe optimal one only by 0.00007%.
{ 18 {

APPENDIXWe bring here the formal description of the Algorithm ROT for bounding thedepth of a binary tree. The algorithm will be presented in an Algol-like language thatuses \�" and \od" to close \if " and \do". For the second re�nement, a bottom-up single scan is executed. However, the statements necessary to execute a non-sequential scan (returning to a block already handled if it was touched by the lastupdate), are added as comments into boxes with heading: For non-sequential scan.The data structures involved are:1. an extended binary tree; each node q has the following �elds: left(q), right(q)and N(q), storing resp. a pointer to the left son, a pointer to the right sonand the number of leaves in the subtree rooted at q.2. a stack ST ; as in [16], the statements ST (p and p(ST are used resp. for\push p into the stack ST" and \pop the top element from ST and put itinto p".3. two auxiliary vectors t(r) and b(r), 0 � r � n, containing the index of thetop, resp. bottom, element of Er , the block of codewords of length r. IfEr = ;, then t(r) = b(r) = 0.

{ 19 {

For a given set of integers li such that P 2�li = 1, the following procedureBUILD(q, level) constructs a \canonical" tree rooted at q, which is on level level,and having its leaves on levels li. The procedure uses the global variable i, theindex to the next element in the sequence li.The function new allocates a new node, the function free returns unneded nodesto the pool of available space, and � stands for the null-pointer.procedure BUILD(q, level)if level = li thenleft(q) right(q) �N(q) 1i i+ 1else L newleft(q) Lcall BUILD(L, level+ 1)R newright(q) Rcall BUILD(R, level+ 1)N(q) N(L) +N(R)�end BUILD A L G O R I T H M R O Tbeginhead newi 1call BUILD(head , 0)Push the nodes on the path from the root to (but not including) the rightmostleaf into the stack ST .p headlevel 0repeatlevel level+ 1ST (pp right(p)until right(p) = �p now points to the rightmost leaf; level is the depth of the tree, and thetop element in ST is the father of p.{ 20 {

if level > B thenrepeatlevel level� 1q (STuntil N(q) � 2 � �(B � level)Here, q points to the root of the subtree which will be reorganized;�rst update the lengths, then the procedure BUILD can be invoked.i n�N(q) + 1for j i to i�N(q) + 2 � �(B � level)� 1 dolj B � 1 odfor j i�N(q) + 2 � �(B � level) to n dolj B odcall BUILD(q; level)First re�nement: Smoothing the transition pointi is the index of the leftmost leaf of T �(q), the reorganized subtree;changed is a Boolean variable indicating if the current tree will bechanged.changed falseif (i > 1) and (li�1 � li � 2) and�wi�1 < (li � li�1 � 1)� wi + wi+1 + (li+1 � li)� wi+2� thenif li+1 6= li then li+2 li+2 � 1 �li�1 li�1 + 1li li�1li+1 li+1 � 1changed true� Second re�nement: Transfer to adjacent blocksFirst, the vectors t(r) and b(r) are initialized.for r 0 to n dot(r) b(r) 0 odj 0for r 1 to n doif lr 6= j thenb(j) r � 1j lrt(j) r�odb(ln) n { 21 {

Execute now a bootom-up scan over the blocks, trying �rst updates ofType I; the Boolean variable succeding serves to control the loop ofupdates.for r B to 2 step �1 dosucceding truewhile succeding dosucceding falseif (b(r � 2) > 0) and (b(r) > t(r)) and(wb(r�2) < wt(r) + wt(r)+1) thensucceding truechanged trueUpdate of lengthslb(r�2) lb(r�2) + 1lt(r) lt(r) � 1lt(r)+1 lt(r)+1 � 1Update of vectors t(r) and b(r)t(r � 1) b(r � 2)b(r � 1) t(r) + 1b(r � 2) b(r � 2)� 1t(r) t(r) + 2if t(r � 2) > b(r � 2) thent(r � 2) b(r � 2) 0 �if t(r) > b(r) then t(r) b(r) 0 ��od [[end of loop for Type I updates]]Now try updates of Type II, but not for r = B.For non-sequential scan:changed2 is a Boolean variable, indicating if there will be anychange due to Type II updates.changed2 falsesucceding truewhile succeding dosucceding falseif (r < B) and (b(r)� 1 > t(r)) and(wt(r) > wb(r)�1 + wb(r)) thensucceding true{ 22 {

changed trueUpdate of lengthsFor non-sequential scan:changed2 truelt(r) lt(r) � 1lb(r)�1 lb(r)�1 + 1lb(r) lb(r) + 1Update of vectors t(r) and b(r)b(r � 1) t(r)t(r) t(r) + 1b(r) b(r)� 2if t(r � 1) = 0 then [[block Er�1 was empty]]t(r � 1) b(r � 1) �if t(r) > b(r) then [[block Er became now empty]]t(r) b(r) 0 �For non-sequential scan:t(r + 1) b(r)� 1if b(r + 1) = 0 then [[block Er+1 was empty]]b(r + 1) t(r + 1) + 1 ��od [[end of loop for Type II updates]]For non-sequential scan:if changed2 then r r � 2 �od [[end of second re�nement]]The vector of lengths being updated, the procedure BUILD will be in-voked again if there is any change, after having freed the space occupiedby the Hu�man tree.if changed thenfree space of the treehead newi 1call BUILD(head ; 0)�� [[end of bounding the depth]]end [[of Algorithm ROT]] { 23 {

REFERENCES[1] Bauer F.L., Goos G., Informatik, Eine einf�uhrende �Ubersicht, Erster Teil,Springer Verlag, Berlin (1973).[2] Brunet E., Le Vocabulaire de Jean Giraudoux | Structure et Evolution,Editions Slatkine, Gen�eve (1978).[3] Choueka Y., Klein S.T., Perl Y., E�cient variants of Hu�man codes inhigh level languages, Proc. 8-th ACM-SIGIR Conf., Montreal (1985) 122{130.[4] Fraenkel A.S., All about the Responsa Retrieval Project you always wantedto know but were afraid to ask, expanded summary, Jurimetrics J. 16 (1976)149{156.[5] Fraenkel A.S., Klein S.T., Novel compression of sparse bit-strings |preliminary report, Combinatorial Algorithms on Words, NATO ASI SeriesVol F12, Springer Verlag, Berlin (1985) 169{183.[6] Gaines H.F., Cryptanalysis, A Study of Ciphers and their solution, DoverPubl. Inc., New York (1956).[7] Garey M.R., Optimal binary search trees with restricted maximal depth,SIAM J. of Comp. 3 (1974) 101{110.[8] Gilbert E.N., Codes based on inaccurate source probabilities, IEEE Trans.on Inf. Th. IT{17 (1971) 304{314.[9] Gilbert E.N., Moore E.F., Variable-length binary encodings, The BellSystem Technical Journal 38 (1959) 933{968.[10] Heaps P., Information Retrieval, Computational and Theoretical Aspects,Academic Press (1978).[11] Herdan G., The Advanced Theory of Language as Choice and Chance,Springer-Verlag, New York (1966).{ 24 {

[12] Hu T.C., Tan K.C., Path length of binary search trees, SIAM J. of Appl.Math. 22 (1972) 225{234.[13] Hu�man D., A method for the construction of minimum redundancy codes,Proc. of the IRE 40 (1952) 1098{1101.[14] Katona G.O.H., Nemetz T.O.H., Hu�man codes and self-information,IEEE Trans. on Inf. Th. IT{22 (1976) 337{340.[15] Knuth D.E., Optimum binary search trees, Acta Informatica 1 (1971) 14{25.[16] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental al-gorithms, Addison-Wesley, Reading, Mass. (1973).[17] Knuth D.E., Dynamic Hu�man coding, J. of Algorithms 6 (1985) 163{180.[18] McMillan B., Two inequalities implied by unique decipherability, IRETrans. on Inf. Th. IT{2 (1956) 115{116.[19] Pesonen J., Word in
exions and their letter and syllable structure inFinnish newspaper text, Research Rep. 6/1971, Dept. of Special Education,University of Jyr�askyl�a, Finland (in Finnish, with English summary).[20] Schwartz E.S., Kallik B., Generating a canonical pre�x encoding, Comm.of the ACM 7 (1964) 166{169.[21] Van Leeuwen J., On the construction of Hu�man trees, Proc. of the 3rdICALP Conf., Edinburgh University Press (1976) 382{410.[22] Van Voorhis D.C., Constructing codes with bounded codeword lengths,IEEE Trans. on Inf. Th. IT{20 (1974) 288{290.
{ 25 {

