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Techniques and Applicationsof Data Compressionin Information Retrieval Systems1. INTRODUCTIONAs can be seen from the title, we shall concentrate on techniques that are at the crossroadof two disciplines: Data Compression (DC) and Information Retrieval (IR). Each of theseencompass a large body of knowledge that has evolved over the last decades, each with its ownphilosophy and its own scienti�c community. Nevertheless, their intersection is particularlyinteresting, the various �les of large full-text IR systems providing a natural testbed for newcompression methods, and DC enabling the proliferation of improved retrieval algorithms.A chapter about data compression in a book published at the beginning of the twenty �rstcentury might at a �rst glance seem anachronistic. Critics will say that storage space is gettingcheaper every day, tomorrow it will be almost given for free, so who needs complicated methodsto save a few bytes: : :. What these critics overlook, is that for data storage, supply drivesdemand: our appetite for getting ever increasing amounts of data into electronic storage growsjust as steadily as does the standard size of the hard disk in our current personal computer.Most users know that whatever the size of their disks, they will �ll up sooner or later, andgenerally sooner than they wish.However, there are also other bene�ts to be gained from data compression, beyond thereduction of storage space. One of the bottlenecks of our computing systems is still theslow data transfer from external storage devices. Similarly, for communication applications,the problem is not to store the data but rather to squeeze it through some channel. Butmany users are competing for the same limited bandwidth, e�ectively reducing the amountof data that can be transferred in a given time span. Here, DC may help reduce the numberof I/O operations to and from secondary memory, and for communication it reduces theactual amount of data that has to pass through the channel. The additional time spent oncompression and decompression is generally largely compensated for by the savings in transfertime.For these reasons, research in DC is not dying out, but just the opposite is true, asevidenced by the recent spurt of literature in this area. An international Data CompressionConference convenes annually since 1990, and many journals, including even popular ones suchas Byte, Dr. Dobbs, IEEE Spectrum, Datamation, PC Magazine and others, have repeatedlypublished articles on compression recently.It is true that a large part of the research concentrates on image compression. Indeed,pictorial data is storage voracious so that the expected pro�t of e�cient compression is sub-stantial. The techniques generally applied to images belong to the class of lossy compression,because they concentrate on how to throw away part of the data, without too much changingits general appearance. For instance, most humans do not really see any di�erence betweena picture coded with 24 bits per pixel, allowing more than 16 million colors, and the samepicture recoded with 12 bits per pixel, giving \only" about 4000 di�erent color shades. Of4



course, most image compression techniques are much more sophisticated, but we shall notdeal with them in the present survey. The interested reader is referred to the large literatureon lossy compression, e.g. [1].Information Retrieval is concerned, on the one hand, with procedures to help a user satisfyhis information needs by facilitating his access to large amounts of data, on the other hand,with techniques to evaluate his (dis)satisfaction with whatever data the system provided. Weshall concentrate primarily on the algorithmic aspects of IR. A functional full-text retrievalsystem is constituted of a large variety of �les, most of which can and should be compressed.Some of the methods described below are of general applicability, and some are speciallydesigned for an IR environment.Full-text information retrieval systems may be partitioned according to the level of speci-�city supported by their queries. For example, in a system operating at the document-level,queries can be formulated as to the presence of certain keywords in each document of thedatabase, but not as to their exact locations within the document. Similarly, one can de�nethe paragraph-level and sentence-level, each of which is a re�nement of its predecessor. Thehighest speci�city level is the word-level, in which the requirement is that the keywords appearwithin speci�ed distances of each other. With such a speci�city level, one could retrieve allthe occurrences of A and B such that there are at least two but at most �ve words betweenthem. In the same way, the paragraph and sentence-levels permit also appropriate distanceconstraints, e.g., at the sentence-level one could ask for all the occurrences of A and B in thesame or adjacent sentences.Formally, a typical query consists of an optional level-indicator, m keywords and m � 1distance constraints, as inlevel : A1 (l1; u1)A2 (l2; u2) � � � Am�1 (lm�1; um�1)Am: (1:1)The li and ui are (positive or negative) integers satisfying li � ui for 1 � i < m, with thecouple (li; ui) imposing a lower and upper limit on the distance from Ai to Ai+1. Negativedistance means that Ai+1 may appear before Ai in the text. The distance is measured inwords, sentences or paragraphs, as prescribed by the level-indicator. In case the latter isomitted, word-level is assumed; in this case, constraints of the form A (1; 1)B (meaning thatA should be followed immediately by B), are omitted. Also, if the query is on the documentlevel, then the distances are meaningless and should be omitted (the query degenerates theninto a conjunction of the occurrences of all the keywords in the query).In its simplest form, the keyword Ai is a single word or a (usually very small) set of wordsgiven explicitly by the user. In more complex cases a keyword Ai in (1.1) will represent aset of words Ai = Snij=1Aij , all of which are considered synonymous to Ai in the context ofthe given query. For example, a variable-length-don't-care-character � can be used, whichstands for an arbitrary, possibly empty, string. This allows the use of pre�x, su�x and in�xtruncation in the query. Thus Ai could be comput�, representing, among others, the wordscomputer, computing, computerize, etc.; or it could be �mycin, which retrieves a large classof antibiotics; in�x truncation also can be useful for spelling foreign names, such as Ba�tyar,where � could be matched by h, k, kh, ch, sh, sch, etc.Another possibility for getting the variants of a keyword is from the use of a thesaurus(month representing January, February, etc.), or from some morphological processing (do5



representing does, did, done, etc.). Although these grammatical variants can be easily gen-erated in some languages with simple morphology like English, sophisticated linguistic toolsare needed for languages such as Hebrew, Arabic and many others. One of the derivatives ofthe 2-character word daughter in Hebrew, for example, is a 10-character string meaning andwhen our daughters, and it shares only one common letter with its original stem; a similarphenomenon occurs in French with the verb faire, for example.For all these cases, the families Ai are constructed in a preprocessing stage. Algorithms forgenerating the families identi�ed by truncated terms can be found in [2], and for the familiesof grammatical variants in [3].This general de�nition of a query with distance constraints allows great exibility in theformulation of the query. For example: the query solving (1,3) differential equationswillretrieve sentences containing solving differential equations, as well as solving thesedifferential equations and solving the required differential equations, but notsolving these systems of differential equations. The query true (-2,2) false canbe used to retrieve the phrases true or false and false or true; since these words appearfrequently in some mathematical texts, searching for true and false in the same sentencecould generate noise. A lower bound greater than 1 in the distance operators is needed forexample when one wishes to locate phrases in which some words X1; X2; : : : appear, but thejuxtaposition of these words X1X2 � � � forms an idiomatic expression which we do not wishto retrieve. For example, : : :the security of the council members assembled here: : :should be retrieved by the query security (2,4) council. Note however that (1) implies thatone can impose distance constraints only on adjacent keywords. In the query A (1,5) B (2,7)C, the pair (2,7) refers to the distance from B to C. If we wish to impose positive bounds onthe distances from A to both B and C, this can be done by using negative distances: C (-7,-2)A (1,5) B, but this procedure cannot be generalized to tying more than two keywords to A.A well-known problem in retrieval systems is the handling of \negative" keywords, i.e.,words the absence of which, in a speci�ed distance from a speci�ed context, is required. Anegation operator (represented here by the minus sign �) is particularly useful for excludingknown homonyms so as to increase precision. For example, searching for references to theformer US President, one could submit the query Reagan (-2,1) �Donald. Another interestingexample would be to use the constraints (li; ui) = (0; 0) in order to restrict some large familiesof keywords, as in the example comput� (0,0) �computer�, which would retrieve computing,computation, etc, but not computer or computers. The general de�nition of a query asgiven in (1.1) should therefore include the possibility of negating some | but not all | ofthe keywords while specifying their appropriate distance constraints.Queries of type (1.1) can be of course further combined by the Boolean operators of AND,OR and NOT, but we shall restrict our attention here to queries of type (1.1), since theyare quite common on one hand, and on the other hand their e�cient processing is anyway aprerequisite to the e�cient processing of the more complicated ones.At the end of the search process, the solutions are presented to the user in the form ofa list of the identifying numbers or the titles of the documents that contain at least onesolution, possibly together with the text of the sentence (or the paragraph), in which thissolution occurs. The exact details of the display depend on the speci�c system, on the target6



population and on the human-interface design of the system.The way to process such queries depends on the size of the database. When the size of thetext is small, say up to a few hundred Kbytes, the problem of e�ciently accessing the datacan generally be solved by some brute-force method that scans the whole text in reasonabletime. Such a method is commonly used in text-editors. At the other extreme, for very largedatabases spanning hundreds of Mbytes, a complete scan is not feasible. The usual approachin that case is to use so-called inverted �les.Every occurrence of every word in the database can be uniquely characterized by a se-quence of numbers that give its exact position in the text; typically, in a word-level retrievalsystem, such a sequence would consist of the document-number, the paragraph number (in thedocument), the sentence number (in the paragraph), and the word number (in the sentence).These are the coordinates of the occurrence. For every word W , let C(W ) be the ordered listof the coordinates of all its occurrences in the text. The problem of processing a query oftype (1) consists then, in its most general form, of �nding all the m-tuples (a1; : : : ; am) ofcoordinates satisfying8i 2 f1; : : : ;mg 9j 2 f1; : : : ; nig with ai 2 C(Aij)and li � d(ai; ai+1) � ui for 1 � i < m;where d(x; y) denotes the distance from x to y on the given level. Every m-tuple satisfyingthese two equations is called a solution.In the inverted �les approach, processing (1.1) does not involve directly the original text�les, but rather the auxiliary dictionary and concordance �les. The concordance contains,for each distinct word W in the database, the ordered list C(W ) of all its coordinates inthe text; it is accessed via the dictionary that contains for every such word a pointer to thecorresponding list in the concordance. For each keyword Ai in (1.1) and its attached variantsAij, the lists C(Aij) are fetched from the concordance and merged to form the combined listC(Ai). Beginning now with A1 and A2, the two lists C(A1) and C(A2) are compared, and theset of all pairs of coordinates (a1; a2) that satisfy the given distance constraints (l1; u1) at theappropriate level is constructed. (Note that a unique a1 can satisfy the requirements withdi�erent a2, and vice-versa). C(A2) is now purged from the irrelevant coordinates, and theprocedure is repeated with A2 and A3, resulting in the set f(a1; a2; a3)g of partial solutions of(1.1). Finally, when the last keyword Am is processed in this way, we have the required set ofsolutions.Note that it is not really necessary to always begin the processing with the �rst givenkeyword A1 in (1.1), going all the way in a left-to-right mode. In some cases, it might be moree�cient to begin it with a di�erent keyword Aj, and to proceed with the other keywords insome speci�ed order.The main drawback of the inverted �les approach is its huge overhead: the size of the con-cordance is comparable to that of the text itself and sometimes larger. For the intermediaterange, a popular technique is based on assigning signatures to text fragments and to indi-vidual words. The signatures are then transformed into a set of bitmaps, on which Boolean7



operations, induced by the structure of the query, are performed. The idea is �rst to e�ec-tively reduce the size of the database by removing from consideration segments that cannotpossibly satisfy the request, then to use pattern matching techniques to process the query, butonly over the|hopefully small|remaining part of the database [4]. For systems supportingretrieval only at the document level, a di�erent approach to query processing might be useful.The idea is to replace the concordance of a system with ` documents by a set of bit-maps of�xed length `. Given some �xed ordering of the documents, a bit-map B(W ) is constructedfor every distinct word W of the database, where the i-th bit of B(W ) is 1 if W occurs inthe i-th document, and is 0 otherwise. Processing queries then reduces to performing logicalOR/AND operations on binary sequences, which is easily done on most machines, instead ofmerge/collate operations on more general sequences. Davis & Lin [5] were apparently the �rstto propose the use of bit-maps for secondary key retrieval. It would be wasteful to store thebit-maps in their original form, since they are usually very sparse (the great majority of thewords appear in very few documents), and we shall review various methods for the compres-sion of such large sparse bit-vectors. However, the concordance can be dropped only if allthe information we need is kept in the bit-maps. Hence, if we wish to extend this approachto systems supporting queries also at the paragraph, sentence or word-level, the length ofeach map must equal the number of paragraphs, sentences or words respectively, a clearlyinfeasible scheme for large systems. Moreover, the processing of distance constraints is hardto implement with such a data structure.In [6], a method is presented in which, basically, the concordance and bit-map approachesare combined. At the cost of marginally expanding the inverted-�les' structure, compressedbit-maps are added to the system; these maps give partial information on the location of thedi�erent words in the text and their distribution. This approach is described in more detailin Section 5.Most of the techniques below were tested on two real-life full-text information retrievalsystems, both using the inverted �les approach. The one is the Tr�esor de la Langue Fran�caise(TLF) [7], a database of 680 MB of French language texts (112 million words) made up ofa variety of complete documents including novels, short stories, poetry and essays, by manydi�erent authors. The bulk of the texts are from the 17th through 20th centuries, althoughsmaller databases include texts from the 16th century and earlier. The other system is theResponsa Retrieval Project (RRP) [8], 350 MB of Hebrew and Aramaic texts (60 millionwords) written over the past ten centuries. For the sake of conciseness, detailed experimentalresults have been omitted throughout.Table 1.1 shows roughly what one can expect from applying compression methods to thevarious �les of a full-text retrieval system. The numbers correspond to TLF. Various smallerauxiliary �les are not mentioned here, including grammatical �les, thesauri, etc.For the given example, the overall size of the system, which was close to two Gigabytes,could be reduced to �t onto a single CD-Rom.The organization of this chapter is as follows. The subsequent sections consider, in turn,compression techniques for the �le types mentioned above, namely, the text, dictionaries,concordances and bitmaps. For text compression, we �rst shortly review some backgroundmaterial. While concentrating on Hu�man coding and related techniques, arithmetic coding8



Table 1.1: Files in a full-text systemFile full size compressed size compressionText 700 MB 245 MB 65%Dictionary 30 MB 18 MB 40%Concordance 400 MB 240 MB 40%Bitmaps 800 MB 40 MB 95%Total 543 MB
and dictionary based text compression are also mentioned. For Hu�man coding, we focus inparticular on techniques allowing fast decoding, since decoding is more important than encod-ing in an Information Retrieval environment. For dictionary and concordance compression thepre�x omission method and various variants are suggested. Finally, we describe the usefulnessof bitmaps for the enhancement of IR systems and then show how these large structures mayin fact be stored quite e�ciently.The choice of the methods to be described is not meant to be exhaustive. It is a blendof techniques which reect the personal taste of the author rather than some well establishedcore curriculum in Information Retrieval and Data Compression. The interested reader will�nd pointers to further details in the appended references.2. TEXT COMPRESSIONWe are primarily concerned with information retrieval, therefore this section will be devotedto text compression, as the text is still the heart of any large full-text IR system. We refer totext written in some natural language, using a �xed set of letters called an alphabet. It shouldhowever be noted that the methods below are not restricted to textual data alone, and are infact applicable to any kind of �le. For the ease of discourse, we shall still refer to texts andcharacters, but these terms should not be understood in their restrictive sense.Whatever text of other �le we wish to store, our computers insist on talking only binary,which forces us to transform the data using some binary encoding . The resulting set ofelements, called codewords , each corresponding to one of the characters of the alphabet, iscalled a code. The most popular and easy to use codes are �xed length codes, for which all thecodewords consist of the same number of bits. One of the best known �xed length codes isthe American Standard Code for Information Interchange (ASCII), for which each codewordis one byte (eight bits) long, providing for the encoding of 28 = 256 di�erent elements.A �xed length code has many advantages, most obviously, the encoding and decoding9



processes are straightforward. Encoding is performed by concatenating the codewords corre-sponding to the characters of the message, decoding is done by breaking the encoded stringinto blocks of the given size, and then using a decoding table to translate the codewords backinto the characters they represent. For example, the ASCII representation of the word Textis 01010100011001010111100001110100;which can be broken into01010100 01100101 01111000 01110100:From the compression point of view, such a code may be wasteful. A �rst attempt toreduce the space of an ASCII encoding is to note that if the actual character set used is of sizen, only dlog2 ne bits are needed for each codeword. Therefore a text using only the 26 lettersof the English alphabet (plus up to six special characters, such as space, period, comma, etc.)could be encoded using just �ve bits per codeword, saving already 37.5%. But even for largeralphabets an improvement is possible if the frequency of occurrence of the di�erent charactersis taken into account.As is well-known, not all the letters appear with the same probability in natural languagetexts. For English, E, T and A are the most frequent, appearing about 12%, 10% and 8%respectively, while J, Q and Z occur each with probability less than 0.1%. Similar phenomenacan be noted in other languages. The skewness of the frequency distributions can be exploitedif one is ready to abandon the convenience of �xed length codes, and trade processing ease forbetter compression by allowing the codewords to have variable length. It is then easy to seethat one may gain by assigning shorter codewords to the more frequent characters, even atthe price of encoding the rare characters by longer strings, as long as the average codewordlength is reduced. Encoding is just as simple as with �xed length codes and still consists inconcatenating the codeword strings. There are however a few technical problems concerningthe decoding that have to be dealt with.A code has been de�ned above as a set of codewords, which are binary strings. Butnot every set of strings gives a useful code. Consider, for example, the four codewords incolumn (a) of Figure 2.1 If a string of 0's is given, it is easily recognized as a sequence of A's.Similarly, the string 010101 can only be parsed as BBB. However, the string 010110 has twopossible interpretations: 0 1011 0 = ADA, or 01 0 110 = BAC. This situation is intolerable,because it violates our basic premiss of reversibility of the encoding process. We shall thusrestrict attention to codes for which every binary string obtained by concatenating codewordscan be parsed only in one way, namely into the original sequence of codewords. Such codesare called uniquely decipherable (UD).At �rst sight, it seems di�cult to decide whether a code is UD or not, because in�nitelymany potential concatenations have to be checked. Nevertheless, e�cient algorithms solvingthe problem do exist [9]. A necessary, albeit not su�cient, condition for a code to be UD is thatits codewords should not be too short. A precise condition has been found by MacMillan [10]:any binary UD code with codewords lengths f`1; : : : ; `ng satis�esnXi=1 2�`i � 1: (2:1)10



A 0 A 11 A 11 A 1B 01 B 110 B 011 B 00C 110 C 1100 C 0011 C 010D 1011 D 1101 D 1011 D 0110E 11000 E 00011 E 0111Non-UD UD pre�x completenon-pre�x non-complete(a) (b) (c) (d)Figure 2.1: Examples of codesFor example, referring to the four codes of Figure 2.1, the sum is 0.9375, 0.53125, 0.53125 and1 for codes (a) to (d) respectively. Case (a) is also an example showing that the condition isnot su�cient.But even if a code is UD, the decoding of certain strings may not be so easy. The codein column (b) of Figure 2.1 is UD, but consider the encoded string 11011111110: a �rstattempt to parse it as 110 11 11 11 10 = BAAA10 would fail, because the tail 10 is not acodeword; hence only when trying to decode the �fth codeword do we realize that the �rstone is not correct, and that the parsing should rather be 1101 11 11 110 = DAAB. In thiscase, a codeword is not immediately recognized as soon as all its bits are read, but only aftera certain delay. There are codes for which this delay never exceeds a certain �xed number ofbits, but the example above is easily extended to show that the delay for the given code isunbounded.We would like to be able to recognize a codeword as soon as all its bits are processed, thatis, with no delay at all; such codes are called instantaneous. A special class of instantaneouscodes is known as the class of pre�x codes: a code is said to have the pre�x property , and ishence called a pre�x code, if none of its codewords is a pre�x of any other. It is unfortunatethat this de�nition is misleading (shouldn't such a code be rather called a non-pre�x code?),but it is widespread and therefore we shall keep it. For example, the code in Figure 2.1(a) isnot pre�x because the codeword for A (0) is a pre�x of the codeword for B (01). Similarly, thecode in (b) is not pre�x, since all the codewords start with 11, which is the codeword for A.On the other hand, codes (c) and (d) are pre�x.It is easy to see that any pre�x code is instantaneous and therefore UD. Suppose thatwhile scanning the encoded string for decoding, a codeword x has been detected. In that case,there is no ambiguity as in the example above for code (b), because if there were anotherpossible interpretation y which can be detected later, it would imply that x is a pre�x of y,contradicting the pre�x property.In our search for good codes, we shall henceforth concentrate on pre�x codes. In fact, weincur no loss by this restriction, even though the set of pre�x codes is a proper subset of theUD codes: it can be shown that given any UD code whose codeword lengths are f`1; : : : ; `ng,one can construct a pre�x code with the same set of codeword lengths [11]. As example, notethat the pre�x code (c) has the same codeword lengths as code (b). In this special case, (c)'scodewords are obtained from those of code (b) by reversing the strings; now every codeword11



terminates in 11, and the substring 11 occurs only as su�x of any codeword, thus no codewordcan be the proper pre�x of any other. Incidently, this also shows that code (b), which is notpre�x, is nevertheless UD.There is a natural one-to-one correspondence between binary pre�x codes and binary trees.Let us assign labels to the edges and vertices of a binary tree in the following way:� every edge pointing to a left child is assigned the label 0, andevery edge pointing to a right child is assigned the label 1;� the root of the tree is assigned the empty string �;� every vertex v of the tree below the root is assigned a binary string which is obtainedby concatenating the labels on the edges of the path leading from the root to vertex v.It follows from the construction that the string associated with vertex v is a pre�x of the stringassociated with vertex w if and only if v is a vertex on the path from the root to w. Thusthe set of strings associated with the leaves of any binary tree satis�es the pre�x propertyand may be considered as a pre�x code. Conversely, given any pre�x code, one can easilyconstruct the corresponding binary tree. For example, the tree corresponding to the codef11; 101; 001; 000g is depicted in Figure 2.2. ll ll l l l ll
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Figure 2.2: Tree corresponding to code f11; 101; 001; 000gThe tree corresponding to a code is a convenient tool for decompression. One starts witha pointer to the root and another one to the encoded string, which acts as a guide for thetraversal of the tree. While scanning the encoded string from left to right, the tree-pointeris updated to point to the left, resp. right, child of the current node, if the next bit of theencoded string is a 0, resp. a 1. If a leaf of the tree is reached, a codeword has been detected,it is sent to the output and the tree-pointer is reset to point to the root.Note that not all the vertices of the tree in Figure 2.2 have two children. From thecompression point of view, this is a waste, because we could, in that case, replace certaincodewords by shorter ones, without violating the pre�x property, i.e., build another UD codewith strictly smaller average codeword length. For example, the node labeled 10 has only aright child, so the codeword 101 could be replaced by 10; similarly, the vertex labeled 0 hasonly a left child, so the codewords 000 and 001 could be replaced by 00 and 01, respectively. A12



tree for which all internal vertices have two children is called a complete tree, and accordingly,the corresponding code is called a complete code. A code is complete if and only if the lengthsf`ig of its codewords satisfy equation (2.1) with equality, i.e., Pni=1 2�`i = 1.2.1 Hu�man CodingTo summarize what we have seen so far, we have restricted the class of codes under con-sideration in several steps. Starting from general UD codes, passing to instantaneous andpre�x codes and �nally to complete pre�x codes, since we are interested in good compressionperformance. The general problem can thus be stated as follows: we are given a set of nnon-negative weights fw1; : : : ; wng, which are the frequencies of occurrence of the letters ofsome alphabet. The problem is to generate a complete binary variable-length pre�x code,consisting of codewords with lengths `i bits, 1 � i � n, with optimal compression capabilities,i.e., such that the total length of the encoded textnXi=1wi`i (2:2)is minimized. It is sometimes convenient to rede�ne the problem in terms of relative frequen-cies. Let W = Pni=1wi be the total number of characters in the text, one can then de�nepi = wi=W as the probability of occurrence of the i-th letter. The problem is then equivalentto minimizing the average codeword length Pni=1 pi`i.Let us for a moment forget about the interpretation of the `i as codeword lengths, andtry to solve the minimization problem analytically without restricting the `i to be integers,but still keeping the constraint that they must satisfy the McMillan equality Pni=1 2�`i = 1.To �nd the set of `i's minimizing (2.2), one can use Langrange multipliers. De�ne a functionL(`1; : : : ; `n) of n variables and with a parameter � byL(`1; : : : ; `n) = nXi=1wi`i � � nXi=1 2�`i � 1! ;and look for local extrema by setting the partial derivatives to zero:@L@`i = wi + � 2�`i ln 2 = 0;which yields `i = � log2 � wi�� ln 2� : (2:3)To �nd the constant �, substitute the values for `i derived in (2.3) in the McMillan equality:1 = nXi=1 2�`i = 1�� ln 2 nXi=1wi = W�� ln 2 ;from which one can derive � = �W= ln 2. Plugging this value back into (2.3), one �nally gets`i = � log2 �wiW � = � log2 pi:13



This quantity is known as the information content of a symbol with probability pi, and itrepresents the minimal number of bits in which the symbol could be coded. Note that thisnumber is not necessarily an integer. Returning to the sum in (2.2), we may therefore concludethat the lower limit of the total size of the encoded �le is given by� nXi=1wi log2 pi =W  � nXi=1 pi log2 pi! : (2:4)The quantity H = �Pni=1 pi log2 pi has been de�ned by Shannon [12] as the entropy of theprobability distribution fp1; : : : ; png, and it gives a lower bound to the weighted averagecodeword length.In 1952, Hu�man [13] proposed the following algorithm which solves the problem.1. If n = 1, the codeword corresponding to the only weight is the null-string; return.2. Let w1 and w2, without loss of generality, be the two smallest weights.3. Solve the problem recursively for the n� 1 weights w1 + w2; w3; : : : ; wn;let � be the codeword assigned to the weight w1 + w2.4. The code for the n weights is obtained from the code for n � 1 weights generated in point 3 byreplacing � by the two codewords �0 and �1; return.In the straightforward implementation, the weights are �rst sorted and then every weightobtained by combining the two which are currently the smallest, is inserted in its proper placein the sequence so as to maintain order. This yields an O(n2) time complexity. One canreduce the time complexity to O(n logn) by using two queues, the one, Q1, containing theoriginal elements, the other, Q2, the newly created combined elements. At each step, the twosmallest elements in Q1 [ Q2 are combined and the resulting new element is inserted at theend of Q2, which remains in order [14].Theorem. Hu�man's algorithm yields an optimal code.Proof: By induction on the number of elements n. For n = 2, there is only one completebinary pre�x code, which therefore is optimal, namely f0; 1g; this is also a Hu�man code,regardless of the weights w1 and w2.Assume the truth of the Theorem for n � 1. Let T1 be an optimal tree for fw1; : : : ; wng,with ACL M1 = Pni=1wili.Claim 1: There are at least two elements on the lowest level of T1.Proof: Suppose there is only one such element and let  = a1 � � � am be the correspondingbinary codeword. Then by replacing  by a1 � � � am�1 (i.e., dropping the last bit) the resultingcode would still be pre�x, and the ACL would be smaller, in contradiction with T1's optimality.Claim 2: The codewords c1 and c2 corresponding to the smallest weights w1 and w2 havemaximal length (the nodes are on the lowest level in T1).Proof: Suppose the element with weight w2 is on levelm, which is not the lowest level `. Thenthere is an element with weight wx > w2 at level `. Thus the tree obtained by switching wx14



with w2 has an ACL of M1 � wx`� w2m+ wxm+ w2` < M1;which is impossible since T1 is optimal.Claim 3: Without loss of generality one can assume that the smallest weights w1 and w2correspond to sibling nodes in T1.Proof: Otherwise one could switch elements without changing the ACL.Consider the tree T2 obtained from T1 by replacing the sibling nodes corresponding to w1and w2 by their common parent node �, to which the weight w1 + w2 is assigned. Thus theACL for T2 is M2 =M1 � (w1 + w2).Claim 4: T2 is optimal for the weights (w1 + w2); w3; : : : ; wn.Proof: If not, let T3 be a better tree with M3 < M2. Let � be the node in T3 correspondingto (w1 + w2). Consider the tree T4 obtained from T3 by splitting � and assigning the weightw1 to �'s left child and w2 to its right child. Then the ACL for T4 isM4 =M3 + (w1 + w2) < M2 + (w1 + w2) =M1;which is impossible, since T4 is a tree for n elements with weights w1; : : : ; wn and T1 is optimalamong all those trees.Using the inductive assumption, T2, which is an optimal tree for n � 1 elements, has thesame ACL as the Hu�man tree for these weights. However, the Hu�man tree for w1; : : : ; wnis obtained from the Hu�man tree for (w1+w2); w3; : : : ; wn in the same way as T1 is obtainedfrom T2. Thus the Hu�man tree for the n elements has the same ACL as T1, hence it isoptimal.2.2 Hu�man Coding without Bit-ManipulationsIn many applications, compression is by far not as frequent as decompression. In particular, inthe context of static IR systems, compression is done only once (when building the database),whereas decompression directly a�ects the response time for on-line queries. We are thusmore concerned with a good decoding procedure. In spite of their optimality, Hu�man codesare not always popular with programmers as they require bit-manipulations and are thus notsuitable for smooth programming and e�cient implementation in most high-level languages.This section presents decoding routines that directly process only bit-blocks of �xed andconvenient size (typically, but not necessarily, integral bytes), making it therefore faster andbetter adapted to high-level languages programming, while still being e�cient in terms ofspace requirements. In principle, byte-decoding can be achieved either by using speciallybuilt tables to isolate each bit of the input into a corresponding byte or by extracting therequired bits while simulating shift operations.
15



2.2.1 Eliminating the reference to bitsWe are given an alphabet �, the elements of which are called letters, and a message (�sequence of elements of �) to be compressed, using variable-length codes. Let L denote theset of N items to be encoded. Often L = �, but we do not restrict the codewords necessarilyto represent single letters of �. Indeed, the elements of L can be pairs, triplets or any n-gramsof letters, they can represent words of a natural language, and they can �nally form a set ofitems of completely di�erent nature, provided that there is an unambiguous way to decomposea given �le into these items (see for example [15]). We call L an alphabet and its elementscharacters, where these terms should be understood in a broad sense. We thus include alsoin our discussion applications where N , the size of the \alphabet", can be fairly large.We begin by compressing L using the variable-length Hu�man codewords of its di�erentcharacters, as computed by the conventional Hu�man algorithm. We now partition the result-ing bit-string into k-bit blocks, where k is chosen so as to make the processing of k-bit blocks,with the particular machine and high-level language at hand, easy and natural. Clearly,the boundaries of these blocks do not necessarily coincide with those of the codewords: ak-bit block may contain several codewords, and an codeword may be split into two (or more)adjacent k-bit blocks. As an example, let L = fA,B,C,Dg, with codewords f0; 11; 100; 101g re-spectively, and choose k = 3. Consider the following input string, its coding and the coding'spartition into 3-bit blocks:A A B D Bz}|{ z}|{ z }| { z }| { z }| {0 0 1 1 1 0 1 1 1| {z } | {z } | {z }1 6 7The last line gives the integer value 0 � i < 23 of the block.The basic idea for all the methods is to use these k-bit blocks, which can be regarded asthe binary representation of integers, as indices to some tables which are prepared in advancein the preprocessing stage.In this section we �rst describe two straightforward | albeit not very e�cient | methodsfor implementing this idea.For the �rst method, we use a table B of 2k rows and k columns. In fact, B will containonly zeros and ones, but as we want to avoid bit-manipulations, we shall use one byte for eachof the k2k elements of this matrix. Let i = I1 � � � Ik be the binary representation of length k(with leading zeros) of i, for 0 � i < 2k, then B(i; j) = Ij, for 1 � j � k; in other words,the i-th line of B contains the binary representation of i, one bit per byte. The matrix Bwill be used to decompose the input string into individual bits, without any bit-manipulation.Figure 2.3(a) depicts the matrix B for k = 3.The values 0 or 1 extracted from B are used to decode the input, using the Hu�mantree of the given alphabet. The Hu�man tree of the alphabet L of our small example is inFigure 2.4(a). 16



B 1 2 30 0 0 01 0 0 12 0 1 03 0 1 14 1 0 05 1 0 16 1 1 07 1 1 1
S 1 20 0 01 2 02 4 03 6 04 0 15 2 16 4 17 6 1(a) (b)Figure 2.3: Tables for Hu�man decodingll l

l l l l��� ���@@@@@@ @@@���
0 1

1
�0 110 11101

10
100 0A BDC

H 0 10 -A 11 2 -B2 -C -D(a) Tree form (b) Table formFigure 2.4: Example of Hu�man codeA Hu�man tree with N leaves (and N � 1 internal nodes) can be kept as a table H withN � 1 rows (one for each internal node) and two columns. The internal nodes are numberedfrom 0 to N � 2 in arbitrary order, but for convenience the root will always be numberedzero. For example in Figure 2.4(a), the indices of the internal nodes containing �, 1 and 10will be 0, 1 and 2 respectively. The two elements stored in the i-th row of table H are the leftand right children of the internal node indexed i. Each child can be either another internalnode, in which case its index is stored, or a leaf, corresponding to one of the characters of thealphabet, in which case this character is stored. We thus need an additional bit per element,indicating whether it is an internal node or a leaf, but generally, one can use the sign-bit forthat purpose: if the element is positive, it represents the index of an internal node; if it isnegative, its absolute value is the representation of a character. Figure 2.4(b) shows the tableH corresponding to the Hu�man tree of Figure 2.4(a). The Hu�man decoding routine canthen be formulated as follows:
17



Byte Decoding algorithmind 0 [ pointer to table H]repeatn integer value of next input blockfor j = 1 to knewind H (ind;B(n; j)) [ left or right child of current node]if newind > 0 then ind newindelse output(�newind)ind 0enduntil input is exhaustedAnother possibility is to replace table B by the following table S, again with 2k rows, butonly two columns. For 0 � i < 2k, S(i; 1) will contain 2i mod 2k, and S(i; 2) will containthe leftmost bit of the k-bit binary representation of i. In the algorithm, the assignment tonewind has to be replaced bynewind H (ind; S(n; 2))n S(n; 1)The �rst statement extracts the leftmost bit and the second statement shifts the k-bit blockby one bit to the left. Figure 2.3(b) shows table S for k = 3. Hence we have reduced thespace needed for the tables from k2k + 2(N � 1) to 2k+1 + 2(N � 1), but now there are threetable accesses for every bit of the input, instead of only two accesses for the �rst method.Although there is no reference to bits in these algorithms and their programming is straight-forward, the number of table accesses makes their e�ciency rather doubtful; their only ad-vantage is that their space requirements are linear in N (k is a constant), while for all othertime-e�cient variants to be presented below, space is at least 
(N logN). However, for these�rst two methods, the term 2k of the space complexity is dominant for small N , so that theycan be justi�ed | if at all | only for rather large N .2.2.2 Partial-decoding tablesRecall that our goal is to permit a block-per-block processing of the input string for some�xed block-size k. E�cient decoding under these conditions is made possible by using a setof m auxiliary tables, which are prepared in advance for every given Hu�man code, whereastables B and S above were independent of the character distribution.The number of entries in each table is 2k, corresponding to the 2k possible values of thek-bit patterns. Each entry is of the form (W; j), where W is a sequence of characters and j(0 � j < m) is the index of the next table to be used. The idea is that entry i, 0 � i < 2k,18



of table number 0 contains, �rst, the longest possible decoded sequence W of characters fromthe k-bit block representing the integer i (W may be empty when there are codewords of morethan k bits); usually some of the last bits of the block will not be decipherable, being thepre�x P of more than one codeword; j will then be the index of the table corresponding tothat pre�x (if P = �, then j = 0). Table number j is constructed in a similar way except forthe fact that entry i will contain the analysis of the bit pattern formed by the pre�xing of Pto the binary representation of i. We thus need a table for every possible proper pre�x of thegiven codewords; the number of these pre�xes is obviously equal to the number of internalnodes of the appropriate Hu�man-tree (the root corresponding to the empty string and theleaves corresponding to the codewords), so that m = N � 1.More formally, let Pj , 0 � j < N � 1, be an enumeration of all the proper pre�xes of thecodewords (no special relationship needs to exist between j and Pj , except for the fact thatP0 = �). In table j corresponding to Pj , the i-th entry, T (j; i), is de�ned as follows: let B bethe bit-string composed of the juxtaposition of Pj to the left of the k-bit binary representationof i. Let W be the (possibly empty) longest sequence of characters that can be decoded fromB, and P` the remaining undecipherable bits of B; then T (j; i) = (W; `).
Entry Pattern Table 0 Table 1 Table 2for Table 0 W ` W ` W `0 000 AAA 0 CA 0 CAA 01 001 AA 1 C 1 CA 12 010 A 2 DA 0 C 23 011 AB 0 D 1 CB 04 100 C 0 BAA 0 DAA 05 101 D 0 BA 1 DA 16 110 BA 0 B 2 D 27 111 B 1 BB 0 DB 0Figure 2.5: Partial decoding tablesReferring again to the simple example given above, there are 3 possible proper pre�xes:�,1,10, hence 3 corresponding tables indexed 0,1,2 respectively, and these are given in Fig-ure 2.5. The column headed `Pattern' contains for every entry the binary string which isdecoded in Table 0; the binary strings which are decoded by Tables 1 and 2 are obtained bypre�xing `1', respectively `10', to the strings in `Pattern'.For the input example given above, we �rst access Table 0 at entry 1, which yields theoutput string AA; Table 1 is then used with entry 6, giving the output B; �nally Table 2 atentry 7 gives output DB.The utterly simple decoding subroutine (for the general case) is as follows (M(i) denotesthe i-th block of the input stream, j is the index of the currently used table and T (j; `) is the`-th entry of table j): 19



Basic Decoding Algorithmj  0for i 1 to length of input do(output; j) T (j;M(i))endAs mentioned before, the choice of k is largely governed by the machine-word structureand the high-level language architecture. A natural choice in most cases would be k =8, corresponding to a byte context, but k = 4 (half-byte) or k = 16 (half-word) are alsoconceivable. The larger is k, the greater is the number of characters that can be decoded in asingle iteration, thus transferring a substantial part of the decoding time to the preprocessingstage. The size of the tables however grows exponentially with k, and with every entryoccupying (for N � 256 and k = 8) 1 to 8 bytes, each table may require between 1K and 2Kbytes of internal memory. For N > 256, we need more than one byte for the representationof a character, so that the size of a table will be even larger, and for larger alphabets thesestorage requirements may become prohibitive. We now develop an approach that can helpreduce the number of required tables and their size.2.2.3 Reducing the number of tables: binary forestsThe storage space needed by the partial decoding tables can be reduced by relaxing somewhatthe approach of the previous section, and using the conventional Hu�man decoding algorithmno more than once for every block, while still processing only k-bit blocks. This is done byrede�ning the tables and adding some new data-structures.Let us suppose, just for a moment, that after deciphering a given block B of the inputthat contains a \remainder" P (which is a pre�x of a certain codeword), we are somehow ableto determine the correct complement of P and its length `, and accordingly its correspondingencoded character. More precisely, since an codeword can extend into more than two blocks,` will be the length of the complement of P in the next k-bit block which contains also othercodewords, hence 0 � ` < k. In the next iteration (decoding of the next k-bit block whichwas not yet entirely deciphered), table number ` will be used, which is similar to table 0, butignores the �rst ` bits of the corresponding entry, instead of pre�xing P to this entry as inthe previou section.Therefore the number of tables reduces from N � 1 (about 30 in a typical single-letternatural-language case, or 700{900 if we use letter pairs) to only k (8 or 16 in a typical byteor half-word context), where entry i in table `, 0 � ` < k, contains the decoding of the k � `rightmost bits of the binary representation of i. It is clear, however, that Table 1 containstwo exactly equal halves, and in general table ` (0 � ` < k) consists of 2` identical parts.Retaining then in each table only the �rst 2k�` entries, we are able to compress the needed ktables into the size of only two tables. The entries of the tables are again of the form (W; j);note however that j is not an index to the next table, but an identi�er of the remainder P ;20



it is only after �nding the correct complement of P and its length ` that we can access theright Table `.For the same example as before one obtains the tables of Figure 2.6, where table t decodesthe bit-strings given in `Pattern', but ignoring the t leftmost bits, t = 0; 1; 2, and l = 0; 1; 2corresponds respectively to the proper pre�xes �; 1; 10.Entry Pattern Table 0 Table 1 Table 2for Table 0 W ` W ` W `0 000 AAA 0 AA 0 A 01 001 AA 1 A 1 { 12 010 A 2 { 23 011 AB 0 B 04 100 C 05 101 D 06 110 BA 07 111 B 1Figure 2.6: Sub-string translate tablesThe algorithm will be completed if we can �nd a method to identify the codeword corre-sponding to the remainder of a given input block, using of course the following input block(s).We introduce the method through an example.Figure 2.7 shows a typical Hu�man tree H for an alphabet L of N = 7 characters. Assumenow k = 8 and consider the following adjacent blocks of input: 00101101 00101101. The �rstblock is decoded into the string BE and the remainder P = 01. Starting at the internal nodecontaining 01 and following the �rst bits of the following block, we get the codeword C, andlength l = 2 for the complement of P , so that Table 2 will be used when decoding the nextblock; ignoring the �rst 2 bits, this table translates the binary string 101101.For the general case, let us for simplicity �rst assume that the depth of H, which is thelength of the longest codeword, is bounded by k. Given the non-empty remainder P of thecurrent input block, we must access the internal node corresponding to P , proceed downwardsturning left (0) or right (1) as indicated by the �rst few bits of the next k-bit block, untilwe reach a leaf. This leaf contains the next character of the output. The number of edgestraversed is the index of the table to be used in the next iteration.Our goal is to simulate this procedure without having to follow a \bit-traversal" of thetree. The algorithm below uses a binary forest instead of the original Hu�man tree H. Forthe sake of clarity, the construction of the forest is described in two steps.First, replace H by N � 2 smaller trees Hi, which are induced by the proper sub-treesrooted at the internal nodes of H, corresponding to all non-empty proper pre�xes of thecodewords. The nodes of the trees of the forest contain binary strings: � for the roots, andfor each other node v, a string obtained by concatenating the labels of the edges on the path21
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Figure 2.7: The Hu�man Tree Hfrom the root to v, as in the Hu�man tree, but padded at the right by zeroes so as to �ll ak-bit block. In addition, each leaf contains also the corresponding decoded character. Thestring in node v is denoted by VAL(v). Figure 2.8 depicts the forest obtained from the tree ofour example, where the pointer to each tree is symbolized by the corresponding proper pre�x.The idea is that the identi�er of the remainder in an entry of the tables described aboveis in fact a pointer to the corresponding tree. The traversal of this tree is guided by the bitsof the next k-bit block of the input, which can directly be compared with the contents of thenodes of the tree, as will be described below.Consider now also the possibility of long codewords, which extend over several blocks.They correspond to long paths so that the depth of some trees in the forest may exceed k.During the traversal of a tree, passing from one level to the next lowest one is equivalent toadvancing one bit in the input string. Hence when the depth exceeds k, all the bits of thecurrent k-bit block were used, and we pass to the next block. Therefore the above de�nitionof VAL(v) applies only to nodes on levels up to k; this de�nition is generalized to any nodeby: VAL(v) for a node v on level j, with ik < j � (i+ 1)k, i � 0, is the concatenation of thelabels on the edges on the path from level ik to v.In the second step, we compress the forest as could have been done with any Hu�mantree. In such trees, every node has degree 0 or 2, i.e. they appear in pairs of siblings (exceptthe root). For a pair of sibling-nodes (a; b), VAL(a) and VAL(b) di�er only in the j-th bit,where j is the level of the pair (here and in what follows, the level of the root of a tree is 0),or more precisely, j = (level� 1) mod k+1. In the compressed tree, every pair is representedby an unique node containing the VAL of the right node of the pair, the new root is the nodeobtained from the only pair in level 1, and the tree structure is induced by the non-compressed22
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Figure 2.8: Forest of proper pre�xestree. Thus a tree of ` nodes shrinks now to (` � 1)=2 nodes. Another way to look at this\compression" method is to take the tree of internal nodes, and store it in form of a table aswas described in the previous section. We use here a tree-oriented vocabulary, but each treecan equivalently be implemented as a table. Figure 2.9 is the compressed form of the forestof Figure 2.8.
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Thus after accessing one of the trees, the VAL of its root is compared with the next k-bitblock B. If B, interpreted as a binary integer, is smaller, it must start with 0 and we turnleft; if B is greater or equal, it must start with 1 and we turn right. These comparisonsare repeated at the next levels, simulating the search for an element in a binary search tree[16, Section 6.2.2]. This leads to the modi�ed algorithm below. Notations are like before,ROOT(t) points to the t-th tree of the forest, every node has three �elds: VAL, a k-bit value,LEFT and RIGHT each of which is either a pointer to the next level or contains a character ofthe alphabet. When accessing table j, the index is taken modulo the size of the table, whichis 2k�j . Revised Decoding Algorithmi 1j  0repeat(output; tree-nbr) T (j; S(i) mod 2k�j)i i+ 1j  0if tree-nbr 6= 0 then TRAVERSE ( ROOT(tree-nbr) )until input is exhaustedwhere the procedure TRAVERSE is de�ned byTRAVERSE ( node )repeatif S(i) < VAL(node) thennode  LEFT(node)else node  RIGHT(node)if node is a character C then output Cj  j + 1 [j is the number of bits in S(i) which are `used up']if j = k thenj  0i i+ 1 [advance to next k-bit block]until a character was outputendAny node v of the original (compressed) Hu�man tree H 0 generates several nodes in theforest, the number of which is equal to the level of v in H 0. Hence the total number of nodesin the forest is exactly the internal path length of the original (uncompressed) Hu�man treeH, as de�ned by Knuth [17]. This quantity is between O(N logN) (for a full binary tree) andO(N2) (for a degenerate tree), and at the average, with all possible shapes of Hu�man treesequally likely, proportional to NpN .Therefore even in the worst case, the space requirements are reasonable in most practicalapplications with small N . If, for large N and certain probability distributions, O(N2) is24



prohibitive, it is possible to keep the space of the forest bounded by O(N logN), if one agreesto abandon the optimality of the Hu�man tree. This can be done by imposing a maximallength of K = O(logN) to the codewords. If K does not exceed the block-size k, the decodingalgorithm can even be slightly simpli�ed, since in the procedure TRAVERSE there is no needto check if the end of the block was reached. An other advantage of bounding the depth ofthe Hu�man tree is that this tends to lengthen the shortest codeword. Since the number ofcharacters stored at each entry in the partial-decoding tables is up to 1 + d(k � 1)=se, wheres is the length of the shortest codeword, this can reduce the space required to store eachtable. An algorithm for the construction of an optimal tree with bounded depth in time andspace O(KN) can be found in [18]. Nevertheless, it might often not seem worthwhile to spendso much e�orts to obtain an optimal code of bounded length. As alternative one can use aprocedure proposed in [19], which gives sub-optimal average codeword length, but uses lessspace and is much faster. Moreover, the codes constructed by this method are often very nearto optimal.2.2.4 Hu�man codes with radix r > 2The number of tables can also be reduced by the following simple variants which, similar tothe variants with bounded codeword length, yield slightly lower compression factors than themethods described above. Let us apply the Hu�man algorithm with radix r, r > 2, the detailsof which can be found in Hu�man's original paper [13]. In such a variant, one combines ateach step, except perhaps the �rst, the r smallest weights (rather than only the smallest twoin the binary algorithm) and replaces them by their sum. The number of weights combined inthe �rst step is chosen so that the number h of weights remaining after this step veri�es h � 1(mod r � 1). In the corresponding r-ary tree, every internal node has r sons, except perhapsone on the next-to-lowest level of the tree which has between 2 and r sons. If we choose r = 2`,we can encode the alphabet in a �rst stage using r di�erent symbols; then every symbol isreplaced by a binary code of ` bits. If in addition ` divides k, the \borders" of the k-bit blocksnever split any `-bit code. Hence in the partial-decoding tables, the possible remainders aresequences of one or more r-ary symbols. There is therefore again a correspondence betweenthe possible remainders and the internal nodes of the r-ary Hu�man tree, only that theirnumber now decreased to d(n�1)=(r�1)e. Moreover, there may be some savings in the spaceneeded for a speci�c table. As we saw before, the space for each table depends on the lengths of the shortest codeword, so this can be k with the binary algorithm when s = 1, but atmost dk=2e in the 4-ary case.Due to the restrictions on the choice of r, there are only few possible values. For example,for k = 8, one could use a quaternary code (r = 22), where every code-word has an evennumber of bits and the number of tables is reduced by a factor of 3, or a hexadecimal code(r = 24), where the code-word length is a multiple of 4 and the number of tables is divided by15. Note that for alphabets with N � 31, the hexadecimal code can be viewed as the classicalmethod using \restricted variability" (see for example [20]: assign 4-bit encodings to the 15most frequent characters and use the last 4-bit pattern as \escape character" to indicate thatthe actual character is encoded in the next 4 bits. Thus up to 16 least frequent charactershave 8-bit encodings, all of which have their �rst 4 bits equal to the escape character.25
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0000 0001 0010 0011Figure 2.10: Quaternary Hu�man treeReferring to the Hu�man tree given in Figure 2.7, suppose that a character correspondingto a leaf on level ` appears with probability 2�`, then the corresponding 22-ary tree is givenin Figure 2.10. Note that the only proper pre�xes of even length are � and 00, so that thenumber of tables dropped from 6 to 2.However, with increasing r, compression will get worse, so that the right trade-o� mustbe chosen according to the desired application.2.3 Space E�cient Decoding of Hu�man CodesThe data structures needed for the decoding of a Hu�man encoded �le (a Hu�man tree orlookup table) are generally considered negligible overhead relative to large texts. However, notall texts are large, and if Hu�man coding is applied in connection with a Markov model [21],the required Hu�man forest may become itself a storage problem. Moreover, the \alphabet"to be encoded is not necessarily small, and may, e.g., consist of all the di�erent words in thetext, so that Hu�man trees with thousands and even millions of nodes are not uncommon[22]. We try here to reduce the necessary internal memory space by devising e�cient waysto encode these trees. In addition, the suggested data structure also allows a speed-up of thedecompression process, by reducing the number of necessary bit comparisons.
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2.3.1 Canonical Hu�man codes0 0 0 01 0 0 1 02 0 0 1 13 0 1 0 04 0 1 0 1 05 0 1 0 1 16 0 1 1 0 07 0 1 1 0 18 0 1 1 1 0 09 0 1 1 1 0 110 0 1 1 1 1 011 0 1 1 1 1 112 1 0 0 0 0 013 1 0 0 0 0 114 1 0 0 0 1 015 1 0 0 0 1 116 1 0 0 1 0 0 017 1 0 0 1 0 0 118 1 0 0 1 0 1 019 1 0 0 1 0 1 1� � � � � �29 1 0 1 0 1 0 130 1 0 1 0 1 1 031 1 0 1 0 1 1 1 032 1 0 1 0 1 1 1 133 1 0 1 1 0 0 0 0� � � � � �61 1 1 0 0 1 1 0 062 1 1 0 0 1 1 0 163 1 1 0 0 1 1 1 0 064 1 1 0 0 1 1 1 0 1� � � � � �124 1 1 1 0 1 1 0 0 1125 1 1 1 0 1 1 0 1 0126 1 1 1 0 1 1 0 1 1 0127 1 1 1 0 1 1 0 1 1 1� � � � � �198 1 1 1 1 1 1 1 1 1 0199 1 1 1 1 1 1 1 1 1 1Figure 2.11:Canonical Hu�mancode for Zipf-200

For a given probability distribution, there might be quite a large numberof di�erent Hu�man trees, since interchanging the left and right subtreesof any internal node will result in a di�erent tree whenever the twosubtrees are di�erent in structure, but the weighted average path lengthis not a�ected by such an interchange. There are often also other optimaltrees, which cannot be obtained via Hu�man's algorithm. One maythus choose one of the trees that has some additional properties. Thepreferred choice for many applications is the canonical tree, de�ned bySchwartz and Kallick [23], and recommended by many others (see, e.g.,[24, 25]).Denote by (p1; : : : ; pn) the given probability distribution, wherewe assume that p1 � p2 � � � � � pn, and let `i be the length in bitsof the codeword assigned by Hu�man's procedure to the element withprobability pi, i.e., `i is the depth of the leaf corresponding to pi in theHu�man tree. A tree is called canonical if, when scanning its leavesfrom left to right, they appear in non-decreasing order of their depth(or equivalently, in non-increasing order, as in [26]). The idea is thatHu�man's algorithm is only used to generate the lengths f`ig of thecodewords, rather than the codewords themselves; the latter are easilyobtained as follows: the i-th codeword consists of the �rst `i bits imme-diately to the right of the \binary point" in the in�nite binary expansionof Pi�1j=1 2�`j , for i = 1; : : : ; n [27]. Many properties of canonical codesare mentioned in [24, 28].The following will be used as a running example in this section. Con-sider the probability distribution implied by Zipf's law, de�ned by theweights pi = 1=(iHn), for 1 � i � n, where Hn = Pnj=1(1=j) isthe n-th harmonic number. This law is believed to govern the dis-tribution of the most common words in a large natural language text[29]. A canonical code can be represented by the string hn1; n2; : : : ; nki,called a source, where k denotes, here and below, the length of the longest codeword (thedepth of the tree), and ni is the number of codewords of length i, i = 1; : : : ; k. The sourcecorresponding to Zipf's distribution for n = 200 is h0; 0; 1; 3; 4; 8; 15; 32; 63; 74i. The code isdepicted in Figure 2.11.We shall assume, for the ease of description in this extended abstract, that the source hasno \holes", i.e., there are no three integers i < j < ` such that ni 6= 0; n` 6= 0, but nj = 0.This is true for many, but not all, real-life distributions.One of the properties of canonical codes is that the set of codewords having the samelength are the binary representations of consecutive integers. For example, in our case, thecodewords of length 9 bits are the binary integers in the range from 110011100 to 111011010.This fact can be exploited to enable e�cient decoding with relatively small overhead: once acodeword of ` bits is detected, one can get its relative index within the sequence of codewords27



of length ` by simple subtraction.The following information is thus needed: let m = minfi j ni > 0g be the length of theshortest codeword, and let base(i) be the integer value of the �rst codeword of length i. Wethen have base(m) = 0base(i) = 2 (base(i� 1) + ni�1) for m < i � k:Let Bs(k) denote the standard s-bit binary representation of the integer k (with leading zeros,if necessary). Then the j-th codeword of length i, for j = 0; 1; : : : ; ni � 1, is Bi(base(i) + j).Let seq(i) be the sequential index of the �rst codeword of length i:seq(m) = 0seq(i) = seq(i� 1) + ni�1 for m < i � k:Suppose now that we have detected a codeword w of length `. If I(w) is the integer value of thebinary string w (i.e., w = B`(I(w))), then I(w)� base(`) is the relative index of w within theblock of codewords of length `. Thus seq(`) + I(w)� base(`) is the relative index of w withinthe full list of codewords. This can be rewritten as I(w)�diff(`), for diff(`) = base(`)�seq(`).Thus all one needs is the list of integers diff(`). Table 2.12 gives the values of ni, base(i),seq(i) and diff(i) for our example.Table 2.12: Decode values for canonical Hu�man code for Zipf-200i ni base(i) seq(i) diff(i)3 1 0 0 04 3 2 1 15 4 10 4 66 8 28 8 207 15 72 16 568 32 174 31 1439 63 412 63 34910 74 950 126 824We suggest in the next section a new representation of canonical Hu�man codes, whichnot only is space-e�cient, but may also speed up the decoding process, by permitting, attimes, the decoding of more than a single bit in one iteration. Similar ideas, based on tablesrather than on trees, were recently suggested in [26].2.3.2 Skeleton trees for fast decodingThe following small example, using the data above, shows how such savings are possible.Suppose that while decoding, we detect that the next codeword starts with 1101. This infor-mation should be enough to decide that the following codeword ought to be of length 9 bits.28



We should thus be able, after having detected the �rst 4 bits of this codeword, to read thefollowing 5 bits as a block, without having to check after each bit if the end of a codewordhas been reached. Our goal is to construct an e�cient data-structure, that permits similardecisions as soon as they are possible. The fourth bit was the earliest possible in the aboveexample, since there are also codewords of length 8 starting with 110.Decoding with sk-treesThe suggested solution is a binary tree, called below an sk-tree (for skeleton-tree), thestructure of which is induced by the underlying Hu�man tree, but which has generally sig-ni�cantly fewer nodes. The tree will be traversed like a regular Hu�man tree. That is, westart with a pointer to the root of the tree, and another pointer to the �rst bit of the encodedbinary sequence. This sequence is scanned, and after having read a zero (resp., a 1), we pro-ceed to the left (resp., right) son of the current node. In a regular Hu�man tree, the leavescorrespond to full codewords that have been scanned, so the decoding algorithm just outputsthe corresponding item, resets the tree-pointer to the root and proceeds with scanning thebinary string. In our case, however, we visit the tree only up to the depth necessary to identifythe length of the current codeword. The leaves of the sk-tree then contain the lengths of thecorresponding codewords.f tree pointer  � rooti  � 1start  � 1while i < length of stringf if string[i] = 0 tree pointer  � left(tree pointer)else tree pointer  � right(tree pointer)if value(tree pointer)> 0f codeword  � string[start � � � (start + value(tree pointer) �1)]output  � table[ I(codeword)�diff [ value(tree pointer)] ]tree pointer  � rootstart  � start + value(tree pointer)i  � startgelse i  � i+ 1gg Figure 2.13: Decoding procedure using sk-treeThe formal decoding process using an sk-tree is depicted in Figure 2.13. The variable startpoints to the index of the bit at the beginning of the current codeword in the encoded string,which is stored in the vector string [ ]. Each node of the sk-tree consists of three �elds: a leftand a right pointer, which are not null if the node is not a leaf, and a value-�eld, which is29



zero for internal nodes, but contains the length in bits of the current codeword, if the node isa leaf. In an actual implementation, we can use the fact that any internal node has either zeroor two sons, and store the value-�eld and the right-�eld in the same space, with left = nullserving as ag for the use of the right pointer. The procedure also uses two tables: table [j],0 � j < n, giving the j-th element (in non-increasing order of frequency) of the encodedalphabet; and diff [i] de�ned above, for i varying from m to k, that is from the length of theshortest to the length of the longest codeword.The procedure passes from one level in the tree to the one below according to the bits ofthe encoded string. Once a leaf is reached, the next codeword can be read in one operation.Note that not all the bits of the input vector are individually scanned, which yields possibletime savings. t ttt t t t t tt t
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Figure 2.14: sk-tree for Zipf-200 distributionFigure 2.14 shows the sk-tree corresponding to Zipf's distribution for n = 200. The treeis tilted by 45�, so that left (right) sons are indicated by arrows pointing down (to the right).The framed leaves correspond to the last codewords of the indicated length. The sk-tree ofour example consists of only 49 nodes, as opposed to 399 nodes of the original Hu�man tree.Construction of sk-treesWhile traversing a standard canonical Hu�man tree to decode a given codeword, one maystop as soon as one gets to the root of any full subtree of depth h, for h � 1, i.e., a subtree ofdepth h that has 2h leaves, since at this stage it is known that exactly h more bits are neededto complete the codeword. One way to look at sk-trees is therefore as standard Hu�man treesfrom which all full subtrees of depth h � 1 have been pruned. A more direct and much moree�cient construction is as follows.The one-to-one correspondence between the codewords and the paths from the root to theleaves in a Hu�man tree can be extended to de�ne, for any binary string S = s1 � � � se, thepath P (S) induced by it in a tree with given root r0. This path will consist of e+ 1 nodes ri,0 � i � e, where for i > 0, ri is the left (resp. right) son of ri�1, if si = 0 (resp. if si = 1). Forexample, in Figure 2.14, P (111) consists of the four nodes represented as bullets in the topline. The skeleton of the sk-tree will consist of the paths corresponding to the last codewordof every length. Let these codewords be denoted by Li, m � i � k ; they are, for our example,30



000, 0100, 01101, 100011, etc. The idea is that P (Li) serves as \demarcation line": any nodeto the left (resp. right) of P (Li), i.e., a left (resp. right) son of one of the nodes in P (Li),corresponds to a pre�x of a codeword with length � i (resp. > i).As a �rst approximation, the construction procedure thus takes the tree obtained bySk�1i=m P (Li) (there is clearly no need to include the longest codeword Lk, which is always astring of k 1's), and adjoins the missing sons to turn it into a complete tree in which eachinternal node has both a left and a right son. The label on such a new leaf is set equal to thelabel of the closest leaf following it in an in-order traversal. In other words, when creatingthe path for Li, one �rst follows a few nodes in the already existing tree, then one brancheso� creating new nodes; as to the labeling, the missing right son of any node in the path willbe labeled i + 1 (basing ourselves on the assumption that there are no holes), but only themissing left sons of any new node in the path will be labeled i.A closer look then implies the following re�nement. Suppose a codeword Li has a zero inits rightmost position, i.e., Li = �0 for some string � of length i� 1. Then the �rst codewordof length i + 1 is �10. It follows that only when getting to the i-th bit one can decide if thelength of the current codeword is i or i+1. But if Li terminates in a string of 1's, Li = �01a,with a > 0 and j�j+ a = i� 1, then the �rst codeword of length i+1 is �10a+1, so the lengthof the codeword can be deduced already after having read the bit following �. It follows thatone does not always need the full string Li in the sk-tree, but only its pre�x up to and notincluding the rightmost zero. Let L�i = � denote this pre�x. The revised version of the aboveprocedure starts with the tree obtained by Sk�1i=m P (L�i ). The nodes of this tree are depictedas bullets in Figure 2.14. For each path P (L�i ) there is a leaf in the tree, and the left son ofthis leaf is the new terminal node, represented in Figure 2.14 by a box containing the numberi. The additional leaves are then �lled in as explained above.Space complexityTo evaluate the size of the sk-tree, we count the number of nodes added by path P (L�i ),for m � i < k. Since the codewords in a canonical code, when ordered by their correspondingfrequencies, are also alphabetically sorted, it su�ces to compare Li to Li�1. Let (m) = 0,and for i > m, let (i) be the longest common pre�x of Li and Li�1, e.g., (7) is the string10 in our example. Then the number of nodes in the sk-tree is given by:size = 2 k�1Xi=mmax(0; jL�i j � j(i)j)!� 1;since the summation alone is the number of internal nodes (the bullets in Figure 2.14).The maximum function comes to prevent an extreme case in which the di�erence mightbe negative. For example, if L6 = 010001 and L7 = 0101111, the the longest common pre�xis (7) = 010, but since we consider only the bits up to and not including the rightmost zero,we have L�7 = 01. In this case, indeed, no new nodes are added for P (L�7).An immediate bound on the number of nodes in the sk-tree is O(min(n; k2)), since on theone hand, there are up to k � 1 paths P (L�i ) of lengths � k � 2, but on the other hand, itcannot exceed the number of nodes in the underlying Hu�man tree, which is 2n� 1. To geta tighter bound, consider the nodes in the upper levels of the sk-tree belonging to the full31



binary tree F with k � 1 leaves and having the same root as the sk-tree. The depth of F isd = dlog2(k � 1)e, and all its leaves are at level d or d � 1. The tree F is the part of thesk-tree where some of the paths P (L�i ) must be overlapping, so we account for the nodes in Fand for those below separately. There are at most 2k� 1 nodes in F ; there are at most k� 1disjoint paths below it, with path P (L�i ) extending at most i� 2� blog2(k� 1)c nodes belowF , for log2(k � 1) < i � k. This yields as bound for the number of nodes in the sk-tree:2k + 20@k�2�blog2(k�1)cXi=1 i1A = 2k + (k � 2� blog2(k � 1)c)(k � 1� blog2(k � 1)c):There are no savings in the worst case, e.g., when there is only one codeword of eachlength (except for the longest, for which there are always at least two). More generally, ifthe depth of the Hu�man tree is 
(n), the savings might not be signi�cant. But such treesare optimal only for some very skewed distributions. In many applications, like for mostdistributions of characters or character pairs or words in most natural languages, the depthof the Hu�man tree is O(logn), and for large n, even the constant c, if the depth is c log2 n,must be quite small. For suppose the Hu�man tree has a leaf on depth d. Then by [30,Theorem 1], the probability of the element corresponding to this leaf is p < 1=Fd+1, whereFj is the j-th Fibonacci number, and we get from [17, Exercise 1.2.1{4], that p < (1=�)d�1,where � = (1 +p5)=2 is the golden ratio. Thus if d > c log2 n, we havep <  1�!c log2 n = n�c log2(1=�) = n�0:693c:To give a numeric example, a Hu�man tree corresponding to the di�erent words in English, asextracted from 500 MB (87 million words) of the Wall Street Journal [31], had n = 289; 101leaves. The probability for a tree of this size to have a leaf at level 3 log2 n is less than4:4� 10�12, which means that even if the word with this probability appears only once, thetext must be at least 4400 billion words long, enough to �ll about 35,000 CD-Roms! But evenif the original Hu�man tree would be deeper, it is sometimes convenient to impose an upperlimit of B = O(logn) on the depth, which often implies only a negligible loss in compressione�ciency [19]. In any case, given a logarithmic bound on the depth, the size of the sk-tree isabout logn (logn� log logn):2.4 Arithmetic CodingWe have dealt so far only with Hu�man coding, and even shown that they are optimal undercertain constraints. However, this optimality has often been overemphasized in the past andit is not always mentioned that Hu�man codes have been shown to be optimal only for blockcodes : codes in which each new character is encoded by a �xed bit pattern made up of anintegral number of bits.The constraint of the integral number of bits had probably been considered as obvious,since the possibility of coding elements in fractional bits is quite surprising. Arithmetic codes32



overcome the limitations of block codes. In fact, arithmetic codes have had a long history[32, 33], but became especially popular after Witten, Neal and Cleary's paper [34] in 1987.The approach taken by arithmetic coding is quite di�erent from that of Hu�man coding.Instead of using the probabilities of the di�erent characters to generate codewords, it de�nesa process in the course of which a binary number is generated. Each new character of the textto be encoded allows a more precise determination of the number. When the last character isprocessed, the number is stored or transmitted.The encoding process starts with the interval [0; 1), which will be narrowed repeatedly.We assign to each character a sub-interval, the size of which is proportional to the proba-bility of occurrence of the character. Processing a certain character x is then performed byreplacing the current interval by the sub-interval corresponding to x. Refer to the example inFigure 2.15. We assume our alphabet consists of the four characters fA, B, C, Dg, appearingwith probabilities 0.4, 0.3, 0.1 and 0.2, respectively. We arbitrarily choose a correspondingpartition of the interval [0; 1), for example, [0; 0:1) for C, [0:1; 0:4) for B, [0:4; 0:8) for A and�nally [0:8; 1) for D. This partition is depicted as the leftmost bar in Figure 2.15.      eeeeeeee �������
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Figure 2.15: Example of arithmetic codingSuppose now that the text we wish to encode is BDAAC. The �rst character is B, so thenew interval after the encoding of B is [0:1; 0:4). This interval is now partitioned similarlyto the original one, i.e., the �rst 10% are assigned to C, the next 30% to B, etc. The newsub-division can be seen next to the second bar from the left. The second character to beencoded is D, so the corresponding interval is [0:34; 0:40). Repeating now the process, we seethat the next character, A, narrows the chosen sub-interval further to [0:364; 0:388), and thenext A to [0:3736; 0:3832), and �nally the last C to [0:37360; 0:37456).To allow unambiguous decoding, it is this last interval that should be transmitted. Thiswould, however, be rather wasteful: as more characters are encoded, the interval will getnarrower, and many of the leftmost digits of its upper limit will overlap with those of its lowerlimit. In our example, both limits start with 0.37. One can overcome this ine�ciency andtransmit only a single number if some additional information is given. For instance, if thenumber of characters is also given to the decoder, or, as is customary, a special end-of-�lecharacter is added at the end of the message, it su�ces to transmit any single number withinthe �nal interval. In our case, the best choice would be y = 0:3740234375, because its binaryrepresentation 0.0101111111 is the shortest among the numbers of the interval.33



Decoding is then just the inverse of the above process. Since y is between 0.1 and 0.4, weknow that the �rst character must be B. If so, the interval has been narrowed to [0:1; 0:4).We thus seek the next sub-interval which contains y, and �nd it to be [0:34; 0:40), whichcorresponds to D, etc. Once we get to [0:37360; 0:37456), the process has to be stopped bysome external condition, otherwise we could continue this decoding process inde�nitely, forexample by noting that y belongs to [0:373984; 0:374368), which could be interpreted as if thefollowing character were A, etc.As has been mentioned, the longer the input string, the more digits or bits are needed tospecify a number encoding the string. Compression is achieved by the fact that a frequentlyoccurring character only slightly narrows the current interval. The number of bits needed torepresent a number depends on the required precision. The smaller the given interval, thehigher precision is necessary to specify a number in it; if the interval size is p, d� log2 pe bitsmight be needed.To evaluate the number of bits necessary by arithmetic coding, we recall the notationused in Section 2.1. The text consists of characters x1x2 � � � xW , each of which belongs to analphabet fa1; : : : ; ang. Let wi be the number of occurrences of letter ai, so that W = Pni=1wiis the total length of the text, and let pi = wi=W be the probability of occurrence of letter ai,1 � i � n. Denote by pxj the probability associated with the j-th character of the text.After having processed the �rst character, x1, the interval has been narrowed to size px1,after the second character, the interval size is px1px2, etc. We get that the size of the �nalinterval after the whole text has been processed is px1px2 � � � pxW . Therefore the number ofbits needed to encode the full text is� log20@ WYj=1 pxj1A = � WXj=1 log2 pxj = � nXi=1wi log2 pi= W  � nXi=1 pi log2 pi! = W H;where we get the second equality by summing over the letters of the alphabet with theirfrequency instead of summing over the characters of the text, and where H is the entropyof the given probability distribution. Amortizing this per character, we get that the averagenumber of bits needed to encode a single character is justH, which has been shown in eqn. (2.4)to be the information theoretic lower bound.We conclude that from the point of view of compression, arithmetic coding has an optimalperformance. But our presentation and the analysis are oversimpli�ed: they do not take intoaccount the overhead incurred by the end of �le character, nor the fractions of bits lost byalignment for each block to be encoded. It can be shown [28] that although these additions areoften negligible relative to the average size of a codeword, they might be signi�cant relativeto the di�erence between the codeword lengths for Hu�man and arithmetic codes. There arealso other technical problems, such as the limited precision of our computers, which does notallow the computation of a single number for a long text; there is thus a need for incrementaltransmission, which further complicates the algorithms, see [34].In spite of the optimality of arithmetic codes, Hu�man codes may still be the preferredchoice in many applications: they are much faster for encoding and especially decoding, they34



are less error prone, and after all, the loss in compression e�ciency, if any, is generally verysmall.2.5 Dictionary Based Text CompressionThe text compression methods we have seen so far are called statistical methods, as theyexploit the skewness of the distribution of occurrence of the characters. Another family ofcompression methods is based on dictionaries , which replace variable length substrings ofthe text by (shorter) pointers to a dictionary in which a collection of such substrings hasbeen stored. Depending on the application and the implementation details, each method canoutperform the other.Given a �xed amount of RAM which we would allocate for the storage of a dictionary,the selection of an optimal set of strings to be stored in the dictionary turns out to be adi�cult task, because the potential strings are overlapping. A similar problem is shown tobe NP-complete in [35], but more restricted versions of this problem of optimal dictionaryconstruction are tractable [36].For IR applications, the dictionary ought to be �xed, since the compressed text needbe accessed randomly. For the sake of completeness, however, we mention also adaptivetechniques, which are the basis of most popular compression methods. Many of these arebased on two algorithms designed by Lempel and Ziv [37, 38].In one of the variants of the �rst algorithm [37], often referred to as LZ77, the dictionaryis in fact the previously scanned text, and pointers to it are of the form (d; `), where d isan o�set (the number of characters from the current location to the previous occurrence ofa substring matching the one that starts at the current location), and ` is the length of thematching string. There is therefore no need to store an explicit dictionary. In the secondalgorithm [38], the dictionary is dynamically expanded by adjoining sub-strings of the textthat could not be parsed. For more details on LZ methods and their variants, the reader isreferred to [25].Even once the dictionary is given, the compression scheme is not yet well de�ned, as onemust decide how to parse the text into a sequence of dictionary elements. Generally, theparsing is done by a greedy method, i.e., at any stage, the longest matching element fromthe dictionary is sought. A greedy approach is fast, but not necessarily optimal. Because theelements of the dictionary are often overlapping, and particularly for LZ77 variants, wherethe dictionary is the text itself, a di�erent way of parsing might yield better compression.For example, assume the dictionary consists of the strings D = fabc, ab, cdef, d, de, ef,fg and that the text is S = abcdef; assume further that the elements of D are encodedby some �xed-length code, which means that dlog2(jDj)e bits are used to refer to any ofthe elements of D; then parsing S by a greedy method, trying to match always the longestavailable string, would yield abc-de-f, requiring three codewords, whereas a better partitionwould be ab-cdef, requiring only two.The various dictionary compression methods di�er also by the way they encode the ele-ments. This is most simply done by a �xed length code, as in the above example. Obviously,di�erent encoding methods might yield di�erent optimal parsings. Returning to the above35



example, if the elements abc, d, de, ef, f, ab, cdef of D are encoded respectively by 1, 2, 3,4, 5, 6 and 6 bits, then the parsing abc-de-f would need nine bits for its encoding, and forthe encoding of the parsing ab-cdef, 12 bits would be needed. The best parsing, however,for the given codeword lengths, is abc-d-ef, which is neither a greedy parsing, nor does itminimize the number of codewords, and requires only seven bits.The way to search for the optimal parsing is by reduction to a well-known graph theoreticalproblem. Consider a text string S consisting of a sequence of n characters S1S2 � � �Sn, eachcharacter Si belonging to a �xed alphabet �. Substrings of S are referenced by their limitingindices, i.e., Si � � �Sj is the substring starting at the i-th character in S, up to and including thej-th character. We wish to compress S by means of a dictionary D, which is a set of characterstrings f�1; �2; : : :g, with �i 2 �+. The dictionary may be explicitly given and �nite, as inthe example above, or it may be potentially in�nite, e.g., for the Lempel-Ziv variants, whereany previously occurring string can be referenced.The compression process consists of two independent phases: parsing and encoding. Inthe parsing phase, the string S is broken into a sequence of consecutive sub-strings, eachbelonging to the dictionary D, i.e., an increasing sequence of indices i0 = 0; i1; i2; : : : is found,such that S = S1S2 � � �Sn = S1 � � �Si1 Si1+1 � � �Si2 � � � ;with Sij+1 � � �Sij+1 2 D for j = 0; 1; : : :. One way to assure that at least one such parsingexists is to force the dictionary D to include each of the individual characters of �. Thesecond phase is based on an encoding function � : D �! f0; 1g�, that assigns to each elementof the dictionary a binary string, called its encoding. The assumption on � is that it producesa code which is UD. This is most easily obtained by a �xed length code, but as has been seenearlier, a su�cient condition for a code being UD is to choose it as a pre�x code.The problem is the following: given the dictionary D and the encoding function �, we arelooking for the optimal partition of the text string S, i.e., the sequence of indices i1; i2; : : : issought, that minimizes Pj�0 j�(Sij+1 � � �Sij+1)j.To solve the problem, a directed, labeled graph G = (V;E) is de�ned for the given text S.The set of vertices is V = f1; 2; : : : ; n; n+1g, with vertex i corresponding to the character Sifor i � n, and n + 1 corresponding to the end of the text; E is the set of directed edges: anordered pair (i; j), with i < j, belongs to E if and only if the corresponding substring of thetext, that is, the sequence of characters Si � � �Sj�1, can be encoded as a single unit. In otherwords, the sequence Si � � �Sj�1 must be a member of the dictionary, or more speci�cally forLZ77, if j > i+ 1, the string Si � � �Sj�1 must have appeared earlier in the text. The label Lijis de�ned for every edge (i; j) 2 E as j�(Si � � �Sj�1)j, the number of bits necessary to encodethe corresponding member of the dictionary, for the given encoding scheme at hand. Theproblem of �nding the optimal parsing of the text, relative to the given dictionary and thegiven encoding scheme, therefore reduces to the well-known problem of �nding the shortestpath in G from vertex 1 to vertex n + 1. In our case, there is no need to use Dijkstra'salgorithm, since the directed graph contains no cycles, all edges being of the form (i; j) withi < j. Thus by a simple dynamic programming method, the shortest path can be found intime O(jEj).Figure 2.16 displays a small example of a graph, corresponding to the text abbaabbabab36



m m m m m mm
m m

m
m m- - - - ����� -

?��������*XXXXXXXXz�����
@@@@@RBBBBBBBBBBN

����������� ������
��7

���������*-
SSSSw? ����/

����3@@@@@@R
1 2a 3b 4b 5a

6a 7b
8b

9 a
10b 11a
12 bFigure 2.16: Graph corresponding to text abbaabbababand assuming that LZ77 is used. The edges connecting vertices i to i+1, for i = 1; : : : ; n, arelabeled by the character Si.As an example of an encoding scheme, we refer to the on-the-y compression routinerecently included in a popular operating system. It is based on [39], a variant of LZ77, usinghashing on character pairs to locate (the beginning of) recurrent strings. The output of thecompression process is thus a sequence of elements, each being either a single (uncompressed)character, or an o�set-length pair (d; `). The elements are identi�ed by a ag bit, so thata single character is encoded by a zero, followed by the 8-bit ASCII representation of thecharacter, and the encoding of each (d; `) pair starts with a 1. The sets of possible o�setsand lengths are split into classes as follows: let Bm(n) denote the standard m-bit binaryrepresentation of n (with leading zeros if necessary), then, denoting the encoding scheme by�M : �M (o�set d) = 8><>: 1B6(d� 1) if 1 � d � 6401B8(d� 65) if 64 < d � 32011B12(d� 321) if 320 < d � 4416�M (length `) = ( 0 if ` = 21j+1 0 Bj(`� 2� 2j) if 2j � `� 2 < 2j+1; for j = 0; 1; 2; : : :For example, the �rst few length encodings are: 0, 10, 1100, 1101, 111000, 111001, 111010,111011, 11110000, etc. O�sets are thus encoded by 8, 11 or 15 bits, and the number of bitsused to encode the lengths ` is 1 for ` = 2 and 2dlog2(`� 1)e for ` > 2.3. DICTIONARIESAll large full-text retrieval systems make extensive use of dictionaries of all kinds. They areneeded to quickly access the concordance, they may be used for compressing the text itselfand they generally provide some useful additional information which can guide the user in thechoice of his keywords. 37



Dictionaries can of course be compressed as if they were regular text, but taking theirspecial structure into account may lead to improved methods [40]. A simple, yet e�cient,technique is the Pre�x Omission Method (POM), a formal de�nition of which can be foundin [2], where it is called front-end compression.The method is based on the observation that consecutive entries in a dictionary mostlyshare some leading letters. Let x and y be consecutive dictionary entries and let m be thelength (number of letters) of their longest common pre�x. Then it su�ces to store thiscommon pre�x only once (with x) and to omit it from the following entry, where instead thelength m will be kept. This is easily generalized to a longer list of dictionary entries, as in theexample in Figure 3.1: dictionary entry pre�x length stored su�xFORM 0 FORMFORMALLY 4 ALLYFORMAT 5 TFORMATION 6 IONFORMULATE 4 ULATEFORMULATING 8 INGFORTY 3 TYFORTHWITH 4 HWITHFigure 3.1: Example of the Pre�x Omission MethodNote that the value given for the pre�x length does not refer to the string which wasactually stored, but rather to the corresponding full-length dictionary entry. The compressionand decompression algorithms are immediate.If the dictionary entries are coded in standard format, with one byte per character, onecould use the �rst byte of each entry in the compressed dictionary to store the value ofm. There will mostly be a considerable gain, since the average length of common pre�xesof consecutive entries in large dictionaries is generally much larger than 1. Even when theentries are already compressed, for example by a character by character Hu�man code, onewould still achieve some savings. For convenience, one could choose a �xed integer parameterk and reserve the �rst k bits of every entry to represent values of m for 0 � m < 2k, wherek is not necessarily large enough to accommodate the longest omitted pre�x. In the aboveexample, k could for example be chosen as 3, and the entry corresponding to FORMULATINGwould then be (7; TING).A standard dictionary does however not provide the exibility required by sophisticatedsystems. For instance, a prominent feature would be the possibility of processing truncatedterms of several kinds by means of a variable-length don't-care character �. Examples of theuse of � for pre�x, su�x and in�x truncation have been given in Section 1.Su�x truncation can be handled by the regular dictionary. To enable pre�x truncation,the problem is that the relevant terms are scattered throughout the �le and therefore hard tolocate. A possible solution is to adjoin an inverse dictionary to the system: for each term, form38



its reversed string, then sort the reversed strings lexicographically. To search, e.g., for �ache,we would access the inverse dictionary with the string ehca, retrieve the entries pre�xed byit (they form a contiguous block), e.g., ehcadaeh and ehcahtoot, and reverse these stringsagain to get our terms, e.g., headache and toothache. The solution of the inverse dictionarycan not be extended to deal with pre�x and su�x truncation simultaneously.An elegant method allowing the processing of any kind of truncation is the permuteddictionary suggested in [2]. Given a dictionary, the corresponding permuted dictionary isobtained by the following sequence of steps:1. append to each term a character / which does not appear in any term;2. for a term x of length n characters, form n+1 new terms by cyclically shifting the stringx/ by k characters, 0 � k � n;3. sort the resulting list alphabetically.Figure 3.2 shows these steps for the dictionary consisting of the strings JACM, JASIS andIPM. The �rst column lists the terms with the appended /. In the second column, the permutedterms generated by the same original term appear consecutively, and the third column issorted. The last column shows how the permuted dictionary can be compressed by POM.original permuted sorted compressedm su�xJACM JACM/ /IPM 0 /IPMJASIS ACM/J /JACM 1 JACMIPM CM/JA /JASIS 3 SISM/JAC ACM/J 0 ACM/J/JACM ASIS/J 1 SIS/JJASIS/ CM/JA 0 CM/JAASIS/J IPM/ 0 IPM/SIS/JA IS/JAS 1 S/JASIS/JAS JACM/ 0 JACM/S/JASI JASIS/ 2 SIS//JASIS M/IP 0 M/IPIPM/ M/JAC 2 JACPM/I PM/I 0 PM/IM/IP S/JASI 0 S/JASI/IPM SIS/JA 1 IS/JAFigure 3.2: Example of the permuted dictionaryThe key for using the permuted dictionary e�ciently is a function get(x), which accessesthe �le and retrieves all the strings having x as pre�x. These strings are easily located sincethey appear consecutively, and the corresponding original terms are recovered by a simplecyclic shift. To process truncated terms, all one needs is to call get() with the appropriate39



parameter. Figure 3.3 shows in its leftmost columns how to deal with su�x, pre�x, in�x, andsimultaneous pre�x and su�x truncations. The other columns then bring an example for eachof these categories: �rst the query itself, then the corresponding call to get(), the retrievedentries from the permuted dictionary, and the corresponding reconstructed terms.X� get(/X) JA� get(/JA) /JACM, /JASIS JACM, JASIS�X get(X/) �M get(M/) M/IP, M/JAC IPM, JACMX�Y get(Y/X) J�S get(S/J) S/JASI JASIS�X� get(X) �A� get(A) ACM/J, ASIS/J JACM, JASISFigure 3.3: Processing truncated terms with permuted dictionary
4. CONCORDANCESEvery occurrence of every word in the database can be uniquely characterized by a sequenceof numbers that give its exact position in the text. Typically, such a sequence would consistof the document number d, the paragraph number p (in the document), the sentence numbers (in the paragraph) and the word number w (in the sentence). The quadruple (d; p; s; w)is the coordinate of the occurrence, and the corresponding �elds will be called for short d-�eld, p-�eld, s-�eld and w-�eld. In the sequel, we assume for the ease of discussion thatcoordinates of every retrieval system are of this form; however, all the methods can also beapplied to systems with di�erent coordinate structure, such as book-page-line-word, etc. Theconcordance contains, for every word of the dictionary, the lexicographically ordered list ofall its coordinates in the text; it is accessed via the dictionary that contains for every word apointer to the corresponding list in the concordance. The concordance is kept in compressedform on secondary storage and parts of it are fetched when needed and decompressed. Thecompressed �le is partitioned into equi-sized blocks such that one block can be read by a singleI/O operation.Since the list of coordinates of any given word is ordered, adjacent coordinates will oftenhave the same d-�eld, or even the same d- and p-�elds, and sometimes, especially for highfrequency words, identical d-, p- and s-�elds. Thus POM can be adapted to the compressionof concordances, where to each coordinate a header is adjoined, giving the number of �eldswhich can be copied from the preceding coordinate; these �elds are then omitted. For instancein our model with coordinates (d; p; s; w), it would su�ce to keep a header of 2 bits. The fourpossibilities are: don't copy any �eld from the previous coordinate, copy the d-�eld, copy d-and p-�eld and copy d-, p- and s-�eld. Obviously, di�erent coordinates cannot have all four�elds identical.For convenient computer manipulation, one generally chooses a �xed length for each �eld,which therefore has to be large enough to represent the maximal possible values. However,most stored values are small, thus there is usually much wasted space in each coordinate. Insome situations, some space can be saved at the expense of a longer processing time, as in thefollowing example. 40



At RRP, the maximal length of a sentence is 676 words! Such long sentences can beexplained by the fact that in the Responsa literature punctuation marks are often omitted orused very scarcely. At TLF, there is even a \sentence" of more than 2000 words (a modernpoem). Since on the other hand most sentences are short and it was preferred to use only�eld-sizes which are multiples of half-bytes, the following method is used: the size of thew-�eld is chosen to be one byte (8 bits); any sentence of length ` > 256 words, such that` = 80k+ r (0 � r < 80), is split into k units of 80 words, followed (if r > 0) by a sentence ofr words. These sentences form only a negligible percentage of the database. While resolvingthe storage problem, the insertion of such \virtual points" in the middle of a sentence createssome problems for the retrieval process. When in a query one asks to retrieve occurrences ofkeywords A and B such that A and B are adjacent or that no more than some small numberof words appear between them, one usually does not allow A and B to appear in di�erentsentences. This is justi�ed, since \adjacency" and \near vicinity" operators are generally usedto retrieve expressions, and not the coincidental juxtaposition of A at the end of a sentencewith B at the beginning of the following one. However in the presence of virtual points, thesearch should be extended also into neighboring \sentences", if necessary, since the virtualpoints are only arti�cial boundaries which might have split some interesting expression. Hencethis solution further complicates the retrieval algorithms.The methods presented in the next section not only yield improved compression, but alsoget rid of the virtual points.4.1 Using Variable-Length FieldsThe basic idea of all the new methods is to allow the p-, s- and w-�elds to have variablelength. As in POM, each compressed coordinate will be pre�xed by a header which willencode the information necessary to decompress the coordinate. The methods di�er in theirinterpretation of the header. The choice of the length of every �eld is based on statisticsgathered from the entire database on the distribution of the values in each �eld. Thus fordynamically changing databases, the compression method would need frequent updates, sothat the methods are more suitable for retrieval systems with static databases. However, if thetext changes only slowly, say it is a large corpus to which from time to time some documentsare adjoined which have characteristics similar to the documents already in the corpus, thenthe methods will still perform well, though not optimally.The codes in the header can have various interpretations: they can stand for a length `,indicating that the corresponding �eld is encoded in ` bits; they can stand for a certain valuev, indicating that the corresponding �eld contains that value; they can �nally indicate thatno value for the corresponding �eld is stored and that the value of the preceding coordinateshould be used. This is more general than the pre�x-omission technique, since one can decidefor every �eld individually whether or not to omit it, while in POM, the p-�eld is only omittedif the d-�eld is, etc.The d-�eld is treated somewhat di�erently. Since this is the highest level of the hierarchyin our model, this �eld may contain also very large numbers (there are rarely 500 words ina sentence or 500 sentences in a paragraph, but a corpus may contain tens of thousands ofdocuments). Moreover, the d-�elds of most coordinates will contain values, in the representa-41



tion of which one can save at most one or two bits, if at all. On the other hand, the d-�eld isthe one where the greatest savings are achieved by POM. Thus we shall assume in the sequelthat for the d-�eld, we just keep one bit in the header, indicating whether the value of thepreceding coordinate should be copied or not; if not, the d-�eld will appear in its entire length.We now describe the speci�c methods in detail.A. The simple method. The header contains codes for the size (in bits) of every �eld.(i) Allocate two bits for each of the p-, s- and w-�elds, giving four possible choices foreach.We consider the following variations:a. One of the possible codes indicates the omission of the �eld, thus we are leftwith only 3 possible choices for the length of each �eld.b. The four choices are used to encode �eld-lengths, thus not allowing the use ofthe preceding coordinate.c. Use a for the p- and s-�elds, and b for the w-�eld.Method A(i)c is justi�ed by the fact that consecutive coordinates having the same value intheir w-�eld are rare (3.5% of the concordance at RRP). The reason is that this correspondsto a certain word appearing in the same relative location in di�erent sentences, which ismostly a pure coincidence; on the other hand consecutive coordinates having the same valuein one of their other �elds correspond to a certain word appearing more than once in the samesentence, paragraph or document, and this occurs frequently. For instance, at RRP, 23.4% ofthe coordinates have the same s-�eld as their predecessors, 41.7% have the same p-�eld and51.6% have the same d-�eld.Note that the header does not contain the binary encoding of the lengths, since this wouldrequire a larger number of bits. By storing a code for the lengths the header is kept smaller,but at the expense of increasing decompression time, since a table is needed which translatesthe codes into actual lengths. This remark applies also to the subsequent methods.(ii) Allocate three bits in the header for each of the p-, s- and w-�elds, giving 8 possiblechoices for each.The idea of (ii) is that by increasing the number of possibilities (and hence the overhead foreach coordinate), the range of possible values can be partitioned more e�ciently, which shouldlead to savings in the remaining part of the coordinate. Again three methods correspondingto a, b and c of (i) were checked.B. Using some �elds to encode frequent values.For some very frequent values, the code in the header will be interpreted directly as one ofthe values, and not as the length of the �eld in which they are stored. Thus the corresponding�eld can be omitted in all these cases. However, the savings for the frequent values come at42



the expense of reducing the number of possible choices for the lengths of the �elds for theless frequent values. For instance, at RRP, the value 1 appears in the s-�eld of more than 9million coordinates (about 24% of the concordance), thus all these coordinates will have nos-�eld in their compressed form, and the code in the part of the header corresponding to thes-�eld will be interpreted as \value 1 in the s-�eld".(i) Allocate 2 bits in the header for each of the p-, s- and w-�elds; one of the codespoints to the most frequent value.(ii) Allocate 3 bits in the header for each of the p-, s- and w-�elds; three of the codespoint to the 3 most frequent values.There is no subdivision into methods a, b and c as in A (in fact the method used correspondsto a), because we concluded from our experiments that it is worth to keep the possibility ofusing the previous coordinate in case of equal values in some �eld. Hence one code wasallocated for this purpose, which left only 2 codes to encode the �eld-lengths in (i) and 4codes in (ii). For (ii) we experimented also with allowing 2 or 4 of the 8 possible choicesto encode the 2 or 4 most frequent values; however, on our data, the optimum was alwaysobtained for 3. There is some redundancy in the case of consecutive coordinates having boththe same value in some �eld, and this value being the most frequent one. There are thentwo possibilities to encode the second coordinate using the same number of bits. In such acase, the code for the frequent value should be preferred over the one pointing to the previouscoordinate, as decoding of the former is usually faster.C. Combining methods A and B.Choose individually for each of the p-, s- and w-�elds, the best of the previous methods.D. Encoding length-combinations.If we want to push the idea of A further, we should have a code for every possible lengthof a �eld, but the maxima of the values can be large. For example, at RRP, one needs 10bits for the maximal value of the w-�eld, 9 bits for the s-�eld and 10 bits for the p-�eld. Thiswould imply a header length of 4 bits for each of these �elds, which cannot be justi�ed by thenegligible improvement over method A(ii).The size of the header can be reduced by replacing the three codes for the sizes of the p-,s- and w-�elds by a single code in the following way. Denote by lp, ls and lw the lengths of thep-, s- and w-�elds respectively, i.e., the sizes (in bits) of the binary representations withoutleading zeros of the values stored in them. In our model 1 � lp; ls; lw � 10, so there are up to103 possible triplets (lp; ls; lw). However, most of these length-combinations occur only rarely,if at all. At RRP, the 255 most frequent (lp; ls; lw)-triplets account already for 98.05% of theconcordance. Therefore(i) Allocate 9 bits as header, of which 1 bit is used for the d-�eld; 255 of the possiblecodes in the remaining 8 bits point to the 255 most frequent (lp; ls; lw)-triplets; thelast code is used to indicate that the coordinate corresponds to a \rare" triplet, inwhich case the p-, s- and w-�elds appear already in their decompressed form.43



Although the \compressed" form of the rare coordinates, including a 9-bit header, may infact need more space than the original coordinate, we still save on the average.Two re�nements are now superimposed. We �rst note that one does not need to representthe integer 0 in any �eld. Therefore one can use a representation of the integer n� 1 in orderto encode the value n, so that only blog2(n� 1)c+ 1 bits are needed instead of blog2 nc+ 1.This may seem negligible, because only one bit is saved and only when n is a power of 2,thus for very few values of n. However, the �rst few of these values, 1, 2 and 4, appear veryfrequently, so that in fact this yields a signi�cant improvement. At RRP, the total size of thecompressed p-, s- and w-�elds (using method D) was further reduced by 7.4%, just by shiftingthe stored values from n to n� 1.The second re�nement is based on the observation that since we know from the headerthe exact length of each �eld, we know the position of the left-most 1 in it, so that this 1is also redundant. The possible values in the �elds are partitioned into classes Ci de�ned byC0 = f0g, Ci = f` : 2i�1 � ` < 2ig, and the header gives for the values in each of the p-, s- andw-�elds, the indices i of the corresponding classes. Therefore if i � 1, there is no need to storeany additional information because C0 and C1 are singletons, and for ` 2 Ci for i > 1, only thei� 1 bits representing the number `� 2i�1 are kept. For example, suppose the values in thep-, s- and w-�elds are 3, 1 and 28. Then the encoded values are 2, 0 and 27 which belong toC2, C0 and C5 respectively. The header thus points to the triplet (2; 0; 5) (assuming that thisis one of the 255 frequent ones) and the rest of the coordinate consists of the �ve bits 01011,which are parsed from left to right as 1 bit for the p-�eld, 0 bits for the s-�eld and 4 bits forthe w-�eld. A similar idea was used in [15] for encoding run-lengths in the compression ofsparse bit-vectors.(ii) Allocate 8 bits as header of which 1 bit is used for the d-�eld; the remaining 7 bitsare used to encode the 127 most frequent (lp; ls; lw)-triplets.The 127 most frequent triplets still correspond to 85.19% of the concordance at RRP. Thisis therefore an attempt to save one bit in the header of each coordinate at the expense ofhaving more non-compressed coordinates.Another possibility is to extend method D also to the d-�eld. Let b be a Boolean variablecorresponding to the two possibilities for the d-�eld, namely T = the value is identical to thatof the preceding coordinate, thus omit it, or F = di�erent value, keep it. We therefore haveup to 2000 quadruples (b; lp; ls; lw), which are again sorted by decreasing frequency.(iii) Allocate 8 bits as header; 255 of the codes point to the 255 most frequent quadru-ples.At RRP, these 255 most frequent quadruples cover 87.08% of the concordance. For the lasttwo methods, one could try to get better results by compressing also some of the coordinateswith the non-frequent length combinations, instead of storing them in their decompressedform. We did not, however, pursue this possibility.
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EncodingAfter choosing the appropriate compression method, the concordance is scanned sequen-tially and each coordinate is compressed with or without using the preceding one. For eachof the above methods, the length of the header is constant, thus the set of compressed coordi-nates forms a pre�x-code. Therefore the compressed coordinates, which have variable lengths,can simply be concatenated. The compressed concordance consists of the resulting very longbit-string. This string is partitioned into blocks of equal size, the size corresponding to thebu�er-size of a read/write operation. If the last coordinate in a block does not �t there in itsentirety, it is moved to the beginning of the next block. The �rst coordinate of each block isconsidered as having no predecessor, so that if in the original encoding process a coordinatewhich is the �rst in a block referred to the previous coordinate, this needs to be corrected.This allows now to access each block individually, while adding only a negligible number ofbits to each block.DecodingNote that for a static information retrieval system, encoding is done only once (whenbuilding the database), whereas decoding directly a�ects the response-time for on-line queries.In order to increase the decoding speed, we use a small precomputed table T which is storedin internal memory. For a method with header length k bits, this table has 2k entries. Inentry i of T , 0 � i < 2k, we store the relevant information for the header consisting of thek-bit binary representation of the integer i.For the methods in A, the relevant information simply consists of the lengths, P , S andW ,of the p-, s- and w-�elds (recall that we assume that only one bit is kept in the header for thed-�eld, so either the d-�eld appears in its entire length D, which is constant, or it is omitted),and of the sum of all these lengths (including D), which is the length of the remaining partof the coordinate. We shall use the following notations: for a given internal structure of adecompressed coordinate, let hd, hp, hs and hw be the indices of the leftmost bit of the d-,p-, s- and w-�elds respectively, the index of the rightmost bit of a coordinate being 0. Forexample with a 4 byte coordinate and one byte for each �eld we would have hd = 31, hp = 23,hs = 15 and hw = 7; these values are constant for the entire database. COOR and LAST areboth addresses of a contiguous space in memory in which a single decompressed coordinatecan �t (hence of length hd + 1 bits). The procedure SHIFT(X; y; z) shifts the substring of Xwhich is obtained by ignoring its y rightmost bits, by z bits to the left. Then the followingloop could be used for the decoding of a coordinate:1. loop while there is more input or until a certain coordinate is found2. H  next k bits // read header3. (TOT; P; S;W ) T (H) // decode header using table4. COOR  next TOT bits // right justi�ed su�x of coordinate5. SHIFT(COOR;W; hw �W ) // move d-, p- and s-�eld6. SHIFT(COOR; hw + S; hs � S) // move d- and p-�eld7. SHIFT(COOR; hs + P; hp � P ) // move d-�eld8. if TOT = P + S +W then copy d-�eld from LAST9. if P = 0 then copy p-�eld from LAST10. if S = 0 then copy s-�eld from LAST11. if W = 0 then copy w-�eld from LAST45



12. LAST  COOR13. end of loopThere is no need to initialize LAST, since the �rst coordinate of a block never refers tothe preceding coordinate.For the methods in B and C, we store sometimes actual values, and not just the lengthsof the �elds. This can be implemented by using negative values in the table T . For example,if P = �2, this could be interpreted as \value 2 in the p-�eld". Note that when the valuestored in a �eld is given by the header, this �eld has length 0 in the remaining part of thecoordinate. Thus we need the following updates to the above algorithm: line 3 is replaced by(TOT; P1; S1;W1) T (H)if P1 < 0 then P  0 else P  P1and statements similar to the latter for the s- and w-�elds. After statement 11 we shouldinsert if P1 < 0 then put �P1 in p-�eld of COORand similar statements for the s- and w-�elds.The decoding of the methods in D is equivalent to that of A. The only di�erence is in thepreparation of the table T (which is done only once). While for A to each �eld correspondcertain �xed bits of the header which determine the length of that �eld, for D the header isnon-divisible and represents the lengths of all the �elds together. This does not a�ect thedecoding process, since in both methods a table-lookup is used to interpret the header. Anexample of the encoding and decoding processes appears in the next section.Parameter SettingAll the methods of the previous section were compared on the concordance of RRP. Eachcoordinate had a (d; p; s; w)-structure and was of length 6 bytes (48 bits). Using POM, theaverage length of a compressed coordinate was 4.196 bytes, i.e., a compression gain of 30%.Table 4.1 gives the frequencies of the �rst few values in each of the p-, s- and w-�elds,both with and without taking into account the previous coordinate. The frequencies are givenin cumulative percentages, e.g., the row entitled s-�eld contains in the column headed i thepercentage of coordinates having a value � i in their s-�eld. We have also added the valuesfor which the cumulative percentage �rst exceeds 99%.As one can see, the �rst four values in the p- and s-�elds account already for half of theconcordance. This means that most of the paragraphs consist of only a few sentences and mostof the documents consist of only a few paragraphs. The �gures for the w-�eld are di�erent,because short sentences are not preponderant. While the (non-cumulative) frequency of thevalues i in the s-�eld is a clearly decreasing function of i, it is interesting to note the peekat value 2 for the p-�eld. This can be explained by the speci�c nature of the Responsaliterature, in which most of the documents have a question-answer structure. Therefore the�rst paragraph of a document usually contains just a short question, whereas the answer,starting from the second paragraph, may be much longer.46



Table 4.1: Distribution of values stored in p-, s- and w-�eldsValue 1 2 3 4 5 79 83 87 93 119 120ignoring p-�eld 14.1 35.2 46.5 54.2 60.2 99preceding s-�eld 24.2 40.2 51.1 58.8 64.5 99coordinate w-�eld 3.0 5.8 8.6 11.4 14.0 99using p-�eld 9.6 25.2 36.5 45.0 51.7 99preceding s-�eld 17.9 33.0 44.3 52.6 58.9 99coordinate w-�eld 1.9 4.4 7.1 9.7 12.4 99When all the coordinates are considered (upper half of Table 4.1), the percentages arehigher than the corresponding percentages for the case where identical �elds in adjacent coor-dinates are omitted (lower half of Table 4.1). This means that the idea of copying certain �eldsfrom the preceding coordinate yields to savings which are, for the small values, larger thancould have been expected from knowing their distribution in the non-compressed concordance.Using the information collected from the concordance, all the possible variants for each ofthe methods in A and B have been checked. Table 4.2 lists for each of the methods the variantfor which maximal compression was achieved. The numbers in boldface are the frequent valueswhich are used in methods B and C, the other numbers refer to the lengths of the �elds. Thevalue 0 indicates that the �eld of the preceding coordinate should be copied.Table 4.2: Optimal variants of the methodsMethod p-�eld s-�eld w-�eldA(i)a 0 2 5 10 0 2 5 9 0 4 6 10A(i)b 1 3 5 10 1 3 5 9 3 5 6 10A(ii)a 0 1 2 3 4 5 6 10 0 1 2 3 4 5 6 9 0 1 3 4 5 6 7 10A(ii)b 1 2 3 4 5 6 7 10 1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 10B(i) 0 2 4 10 0 1 4 9 0 4 6 10B(ii) 0 1 2 3 3 4 5 10 0 1 2 3 3 4 5 9 0 3 4 5 3 5 6 10C 0 2 5 10 0 1 2 3 3 4 5 9 3 5 6 10The optimal variants for the methods A(ii) are not surprising: since most of the storedvalues are small, one could expect the optimal partition to give priority to small �eld-lengths.For method C, each �eld is compressed by the best of the other methods, which are A(i)a for thep-�eld, B(ii) for the s-�eld and A(i)b for the w-�eld, thus requiring a header of 1+2+3+2 = 8bits (including one bit for the d-�eld).The entries of Table 4.2 were computed using the �rst re�nement mentioned in the de-scription of method D, namely storing n � 1 instead of n. The second re�nement (dropping47



the leftmost 1) could not be applied, because it is not true that the leftmost bit in every �eldis a 1. Thus for all the calculations with methods A and B, an integer n was supposed torequire blog2(n� 1)c+ 1 bits for n > 1 and one bit for n = 1.As an example for the encoding and decoding processes, consider method C, and a coor-dinate structure with (hd; hp; hs; hw) = (8; 8; 8; 8), i.e., one byte for each �eld. The coordinatewe wish to process is (159; 2; 2; 35). Suppose further that only the value in the d-�eld is thesame as in the previous coordinate. Then the length D of the d-�eld is 0; in the p-�eld thevalue 1 is stored, using two bits; nothing is stored in the s-�eld, because 2 is one of the fre-quent values and directly referenced by the header; in the w-�eld the value 34 is stored, using6 bits. The possible options for the header are numbered from left to right as they appearin Table 4.2, hence the header of this coordinate is 0-10-011-11, where dashes separating theparts corresponding to di�erent �elds have been added for clarity; the remaining part of thecoordinate is 01-100010. The table T has 28 = 256 entries; at entry 79 (= 01001111 in binary)the values stored are (TOT; P1; S1;W1) = (8; 2;�2; 6). When decoding the compressed co-ordinate 0100111101100010, the leftmost 8 bits are considered as header and converted tothe integer 79. Table T is then accessed with that index, retrieving the 4-tuple (8; 2;�2; 6)which yields the values (P; S;W ) = (2; 0; 6). The next TOT = 8 bits are therefore loaded intoCOOR of size 4 bytes, and after the three shifts we getCOOR = 00000000� 00000010� 00000000� 00100010:Since TOT = P + S +W the value of the d-�eld is copied from the last coordinate. SinceP1 < 0, the value �S1 = 2 is put into the s-�eld.On our data, the best method was D(i) with an average coordinate length of 3.082 bytes,corresponding to 49% compression relative to the full 6-byte coordinate, and giving a 27%improvement over POM. The next best method was C with 3.14 bytes. Nevertheless, theresults depend heavily on the statistics of the speci�c system at hand, so that for anotherdatabase, other methods could be preferable.The main target of the e�orts was to try to eliminate or at least reduce the unusedspace in the coordinates. Note that this can easily be achieved by considering the entiredatabase as a single long run of words, which we could index sequentially from 1 to N , Nbeing the total number of words in the text. Thus blog2Nc + 1 bits would be necessary percoordinate. However, the hierarchical structure is lost, so that, for example, queries askingfor the co-occurrence of several words in the same sentence or paragraph are much harder toprocess. Moreover, when a coordinate is represented by a single, usually large, number, we losealso the possibility to omit certain �elds which could be copied from preceding coordinates.A hierarchical structure of a coordinate is therefore preferable for the retrieval algorithms.Some of the new compression methods even outperform the simple method of sequentiallynumbering the words, since the latter would imply at the RRP database a coordinate lengthof 26 bits = 3.25 bytes.4.2 Model Based Concordance CompressionFor our model of a textual database, we assume that the text is divided into documents andthe documents are made up of words. We thus use only a two level hierarchy to identify the48



location of a word, which makes the exposition here easier. The methods can, however, bereadily adapted to more complex concordance structures, like the 4-level hierarchy mentionedabove. In our present model, the conceptual concordance consists, for each word, of a seriesof (d; w) pairs, d standing for a document number, and w for the index, or o�set, of a wordwithin the given document:word1 : (d1; w1) (d1; w2) � � � (d1; wm1)(d2; w1) (d2; w2) � � � (d2; wm2)� � �(dN ; w1) � � � (dN ; wmN )word2 : � � �For a discussion of the problems of relating this conceptual location to a physical location onthe disc, see [7].It is sometimes convenient to translate our 4-level hierarchy to an equivalent one, in whichwe indicate the index of the next document containing the word, the number of times theword occurs in the document, followed by the list of word indices of the various occurrences:word1 : (d1; m1 ; w1; w2; : : : ; wm1)(d2; m2 ; w1; : : : ; wm2)� � �(dN ; mN ; w1; : : : ; wmN )word2 : � � �Our task is to model each of the components of the latter representation, and use standardcompression methods to compress each entity. Below we assume that we know (from thedictionary) the total number of times a word occurs in the database, the number of di�erentdocuments in which it occurs, and (from a separate table) the number of words in eachdocument. The compression algorithm is then based on predicting the probability distributionof the various values in the coordinates, devising a code based on the predicted distributions,and using the codeword corresponding to the actual value given.We thus need to generate a large number of codes. If so, the Shannon-Fano method (asde�ned in [41]) seems the most appropriate if we are concerned with processing speed. Thusan element, which according to the model at hand appears with probability p, will be encodedby d� log2 pe bits. Once the length of the codeword is determined, the actual codeword iseasily generated. But Shannon-Fano codes are not optimal and might in fact be quite wasteful,especially for the very low probabilities.While Shannon-Fano coding is fast, when high precision is required Hu�man codes are agood alternative. Under the constraint that every codeword consists of an integral numberof bits, they are optimal; however their computation is much more involved than that ofShannon-Fano codes, because every codeword depends on the whole set of probabilities. Thusmore processing time is needed, but compression is improved. On the other hand, Hu�mancodes are not e�ective in the presence of very high probabilities. Elements occurring withhigh probability have low information content, yet their Hu�man codeword cannot be shorterthan one bit. If this is a prominent feature, arithmetic coding must be considered.49



Arithmetic coding more directly uses the probabilities derived from the model, and over-comes the problem of high probability elements by encoding entire messages, not just code-words. E�ectively, an element with probability p is encoded by exactly � log2 p bits, whichis the information theoretic minimum. While in many contexts arithmetic codes might notimprove much on Hu�man codes, their superiority here might be substantial, because themodel may generate many high probabilities. There is of course a time/space tradeo�, as thecomputation of arithmetic codes is generally more expensive than that of Hu�man codes.Initially we are at the beginning of the document list and are trying to determine theprobability that the next (when we start, this is the �rst) document containing a term is ddocuments away from our current location. We know the number of documents that con-tain the term, say N , and the number of documents, say D, from which these are chosen.(More generally, after we have located a number of documents that contain the term, D andN will respectively represent the total number of remaining documents, and, of these, thenumber that contain the term. Our reasoning will then continue in parallel to that of the �rstoccurrence.)Our �rst question, then, is: what is the probability distribution of the �rst/next docu-ment containing the term. Assuming that the events involved are independent and equallydistributed, this is equivalent to asking, if N di�erent objects are selected at random froman ordered set of D objects, what is the probability that d is the index of the object withminimum index?Because of the uniformity assumption, each of the �DN� ways of picking N out of D objectshave same probability, viz, 1=�DN�. But of these, only �D�dN�1� satisfy the condition that d isthe minimum index. That is, certainly one document must be the d-th one, so we only havefreedom to choose N � 1 additional documents. Since all of these must have index greaterthan d, we have only D � d options for these N � 1 selections. Thus the probability that thenext document has (relative) position d is Pr(d) = �D�dN�1�=�DN�.We �rst note this is a true probability:Xd Pr(d) = D�N+1Xd=1 �D�dN�1��DN� = D�1Xk=N�1 � kN�1��DN� = �DN��DN� = 1;where the last equality uses the well known combinatoric identity that permits summationover the upper value in the binomial coe�cient [11]. Second, we note that we can rewrite theprobability as� ND �N + 1��  1� dD!�  1� dD � 1!� � � � �  1� dD �N + 2! :If d � D, this is approximately (N=D) � (1 � d=D)N�1, which is in turn approximatelyproportional to e�d(N�1)=D or d, for  = e�(N�1)=D. This last form is that of the geometricdistribution recommended by Witten et al.[42].The encoding process is then as follows. We wish to encode the d-�eld of the next coordi-nates (d;m; w1; : : : ; wm). Assuming that the probability distribution of d is given by Pr(d),we construct a code based on fPr(d)gD�N+1d=1 . This assigns codewords to all the possible values50



f for s � 1 to S /* for each word in concordance */D  � total number of documentsT  � total number of occurrences of word sN  � total number of documents in which word s occursd0  � 0for i � 1 to N /* for each document containing word s */f /* process document i */output d code(di � di�1; N � i;D)if T > Noutput m code(mi � 1; (T �N)=N; T �N)/* process occurrences of word s in document i */W  � total number of words in document iw0  � 0for j  � 1 to mif output w code(wj � wj�1;mi � j;W )W  � W � (wj � wj�1)g/* update parameters and continue */D  � D � (di � di�1)T  � T �migggd code(d;N;D)f construct a code C1 based on probabilities that d = k: n�D�kN �=� DN+1�oD�i+1k=1return C1(d)gm code(x; �;max)f F  � Pmaxk=0 e�� �kk! /* correction factor for truncated Poisson distribution */construct a code C2 based on probabilities that x = k: n 1F e�� �kk! omaxk=0return C2(x)gw code(w;m;W )f construct a code C3 based on probabilities that w = k: n�W�km �=� Wm+1�oW�i+1k=1return C3(w)g Figure 4.3: Concordance compression algorithm51



of d, from which we use the codeword corresponding to the actual value d in our coordinate.If the estimate is good, the actual value d will be assigned a high probability by the model,and therefore be encoded with a small number of bits.Next we encode the number of occurrences of the term in this document. Let us supposethat we have T occurrences of the term remaining (initially, this will be the total number ofoccurrences of the term in the database). The T occurrences are to be distributed into the Nremaining documents the word occurs in. Thus we know that each document being consideredmust have at least a single term, that is, m = 1+x, where x � 0. If T = N , then clearly x = 0(m = 1), and we need output no code | m conveys no information in this case. If T > N ,then we must distribute the T �N terms not accounted for over the remaining N documentsthat contain the term. We assume, for simplicity, that the additional amount, x, going tothe currently considered document is Poisson distributed, with mean � = (T � N)=N . ThePoisson distribution is given by Pr(x) = e�� �xx! . This allows us to compute the probability ofx for all possible values (x = 0; 1; : : : ; T �N) and to then encode x using one of the encodingsabove.We must �nally encode all the m o�sets. But this problem is formally identical to thatof encoding the next document. The current document has W words, so the distribution ofw, the �rst occurrence of the word, is given by the probabilities �W�wm�1 �=�Wm�. Once this isencoded, we have a problem identical to the initial one in form, except that we now havem� 1 positions left to encode and W �w locations. This continues until the last term, whichis uniformly distributed over the remaining word locations.Then we encode the next document, but this is again a problem identical in form to theinitial problem|only we now have one fewer document (N � 1) having the term, and d fewertarget documents (D � d) to consider.The formal encoding algorithm is given in Figure 4.3. We begin with a conceptual con-cordance, represented for the purpose of this algorithm as a list of entries. Our concordancecontrols S di�erent words. For each word, there is an entry for each document it occurs in, ofthe form (di;mi; w1; : : : ; wmi), where di, mi and wj are given similarly to the representation(2) de�ned above.Note that we do not encode the absolute values di and wj, but the relative increases di�di�1and wj � wj�1; this is necessary, because we rede�ne, in each iteration, the sizes D, W andT to be the remaining number of documents, number of words in the current document, andnumber of occurrences of the current word, respectively.In fact, one should also deal with the possibility where the independence assumptions ofthe previous section are not necessarily true. In particular, we consider the case where termscluster not only within a document, but even at the between document level. Details of thismodel can be found in [43].5. BITMAPSFor every distinct word W of the database, a bit-map B(W ) is constructed, which acts as\occurrence"-map at the document level. The length (in bits) of each map is the number of52



documents in the system. Thus, in the RRP for example, the length of each map is about 6Kbytes. These maps are stored in compressed form on a secondary storage device. At RRP,the compression algorithm was taken from [44], reducing the size of a map to 350 bytes on theaverage. This compression method was used for only about 10% of the words, those whichappear at least 70 times; for the remaining words, the list of document numbers is kept andtransformed into bit-map form at processing time. The space needed for the bit-map �le inits entirety is 33.5 MB, expanding the overall space requirement of the entire retrieval systemby about 5%.At the beginning of the process dealing with a query of the type given in eqn. (1.1), themaps B(Aij) are retrieved, for i = 1; : : : ;m and j = 1; : : : ; ni. They are decompressed and anew map ANDVEC is constructed:ANDVEC = m̂i=10@ ni_j=1B(Aij)1A :The bit-map ANDVEC serves as a \�lter", for only documents corresponding to 1-bits inANDVEC can possibly contain a solution. Note that no more than three full-length maps aresimultaneously needed for its construction.For certain queries, in particular when keywords with a small number of occurrences inthe text are used, ANDVEC will consist only of zeros, which indicates that nothing shouldbe retrieved. In such cases the user gets the correct if somewhat meager results, without asingle merge or collate action having been executed. But even if ANDVEC is not null, it willusually be much sparser than its components. These maps can improve the performance ofthe retrieval process in many ways to be now described.5.1 Usefulness of Bitmaps in IRFirst, bit-maps can be helpful in reducing the number of I/O operations involved in thequery-processing phase. Indeed, since the concordance �le is usually too big to be stored inthe internal memory, it is kept in compressed form on secondary storage, and parts of it arefetched when needed and decompressed. The compressed concordance �le is partitioned intoequi-sized blocks such that one block can be read by a single I/O operation; it is accessedvia the dictionary, which contains for each word a pointer to the corresponding (�rst) block.A block can contain coordinates of many \small" words (i.e., words with low frequency inthe database), but on the other hand, the coordinate list of a single \large" (high-frequency)word may extend over several consecutive blocks. In the RRP, for example, about half of thewords appear only once, but on the other hand there are some words that occur hundreds ofthousands of times! It is for the large words that the bit-map ANDVEC may lead to signi�cantsavings in the number of I/O operations. Rather than reading all the blocks to collect thelist of coordinates which will later be merged and/or collated, we access only blocks whichcontain coordinates in the documents speci�ed by the 1-bits of ANDVEC. Hence if the mapis sparse enough, only a small subset of the blocks need to be fetched and decompressed. Toimplement this idea, we need, in addition to the bit-map, also a small list L(W ) for each largeword W , L(W ) = f(fj; `j)g, where fj and `j are respectively the document numbers of the53



�rst and last coordinate of W in block number j, and j runs over the indices of blocks whichcontain coordinates of W . The list L(W ) is scanned together with the bit-map, and if thereis no 1-bit in ANDVEC in the bit-range [fj; `j], the block j is simply skipped.There are, however, savings beyond I/O-operations. Once a concordance block containingsome coordinates which might be relevant is read, it is scanned in parallel with ANDVEC.Coordinates with document numbers corresponding to 0-bits are skipped. For the axis, whichis the �rst keyword Ai to be handled, this means that only parts of the lists C(Aij) will betransferred to a working area, where they are merged. In order to save internal memory spaceduring the query processing, the lists of the keywords Akj , for k 6= i, are not merged likethe lists of the axis, but are directly collated with the axis. Such collations can be involvedoperations, as the distance constraints may cause each coordinate of the axis to be checkedagainst several coordinates of every variant of other keywords, and conversely every suchcoordinate might collate with several coordinates of the axis. Therefore the use of ANDVECmay save time by reducing the number of collations. Moreover, after all the variants of thesecond keyword have been collated with the axis, the coordinates of the axis which werenot matched can be rejected, so that the axis may shrink considerably. Now ANDVEC canbe updated by deleting some of its 1-bits, which again tends to reduce the number of readoperations and collations when handling the following keywords. The updates of the axis andANDVEC are repeated after the processing of each keyword Aj of the query (1.1).For conventional query processing algorithms, the consequence of increasing the numberm of keywords is an increased processing time, whereas the set of solutions can only shrink.When m is increased with the bit-map approach, however, the time needed to retrieve themaps and to perform some additional logical operations is usually largely compensated for bythe savings in I/O operations caused by a sparser ANDVEC. The new approach seems thusto be particularly attractive for a large number of keywords. Users are therefore encouragedto change their policy and to submit more complex queries!Another possible application of the bit-maps is for getting a selective display of the results.A user is often not interested in �nding all the occurrences of a certain phrase in the database,as speci�ed by the query, but only in a small subset corresponding to a certain author or acertain period. The usual way to process such special requests consists in executing �rst thesearch ignoring the restrictions, and then �ltering out the solutions which are not needed.This can be very wasteful and time-consuming, particularly if the required sub-range (periodor author(s)) is small. The bit-maps allow the problem to be dealt with in a natural way,requiring only minor changes to adapt the search program to this application. All we needis to prepare a small repertoire R of �xed bit-maps, say one for each author, where the 1-bits indicate the documents written by this author, and a map for the documents of eachyear or period, etc. The restrictions can now be formulated at the same time the query issubmitted. In the �rst line of the above algorithm, ANDVEC will not be initialized by astring containing only 1's, but by a logical combination of elements of R, as induced by theadditional restrictions. Thus user-imposed restrictions on required ranges to which solutionsshould belong on one hand, and query-imposed restrictions on the co-occurrence of keywordson the other, are processed in exactly the same way, resulting in a bit-vector, the sparsity ofwhich depends directly on the severity of the restrictions. As was pointed out earlier, thismay lead to savings in processing time and I/O operations.54



Finally, bit-maps can be also helpful in handling negative keywords. If a query includingsome negative keywords Di is submitted at the document-level, one can use the binary com-plements B(Di) of the maps, since only documents with no occurrence of Di (indicated bythe 0-bits) can be relevant. However, for other levels, the processing is not so simple. In fact,if the query is not on the document level, the bit-maps of the negative keywords are useless,and ANDVEC is formed only by the maps of the positive keywords. This di�erence in thetreatment of negative and positive keywords is due to the fact that a 0-bit in the bit-vectorof a positive keyword means that the corresponding document cannot possibly be relevant,whereas a 1-bit in the bit-vector of a negative keyword Dj only implies that Dj appears inthe corresponding document; however, this document can still be retrieved, if Dj is not inthe speci�ed neighborhood of the other keywords. Nevertheless, even though the negativekeywords do not contribute in rendering ANDVEC sparser, ANDVEC will still be useful alsofor the negative words: only coordinates in the relevant documents have to be checked not tofall in the vicinity of the axis, as imposed by the (li; ui).5.2 Compression of BitmapsIt would be wasteful to store the bit-maps in their original form, since they are usuallyvery sparse (the great majority of the words occur in very few documents). Schuegraf [45]proposes to use run-length coding for the compression of sparse bit-vectors, in which a stringof consecutive zeros terminated by a one (called a run) is replaced by the length of the run.A sophisticated run-length coding technique can be found in Teuhola [46]. Jakobsson [47]suggests to partition each vector into k-bit blocks, and to apply Hu�man coding on the 2kpossible bit-patterns. This method is referred below as method NORUN.5.2.1 Hierarchical compressionIn this section we concentrate on hierarchical bit-vector compression: let us partition theoriginal bit-vector v0 of length l0 bits into k0 equal blocks of r0 bits, r0 � k0 = l0, and drop theblocks consisting only of zeros. The resulting sequence of non-zero blocks does not allow thereconstruction of v0, unless we add a list of the indices of these blocks in the original vector.This list of up to k0 indices is kept as a binary vector v1 of l1 = k0 bits, where there is a 1 inposition i if and only if the i-th block of v0 is not all zero. Now v1 can further be compressedby the same method.In other words, a sequence of bit-vectors vj is constructed, each bit in vj being the result ofORing the bits in the corresponding block in vj�1. The procedure is repeated recursively untila level t is reached where the vector length reduces to a few bytes, which will form a singleblock. The compressed form of v0 is then obtained by concatenating all the nonzero blocks ofthe various vi, while retaining the block-level information. Decompression is obtained simplyby reversing these operations and their order. We start at level t, and pass from one level tothe next by inserting blocks of zeros into level j � 1 for every 0-bit in level j.Figure 5.1 depicts an example of a small vector v0 of 27 bits and its derived levels v1 andv2, with ri = 3 for i = 0; 1; 2 and t = 2. The sizes rj of the blocks are parameters and55
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v2v1v0 (a) Original vector and two derived levels
(b) Compressed vectorFigure 5.1: Hierarchical bit-vector compressioncan change from level to level for a given vector, and even from one word of the database toanother, although the latter is not practical for our applications. Because of the structure ofthe compressed vector, we call this the TREE method, and shall use in our discussion the usualtree-vocabulary: the root of the tree is the single block on the top level, and for a block x invj+1 which is obtained by ORing the blocks y1; : : : ; yrj of vj, we say that x is the parent ofthe non-zero blocks among the yi.The TREE method was proposed by Wedekind & H�arder [48]. It appears also in Vallar-ino [49], who used it for two-dimensional bit-maps, but only with one level of compression.In [50], the parameters (block size and height of the tree) are chosen assuming that the bit-vectors are generated by a memoryless information source, i.e., each bit in v0 has a constantprobability p0 for being 1, independently from each other. However, for bit-maps in infor-mation retrieval systems, this assumption is not very realistic a priori, as adjacent bits oftenrepresent documents written by the same author; there is a positive correlation for a word toappear in consecutive documents, because of the speci�c style of the author or simply becausesuch documents often treat the same or related subjects.We �rst remark that the hierarchical method does not always yield real compression.Consider for example a vector v0 for which the indices of the 1-bits are of the form ir0 fori � l0=r0. Then there are no zero-blocks (of size r0) in v0, moreover all the bits of vi for i > 0will be 1, so that the whole tree must be kept. Therefore the method should be used only forsparse vectors.In the other extreme case, when v0 is very sparse, the TREE method may again be wasteful:let d = dlog2 l0e, so that a d-bit number su�ces to identify any bit-position in v0. If the vectoris extremely sparse, we could simply list the positions of all the 1-bits, using d bits for each.This is in fact the inverse of the transformation performed by the bit-vectors: basically, forevery di�erent word W of the database, there is one entry in the inverted �le containing thelist of references ofW , and this list is transformed into a bit-map; here we change the bit-mapback into its original form of a list. 56



A small example will illustrate how the bijection of the previous paragraph between listsand bit-maps can be used to improve method TREE. Suppose that among the r0 � r1 � r2 �rstbits of v0 only position j contains a one. The �rst bit in level 3, which corresponds to theORing of these bits, will thus be set to 1 and will point to a sub-tree consisting of three blocks,one on each of the lower levels. Hence in this case a single 1-bit caused the addition of atleast r0 + r1 + r2 bits to the compressed map, since if it were zero, the whole sub-tree wouldhave been omitted. We conclude that if r0 + r1 + r2 � d, it is preferable to consider positionj as containing zero, thus omitting the bits of the sub-tree, and to add the number j to anappended list L, using only d bits. This example is readily generalized so as to obtain anoptimal partition between tree and list for every given vector, as will now be shown.We de�ne lj and kj respectively as the number of bits and the number of blocks in vj, for0 � j � t. Note that rj � kj = lj . Denote by T (i; j) the sub-tree rooted at the i-th block ofvj, with 0 � j � t and 1 � i � kj. Let S(i; j) be the size in bits of the compressed form ofthe sub-tree T (i; j), i.e., the total number of bits in all the non-zero blocks in T (i; j), and letN(i; j) be the number of 1-bits in the part of the original vector v0 which belongs to T (i; j).During the bottom-up construction of the tree these quantities are recursively evaluatedfor 0 � j � t and 1 � i � kj by:N(i; j) = ( number of 1-bits in block i of v0 if j = 0;Prjh=1N ((i� 1)rj + h; j � 1) if j > 0;S(i; j) = 8><>: 0 if j = 0 and T (i; 0) contains only zeros,r0 if j = 0 and T (i; 0) contains a 1-bit,rj + Prjh=1 S ((i� 1)rj + h; j � 1) if j > 0.At each step, we check the conditiond �N(i; j) � S(i; j): (5:1)If it holds, we prune the tree at the root of T (i; j), adding the indices of the N(i; j) 1-bitsto the list L, and setting then N(i; j) and S(i; j) to zero. Hence the algorithm partitions theset of 1-bits into two disjoint subsets: those which are compressed by the TREE-method andthose kept as a list. In particular, if the pruning action takes place at the only block of thetop level, there will be no tree at all.Note that by de�nition of S(i; j), the line corresponding to the case j > 0 should in factbe slightly di�erent: rj should be added to the sum X = Prjh=1 S((i� 1)rj + h; j � 1) only ifX 6= 0. However, no error will result from letting the de�nition in its present form. Indeed,if X = 0, then also N(i; j) = 0 so that the inequality in (5.1) is satis�ed in this case, thusS(i; j) will anyway be set to zero. Note also that in case of equality in (5.1), we execute apruning action although a priori there is no gain. However, since the number of 1-bits in vjis thereby reduced, this may enable further prunings in higher levels, which otherwise mightnot have been done.We now further compress the list L (of indices of 1-bits which were \pruned" from thetree) using POM, which can be adapted to the compression of a list of d-bit numbers: wechoose an integer c < d � 1 as parameter, and form a bit-map v of k = dl0=2ce bits, wherebit i, for 0 � i < k, is set to 1 if and only if the integer i occurs in the d � c leftmost bits57



of at least one number in L. Thus a 1-bit in position i of v indicates that there are one ormore numbers in L in the range [i2c; (i + 1)2c � 1]. For each 1-bit in v, the numbers of thecorresponding range can now be stored as relative indices in that range, using only c bits foreach, and an additional bit per index serving as ag, which identi�es the last index of eachrange. Further compression of the list L is thus worthwhile only ifd � jLj > k + (c+ 1)jLj: (5:2)The left hand side of (5.2) corresponds to the number of bits needed to keep the list Luncompressed. Therefore this secondary compression is justi�ed only when the number ofelements in L exceeds k=(d� c� 1).For example, for l0 = 128 and c = 5, there are 4 blocks of 25 bits each; suppose thenumbers in L are 36, 50, 62, 105 and 116 (at least �ve elements are necessary to justifyfurther compression). Then there are three elements in the second block, with relative indices4, 18 and 30, and there are two elements in the fourth block, with relative indices 9 and 20,the two other blocks being empty. This is shown in Figure 5.2.
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Figure 5.2: Further compression of index listFinally we get even better compression by adapting the cut-o� condition (5.1) dynamicallyto the number of elements in L. During the construction of the tree, we keep track of thisnumber and as soon as it exceeds k=(d� c� 1), i.e., it is worthwhile to further compress thelist, we can relax the condition in (5.1) to(c+ 1) �N(i; j) � S(i; j); (5:3)since any index which will be added to L, will use only c+ 1 bits for its encoding.In fact, after recognizing that L will be compressed, we should check again the blocks al-ready handled, since a sub-tree T (i; j) may satisfy (5.3) without satisfying (5.1). Nevertheless,we have preferred to keep the simplicity of the algorithm and not to check again previouslyhandled blocks, even at the price of losing some of the compression e�ciency. Often, therewill be no such loss, since if we are at the top level when jLj becomes large enough to satisfy(5.2), this means that the vector v0 will be kept in its entirety as a list. If we are not at thetop level, say at the root of T (i; j) for j < t, then all the previously handled trees will bereconsidered as part of larger trees, which are rooted on the next higher level. Hence it ispossible that the sub-tree T (i; j), which satis�es (5.3) but not (5.1) (and thus was not prunedat level j), will be removed as part of a larger sub-tree rooted at level j + 1.58



5.2.2 Combining Hu�man and run-length codingAs we are interested in sparse bit-strings, we can assume that the probability p of a blockof k consecutive bits being zero is high. If p � 0:5, method NORUN assigns to this 0-block acodeword of length one bit, so we can never expect a better compression factor than k. On theother hand, k cannot be too large since we must generate codewords for 2k di�erent blocks.In order to get a better compression, we extend the idea of method NORUN in the followingway: there will be codewords for the 2k � 1 non-zero blocks of length k, plus some additionalcodewords representing runs of zero-blocks of di�erent lengths. In the sequel, we use the term`run' to designate a run of zero-blocks of k bits each.The length (number of k-bit blocks) of a run can take any value up to l0=k, so it isimpractical to generate a codeword for each: as was just pointed out, k cannot be very large,but l0 is large for applications of practical importance. On the other hand, using a �xed-length code for the run length would be wasteful since this code must su�ce for the maximallength, while most of the runs are short. The following methods attempt to overcome thesedi�culties.Starting with a �xed-length code for the run-lengths, we like to get rid of the leading zerosin the binary representation B(`) of run-length `, but we clearly cannot simply omit them,since this would lead to ambiguities. We can omit the leading zeros if we have additional in-formation such as the position of the leftmost 1 in B(`). Hence, partition the possible lengthsinto classes Ci, containing run-lengths ` which satisfy 2i�1 � ` < 2i, i = 1; : : : ; blog2(l0=k)c.The 2k � 1 non-zero block-patterns and the classes Ci are assigned Hu�man codewords cor-responding to the frequency of their occurrence in the �le; a run of length ` belonging toclass Ci is encoded by the codeword for Ci, followed by i � 1 bits representing the number` � 2i�1. For example, a run of 77 0-blocks is assigned the codeword for C7 followed by the6 bits 001101. Note that a run consisting of a single 0-block is encoded by the codeword forC1, without being followed by any supplementary bits.The Hu�man decoding procedure has to be modi�ed in the following way: The tablecontains for every codeword the corresponding class Ci as well as i � 1. Then, when thecodeword which corresponds to class Ci is identi�ed, the next i � 1 bits are considered asthe binary representation of an integer m. The codeword for Ci followed by those i � 1 bitsrepresent together a run of length m + 2i�1; the decoding according to Hu�man's procedureresumes at the i-th bit following the codeword for Ci. Summarizing, we in fact encode thelength of the binary representation of the length of a run, and the method is henceforth calledLLRUN.Method LLRUN seems to be e�cient since the number of bits in the binary representationof integers is reduced to a minimum and the lengths of the codewords are optimized byHu�man's algorithm. But encoding and decoding are admittedly complicated and thus timeconsuming. We therefore propose other methods for which the encoded �le will consist onlyof codewords, each representing a certain string of bits. Even if their compression factor islower than LLRUN's, these methods are justi�ed by their simpler processing.To the 2k�1 codewords for non-zero blocks, a set S of t codewords is adjoined representingh0; h1; : : : ; ht�1 consecutive 0-blocks. Any run of zero-blocks will now be encoded by a suitable59



linear combination of some of these codes. The number t depends on the numeration systemaccording to which we choose the hi's and on the maximal run-length M , but should be lowcompared to 2k. Thus in comparison with method NORUN, the table used for compressing anddecoding should only slightly increase in size, but long runs are handled more e�ciently. Theencoding algorithm now becomes:Step 1: Collect statistics on the distribution of run-lengths and on the set NZ of the2k � 1 possible non-zero blocks. The total number of occurrences of theseblocks is denoted by N0 and is �xed for a given set of bit-maps.Step 2: Decompose the integers representing the run-lengths in the numeration sys-tem with set S of \basis" elements; denote by TNO(S) the total number ofoccurrences of the elements of S.Step 3: Evaluate the relative frequency of appearance of the 2k � 1 + t elements ofNZ [ S and assign a Hu�man code accordingly.For any x 2 (NZ [ S), let p(x) be the probability of the occurrence of x and `(x) thelength (in bits) of the codeword assigned to x by the Hu�man algorithm. The weightedaverage length of a codeword is then given by AL(S) = Px2(NZ[S) p(x)`(x) and the size ofthe compressed �le is AL(S)� (N0 +TNO(S)):After �xing k so as to allow easy processing of k-bit blocks, the only parameter in the algorithmis the set S. In what follows, we propose several possible choices for the set S = f1 = h0 <h1 < : : : < ht�1g. To overcome coding problems, the hi and the bounds on the associateddigits ai should be so that there is a unique representation of the form L = Pi aihi for everynatural number L.Given such a set S, the representation of an integer L is obtained by the following simpleprocedure: for i  t� 1 to 0 by �1ai  bL=hicL  L� ai � hiendThe digit ai is the number of times the codeword for hi is repeated. This algorithmproduces a representation L = Pt�1i=0 aihi which satis�esjXi=0 aihi < hj+1 for j = 0; : : : ; t� 1: (5:4)Condition (5.4) guarantees uniqueness of representation (see [51]).A natural choice for S is the standard binary system (method POW2), hi = 2i, i � 0, orhigher base numeration systems such as hi = mi, i � 0 for some m > 2. If the run-length is60



L it will be expressed as L = Pi aimi, with 0 � ai < m and if ai > 0, the codeword for miwill be repeated ai times. Higher base systems can be motivated by the following reason.If p is the probability that a k-bit block consists only of zeros, then the probability of a runof r blocks is roughly pr(1�p), i.e., the run-lengths have approximately geometric distribution.The distribution is not exactly geometric since the involved events (some adjacent blockscontain only zeros, i.e., a certain word does not appear in some consecutive documents) arenot independent. Nevertheless the experiments showed that the number of runs of a givenlength is an exponentially decreasing function of run-length (see Figure 2.1 below). Hencewith increasing base of the numeration systems, the relative weight of the hi for small i willrise, which yields a less uniform distribution for the elements of NZ [ S calculated in Step 3.This has a tendency to improve the compression obtained by the Hu�man codes. Thereforepassing to higher order numeration systems will reduce the value of AL(S).On the other hand, when numeration systems to base m are used, TNO(S) is an increasingfunction of m. De�ne r by mr � M < mr+1 so that at most r m-ary digits are required toexpress a run-length. If the lengths are uniformly distributed, the average number of basiselements needed (counting multiplicities) is proportional to (m�1)r = (m�1) logmM , whichis increasing for m > 1, and this was also the case for our nearly geometric distribution. Thusfrom this point of view, lower base numeration systems are preferable.As an attempt to reduce TNO(S), we pass to numeration systems with special properties,such as systems based on Fibonacci numbersF0 = 0; F1 = 1; Fi = Fi�1 + Fi�2 for i � 2:(a) The binary Fibonacci numeration system (method FIB2): hi = Fi+2. Any integer Lcan be expressed as L = Pi�0 biFi+2 with bi = 0 or 1, such that this binary representation of Lconsisting of the string of bi's contains no adjacent 1's. This fact for a binary Fibonacci systemis equivalent to condition (5.4), and reduces the number of codewords we need to representa speci�c run-length, even though the number of added codewords is larger than for POW2(instead of t(POW2) = blog2Mc we have t(FIB2) = blog�(p5M)c � 1, where � = (1 +p5)=2is the golden ratio). For example, when all the run-lengths are equally probable, the averagenumber of codewords per run is asymptotically (as k ! 1) 12(1 � 1=p5)t(FIB2) instead of12 t(POW2).(b) A ternary Fibonacci numeration system: hi = F2(i+1), i.e., we use only Fibonaccinumbers with even indices. This system has the property that there is at least one 0 betweenany two 2's. This fact for a ternary Fibonacci system is again equivalent to (5.4).6. FINAL REMARKSModern Information Retrieval Systems are generally based on inverted �les and require largeamounts of storage space and powerful machines for the processing of sophisticated queries.Data compression techniques that are speci�cally adapted to the various �les in an IR environ-ment can improve the performance, both by reducing the space needed to store the numerousauxiliary �les, and by reducing the necessary data transfer and thereby achieving a speedup.61
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