The Computer Journal 36 (1993) 668678

Bounding the Depth of Search Trees
Aviezri S. Fraenkel and Shmuel T. Klein

Department of Applied Mathematics
The Weizmann Institute of Science
Rehovot, Israel

May 1987

ABSTRACT

For an ordered sequence of n weights, Huffman’s algorithm con-
structs in time and space O(n) a search tree with minimum average path
length, or, which is equivalent, a minimum redundancy code. However,
if an upper bound B is imposed on the length of the codewords, the
best known algorithms for the construction of an optimal code have
time and space complexities O(Bn?). A new algorithm is presented,
which yields sub-optimal codes, but in time O(nlogn) and space O(n).
Under certain conditions, these codes are shown to be close to optimal,
and extensive experiments suggest that in many practical applications,
the deviation from the optimum is negligible.

1. Motivation and Introduction

We consider the set B(n,b) of extended binary trees with n leaves, labelled 1 to
n, and with depth < b, henceforth called b-restricted trees. An extended binary tree
is a binary tree in which every internal node has two sons (here, and in what follows,
we use the terminology of Knuth [16, pp. 399-405]). For a given set of weights wj,
1 <4 < n, and a given bound B > [logy n], the problem is to find a tree in B(n, B)
which minimizes the weighted path length Y7 | w;l;, where l; is the length (number
of edges) of the path from the root to leaf i.

A possible application is the construction of a binary prefiz-code with minimal
average codeword length and subject to the additional constraint that no codeword
has length exceeding B. Here w; is the frequency of the element which will be
encoded by the i-th codeword. Another application is the organization of a file of n
records, which are stored at the leaves of a binary search tree; w; is the probability
of record i being requested, and the problem is to minimize the average search time
such that no search takes more than B comparisons.

The approach is recommended by Gilbert [8] for the case of inaccurately known
probabilities w;: if some of the w; are significantly underestimated, Huffman’s well-
known procedure [13] would assign long codewords to the corresponding elements
and the code thus obtained may be fairly inefficient. Another possible application
of bounding the depth of a tree is to reduce the external path length L =37, l;, a
quantity which appears in the complexity function of many algorithms. In the worst
case, L is O(n?) and on the average (with all trees equally likely) O(n\/n) (see [16]),
but imposing a bound B = O(logn) on the depth reduces L to be O(nlogn). In
[3] this approach is suggested to improve the space requirements of a method which
allows efficient decoding of Huffman codes without bit-manipulations.

When there is no bound imposed, or equivalently, when B > n—1, our problem
is solved by Huffman’s algorithm, which can be implemented in time O(n logn) (see
for example Van Leeuwen [21]) and space O(n). In fact, the dominating part of the
time complexity is sorting the weights w;, requiring time Q(n logn). If the weights
are already given in order, the algorithm can be implemented in time linear in n.
However, no simple procedure is known which extends Huffman’s algorithm to the
problem with bounded depth.

The solution proposed by Gilbert [8] is an exhaustive search through all the
possible trees in B(n, B), which is not feasible for even moderately large values of
n and B. Hu and Tan [12] provide a nonenumerative algorithm, in which, however,
both time and space complexities grow exponentially with the bound B. A similar
idea is used by Van Voorhis [22], but using dynamic programming he solves the
problem in O((B —logy n) n2); this bound applies for both time and space. A com-
pletely different dynamic programming solution is given by Garey [7] with O(Bn?)
time and space complexity. Garey’s algorithm is based on a procedure proposed by
Gilbert & Moore [9] for alphabetical encodings, using time O(n3). The latter pro-

- 92 —

cedure was improved by Knuth [15] to O(n?) in an application to optimum binary
search trees, for which records can be stored also in internal nodes, but with no
restriction on the depth of the tree. Garey shows how to extend Knuth’s method to
the depth-restricted case.

The following reformulation of the problem will be useful. We are given an
ordered sequence of n weights w; > .-+ > wp, and a bound B > [logyn]; the
problem is to find a sequence of integers /;, which minimizes } ;- ; w;l; subject to
the constraints [; < B and

Zn:r“ =1 (1)
i=1

McMillan [18] has shown that the lengths I; of the binary codewords of any uniquely
decipherable (UD) code C must satisfy 3275 < 1; the equality (1) is a sufficient
condition for the completeness of the code C, which means that adjoining any binary
string ¢ ¢ C yields a code CU{c} which is not UD. In an application to binary search
trees, I; is the level of the leaf with weight w; in a tree T, and (1) is equivalent to
T being an extended binary tree (see [16, Exercise 2.3.4.5-3]).

The difficult part of the construction of an optimal code or tree is to find the
integers [;. Once they are given, the i-th codeword of an optimal code can be chosen
as the [; first bits to the right of the “binary point” in the binary representation of
23;11 27l (see [9, Theorem 11]). We shall use throughout, the languages of codes
(codewords and their lengths) and trees (leaves and their levels) interchangeably.

Our interest in this problem was stimulated by the following reflections:

(1) The construction of an optimal B-restricted tree requires O(Bn?) time and
space using the methods of either [22] or [7] (actually, the space complexity for
Garey’s method can be lowered to O(n?)). On the other hand, if B is large enough,
Huffman’s algorithm solves the problem in time O(nlogn) and space O(n). This
discontinuity in the complexities of two problems at points where they should coin-
cide, suggests that before applying dynamic programming, the optimal unrestricted
Huffman tree should be constructed. If the depth K of the latter is < B, this tree
is optimal also for the restricted case and we have a significant improvement; if
however B < K, we can still apply the methods of [22] or [7], with no change in the
order of magnitude of their complexities.

(2) For the case B < K, we would expect that the closer B is to K, the greater
is the similarity between the restricted and the unrestricted trees. For example the
Huffman tree, based on the distribution of the characters of the English alphabet, as
given by Heaps [10], has depth K = 10 with the lengths of the paths corresponding
to the four least frequent characters being 8, 9, 10 and 10. If we choose B = 9,
each of these four characters will be on the lowest level of the optimal 9-restricted
tree, and the other characters will remain on the same level as in the unrestricted
tree. Hence in this case, the restricted tree is obtained from Huffman’s tree by the

T

rearrangement of a small subtree. For B = 8, there are already 6 elements which
must be rearranged, and for B = 7, there are 11. Therefore, we would intuitively
find it more natural if an algorithm for the construction of an optimal B-restricted
tree would require time proportional to K — B, rather than to B.

These thoughts suggest the following type of procedures for our problem:

Step 1: Apply Huffman’s algorithm for the given sequence of weights; let K
be the depth of the Huffman tree H.

Step 2: If K < B, we are done. Otherwise

Step 3: Reduce the depth of the tree to B by local rearrangements in the
Huffman tree.

Note that the main problem with the optimal algorithms is their space com-
plexity. While it can sometimes be justified to spend O(Bn2) time to get an optimal
code, a quadratic space complexity for an application with large n may often be pro-
hibitive. We thus feel that a sub-optimal algorithm with considerably lower space
requirements can be justified, especially when it is also fast and easy to implement.
In the next section, we present such an algorithm, based on the above reflections,
producing sub-optimal trees, but in linear time and space, provided the frequencies
are already ordered. In Section 3, some refinements of the method are suggested,
which have time complexity O(nlogn) with no change in the space complexity.
Tests run on a large variety of “real-life” weight-distributions, described in Section
4, show that often the optimum is actually achieved, or that the deviation from the
optimum is very small.

2. Sub-optimal trees with bounded depth

After the Huffman tree has been constructed, the rearrangements proposed in
Step 3 must be applied to every branch of the tree extending below level B. For
example, the subtree in Figure 1(a) could be replaced by that in Figure 1(b). The
root of the subtree which is rearranged in this example is on level B — 2, which
is the lowest possible level at which the rearrangement may be started. For other
examples, the subtree will be rooted on a higher level, as for example in Figure 2.

,4,

(a) (b) (a) (b)

Figure 1: Minimal Rearrangement Figure 2: Larger Example

It would help to have all the branches extending below level B concentrated in
the same area of the tree, so as to minimize the size of the subtree which includes
all these branches. Huffman’s original algorithm, however, does not assure this
property. We therefore replace Step 1 by:

Step la: Evaluate the optimal lengths I; using Huffman’s algorithm (recall that
since wy > -+ > wp, we may assume [y < --- < lp).

Step 1b: Construct an extended binary tree in which the leaves are, in order
from left to right, on levels Iy,...,1;.

An algorithm for Step 1b can be found in Schwartz & Kallik [20]. Alternatively,
the tree can be generated in linear time by the procedure BUILD, which will be
useful later. BUILD passes sequentially over the vector of lengths /; and simulates a
depth first traversal of a binary tree, which is built by the procedure itself, i.e., when
passing to a left or right son which was not yet defined, a new node is generated
and linked into the tree. During this traversal, every time a level is reached which
equals the current value of [;, the procedure passes to [; 1 and considers the current
node v as a leaf (thus the next node to be visited will be the father of v). The
procedure stops after having generated the node corresponding to I,,. For a formal
description of BUILD refer to the Appendix. Henceforth we will assume that every
Huffman tree and all the extended binary trees mentioned in the sequel satisfy the
order requirement of Step 1b.

Algorithm ROT

Our algorithm for the construction of a B-restricted tree consists of Steps 1a, 1b,
2 and 3. The following procedure is used for Step 3. Starting at the rightmost leaf
r of the Huffman tree (corresponding to the lowest weight, hence being at level K),
we climb upwards in order to find the root of the subtree which will be rearranged.

-5 -

For any node z of the tree, let D(z) denote its level, let T'(z) denote the subtree
rooted at z and N(x) the number of leaves in T'(z). During the construction of the
Huffman tree, D and N can recursively be defined by:

Dix) — 0 if = is the root;
@) =114+ D (father(z)) otherwise.

(1 if z is a leaf;
N(z) = {N(left(:v)) + N(m’ght(m)) otherwise.

We seeck an ancestor ¢ of the leaf r, such that T'(q) can be rearranged into a subtree
of depth B — D(q), and such that ¢ is as close to r as possible. This is obtained
by considering sequentially the father of r, then the father’s father, etc., until an
ancestor ¢ is found for which

N(g) < 28-D), (2)

In the worst case we climb all the way to the root, which satisfies (2) since B >
[logy n]. After having found the node ¢, T'(q) is transformed into a complete binary
tree. First, the lengths I; are updated to B — 1 or B, for n — N(q) < i <, so that
;-1 <1; and so as to satisfy (1).

Then we again apply the procedure BUILD which builds a binary tree when the
levels of its leaves are given. In this case, when ¢ is not the root, there is even no
need to restart the construction from scratch, since the structure of the Huffman
tree is altered only in the subtree T'(q). The construction passes sequentially from
l1 to ln, so one can use the previously built Huffman tree and apply the procedure
BUILD only for ln—N(q)-}-la R

Because the Reorganization Of the sub-Tree resembles the ROTations in AVL-
trees, we call this the ROT Algorithm. If the weights w; are already given in order,
the time and space complexities of the ROT Algorithm are obviously O(n).

(a) Huffman tree (b) 3-bounded tree (c) better 3-bounded tree

Figure 3: Example for non-optimality of the algorithm

Let T*(q) be the sub-tree which replaces T'(q) after this transformation, and
let H* denote the tree obtained from the Huffman tree H by replacing T'(q) by
T*(q). Since all the leaves, whose level exceeded B in the original tree H, belong to

- 6 —

T(q), it follows that H* is a B-restricted tree. However, H* is not always optimal.
For example, suppose the weights are (wy,...,ws) = (9,6,4,2,2). They correspond
to a degenerate Huffman tree with (I1,...,l5) = (1,2, 3,4,4) which is depicted in
Figure 3(a) and has path length > w;l; = 49. If we want to use the above algorithm
to bound the depth of the tree to B = 3, the resulting length-vector is (1,3,3,3,3)
with path length 51 (Figure 3(b)), whereas there exists a better solution (2,2,2, 3, 3)
with path length 50 (Figure 3(c)).

But for small values of n, like in this example, there is no problem to use Garey’s
algorithm or even an exhaustive search. We now show that also for large n, there
is, under certain circumstances, only a small deviation in the performance of ROT
from the possible optimum.

The idea is to look at the size of the subtree T'(¢) which will be rearranged.
Obviously this size depends on the imposed bound B, but it depends also on the
skewness of the distribution. If the smallest probabilities differ only slightly, then
there are possibly many nodes on the lowest levels of the Huffman tree (and thus of
T(q)). Hence N(gq), the number of leaves of T'(¢), may be large, even if the bound
B is close to K, the natural depth of the tree. On the other hand, great differences
in the smallest probabilities tend to produce Huffman trees with only a few nodes
on each of the lowest levels. The following theorem gives a sufficient condition for
the algorithm to be close to optimal, in terms of a relation between the size of the
rearranged subtree and its shape. Let us express the number of leaves N(q) of T'(q)
by n®, for some 0 < a < 1. Let R be the level of the leftmost leaf of T'(q). The
Huffman tree being fixed, the rightmost leaf of T'(¢) is on level K, thus R can serve
as measure for the proximity of the shape of T'(¢) to that of a full binary tree. Define
s by R = s logyn.

Theorem 1. If s > 1.44a, then the difference between the average path length of
the optimal tree and that of the tree obtained from algorithm ROT tends to 0 as
n — 00.

Proof: For technical reasons, we shall use probabilities p; instead of weights w;
(p; = w;/ Z;’:l wj), so that Y p;l; will be the average path length. Let Ly, Lo
and Lp respectively denote the average path length in the (unrestricted) Huffman
tree, the B-restricted optimal tree and the B-restricted tree obtained by Algorithm
ROT. Clearly

Lg < Lo < Lg. (3)

The quantity we wish to bound is Lr — L, but for the given conditions, we show
that even Lp — Ly is small. After the rearrangement of T'(q), some leaves are on a
different level than before. Let C; denote this difference (level in T*(q) — level in
T(q)) for the leaf labelled i. Then

Lp—Lg< Y. pCi (4)
{i:C; >0}

-1 -

The subtree T'(¢) is transformed into a complete binary tree, thus

Ci <logg N(q) = aloggn (5)

holds for any 7. On the other hand, since we assume that all the leaves in T'(q) were
in the Huffman tree on levels > R = s logg n, it follows from Katona & Nemetz [14,
Theorem 1], that p; < 1/Fgyy, where Fj is the j-th Fibonacci number. By [16,
Exercise 1.2.1-4], we get

1\ B-1 b b
pi < (;) - ¢510g2n - n0.694s”’ (6)

where ¢ = (14+/5)/2 is the golden ratio. The number of summands in (4) is clearly
bounded by N(g) = n®. Putting this together, we have

dan® logsn 2 logon
1,0-6045 0-6945—a

Lp—-—Lyg<
which tends to zero when s > 1.44a and n — oo. |

In particular, suppose that T'(¢) is almost the entire tree, say N(¢) = n—C logn
for some constant C (for example if I; =i for 1 <i <logn and B = O(logn)), the
change in the average path length will still be small if R > 1.44logy(n — C'logn).
If T'(q) is only a small subtree, say N(¢) = C'logn, then the difference will tend to
zero even for R > 1.44 (loglogn + log C).

The bounds in Theorem 1 are not very tight. The negative part on the right
hand side of (4), Z{i:0i<0} p;C;, was omitted, and the number of positive sum-

mands can be shown to be at most N(q)/3. In (5), at most 2/~ of the C; can be
logy N(q) — j, for 7 > 1, moreover if one of the C; is logy N(¢q) — 1, then at most
one can be logy N(q) — 2, etc. The upper bound on p; in (6) is an extreme case;
generally, p; will be much smaller. It should also be noted that the imposed new
depth B appears implicitly in the Theorem, since for a fixed Huffman tree of depth
K, N(q) is an increasing function and R a non-increasing function of K — B.

When the conditions of Theorem 1 are not satisfied, this is often due to a
severe restriction on the depth, which causes extended changes in the structure of
the Huffman tree. In such cases, there may be a significant difference between Ly
and Lp. However, our experimental results (see Section 4) suggest that the major
part of this difference must be attributed to Ly — L, whereas L — L is still very
small.

3. Refinements

We shall specify only how to change the [;, since once they are fixed, the
corresponding tree is defined. Obviously, we are restricted to changes in [; which do
not violate (1).

There are many possibilities to improve the algorithm presented in the previous
section. For example, one could further climb upwards in the tree, and not stop at
the first node ¢, which satisfies (2). The subtree T'(q) to be rearranged would then
be larger, but if it is still small enough, one could choose the optimal among all the
possible rearrangements. The number of possible rearrangements can be found in
Table VII of [8]. But even when the smallest subtree T'(q) is chosen, there may be
other possible rearrangements than the complete binary tree. For example, suppose
N(g) = 9; then the complete binary tree of depth 4 would have its leaves on levels
3,...,3,4,4. However, for certain weight distributions, the tree with leaves on levels
1,4,...,4 may be preferable. There is a natural trade-off between the amount of
additional work one is willing to invest and the proximity to the optimum, but our
experiments suggest that mostly, too large an effort cannot be justified. Since our
main concern is the simplicity of the algorithm, we propose only the following two
refinements.

3.1 Smoothing the transition point

Consider the Huffman code corresponding to the unrestricted tree which was
constructed in Step 1b in §2, and write the codewords one below the other, sequen-
tially from the shortest to the longest. Schematically, this column of codewords will
have a more or less trapezoidal form (Figure 4(a)). While rearranging the subtree
T(q), some codewords become longer and others are shortened, so the rearrange-
ment can be interpreted as changing a lower part of the trapezoid into a “rectangle”
(Figure 4(b)).

(a) Huffman tree (b) after bounding (c) after smoothing

Figure 4: Schematic representation of the changes in the tree

Since the codewords which do not belong to T'(q) are not changed, there may
be a great difference between [, () and [, n(4)41, although the corresponding

-9 —

probabilities differ perhaps only slightly. In Figure 4(b) this is symbolized by the
“discontinuity” at the transition point between the rectangle and the trapezoid
above it. Our first refinement will be to try to “smooth the edge”, as depicted in
Figure 4(c), of course only if such a transformation reduces the average codeword
length.

Let m = n — N(q) be the index of the last codeword which is not in T'(q) (the
“lower base” of the trapezoid). The smoothing action will in practice be achieved
by incrementing I, and decrementing the lengths of the first few codewords of the
rectangle. Two cases can occur: lp41 = lyy42, i.e., the two leftmost leaves in T(q)
are on the same level, or l;,1+9 = 41 + 1, because T*(q) is a full binary tree. In
the former case we perform:

I, <« lp+1

lm+1 — Im

Im+2 < lmt2 — 1.
Figures 5(a) and 5(b) show a part of the tree, resp. before and after these changes.
In the latter case, a fourth statement must be added, so as to reestablish the equality
in (1):

lm+3 « lm+3 -1,
which is well-defined, since T*(g) contains at least four leaves (Figures 5(c) and

5(d)).

(a) (b) (c) (d)

Figure 5: Changes in the tree for “smoothing” the transition point

These changes are justified only when

Wy, < (lm—i—l —lm — 1)wm—i—l + wm42 + (lm+2 - lm-l—l)wm—l—?n

where wy,+1 is multiplied by the difference of levels of the leaf m + 1 before and
after the change, and wy, 43 is only added if I, 42 # lj+1-

- 10 —

3.2 Transfer to adjacent blocks

The following refinement is based on the ideas of [8, Theorem 4]. As in the
previous section, we consider that the codewords are written one below the other
in order of non-increasing weights. Let F, denote the block of codewords of length
r, and let ¢(r) and b(r) be resp. the indices of the top and bottom element in E,.
Suppose there are at least two elements in E, and E,_o is not empty. If

Wh(r—2) < Wi(p) T Wi(r)41>

then we can reduce the average codeword length by executing:

lptr—2)y « lpr—2) +1

lt(r) — lt(r) -1

by < by — 1
Let us call this sort of update (operating on elements of different blocks) an update
of Type 1.

Suppose there are at least three elements in E,.. If

Wy(p) > Wh(p)—1 T Wh(r),

then we can reduce the average codeword length by executing:
by 4 by — 1
bhry—1 < lpery—1 +1
lb(r) — lb(r) + 1.
This sort of update (operating on elements of the same block) will be called an

update of Type II. Note that after both types of updates, the equality in (1) is
satisfied.

before after before after
Type I Type II
Figure 6: Schematic representation of updates of Types I and I

Figure 6 shows updates of both types; the current block in each case is indicated
by the boldface lines, the codewords which are transferred are indicated by the
dotted lines.

- 11 -

The question is now in which order these updates should be executed. If we
want to assure a sequence of updates such that at its conclusion no further update
of Type I or II is possible for any block, then we cannot simply process the blocks
E; in a single pass: while executing a Type II update in block E,, codewords are
transferred to blocks both above and below FE,.. These transfers can in turn cause
further updates in both E,_; and E;41, and so on. Therefore, we could for example
start with Ep and proceed bottom-up, passing from E, to E,_1, except when there
was a Type II update in Ej, in which case we return to E,1. Unfortunately, there
are two serious objections to this approach.

First, we have no reasonable bound on the number of steps the algorithm will
execute. Theoretically it is possible that a certain codeword will be passed several
times back and forth between adjacent blocks. We know that the number of updates
is finite, since after each of them, > wj;l; is decreased at least by

min{ z;; = |lw; —wj —w;1] : 1<4d<j<nandz; >0}

But the number of updates can be Q(n?), as for Garey’s algorithm (nevertheless,
the use of the new algorithm can still be justified in certain cases, since the space
complexity is reduced from quadratic to linear).

Secondly, even if all the possible updates were executed, this does not guar-
antee that the optimum is achieved. As example, take the weights to be the first
few Fibonacci numbers, say (wi,...,w14) = (377,244,...,3,2,1,1). The corre-
sponding Huffman code has I; = i for 1 < i < 13 and l;4 = 13. If we impose
a bound B = 6, the lengths vector is changed by the first part of the algorithm
to (1,2,5,5,5,5,6,...,6), with Y~ w;l; = 2777. The smoothing action of §3.1 then
changes the vector to (1,3,3,4,5,5,6,...,6) and reduces) w;l; to 2633. But now,
no block of codewords satisfies the conditions necessary for either type of update,
and on the other side, the minimum of Y w;l; is 2599, which is obtained by the
lengths vector (2,2,3,3,4,4,6,...,6).

The first objection motivated us to design a single pass algorithm for the up-
dates, even at the price of missing some of them; the second objection justified this
approach, since anyhow, even a more sophisticated scanning procedure does not
assure optimality. We now describe informally the procedure for updates of Type I
and IT (the formal algorithm appears in the Appendix).

Process the blocks E, sequentially, starting with » = B and decreasing r after
each iteration. For a given block Ej, try first to execute an update of Type I; if it
succeeded, repeat, until no Type I update is possible any more. Now try Type II
updates (except for r = B, since codewords of length B + 1 are not allowed) and
execute as many as possible. After each update, the limits of the affected blocks
(Ey—2, Er_1 and E, for Type I, E,_1, E, and E, 1 for Type II) are accordingly
redefined. This terminates the current iteration and we pass to E,._1.

Note that if a codeword is lengthened by a Type II update, it is not handled
any more.

- 12 —

In order to bound the time complexity of this procedure, let us consider the
codeword z, corresponding to w; for some fixed 1 < j < n. The codeword x changes
possibly several times its length during the execution of the updates.

Lemma. Immediately after the i-th time the codeword z was shortened in an
update of Type I, the number of codewords above x in the same block is at least

(3/2)" 1.

Proof: By induction on i. For i = 1, suppose z was transferred from E, to
E,._1; there is another element y, which was transferred from FE,_s to the top of
E,_q. Even if E._1 was initially empty and if x was the top element of E,, there
is, after the update, (3/2)° = 1 element above z in E,_1.

Suppose the lemma, is true for ¢, and that after the ¢-th time z is shortened
in a Type I update, = belongs to E, and has R elements above it in this block.
Assume the next Type I shortening transfers z from Ej, to Ej_q, for some h < r.
It follows that the transfers of z from Eg to Egs_1, for h < s < r, were all during
updates of Type II. However, Type II updates process the elements of a block FEj
sequentially from the top downwards, so that if x is transferred to F¢;_1, so were
the elements above x in Es. Therefore the number of elements above z in the
same block, immediately after having transferred z, cannot decrease, and there are
R’ > R elements above z in Ej,. Since x passes from Ej, to Ej,_; during a Type I
update, this is true also for the R’ elements above z, because there is no Type I
update after a Type IT update in the same block. For every pair of elements which
are transferred from Ej, to Ej,_q, there is a third element which is transferred from
Ej,_5 to Ej,_q, and which will also be above x in Ej,_;. Thus the total number of
elements above z in Ej,_1 is at least

3 p! . /-
sR' +1 if R' is even
2 ¥ }>§R’

3
> —
S(RF—=1)+2 if R is odd T2

Theorem 2. The number of steps of the update algorithm is O(nlogn).

Proof: We count the number of updates, since there is a constant amount of
work for each of them. If a codeword z is lengthened in a Type II update, it is
transferred, together with an adjacent codeword, into a block which has already
been handled by the algorithm. Thus the total number of Type II updates cannot
exceed n/2. From the lemma we know that the number of times the i-th codeword
can be shortened in a Type I update is at most L10g3/2 i] + 1, thus an upper bound
on the total number of Type I updates is n+ Y ;= [logg /2 i] = O(nlogn). |

Theorem 2 provides an upper bound for a theoretical worst case distribution;
actually the total number of updates never exceeded 0.4 n in all our experiments.

- 13 —

One could ask why we have chosen a bottom-up scan, from the longest code-
words to the shorter ones. Alternatively, a top-down scan would start with the block
of shortest codewords, and proceed to the longer ones. The definition of a Type I
update must then be changed to act on the bottom element of E, and the two top
elements of E, 2, instead of the two top elements of E, and the bottom element
of E,_2. When only a small part of the tree is rearranged, there are no possible
updates in the upper blocks, since these are identical to the blocks in the Huffman
code, for which the codewords have optimal lengths. Thus a top-down scan yields
updates only in the last few blocks, if at all. On the other hand, a bottom-up scan
starts precisely at the blocks which are different from the corresponding blocks in
the Huffman code, and by updates of Type I, the changes can propagate also to
blocks above those of the reorganized subtree.

Another question may be why for a given block, the updates of Type I precede
those of Type II. In a Type II update, two elements of the current block are trans-
ferred to a block with higher index, to which the algorithm will not return any more.
Thus even if this transfer possibly allows another update, it will not be done. On
the other hand, all the elements transferred in an update of Type I belong to blocks
which are going to be handled later. Therefore, when coming to reduce the num-
ber of updates we are possibly missing, we try to minimize the number of Type II
updates. Clearly, every Type I update executed from FE, decreases the chance that
there will be afterward a Type II update in E,.

We have implemented both the bottom-up and the top-down approaches. As
expected, the former gave generally better results, even though there were some
rare exceptions. We have also experimented with non-sequential scans, returning to
previously visited blocks if they were changed by updates in the current block. For
this variant, the difference between top-down and bottom-up was even smaller, and
in any case, the total number of updates was smaller than 0.6 n.

4. Examples and Experimental Results

The new method significantly improves the time and space complexities of the
optimal algorithms, but its usefulness in many practical applications depends on
the actual loss in compression efficiency. There is however a problem in choosing an
adequate model for a “typical” probability distribution. Lacking any other informa-
tion, one often assumes a uniform probability distribution, but the corresponding
Huffman code is of fixed length, so that the problem addressed in this work is not
relevant. Another well-known distribution is Zipf’s law, defined by the weights
w; = Hyp/i, for 1 < i < n, where Hy, = Z;’:l(l/j) is the n-th harmonic number.
This law is believed to govern the distribution of the most common words in a large
natural language text. The corresponding Huffman tree is not very skew, because
there are no great differences between the smallest weights. For example, the depth
K of the Huffman tree for Zipf’s law with n = 100 and n = 200 is respectively 9 and
10. Imposing as bound B = K — 1, the relative increase of the average codeword

,14,

length when using the new algorithm instead of the optimal one is of 0.06% for
n = 100 and of 0.03% for n = 200. For B = K — 2 (which is the minimal possible
depth on these examples), the corresponding results are 0.74% and 1.42%.

Even though these figures can be considered as close to optimal, we feel that
Zipf’s law is not a representative example of a distribution on which one wishes to
apply an algorithm for bounding the depth of a tree. Indeed, when there are many
nodes on the lowest level as in this case, there can be a significant difference between
the B-restricted and the non-restricted optimal trees, even when B is close to K.
A more typical application would be a case where B is chosen by some technical
constraint which is independent of K, and for which there is only a small number of
nodes on levels > B; e.g., if one wishes to store the list of codewords in a table, it
may be desirable to fit every codeword in one or two bytes. At the other end of the
spectrum, the bound B = [logy n] will seldom be requested. The main reason for
using variable length codes, in spite of their complicated processing, is their reduced
storage requirements. Generally, this advantage is almost lost with such a bound,
so one will rarely prefer this alternative to the simple and almost as efficient fixed
length code.

We have therefore decided to test the compression efficiency of the new method
empirically on various “real-life” weight distributions, similarly to Knuth [17], who
checked his dynamic Huffman coding algorithm on, e.g., a file of Grimm’s Fairy
Tales. For any given set of n weights, the Huffman tree was built, with depth K.
Using then Garey’s algorithm, the optimal B-restricted trees were constructed for
all possible values of B, [loggn] < B < K — 1. Finally the optimal trees were
compared first with the trees obtained by the ROT Algorithm of §2, then with the
improved trees based on the refinements of §3.

The first class of sets of weights consists of probability distributions of the
characters of the alphabet for various natural languages. The distribution of the
26 letters of English is in Heaps [10]; the distribution of the 29 letters of Finnish is
from Pesonen [19]; the distribution for French (including blank) is from Brunet [2];
for German, the distribution of 30 letters (including blank and Umlaute) is given
in Bauer & Goos [1]; for Hebrew (30 letters including two kinds of apostrophes
and blank), we have computed the distribution using the database of the Responsa
Retrieval Project (see for example Fraenkel [4]) of about 40 million Hebrew and Ara-
maic words; the distribution for Italian (26 letters) can be found in Gaines [6], and
for Russian (32 letters) in Herdan [11]. The results for this first set are summarized
in Table 1.

- 15 —

Statistics 5 6 7 8 9 10 11 12 13 14
. 4.1852 opt 0.01 030 opt opt
English 10 opt 0.01 opt opt opt
Finnish 4.0449 opt 096 1.69 0.70 0.45 0.18 0.12 0.01 opt 0.00
15 opt opt opt opt opt opt 0.02 opt opt opt
3.9708 1.61 1.14 opt 0.12 0.04 0.03
French 11 opt opt opt opt 0.03 opt
German 4.1479 opt 044 0.71 0.12 0.15 0.01 opt
12 opt 0.14 0.11 opt 0.07 0.01 opt
4.2851 opt opt 0.01 opt
Hebrew 9 opt opt opt opt
. 4.0000 opt 1.06 048 0.21 opt opt
Italian 11 opt 003 000 0.17 opt opt
Russian 4.4480 0.42 0.11 0.04
9 0.09 opt opt

Table 1: Experimental results — Distribution of letters in natural languages

The first column contains statistical information for each language: the average
length of a codeword for the unrestricted Huffman tree and below the natural depth
of this tree. The following columns correspond each to another value of the bound
B, which appears in the header line. For each language and each column, two
values are listed: the upper one is the relative increase (in percent) of the average
codeword length when the ROT Algorithm of §2 is used instead of Garey’s optimal
algorithm, i.e., using the notation of Theorem 1: (Lr/Lp — 1) x 100. The number
listed below is the corresponding result when the improved algorithm of §3 is used.
When the optimum is reached, this is indicated by the letters opt, hence if an entry
contains 0.00, this means that the algorithm is sub-optimal, but that the deviation
from the minimum is smaller than 0.005%. These explanations apply also to the
two following tables.

The second class of weight distributions included larger sets: the distribution
of bigrams in English and Hebrew. For English, the probabilities given in [10] are of
low precision (10*4), therefore the number of character-pairs which have “non-zero”
probability is only 378; for Hebrew, we have computed the distribution with high
precision (10_10) and got 743 pairs with non-zero probability. Table 2 summarizes
the experiments on the bigrams.

— 16 —

Statistics 9 10 11 12 13 1/ 15
Enelish 7.6085 2.82 1.25 0.05 0.03
g 13 0.00 0.01 0.03 0.00
Hebrew 8.0370 6.54 1.44 0.23 0.06 0.09 0.01
23 0.25 0.03 0.04 0.01 0.00 0.00
16 17 18 19 20 21 22
Hebrew con’t 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2: Experimental results — Distribution of bigrams

In order to test distributions of another kind, we have computed the frequency
of appearance of different symbols in 5762 source lines of PLI programs. The num-
ber of different characters was 59, but more than 2/3 of this file consisted of blanks.
Therefore we have also evaluated the distribution of a similar file, for which leading
and trailing blanks in each record were omitted. The first line of Table 3, headed
PLI+, corresponds to the distribution with leading and trailing blanks, the sec-
ond line, headed PLI—, corresponds to the distribution after having omitted these
blanks.

In the following method for the compression of sparse bit-vectors, Huffman
coding is applied to items of a completely different nature: first the given vectors are
partitioned into bytes (8-bit blocks), then statistics are collected on the frequency of
appearance of the elements of a set .S, consisting of the 255 possible non-zero bytes
to which ¢ elements {ag,...,a;—1} have been adjoined; the latter represent the first
t basis elements of a numeration system, e.g., {1,2,4,8,...} for the standard binary
numeration system. The idea is to consider the length k of each run of 0-bytes,
and to “decompose” k uniquely as a linear combination of the basis elements a;.
Finally, Huffman codes are assigned to the elements of S; to the different non-
zero bytes correspond different codewords, and every run of 0-bytes is encoded by
the codewords of the corresponding basis elements. The set of basis elements is a
parameter; various choices are suggested in [5], where this method is described in
more detail.

— 17 -

Statistics 6 7 8 9 10 11 12 13 1§ 15
priy | 26757 141 opt 0.60 0.38 0.04 0.06 001 000 opt 0.00
16 opt opt opt 0.08 0.04 0.02 0.01 0.00 opt 0.00
PLI 48518 | 234 059 080 0.1 0.07 0.02 00l opt opt
15 opt 0.59 opt opt 0.00 0.00 0.00 opt opt
4.6992 51.6 813 1.12 0.06 opt
POW2 14 13.8 440 091 002 opt
5.0513 430 251 1.09 0.03 opt
FIB2 14 9.70 3.87 077 003 opt

Table 3: Experimental results — PLI and compression of bit-vectors

For the present application, we have chosen the standard binary numeration
system (third line of Table 3, headed POW?2) and the binary Fibonacci numeration
system (see [16], Exercise 1.2.8-34), the basis elements of which are Fibonacci num-
bers (fourth line of Table 3, headed FIB2). The statistics were collected from 56588
bit-vectors of 42272 bits each, which were constructed at the Responsa Project: each
vector serves as an “occurrence map” for a different word, the bit-position referring
to the number of the document, where the value at position i is 1 if and only if the
given word appears in the i-th document.

The experiments show that actually the optimal value is often reached, and in
the great majority of the cases, the deviation from the optimum is smaller than 1%.
The rare exceptions are usually when the bound B has its minimal possible value,
but, as was pointed out earlier, in this case one will rather use a fixed length code.
Therefore the method presented herein is an attractive alternative in situations
where n is large (so that the optimal method is not only very time-consuming, but
often even not feasible, because of the quadratic space complexity), and B is close
to the natural depth of the Huffman tree — a case for which the optimal algorithm
takes its longest time. For example, due to the space requirements, we could run
Garey’s algorithm on the Hebrew bigrams only by night and batch; choosing B = 17,
the job took about 18 minutes of CPU on our IBM 3081. On the other hand, using
our sub-optimal method we got in a few seconds, on-line, a result which exceeded
the optimal one only by 0.00007%.

— 18 —

APPENDIX

We bring here the formal description of the Algorithm ROT for bounding the
depth of a binary tree. The algorithm will be presented in an Algol-like language that
uses “fi” and “od” to close “if” and “do”. For the second refinement, a bottom-
up single scan is executed. However, the statements necessary to execute a non-
sequential scan (returning to a block already handled if it was touched by the last
update), are added as comments into boxes with heading: For non-sequential scan.

The data structures involved are:

1. an extended binary tree; each node ¢ has the following fields: left(q), right(q)
and N(q), storing resp. a pointer to the left son, a pointer to the right son
and the number of leaves in the subtree rooted at q.

2. astack ST as in [16], the statements ST < p and p <= ST are used resp. for
“push p into the stack ST” and “pop the top element from ST and put it
into p”.

3. two auxiliary vectors t(r) and b(r), 0 < r < n, containing the index of the
top, resp. bottom, element of E,, the block of codewords of length r. If
E, =0, then #(r) = b(r) = 0.

- 19 —

For a given set of integers I; such that 22*” = 1, the following procedure
BUILD(q, level) constructs a “canonical” tree rooted at ¢, which is on level level,
and having its leaves on levels ;. The procedure uses the global variable i, the
index to the next element in the sequence ;.

The function new allocates a new node, the function free returns unneded nodes
to the pool of available space, and A stands for the null-pointer.

procedure BUILD(g, level)
if level =1; then
left(q) « right(q) + A
N(g) <1
ti+1
else
L + new
left(q) + L
call BUILD(L, level +1)
R < new
right(q) + R
call BUILD(R, level + 1)
N(q) « N(L) + N(R)
fi
end BUILD

ALGORITHM ROT

begin
head + new
11
call BUILD(head , 0)

Push the nodes on the path from the root to (but not including) the rightmost
leaf into the stack ST.

p + head
level + 0
repeat
level < level + 1
ST <p
p « right(p)
until right(p) = A

p now points to the rightmost leaf; level is the depth of the tree, and the
top element in ST is the father of p.

- 20 —

if

level > B then
repeat
level < level — 1
q< ST
until N(q) < 2% *(B — level)

Here, ¢ points to the root of the subtree which will be reorganized;
first update the lengths, then the procedure BUILD can be invoked.

i<n—N(q+1

for j+<i to i—N(qQ+2x%(B—level)—1 do
j«<B-1 od

for j<+ i—N(q) +2*x(B—level) to n do
lj +«~ B od

call BUILD(q, level)

First refinement: Smoothing the transition point
i is the index of the leftmost leaf of T%(gq), the reorganized subtree;
changed is a Boolean variable indicating if the current tree will be
changed.

changed + false
if (i>1) and (l;_1<!;—2) and
(wi,l < (U=l = 1) xw; +wjpq + (Lipr — 1) X w2~+2) then
if lj1#l then [9+ j40—1 £
i1+, 1+1
li — li—l
li-i—l < li—i—l -1
changed + true
fi

Second refinement: Transfer to adjacent blocks
First, the vectors #(r) and b(r) are initialized.

for r+~0 to n do
t(r) < b(r) <0 od

j«0

for r+~1 to n do
if I[.#j then

b(j) «+r—1
Jlr
t(j) < r
fi
od
b(lp) < n

- 921 —

Execute now a bootom-up scan over the blocks, trying first updates of
Type I; the Boolean variable succeding serves to control the loop of
updates.

for r+~ B to 2 step -1 do
succeding <+ true
while succeding do
succeding + false
if (b(r—2)>0) and (b(r) >t¢(r)) and
(wh(r—2) < W) + wy(ry41) then
succeding < true
changed + true

Update of lengths

lpr—2) < lpr—2) +1
lt(r) — lt(r) -1

ligry+1 < Dy =1

Update of vectors t(r) and b(r)

(r « b(r —)
(r « t(r) +
(r — b(r - 2)
«— t(r) +
if t(r—2)> b(r —2) then
t(r—2) < br—2)«0 fi
if ¢(r) >b(r) then (r) <« b(r)<«0 fi

_1)

_1)

_2)
—t

~

fi
od [end of loop for Type I updates |

Now try updates of Type II, but not for r = B.
For non-sequential scan:
changed?2 is a Boolean variable, indicating if there will be any
change due to Type II updates.
changed?2 < false

succeding < true
while succeding do
succeding <+ false
if (r<B) and (b(r)—1>t(r)) and
(wy(r) > Wp(r)—1 + Wp(r)) ~ then
succeding < true

— 29 —

changed + true

Update of lengths
For non-sequential scan:
changed2 < true

lt(r) — lt(r) -1
lpry—1 < lpry—1 +1
lb(T‘) «— lb(T) +1

‘ Update of vectors #(r) and b(r)

b(r — 1) < t(r)
t(r) « t(r) +1
b(r) «+ b(r) — 2

if t(r—1)=0 then [block E,_; was empty |
t(r—1) « b(r—1) fi

if t(r) > b(r) then [block E, became now empty]|

t(r) < b(r) <0 fi

For non-sequential scan:
t(r+1) «b(r)—1
if b(r+1)=0 then [block E,; was empty]
br+1) «tr+1)+1 £

fi
od [end of loop for Type IT updates |

For non-sequential scan:
if changed2 then r <+ r—2 fi

od [end of second refinement]

The vector of lengths being updated, the procedure BUILD will be in-
voked again if there is any change, after having freed the space occupied
by the Huffman tree.

if changed then
free space of the tree
head + new
141
call BUILD(head, 0)
fi
fi [end of bounding the depth]
end [of Algorithm ROT]

- 23 —

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

Bauer F.L., Goos G., Informatik, Eine einfiihrende Ubersicht, Erster Teil,
Springer Verlag, Berlin (1973).

Brunet E., Le Vocabulaire de Jean Giraudouxr — Structure et Fuvolution,
Editions Slatkine, Geneve (1978).

Choueka Y., Klein S.T., Perl Y., Efficient variants of Huffman codes in
high level languages, Proc. 8-th ACM-SIGIR Conf., Montreal (1985) 122-130.

Fraenkel A.S., All about the Responsa Retrieval Project you always wanted
to know but were afraid to ask, expanded summary, Jurimetrics J. 16 (1976)
149-156.

Fraenkel A.S., Klein S.T., Novel compression of sparse bit-strings —
preliminary report, Combinatorial Algorithms on Words, NATO ASI Series
Vol F12, Springer Verlag, Berlin (1985) 169-183.

Gaines H.F., Cryptanalysis, A Study of Ciphers and their solution, Dover
Publ. Inc., New York (1956).

Garey M.R., Optimal binary search trees with restricted maximal depth,
SIAM J. of Comp. 3 (1974) 101-110.

Gilbert E.N., Codes based on inaccurate source probabilities, IEEE Trans.
on Inf. Th. IT-17 (1971) 304-314.

Gilbert E.N., Moore E.F., Variable-length binary encodings, The Bell
System Technical Journal 38 (1959) 933-968.

Heaps P., Information Retrieval, Computational and Theoretical Aspects,
Academic Press (1978).

Herdan G., The Advanced Theory of Language as Choice and Chance,
Springer-Verlag, New York (1966).

—- 2} -

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Hu T.C., Tan K.C., Path length of binary search trees, SIAM J. of Appl.
Math. 22 (1972) 225-234.

Huffman D., A method for the construction of minimum redundancy codes,
Proc. of the IRE 40 (1952) 1098-1101.

Katona G.0O.H., Nemetz T.0O.H., Huffman codes and self-information,
IEEE Trans. on Inf. Th. IT—22 (1976) 337-340.

Knuth D.E., Optimum binary search trees, Acta Informatica 1 (1971) 14—
25.

Knuth D.E., The Art of Computer Programming, Vol I, Fundamental al-
gorithms, Addison-Wesley, Reading, Mass. (1973).

Knuth D.E., Dynamic Huffman coding, J. of Algorithms 6 (1985) 163-180.

McMillan B., Two inequalities implied by unique decipherability, IRF
Trans. on Inf. Th. IT—-2 (1956) 115-116.

Pesonen J., Word inflexions and their letter and syllable structure in
Finnish newspaper text, Research Rep. 6/1971, Dept. of Special Education,
University of Jyraskyld, Finland (in Finnish, with English summary).

Schwartz E.S., Kallik B., Generating a canonical prefix encoding, Comm.
of the ACM 7 (1964) 166-169.

Van Leeuwen J., On the construction of Huffman trees, Proc. of the 3"¢
ICALP Conf., Edinburgh University Press (1976) 382-410.

Van Voorhis D.C., Constructing codes with bounded codeword lengths,
IEEE Trans. on Inf. Th. IT—20 (1974) 288-290.

— 25 —

