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Techniques and Applications
of Data Compression
in Information Retrieval Systems

1. INTRODUCTION

As can be seen from the title, we shall concentrate on techniques that are at the crossroad
of two disciplines: Data Compression (DC) and Information Retrieval (IR). Each of these
encompass a large body of knowledge that has evolved over the last decades, each with its own
philosophy and its own scientific community. Nevertheless, their intersection is particularly
interesting, the various files of large full-text IR systems providing a natural testbed for new
compression methods, and DC enabling the proliferation of improved retrieval algorithms.

A chapter about data compression in a book published at the beginning of the twenty first
century might at a first glance seem anachronistic. Critics will say that storage space is getting
cheaper every day, tomorrow it will be almost given for free, so who needs complicated methods
to save a few bytes.... What these critics overlook, is that for data storage, supply drives
demand: our appetite for getting ever increasing amounts of data into electronic storage grows
just as steadily as does the standard size of the hard disk in our current personal computer.
Most users know that whatever the size of their disks, they will fill up sooner or later, and
generally sooner than they wish.

However, there are also other benefits to be gained from data compression, beyond the
reduction of storage space. One of the bottlenecks of our computing systems is still the
slow data transfer from external storage devices. Similarly, for communication applications,
the problem is not to store the data but rather to squeeze it through some channel. But
many users are competing for the same limited bandwidth, effectively reducing the amount
of data that can be transferred in a given time span. Here, DC may help reduce the number
of I/O operations to and from secondary memory, and for communication it reduces the
actual amount of data that has to pass through the channel. The additional time spent on
compression and decompression is generally largely compensated for by the savings in transfer
time.

For these reasons, research in DC is not dying out, but just the opposite is true, as
evidenced by the recent spurt of literature in this area. An international Data Compression
Conference convenes annually since 1990, and many journals, including even popular ones such
as Byte, Dr. Dobbs, IEEE Spectrum, Datamation, PC Magazine and others, have repeatedly
published articles on compression recently.

It is true that a large part of the research concentrates on image compression. Indeed,
pictorial data is storage voracious so that the expected profit of efficient compression is sub-
stantial. The techniques generally applied to images belong to the class of lossy compression,
because they concentrate on how to throw away part of the data, without too much changing
its general appearance. For instance, most humans do not really see any difference between
a picture coded with 24 bits per pixel, allowing more than 16 million colors, and the same
picture recoded with 12 bits per pixel, giving “only” about 4000 different color shades. Of



course, most image compression techniques are much more sophisticated, but we shall not
deal with them in the present survey. The interested reader is referred to the large literature
on lossy compression, e.g. [1].

Information Retrieval is concerned, on the one hand, with procedures to help a user satisfy
his information needs by facilitating his access to large amounts of data, on the other hand,
with techniques to evaluate his (dis)satisfaction with whatever data the system provided. We
shall concentrate primarily on the algorithmic aspects of IR. A functional full-text retrieval
system is constituted of a large variety of files, most of which can and should be compressed.
Some of the methods described below are of general applicability, and some are specially
designed for an IR environment.

Full-text information retrieval systems may be partitioned according to the level of speci-
ficity supported by their queries. For example, in a system operating at the document-level,
queries can be formulated as to the presence of certain keywords in each document of the
database, but not as to their exact locations within the document. Similarly, one can define
the paragraph-level and sentence-level, each of which is a refinement of its predecessor. The
highest specificity level is the word-level, in which the requirement is that the keywords appear
within specified distances of each other. With such a specificity level, one could retrieve all
the occurrences of A and B such that there are at least two but at most five words between
them. In the same way, the paragraph and sentence-levels permit also appropriate distance
constraints, e.g., at the sentence-level one could ask for all the occurrences of A and B in the
same or adjacent sentences.

Formally, a typical query consists of an optional level-indicator, m keywords and m — 1
distance constraints, as in

level : Al (ll, 'lL1> A2 (ZQ, 'lLQ) s Am—l (lm—la ’LLm_l) Am. (11)

The [; and u; are (positive or negative) integers satisfying [; < u; for 1 < i < m, with the
couple (I;,u;) imposing a lower and upper limit on the distance from A; to A;;;. Negative
distance means that A;;; may appear before A; in the text. The distance is measured in
words, sentences or paragraphs, as prescribed by the level-indicator. In case the latter is
omitted, word-level is assumed; in this case, constraints of the form A (1,1) B (meaning that
A should be followed immediately by B), are omitted. Also, if the query is on the document
level, then the distances are meaningless and should be omitted (the query degenerates then
into a conjunction of the occurrences of all the keywords in the query).

In its simplest form, the keyword A; is a single word or a (usually very small) set of words
given explicitly by the user. In more complex cases a keyword A; in (1.1) will represent a
set of words A; = U;Zl A;j, all of which are considered synonymous to A; in the context of
the given query. For example, a variable-length-don’t-care-character * can be used, which
stands for an arbitrary, possibly empty, string. This allows the use of prefix, suffix and infix
truncation in the query. Thus A; could be computx, representing, among others, the words
computer, computing, computerize, etc.; or it could be *mycin, which retrieves a large class
of antibiotics; infix truncation also can be useful for spelling foreign names, such as Baxtyar,

where * could be matched by h, k, kh, ch, sh, sch, etc.

Another possibility for getting the variants of a keyword is from the use of a thesaurus
(month representing January, February, etc.), or from some morphological processing (do



representing does, did, done, etc.). Although these grammatical variants can be easily gen-
erated in some languages with simple morphology like English, sophisticated linguistic tools
are needed for languages such as Hebrew, Arabic and many others. One of the derivatives of
the 2-character word daughter in Hebrew, for example, is a 10-character string meaning and
when our daughters, and it shares only one common letter with its original stem; a similar
phenomenon occurs in French with the verb faire, for example.

For all these cases, the families A; are constructed in a preprocessing stage. Algorithms for
generating the families identified by truncated terms can be found in [2], and for the families
of grammatical variants in [3].

This general definition of a query with distance constraints allows great flexibility in the
formulation of the query. For example: the query solving (1,3) differential equations will
retrieve sentences containing solving differential equations, as well as solving these
differential equations and solving the required differential equations, but not
solving these systems of differential equations. The query true (-2,2) false can
be used to retrieve the phrases true or false and false or true; since these words appear
frequently in some mathematical texts, searching for true and false in the same sentence
could generate noise. A lower bound greater than 1 in the distance operators is needed for
example when one wishes to locate phrases in which some words X, X»,... appear, but the
juxtaposition of these words X;X,--- forms an idiomatic expression which we do not wish
to retrieve. For example, ...the security of the council members assembled here...
should be retrieved by the query security (2,4) council. Note however that (1) implies that
one can impose distance constraints only on adjacent keywords. In the query A (1,5) B (2,7)
C, the pair (2,7) refers to the distance from B to C. If we wish to impose positive bounds on
the distances from A to both B and C, this can be done by using negative distances: C (-7,-2)
A (1,5) B, but this procedure cannot be generalized to tying more than two keywords to A.

A well-known problem in retrieval systems is the handling of “negative” keywords, i.e.,
words the absence of which, in a specified distance from a specified context, is required. A
negation operator (represented here by the minus sign —) is particularly useful for excluding
known homonyms so as to increase precision. For example, searching for references to the
former US President, one could submit the query Reagan (-2,1) —Donald. Another interesting
example would be to use the constraints (;, u;) = (0,0) in order to restrict some large families
of keywords, as in the example comput* (0,0) —computersk, which would retrieve computing,
computation, etc, but not computer or computers. The general definition of a query as
given in (1.1) should therefore include the possibility of negating some  but not all  of
the keywords while specifying their appropriate distance constraints.

Queries of type (1.1) can be of course further combined by the Boolean operators of AND,
OR and NOT, but we shall restrict our attention here to queries of type (1.1), since they
are quite common on one hand, and on the other hand their efficient processing is anyway a
prerequisite to the efficient processing of the more complicated ones.

At the end of the search process, the solutions are presented to the user in the form of
a list of the identifying numbers or the titles of the documents that contain at least one
solution, possibly together with the text of the sentence (or the paragraph), in which this
solution occurs. The exact details of the display depend on the specific system, on the target



population and on the human-interface design of the system.

The way to process such queries depends on the size of the database. When the size of the
text is small, say up to a few hundred Kbytes, the problem of efficiently accessing the data
can generally be solved by some brute-force method that scans the whole text in reasonable
time. Such a method is commonly used in text-editors. At the other extreme, for very large
databases spanning hundreds of Mbytes, a complete scan is not feasible. The usual approach
in that case is to use so-called inverted files.

Every occurrence of every word in the database can be uniquely characterized by a se-
quence of numbers that give its exact position in the text; typically, in a word-level retrieval
system, such a sequence would consist of the document-number, the paragraph number (in the
document), the sentence number (in the paragraph), and the word number (in the sentence).
These are the coordinates of the occurrence. For every word W, let C(W) be the ordered list
of the coordinates of all its occurrences in the text. The problem of processing a query of
type (1) consists then, in its most general form, of finding all the m-tuples (as,...,a,,) of
coordinates satisfying

and
L < d(a;,ait1) < u; for 1 <i < m,

where d(z,y) denotes the distance from x to y on the given level. Every m-tuple satisfying
these two equations is called a solution.

In the inverted files approach, processing (1.1) does not involve directly the original text
files, but rather the auxiliary dictionary and concordance files. The concordance contains,
for each distinct word W in the database, the ordered list C(W) of all its coordinates in
the text; it is accessed via the dictionary that contains for every such word a pointer to the
corresponding list in the concordance. For each keyword A; in (1.1) and its attached variants
A,;j, the lists C(A;;) are fetched from the concordance and merged to form the combined list
C(A;). Beginning now with A; and As, the two lists C(A;) and C(As) are compared, and the
set of all pairs of coordinates (a;, as) that satisfy the given distance constraints (1, u;) at the
appropriate level is constructed. (Note that a unique a; can satisfy the requirements with
different a,, and vice-versa). C(As) is now purged from the irrelevant coordinates, and the
procedure is repeated with A; and As, resulting in the set {(ay, a2, a3)} of partial solutions of
(1.1). Finally, when the last keyword A,, is processed in this way, we have the required set of
solutions.

Note that it is not really necessary to always begin the processing with the first given
keyword A; in (1.1), going all the way in a left-to-right mode. In some cases, it might be more
efficient to begin it with a different keyword A;, and to proceed with the other keywords in
some specified order.

The main drawback of the inverted files approach is its huge overhead: the size of the con-
cordance is comparable to that of the text itself and sometimes larger. For the intermediate
range, a popular technique is based on assigning signatures to text fragments and to indi-
vidual words. The signatures are then transformed into a set of bitmaps, on which Boolean



operations, induced by the structure of the query, are performed. The idea is first to effec-
tively reduce the size of the database by removing from consideration segments that cannot
possibly satisfy the request, then to use pattern matching techniques to process the query, but
only over the—hopefully small—remaining part of the database [4]. For systems supporting
retrieval only at the document level, a different approach to query processing might be useful.
The idea is to replace the concordance of a system with £ documents by a set of bit-maps of
fixed length ¢. Given some fixed ordering of the documents, a bit-map B(W) is constructed
for every distinct word W of the database, where the i-th bit of B(W) is 1 if W occurs in
the i-th document, and is 0 otherwise. Processing queries then reduces to performing logical
OR/AND operations on binary sequences, which is easily done on most machines, instead of
merge/collate operations on more general sequences. Davis & Lin [5] were apparently the first
to propose the use of bit-maps for secondary key retrieval. It would be wasteful to store the
bit-maps in their original form, since they are usually very sparse (the great majority of the
words appear in very few documents), and we shall review various methods for the compres-
sion of such large sparse bit-vectors. However, the concordance can be dropped only if all
the information we need is kept in the bit-maps. Hence, if we wish to extend this approach
to systems supporting queries also at the paragraph, sentence or word-level, the length of
each map must equal the number of paragraphs, sentences or words respectively, a clearly
infeasible scheme for large systems. Moreover, the processing of distance constraints is hard
to implement with such a data structure.

In [6], a method is presented in which, basically, the concordance and bit-map approaches
are combined. At the cost of marginally expanding the inverted-files’ structure, compressed
bit-maps are added to the system; these maps give partial information on the location of the
different words in the text and their distribution. This approach is described in more detail
in Section 5.

Most of the techniques below were tested on two real-life full-text information retrieval
systems, both using the inverted files approach. The one is the Trésor de la Langue Francaise
(TLF) [7], a database of 680 MB of French language texts (112 million words) made up of
a variety of complete documents including novels, short stories, poetry and essays, by many
different authors. The bulk of the texts are from the 17" through 20" centuries, although
smaller databases include texts from the 16! century and earlier. The other system is the
Responsa Retrieval Project (RRP) [8], 350 MB of Hebrew and Aramaic texts (60 million
words) written over the past ten centuries. For the sake of conciseness, detailed experimental
results have been omitted throughout.

Table 1.1 shows roughly what one can expect from applying compression methods to the
various files of a full-text retrieval system. The numbers correspond to TLF. Various smaller
auxiliary files are not mentioned here, including grammatical files, thesauri, etc.

For the given example, the overall size of the system, which was close to two Gigabytes,
could be reduced to fit onto a single CD-Rom.

The organization of this chapter is as follows. The subsequent sections consider, in turn,
compression techniques for the file types mentioned above, namely, the text, dictionaries,
concordances and bitmaps. For text compression, we first shortly review some background
material. While concentrating on Huffman coding and related techniques, arithmetic coding



TABLE 1.1: Files in a full-text system

File full size compressed size compression
Text 700 MB 245 MB 65%
Dictionary 30 MB 18 MB 40%
Concordance 400 MB 240 MB 40%
Bitmaps 800 MB 40 MB 95%
Total 543 MB

and dictionary based text compression are also mentioned. For Huffman coding, we focus in
particular on techniques allowing fast decoding, since decoding is more important than encod-
ing in an Information Retrieval environment. For dictionary and concordance compression the
prefix omission method and various variants are suggested. Finally, we describe the usefulness
of bitmaps for the enhancement of IR systems and then show how these large structures may
in fact be stored quite efficiently.

The choice of the methods to be described is not meant to be exhaustive. It is a blend
of techniques which reflect the personal taste of the author rather than some well established
core curriculum in Information Retrieval and Data Compression. The interested reader will
find pointers to further details in the appended references.

2. TEXT COMPRESSION

We are primarily concerned with information retrieval, therefore this section will be devoted
to text compression, as the text is still the heart of any large full-text IR system. We refer to
text written in some natural language, using a fixed set of letters called an alphabet. 1t should
however be noted that the methods below are not restricted to textual data alone, and are in
fact applicable to any kind of file. For the ease of discourse, we shall still refer to texts and
characters, but these terms should not be understood in their restrictive sense.

Whatever text of other file we wish to store, our computers insist on talking only binary,
which forces us to transform the data using some binary encoding. The resulting set of
elements, called codewords, each corresponding to one of the characters of the alphabet, is
called a code. The most popular and easy to use codes are fired length codes, for which all the
codewords consist of the same number of bits. One of the best known fixed length codes is
the American Standard Code for Information Interchange (ASCII), for which each codeword
is one byte (eight bits) long, providing for the encoding of 2° = 256 different elements.

A fixed length code has many advantages, most obviously, the encoding and decoding



processes are straightforward. Encoding is performed by concatenating the codewords corre-
sponding to the characters of the message, decoding is done by breaking the encoded string
into blocks of the given size, and then using a decoding table to translate the codewords back
into the characters they represent. For example, the ASCII representation of the word Text
is

01010100011001010111100001110100,

which can be broken into

010101001 01100101 | 01111000 [ 01110100.

From the compression point of view, such a code may be wasteful. A first attempt to
reduce the space of an ASCII encoding is to note that if the actual character set used is of size
n, only [log, n] bits are needed for each codeword. Therefore a text using only the 26 letters
of the English alphabet (plus up to six special characters, such as space, period, comma, etc.)
could be encoded using just five bits per codeword, saving already 37.5%. But even for larger
alphabets an improvement is possible if the frequency of occurrence of the different characters
is taken into account.

As is well-known, not all the letters appear with the same probability in natural language
texts. For English, E, T and A are the most frequent, appearing about 12%, 10% and 8%
respectively, while J, Q and Z occur each with probability less than 0.1%. Similar phenomena
can be noted in other languages. The skewness of the frequency distributions can be exploited
if one is ready to abandon the convenience of fixed length codes, and trade processing ease for
better compression by allowing the codewords to have wvariable length. It is then easy to see
that one may gain by assigning shorter codewords to the more frequent characters, even at
the price of encoding the rare characters by longer strings, as long as the average codeword
length is reduced. Encoding is just as simple as with fixed length codes and still consists in
concatenating the codeword strings. There are however a few technical problems concerning
the decoding that have to be dealt with.

A code has been defined above as a set of codewords, which are binary strings. But
not every set of strings gives a useful code. Consider, for example, the four codewords in
column (a) of Figure 2.1 If a string of 0’s is given, it is easily recognized as a sequence of A’s.
Similarly, the string 010101 can only be parsed as BBB. However, the string 010110 has two
possible interpretations: 0 | 1011 | 0 = ADA, or 01 | 0 | 110 = BAC. This situation is intolerable,
because it violates our basic premiss of reversibility of the encoding process. We shall thus
restrict attention to codes for which every binary string obtained by concatenating codewords
can be parsed only in one way, namely into the original sequence of codewords. Such codes
are called uniquely decipherable (UD).

At first sight, it seems difficult to decide whether a code is UD or not, because infinitely
many potential concatenations have to be checked. Nevertheless, efficient algorithms solving
the problem do exist [9]. A necessary, albeit not sufficient, condition for a code to be UD is that
its codewords should not be too short. A precise condition has been found by MacMillan [10]:
any binary UD code with codewords lengths {/,...,¢,} satisfies

do2hi< (2.1)
=1
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A O A 11 A 11 A1

B 01 B 110 B 011 B 00

c 110 c 1100 c 0011 c 010

D 1011 D 1101 D 1011 D 0110
E 11000 E 00011 E 0111

Non-UD UD prefix complete
non-prefix non-complete

(a) (b) () (d)

FIGURE 2.1: Examples of codes

For example, referring to the four codes of Figure 2.1, the sum is 0.9375, 0.53125, 0.53125 and
1 for codes (a) to (d) respectively. Case (a) is also an example showing that the condition is
not sufficient.

But even if a code is UD, the decoding of certain strings may not be so easy. The code
in column (b) of Figure 2.1 is UD, but consider the encoded string 11011111110: a first
attempt to parse it as 110 | 11 | 11 | 11 | 10 = BAAA10 would fail, because the tail 10 is not a
codeword; hence only when trying to decode the fifth codeword do we realize that the first
one is not correct, and that the parsing should rather be 1101 | 11 | 11 | 110 = DAAB. In this
case, a codeword is not immediately recognized as soon as all its bits are read, but only after
a certain delay. There are codes for which this delay never exceeds a certain fixed number of
bits, but the example above is easily extended to show that the delay for the given code is
unbounded.

We would like to be able to recognize a codeword as soon as all its bits are processed, that
is, with no delay at all; such codes are called instantaneous. A special class of instantaneous
codes is known as the class of prefix codes: a code is said to have the prefiz property, and is
hence called a prefiz code, if none of its codewords is a prefix of any other. It is unfortunate
that this definition is misleading (shouldn’t such a code be rather called a non-prefix code?),
but it is widespread and therefore we shall keep it. For example, the code in Figure 2.1(a) is
not prefix because the codeword for A (0) is a prefix of the codeword for B (01). Similarly, the
code in (b) is not prefix, since all the codewords start with 11, which is the codeword for A.
On the other hand, codes (c¢) and (d) are prefix.

It is easy to see that any prefix code is instantaneous and therefore UD. Suppose that
while scanning the encoded string for decoding, a codeword = has been detected. In that case,
there is no ambiguity as in the example above for code (b), because if there were another
possible interpretation y which can be detected later, it would imply that x is a prefix of y,
contradicting the prefix property.

In our search for good codes, we shall henceforth concentrate on prefix codes. In fact, we
incur no loss by this restriction, even though the set of prefix codes is a proper subset of the
UD codes: it can be shown that given any UD code whose codeword lengths are {¢y,...,¢,},
one can construct a prefix code with the same set of codeword lengths [11]. As example, note
that the prefix code (¢) has the same codeword lengths as code (b). In this special case, (¢)’s
codewords are obtained from those of code (b) by reversing the strings; now every codeword

11



terminates in 11, and the substring 11 occurs only as suffix of any codeword, thus no codeword
can be the proper prefix of any other. Incidently, this also shows that code (b), which is not
prefix, is nevertheless UD.

There is a natural one-to-one correspondence between binary prefix codes and binary trees.
Let us assign labels to the edges and vertices of a binary tree in the following way:

e cvery edge pointing to a left child is assigned the label 0, and
every edge pointing to a right child is assigned the label 1;

e the root of the tree is assigned the empty string A;

e cvery vertex v of the tree below the root is assigned a binary string which is obtained
by concatenating the labels on the edges of the path leading from the root to vertex v.

It follows from the construction that the string associated with vertex v is a prefix of the string
associated with vertex w if and only if v is a vertex on the path from the root to w. Thus
the set of strings associated with the leaves of any binary tree satisfies the prefix property
and may be considered as a prefix code. Conversely, given any prefix code, one can easily
construct the corresponding binary tree. For example, the tree corresponding to the code
{11,101,001, 000} is depicted in Figure 2.2.

FIGURE 2.2: Tree corresponding to code {11,101,001,000}

The tree corresponding to a code is a convenient tool for decompression. One starts with
a pointer to the root and another one to the encoded string, which acts as a guide for the
traversal of the tree. While scanning the encoded string from left to right, the tree-pointer
is updated to point to the left, resp. right, child of the current node, if the next bit of the
encoded string is a 0, resp. a 1. If a leaf of the tree is reached, a codeword has been detected,
it is sent to the output and the tree-pointer is reset to point to the root.

Note that not all the vertices of the tree in Figure 2.2 have two children. From the
compression point of view, this is a waste, because we could, in that case, replace certain
codewords by shorter ones, without violating the prefix property, i.e., build another UD code
with strictly smaller average codeword length. For example, the node labeled 10 has only a
right child, so the codeword 101 could be replaced by 10; similarly, the vertex labeled 0 has
only a left child, so the codewords 000 and 001 could be replaced by 00 and 01, respectively. A

12



tree for which all internal vertices have two children is called a complete tree, and accordingly,
the corresponding code is called a complete code. A code is complete if and only if the lengths
{¢;} of its codewords satisfy equation (2.1) with equality, i.e., 37, 27% = 1.

2.1 Huffman Coding

To summarize what we have seen so far, we have restricted the class of codes under con-
sideration in several steps. Starting from general UD codes, passing to instantaneous and
prefix codes and finally to complete prefix codes, since we are interested in good compression
performance. The general problem can thus be stated as follows: we are given a set of n
non-negative weights {wy,...,w,}, which are the frequencies of occurrence of the letters of
some alphabet. The problem is to generate a complete binary variable-length prefix code,
consisting of codewords with lengths ¢; bits, 1 <7 < n, with optimal compression capabilities,
i.e., such that the total length of the encoded text

=1

is minimized. It is sometimes convenient to redefine the problem in terms of relative frequen-
cies. Let W = >, w; be the total number of characters in the text, one can then define
pi = w;/W as the probability of occurrence of the i-th letter. The problem is then equivalent
to minimizing the average codeword length 37| pil;.

Let us for a moment forget about the interpretation of the ¢; as codeword lengths, and
try to solve the minimization problem analytically without restricting the ¢; to be integers,
but still keeping the constraint that they must satisfy the McMillan equality S°7, 274 = 1.
To find the set of ¢;’s minimizing (2.2), one can use Langrange multipliers. Define a function
L(ly,...,¢,) of n variables and with a parameter A\ by

L(ty,....0, }:wE—A<Zp‘ )

and look for local extrema by setting the partial derivatives to zero:

oL
ar, =w; +227%n2 =0,
which yields
w,
(= —1 S 2.3
' (%2<—A1n2> (23)
To find the constant A, substitute the values for ¢; derived in (2.3) in the McMillan equality:
- W
1= 9~ ,
; Y IHQZl  —AIn2’

from which one can derive A = —W/In 2. Plugging this value back into (2.3), one finally gets

l; = —log, <%> = —log, pi.
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This quantity is known as the information content of a symbol with probability p,;, and it
represents the minimal number of bits in which the symbol could be coded. Note that this
number is not necessarily an integer. Returning to the sum in (2.2), we may therefore conclude
that the lower limit of the total size of the encoded file is given by

=Y wilog,pi =W (— > pilog, pi> . (2.4)

=1 =1

The quantity H = — > p; log, p; has been defined by Shannon [12] as the entropy of the
probability distribution {pi,...,p,}, and it gives a lower bound to the weighted average
codeword length.

In 1952, Huffman [13] proposed the following algorithm which solves the problem.

1. If n =1, the codeword corresponding to the only weight is the null-string;  return.
2. Let wi and ws, without loss of generality, be the two smallest weights.

3. Solve the problem recursively for the n — 1 weights w; 4+ wo, w3, ..., Wy;
let a be the codeword assigned to the weight w; 4 ws.

4. The code for the n weights is obtained from the code for n — 1 weights generated in point 3 by
replacing « by the two codewords a0 and al;  return.

In the straightforward implementation, the weights are first sorted and then every weight
obtained by combining the two which are currently the smallest, is inserted in its proper place
in the sequence so as to maintain order. This yields an O(n?) time complexity. One can
reduce the time complexity to O(nlogn) by using two queues, the one, @)1, containing the
original elements, the other, ()5, the newly created combined elements. At each step, the two
smallest elements in )7 U ()5 are combined and the resulting new element is inserted at the
end of ()5, which remains in order [14].

Theorem. Huffman’s algorithm yields an optimal code.

Proof: By induction on the number of elements n. For n = 2, there is only one complete
binary prefix code, which therefore is optimal, namely {0, 1}; this is also a Huffman code,
regardless of the weights w; and ws,.

Assume the truth of the Theorem for n — 1. Let T; be an optimal tree for {wy, ..., w,},
with ACL M, = Z?:l w;l;.

Claim 1: There are at least two elements on the lowest level of 7.

Proof: Suppose there is only one such element and let v = ay ---a,, be the corresponding
binary codeword. Then by replacing v by a; - - - a,,—1 (i.e., dropping the last bit) the resulting
code would still be prefix, and the ACL would be smaller, in contradiction with 77 s optimality.

Claim 2: The codewords ¢; and ¢y corresponding to the smallest weights w; and w, have
maximal length (the nodes are on the lowest level in 77).

Proof: Suppose the element with weight w, is on level m, which is not the lowest level £. Then
there is an element with weight w, > w, at level £. Thus the tree obtained by switching w,
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with w, has an ACL of
My — w,l — wam + wym + wol < My,

which is impossible since 17 is optimal.

Claim 3: Without loss of generality one can assume that the smallest weights w; and w,
correspond to sibling nodes in 7T7.

Proof: Otherwise one could switch elements without changing the ACL.

Consider the tree T, obtained from 17 by replacing the sibling nodes corresponding to w;
and wy by their common parent node «, to which the weight w; + w, is assigned. Thus the
ACL for T2 is M2 == Ml - (w1 + wg).

Claim 4: Ty is optimal for the weights (w; + ws), w3, ..., w,.

Proof: If not, let T3 be a better tree with M3 < M. Let 8 be the node in T3 corresponding
to (w1 + we). Consider the tree T) obtained from T3 by splitting 5 and assigning the weight
wy to [B’s left child and ws to its right child. Then the ACL for T} is

My = M3+ (w1 + we) < My + (w1 + wy) = My,

which is impossible, since T} is a tree for n elements with weights wy, ..., w, and T} is optimal
among all those trees.

Using the inductive assumption, 75, which is an optimal tree for n — 1 elements, has the
same ACL as the Huffman tree for these weights. However, the Huffman tree for wyq,..., w,
is obtained from the Huffman tree for (wy 4 ws), w3, ..., w, in the same way as T} is obtained
from T,. Thus the Huffman tree for the n elements has the same ACL as T3, hence it is
optimal. ]

2.2 Huffman Coding without Bit-Manipulations

In many applications, compression is by far not as frequent as decompression. In particular, in
the context of static IR systems, compression is done only once (when building the database),
whereas decompression directly affects the response time for on-line queries. We are thus
more concerned with a good decoding procedure. In spite of their optimality, Huffman codes
are not always popular with programmers as they require bit-manipulations and are thus not
suitable for smooth programming and efficient implementation in most high-level languages.

This section presents decoding routines that directly process only bit-blocks of fixed and
convenient size (typically, but not necessarily, integral bytes), making it therefore faster and
better adapted to high-level languages programming, while still being efficient in terms of
space requirements. In principle, byte-decoding can be achieved either by using specially
built tables to isolate each bit of the input into a corresponding byte or by extracting the
required bits while simulating shift operations.



2.2.1 Eliminating the reference to bits

We are given an alphabet 3, the elements of which are called [etters, and a message (=
sequence of elements of X) to be compressed, using variable-length codes. Let L denote the
set of N items to be encoded. Often L = 32, but we do not restrict the codewords necessarily
to represent single letters of 3. Indeed, the elements of L can be pairs, triplets or any n-grams
of letters, they can represent words of a natural language, and they can finally form a set of
items of completely different nature, provided that there is an unambiguous way to decompose
a given file into these items (see for example [15]). We call L an alphabet and its elements
characters, where these terms should be understood in a broad sense. We thus include also
in our discussion applications where NN, the size of the “alphabet”, can be fairly large.

We begin by compressing L using the variable-length Huffman codewords of its different
characters, as computed by the conventional Huffman algorithm. We now partition the result-
ing bit-string into k-bit blocks, where £ is chosen so as to make the processing of k-bit blocks,
with the particular machine and high-level language at hand, easy and natural. Clearly,
the boundaries of these blocks do not necessarily coincide with those of the codewords: a
k-bit block may contain several codewords, and an codeword may be split into two (or more)
adjacent k-bit blocks. As an example, let L = {A,B,C,D}, with codewords {0, 11,100, 101} re-
spectively, and choose k = 3. Consider the following input string, its coding and the coding’s
partition into 3-bit blocks:

A A B D B
~ N AN —— —~ —~

0 0 1 1 1 0 1 1 1

1 6 7

The last line gives the integer value 0 < i < 22 of the block.

The basic idea for all the methods is to use these k-bit blocks, which can be regarded as
the binary representation of integers, as indices to some tables which are prepared in advance
in the preprocessing stage.

In this section we first describe two straightforward  albeit not very efficient ~ methods
for implementing this idea.

For the first method, we use a table B of 2¥ rows and % columns. In fact, B will contain
only zeros and ones, but as we want to avoid bit-manipulations, we shall use one byte for each
of the k2% elements of this matrix. Let i = I; --- I be the binary representation of length &
(with leading zeros) of 4, for 0 < ¢ < 2%, then B(i,j) = I;, for 1 < j < k; in other words,
the ¢-th line of B contains the binary representation of i, one bit per byte. The matrix B
will be used to decompose the input string into individual bits, without any bit-manipulation.
Figure 2.3(a) depicts the matrix B for k = 3.

The values 0 or 1 extracted from B are used to decode the input, using the Huffman
tree of the given alphabet. The Huffman tree of the alphabet L of our small example is in
Figure 2.4(a).
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Bl1 2 3 Sl1 2
00 0 0 00 0
110 0 1 112 o0
210 1 0 214 0
310 1 1 316 0
401 0 0 410 1
5/1 0 1 512 1
6|1 1 0 64 1
711011 716 1
(a) (b)

FI1GURE 2.3: Tables for Huffman decoding

H | 0 1
0 -A 1
1 2 -B
2 -C -D
(a) Tree form (b) Table form

FIGURE 2.4: Example of Huffman code

A Huffman tree with N leaves (and N — 1 internal nodes) can be kept as a table H with
N — 1 rows (one for each internal node) and two columns. The internal nodes are numbered
from 0 to N — 2 in arbitrary order, but for convenience the root will always be numbered
zero. For example in Figure 2.4(a), the indices of the internal nodes containing A, 1 and 10
will be 0, 1 and 2 respectively. The two elements stored in the i-th row of table H are the left
and right children of the internal node indexed 7. Each child can be either another internal
node, in which case its index is stored, or a leaf, corresponding to one of the characters of the
alphabet, in which case this character is stored. We thus need an additional bit per element,
indicating whether it is an internal node or a leaf, but generally, one can use the sign-bit for
that purpose: if the element is positive, it represents the index of an internal node; if it is
negative, its absolute value is the representation of a character. Figure 2.4(b) shows the table
‘H corresponding to the Huffman tree of Figure 2.4(a). The Huffman decoding routine can
then be formulated as follows:
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Byte Decoding algorithm

ind < 0 [ pointer to table H|
repeat
n < integer value of next input block
for =1 to k
newind < H (ind, B(n, j)) [ left or right child of current node]
if newind >0 then ind <+ newind
else
output(—newind)
ind < 0
end
until input is exhausted

Another possibility is to replace table B by the following table S, again with 2* rows, but
only two columns. For 0 < i < 2%, 8§(i, 1) will contain 2i mod 2*, and S(i,2) will contain
the leftmost bit of the k-bit binary representation of ¢. In the algorithm, the assignment to
newind has to be replaced by

newind < H (ind, S(n,2))
n+ S8(n,1)

The first statement extracts the leftmost bit and the second statement shifts the k-bit block
by one bit to the left. Figure 2.3(b) shows table S for &k = 3. Hence we have reduced the
space needed for the tables from k2% + 2(N — 1) to 281 +2(N — 1), but now there are three
table accesses for every bit of the input, instead of only two accesses for the first method.

Although there is no reference to bits in these algorithms and their programming is straight-
forward, the number of table accesses makes their efficiency rather doubtful; their only ad-
vantage is that their space requirements are linear in N (k is a constant), while for all other
time-efficient variants to be presented below, space is at least Q(N log N). However, for these
first two methods, the term 2% of the space complexity is dominant for small N, so that they
can be justified if at all  only for rather large N.

2.2.2 Partial-decoding tables

Recall that our goal is to permit a block-per-block processing of the input string for some
fixed block-size k. Efficient decoding under these conditions is made possible by using a set
of m auxiliary tables, which are prepared in advance for every given Huffman code, whereas
tables B and § above were independent of the character distribution.

The number of entries in each table is 2%, corresponding to the 2¥ possible values of the
k-bit patterns. Each entry is of the form (W, j), where W is a sequence of characters and j
(0 < j < m) is the index of the next table to be used. The idea is that entry i, 0 < i < 2%,
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of table number 0 contains, first, the longest possible decoded sequence W of characters from
the k-bit block representing the integer i (W may be empty when there are codewords of more
than k bits); usually some of the last bits of the block will not be decipherable, being the
prefix P of more than one codeword; j will then be the index of the table corresponding to
that prefix (if P = A, then j = 0). Table number j is constructed in a similar way except for
the fact that entry ¢ will contain the analysis of the bit pattern formed by the prefixing of P
to the binary representation of 2. We thus need a table for every possible proper prefix of the
given codewords; the number of these prefixes is obviously equal to the number of internal
nodes of the appropriate Huffman-tree (the root corresponding to the empty string and the
leaves corresponding to the codewords), so that m = N — 1.

More formally, let P;, 0 < j < N — 1, be an enumeration of all the proper prefixes of the
codewords (no special relationship needs to exist between j and P;, except for the fact that
Py = A). In table j corresponding to P;, the i-th entry, T'(j, ), is defined as follows: let B be
the bit-string composed of the juxtaposition of P; to the left of the k-bit binary representation
of i. Let W be the (possibly empty) longest sequence of characters that can be decoded from
B, and P, the remaining undecipherable bits of B; then T'(j,7) = (W, ).

Pattern Table 0 Table 1 Table 2
Entry

for Table 0 W 14 W l w 14
0 000 AAA 0 CA 0 CAA 0
1 001 AA 1 C 1 CA 1
2 010 A 2 DA 0 C 2
3 011 AB 0 D 1 CB 0
4 100 C 0 BAA 0 DAA 0
5 101 D 0 BA 1 DA 1
6 110 BA 0 B 2 D 2
7 111 B 1 BB 0 DB 0

FIGURE 2.5: Partial decoding tables

Referring again to the simple example given above, there are 3 possible proper prefixes:
A,1,10, hence 3 corresponding tables indexed 0,1,2 respectively, and these are given in Fig-
ure 2.5. The column headed ‘Pattern’ contains for every entry the binary string which is
decoded in Table 0; the binary strings which are decoded by Tables 1 and 2 are obtained by
prefixing ‘1°, respectively ‘10°, to the strings in ‘Pattern’.

For the input example given above, we first access Table 0 at entry 1, which yields the
output string AA; Table 1 is then used with entry 6, giving the output B; finally Table 2 at
entry 7 gives output DB.

The utterly simple decoding subroutine (for the general case) is as follows (M (i) denotes
the i-th block of the input stream, j is the index of the currently used table and T'(j, ) is the
(-th entry of table j):
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Basic Decoding Algorithm

j<0

for i< 1 to length of input do
(output, j) < T'(j, M (2))

end

As mentioned before, the choice of k is largely governed by the machine-word structure
and the high-level language architecture. A mnatural choice in most cases would be k£ =
8, corresponding to a byte context, but & = 4 (half-byte) or £ = 16 (half-word) are also
conceivable. The larger is £, the greater is the number of characters that can be decoded in a
single iteration, thus transferring a substantial part of the decoding time to the preprocessing
stage. The size of the tables however grows exponentially with &, and with every entry
occupying (for N < 256 and k = 8) 1 to 8 bytes, each table may require between 1K and 2K
bytes of internal memory. For N > 256, we need more than one byte for the representation
of a character, so that the size of a table will be even larger, and for larger alphabets these
storage requirements may become prohibitive. We now develop an approach that can help
reduce the number of required tables and their size.

2.2.3 Reducing the number of tables: binary forests

The storage space needed by the partial decoding tables can be reduced by relaxing somewhat
the approach of the previous section, and using the conventional Huffman decoding algorithm
no more than once for every block, while still processing only k-bit blocks. This is done by
redefining the tables and adding some new data-structures.

Let us suppose, just for a moment, that after deciphering a given block B of the input
that contains a “remainder” P (which is a prefix of a certain codeword), we are somehow able
to determine the correct complement of P and its length ¢, and accordingly its corresponding
encoded character. More precisely, since an codeword can extend into more than two blocks,
¢ will be the length of the complement of P in the next k-bit block which contains also other
codewords, hence 0 < ¢ < k. In the next iteration (decoding of the next k-bit block which
was not yet entirely deciphered), table number ¢ will be used, which is similar to table 0, but
ignores the first ¢ bits of the corresponding entry, instead of prefizing P to this entry as in
the previou section.

Therefore the number of tables reduces from N — 1 (about 30 in a typical single-letter
natural-language case, or 700-900 if we use letter pairs) to only & (8 or 16 in a typical byte
or half-word context), where entry ¢ in table ¢, 0 < ¢ < k, contains the decoding of the k — ¢
rightmost bits of the binary representation of 7. It is clear, however, that Table 1 contains
two exactly equal halves, and in general table £ (0 < ¢ < k) consists of 2¢ identical parts.
Retaining then in each table only the first 2*=* entries, we are able to compress the needed k
tables into the size of only two tables. The entries of the tables are again of the form (W, j);
note however that j is not an index to the next table, but an identifier of the remainder P;
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it is only after finding the correct complement of P and its length ¢ that we can access the
right Table £.

For the same example as before one obtains the tables of Figure 2.6, where table ¢ decodes
the bit-strings given in ‘Pattern’, but ignoring the ¢ leftmost bits, ¢ = 0,1,2, and [ = 0,1, 2
corresponds respectively to the proper prefixes A, 1, 10.

Pattern Table 0 Table 1 Table 2
Entry

for Table 0 W 14 W L w l
0 000 AAA 0 AA 0 A 0
1 001 AA 1 A 1 -
2 010 A 2 - 2
3 011 AB 0 B 0
4 100 C 0
5 101 0
6 110 BA 0
7 111 B 1

FIGURE 2.6: Sub-string translate tables

The algorithm will be completed if we can find a method to identify the codeword corre-
sponding to the remainder of a given input block, using of course the following input block(s).
We introduce the method through an example.

Figure 2.7 shows a typical Huffman tree H for an alphabet L of N = 7 characters. Assume
now k = 8 and consider the following adjacent blocks of input: 00101101 00101101. The first
block is decoded into the string BE and the remainder P = 01. Starting at the internal node
containing 01 and following the first bits of the following block, we get the codeword C, and
length [ = 2 for the complement of P, so that Table 2 will be used when decoding the next
block; ignoring the first 2 bits, this table translates the binary string 101101.

For the general case, let us for simplicity first assume that the depth of H, which is the
length of the longest codeword, is bounded by k. Given the non-empty remainder P of the
current input block, we must access the internal node corresponding to P, proceed downwards
turning left (0) or right (1) as indicated by the first few bits of the next k-bit block, until
we reach a leaf. This leaf contains the next character of the output. The number of edges
traversed is the index of the table to be used in the next iteration.

Our goal is to simulate this procedure without having to follow a “bit-traversal” of the
tree. The algorithm below uses a binary forest instead of the original Huffman tree H. For
the sake of clarity, the construction of the forest is described in two steps.

First, replace H by N — 2 smaller trees H;, which are induced by the proper sub-trees
rooted at the internal nodes of H, corresponding to all non-empty proper prefixes of the
codewords. The nodes of the trees of the forest contain binary strings: A for the roots, and
for each other node v, a string obtained by concatenating the labels of the edges on the path
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FI1GURE 2.7: The Huffman Tree H

from the root to v, as in the Huffman tree, but padded at the right by zeroes so as to fill a
k-bit block. In addition, each leaf contains also the corresponding decoded character. The
string in node v is denoted by VAL(v). Figure 2.8 depicts the forest obtained from the tree of
our example, where the pointer to each tree is symbolized by the corresponding proper prefix.

The idea is that the identifier of the remainder in an entry of the tables described above
is in fact a pointer to the corresponding tree. The traversal of this tree is guided by the bits
of the next k-bit block of the input, which can directly be compared with the contents of the
nodes of the tree, as will be described below.

Consider now also the possibility of long codewords, which extend over several blocks.
They correspond to long paths so that the depth of some trees in the forest may exceed k.
During the traversal of a tree, passing from one level to the next lowest one is equivalent to
advancing one bit in the input string. Hence when the depth exceeds k, all the bits of the
current k-bit block were used, and we pass to the next block. Therefore the above definition
of VAL(v) applies only to nodes on levels up to k; this definition is generalized to any node
by: VAL(v) for a node v on level j, with ik < j < (i + 1)k, i > 0, is the concatenation of the
labels on the edges on the path from level ¢k to v.

In the second step, we compress the forest as could have been done with any Huffman
tree. In such trees, every node has degree 0 or 2, i.e. they appear in pairs of siblings (except
the root). For a pair of sibling-nodes (a,b), VAL(a) and VAL(b) differ only in the j-th bit,
where j is the level of the pair (here and in what follows, the level of the root of a tree is 0),
or more precisely, j = (level — 1) mod &+ 1. In the compressed tree, every pair is represented
by an unique node containing the VAL of the right node of the pair, the new root is the node
obtained from the only pair in level 1, and the tree structure is induced by the non-compressed
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0 0000000 1 0000000 0 0000000 1 0000000
/ \ / \ 00 000000 01 000000
00 000000 01 000000 10 000000 11 000000
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100 ooooo 101 ooooo 0 ooooooo 1 0000000 0 0000000 1 0000000

F G

FIGURE 2.8: Forest of proper prefixes

tree. Thus a tree of £ nodes shrinks now to (/ — 1)/2 nodes. Another way to look at this
“compression” method is to take the tree of internal nodes, and store it in form of a table as
was described in the previous section. We use here a tree-oriented vocabulary, but each tree
can equivalently be implemented as a table. Figure 2.9 is the compressed form of the forest
of Figure 2.8.

_,.‘1 0000000
@_, 1 0000000 / 10000000

01 000000
C D

01 000000 11 000000
E

A B
101 00000 1 0000000 @_, 1 0000000
C D A B F G

FIGURE 2.9: Compressed forest

We can now compare directly the values VAL stored in the nodes of the trees with the
k-bit blocks of the Huffman encoded string. The VAL values have the following property: let
v be a node on level j of one of the trees in the compressed forest, with ik < j < (i + 1)k,
i > 0 as above, and let 7(B) be the integer value of the next k-bit block B. Then

I(B) < VAL(v) if and only if ~ bit (1 + 7 mod k) of B is 0.
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Thus after accessing one of the trees, the VAL of its root is compared with the next k-bit
block B. If B, interpreted as a binary integer, is smaller, it must start with 0 and we turn
left; if B is greater or equal, it must start with 1 and we turn right. These comparisons
are repeated at the next levels, simulating the search for an element in a binary search tree
[16, Section 6.2.2]. This leads to the modified algorithm below. Notations are like before,
ROOT(t) points to the t-th tree of the forest, every node has three fields: VAL, a k-bit value,
LEFT and RIGHT each of which is either a pointer to the next level or contains a character of
the alphabet. When accessing table j, the index is taken modulo the size of the table, which
is 287,

Revised Decoding Algorithm

11
7+0
repeat
(output, tree-nbr) «+ T'(5,S(i) mod 2¥7)
1< 1+1
j<0
if tree-nbr #0 then TRAVERSE ( ROOT (tree-nbr) )
until input is exhausted

where the procedure TRAVERSE is defined by

TRAVERSE ( node )
repeat
if S(i) < VAL(node) then
node < LEFT(node)
else node < RIGHT (node)
if node is a character C'  then output C
j—j+1 [7 is the number of bits in S(i) which are ‘used up’]
if j=k then
71+ 0
i+—i+1 [advance to next k-bit block]
until a character was output
end

Any node v of the original (compressed) Huffman tree H' generates several nodes in the
forest, the number of which is equal to the level of v in H’. Hence the total number of nodes
in the forest is exactly the internal path length of the original (uncompressed) Huffman tree
H, as defined by Knuth [17]. This quantity is between O(N log N) (for a full binary tree) and
O(N?) (for a degenerate tree), and at the average, with all possible shapes of Huffman trees
equally likely, proportional to Nv/N.

Therefore even in the worst case, the space requirements are reasonable in most practical
applications with small N. If, for large N and certain probability distributions, O(N?) is
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prohibitive, it is possible to keep the space of the forest bounded by O(N log N), if one agrees
to abandon the optimality of the Huffman tree. This can be done by imposing a maximal
length of K = O(log N) to the codewords. If K does not exceed the block-size k, the decoding
algorithm can even be slightly simplified, since in the procedure TRAVERSE there is no need
to check if the end of the block was reached. An other advantage of bounding the depth of
the Huffman tree is that this tends to lengthen the shortest codeword. Since the number of
characters stored at each entry in the partial-decoding tables is up to 1+ [(k — 1)/s], where
s is the length of the shortest codeword, this can reduce the space required to store each
table. An algorithm for the construction of an optimal tree with bounded depth in time and
space O(K N) can be found in [18]. Nevertheless, it might often not seem worthwhile to spend
so much efforts to obtain an optimal code of bounded length. As alternative one can use a
procedure proposed in [19], which gives sub-optimal average codeword length, but uses less
space and is much faster. Moreover, the codes constructed by this method are often very near
to optimal.

2.2.4 Huffman codes with radix r > 2

The number of tables can also be reduced by the following simple variants which, similar to
the variants with bounded codeword length, yield slightly lower compression factors than the
methods described above. Let us apply the Huffman algorithm with radix r, » > 2, the details
of which can be found in Huffman’s original paper [13]. In such a variant, one combines at
each step, except perhaps the first, the » smallest weights (rather than only the smallest two
in the binary algorithm) and replaces them by their sum. The number of weights combined in
the first step is chosen so that the number h of weights remaining after this step verifies h = 1
(mod r — 1). In the corresponding r-ary tree, every internal node has r sons, except perhaps
one on the next-to-lowest level of the tree which has between 2 and r sons. If we choose r = 2¢,
we can encode the alphabet in a first stage using r different symbols; then every symbol is
replaced by a binary code of £ bits. If in addition ¢ divides k, the “borders” of the k-bit blocks
never split any ¢-bit code. Hence in the partial-decoding tables, the possible remainders are
sequences of one or more r-ary symbols. There is therefore again a correspondence between
the possible remainders and the internal nodes of the r-ary Huffman tree, only that their
number now decreased to [(n—1)/(r—1)]. Moreover, there may be some savings in the space
needed for a specific table. As we saw before, the space for each table depends on the length
s of the shortest codeword, so this can be £ with the binary algorithm when s = 1, but at
most [k/2] in the 4-ary case.

Due to the restrictions on the choice of r, there are only few possible values. For example,
for k = 8, one could use a quaternary code (r = 22), where every code-word has an even
number of bits and the number of tables is reduced by a factor of 3, or a hexadecimal code
(r = 2%), where the code-word length is a multiple of 4 and the number of tables is divided by
15. Note that for alphabets with N < 31, the hexadecimal code can be viewed as the classical
method using “restricted variability” (see for example [20]: assign 4-bit encodings to the 15
most frequent characters and use the last 4-bit pattern as “escape character” to indicate that
the actual character is encoded in the next 4 bits. Thus up to 16 least frequent characters
have 8-bit encodings, all of which have their first 4 bits equal to the escape character.



FIGURE 2.10: Quaternary Huffman tree

Referring to the Huffman tree given in Figure 2.7, suppose that a character corresponding
to a leaf on level £ appears with probability 27¢, then the corresponding 22-ary tree is given
in Figure 2.10. Note that the only proper prefixes of even length are A and 00, so that the
number of tables dropped from 6 to 2.

However, with increasing r, compression will get worse, so that the right trade-off must
be chosen according to the desired application.

2.3 Space Efficient Decoding of Huffman Codes

The data structures needed for the decoding of a Huffman encoded file (a Huffman tree or
lookup table) are generally considered negligible overhead relative to large texts. However, not
all texts are large, and if Huffman coding is applied in connection with a Markov model [21],
the required Huffman forest may become itself a storage problem. Moreover, the “alphabet”
to be encoded is not necessarily small, and may, e.g., consist of all the different words in the
text, so that Huffman trees with thousands and even millions of nodes are not uncommon
[22]. We try here to reduce the necessary internal memory space by devising efficient ways
to encode these trees. In addition, the suggested data structure also allows a speed-up of the
decompression process, by reducing the number of necessary bit comparisons.
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2.3.1 Canonical Huffman codes

For a given probability distribution, there might be quite a large number

0 000 of different Huffman trees, since interchanging the left and right subtrees
; 881? of any internal node will result in a different tree whenever the two
3 l0100 subtrees are different in structure, but the weighted average path length
é 8}8}(1’ is not affected by such an interchange. There are often also other optimal
6 |01100 trees, which cannot be obtained via Huffman’s algorithm. One may
; 8}1?(1) 5 thus choose one of the trees that has some additional properties. The
9 |011101 preferred choice for many applications is the canonical tree, defined by
SR SEEEE! Schwartz and Kallick [23], and recommended by many others (see, e.g.,
12 100000 (24, 25]).
13 [100001
14 (100010 . . .
15 hooo11 Denote by (p1,...,p,) the given probability distribution, where
16 |1001000 we assume that py > py > --- > p,, and let /; be the length in bits
17 1001001 : .
18 hooioio of the codeword assigned by Huffman’s procedure to the element with
1910010t probability p;, i.e., £; is the depth of the leaf corresponding to p; in the
29 [1010101 Huffman tree. A tree is called canonical if, when scanning its leaves
2(1) }8}81}?0 from left to right, they appear in non-decreasing order of their depth
32 [10101111 (or equivalently, in non-increasing order, as in [26]). The idea is that
3310110000 Huffman’s algorithm is only used to generate the lengths {/;} of the
61 (11001100 codewords, rather than the codewords themselves; the latter are easily
g?) Hggﬂgéo obtained as follows: the i-th codeword consists of the first ¢; bits imme-
64 [110011101 diately to the right of the “binary point” in the infinite binary expansion
124 li11011001 of Z};ll 27% for i =1,...,n [27]. Many properties of canonical codes
125 (111011010 are mentioned in [24, 28].

126 1110110110

127 1110110111 . . . . . .
o The following will be used as a running example in this section. Con-

198 JIT1TT11110 sider the probability distribution implied by Zipf’s law, defined by the
199 1111111111 ) . . N
weights p; = 1/(iH,), for 1 < i < n, where H, = >7_,(1/j) is

o FIG,UR?;)I;: the n-th harmonic number. This law is believed to govern the dis-
code for Zipf-200 tribution of the most common words in a large natural language text
[29]. A canonical code can be represented by the string (ny, na, ..., ng),

called a source, where k denotes, here and below, the length of the longest codeword (the
depth of the tree), and n; is the number of codewords of length 4, i« = 1,..., k. The source
corresponding to Zipf’s distribution for n = 200 is (0,0, 1, 3,4, 8,15,32,63,74). The code is
depicted in Figure 2.11.

We shall assume, for the ease of description in this extended abstract, that the source has
no “holes”, i.e., there are no three integers ¢ < j < £ such that n; # 0,n, # 0, but n; = 0.
This is true for many, but not all, real-life distributions.

One of the properties of canonical codes is that the set of codewords having the same
length are the binary representations of consecutive integers. For example, in our case, the
codewords of length 9 bits are the binary integers in the range from 110011100 to 111011010.
This fact can be exploited to enable efficient decoding with relatively small overhead: once a
codeword of / bits is detected, one can get its relative index within the sequence of codewords
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of length ¢ by simple subtraction.
The following information is thus needed: let m = min{i | n; > 0} be the length of the
shortest codeword, and let base(i) be the integer value of the first codeword of length i. We

then have

base(m)
base(i) = 2 (base(i —1) 4+ n;_1) form <i <k.

Let Bg(k) denote the standard s-bit binary representation of the integer & (with leading zeros,
if necessary). Then the j-th codeword of length i, for j = 0,1,...,n; — 1, is B;(base(i) + j).
Let seq(i) be the sequential index of the first codeword of length i:

seq(m) = 0
seq(i) = seq(i—1) + n; for m <i <k.

Suppose now that we have detected a codeword w of length £. If I(w) is the integer value of the
binary string w (i.e., w = By(I(w))), then I(w) — base({) is the relative index of w within the
block of codewords of length £. Thus seq(¢) + I(w) — base(£) is the relative index of w within
the full list of codewords. This can be rewritten as I(w)—diff (£), for diff () = base(l) —seq({).
Thus all one needs is the list of integers diff (¢). Table 2.12 gives the values of n;, base(i),

seq(i) and diff (i) for our example.

TABLE 2.12: Decode values for canonical Huffman code for Zipt-200

i n; base(i) seq(i) diff (i)
3 1 0 0 0

4 3 2 1 1

5 4 10 4 6

6 8 28 8 20
7 15 72 16 56
8 32 174 31 143
9 63 412 63 349

10 74 950 126 824

We suggest in the next section a new representation of canonical Huffman codes, which
not only is space-efficient, but may also speed up the decoding process, by permitting, at
times, the decoding of more than a single bit in one iteration. Similar ideas, based on tables

rather than on trees, were recently suggested in [26].
2.3.2 Skeleton trees for fast decoding

The following small example, using the data above, shows how such savings are possible.
Suppose that while decoding, we detect that the next codeword starts with 1101. This infor-
mation should be enough to decide that the following codeword ought to be of length 9 bits.
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We should thus be able, after having detected the first 4 bits of this codeword, to read the
following 5 bits as a block, without having to check after each bit if the end of a codeword
has been reached. Our goal is to construct an efficient data-structure, that permits similar
decisions as soon as they are possible. The fourth bit was the earliest possible in the above
example, since there are also codewords of length 8 starting with 110.

Decoding with sk-trees

The suggested solution is a binary tree, called below an sk-tree (for skeleton-tree), the
structure of which is induced by the underlying Huffman tree, but which has generally sig-
nificantly fewer nodes. The tree will be traversed like a regular Huffman tree. That is, we
start with a pointer to the root of the tree, and another pointer to the first bit of the encoded
binary sequence. This sequence is scanned, and after having read a zero (resp., a 1), we pro-
ceed to the left (resp., right) son of the current node. In a regular Huffman tree, the leaves
correspond to full codewords that have been scanned, so the decoding algorithm just outputs
the corresponding item, resets the tree-pointer to the root and proceeds with scanning the
binary string. In our case, however, we visit the tree only up to the depth necessary to identify
the length of the current codeword. The leaves of the sk-tree then contain the lengths of the
corresponding codewords.

tree_pointer <— root
1 — 1
start +— 1
while 7 < length_of_string
{
if string[i] =0 tree_pointer <+— left(tree_pointer)
else tree_pointer <— right(tree_pointer)
if value(tree_pointer)> 0
{
codeword <— string[start - -- (start + value(tree_pointer) —1)]
output <— table[ I(codeword)—diff| value(tree_pointer)] ]
tree_pointer +— root
start <— start + value(tree_pointer)
¢ <— start

else T +— 1+1

FIGURE 2.13: Decoding procedure using sk-tree

The formal decoding process using an sk-tree is depicted in Figure 2.13. The variable start
points to the index of the bit at the beginning of the current codeword in the encoded string,
which is stored in the vector string[]. Each node of the sk-tree consists of three fields: a left
and a right pointer, which are not null if the node is not a leaf, and a value-field, which is
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zero for internal nodes, but contains the length in bits of the current codeword, if the node is
a leaf. In an actual implementation, we can use the fact that any internal node has either zero
or two sons, and store the value-field and the right-field in the same space, with left = null
serving as flag for the use of the right pointer. The procedure also uses two tables: table[j],
0 < j < n, giving the j-th element (in non-increasing order of frequency) of the encoded
alphabet; and diff [i] defined above, for i varying from m to k, that is from the length of the
shortest to the length of the longest codeword.

The procedure passes from one level in the tree to the one below according to the bits of
the encoded string. Once a leaf is reached, the next codeword can be read in one operation.
Note that not all the bits of the input vector are individually scanned, which yields possible
time savings.

FIGURE 2.14: sk-tree for Zipf-200 distribution

Figure 2.14 shows the sk-tree corresponding to Zipf’s distribution for n = 200. The tree
is tilted by 45°, so that left (right) sons are indicated by arrows pointing down (to the right).
The framed leaves correspond to the last codewords of the indicated length. The sk-tree of
our example consists of only 49 nodes, as opposed to 399 nodes of the original Huffman tree.

Counstruction of sk-trees

While traversing a standard canonical Huffman tree to decode a given codeword, one may
stop as soon as one gets to the root of any full subtree of depth h, for A > 1, i.e., a subtree of
depth h that has 2" leaves, since at this stage it is known that exactly h more bits are needed
to complete the codeword. One way to look at sk-trees is therefore as standard Huffman trees
from which all full subtrees of depth h > 1 have been pruned. A more direct and much more
efficient construction is as follows.

The one-to-one correspondence between the codewords and the paths from the root to the
leaves in a Huffman tree can be extended to define, for any binary string S = s;---s., the
path P(S) induced by it in a tree with given root ro. This path will consist of e + 1 nodes r;,
0 <1 < e, where for i > 0, r; is the left (resp. right) son of r,_y, if s; = 0 (resp. if s; = 1). For
example, in Figure 2.14, P(111) consists of the four nodes represented as bullets in the top
line. The skeleton of the sk-tree will consist of the paths corresponding to the last codeword
of every length. Let these codewords be denoted by L;, m < i < k ; they are, for our example,
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000, 0100, 01101, 100011, etc. The idea is that P(L;) serves as “demarcation line”: any node
to the left (resp. right) of P(L;), i.e., a left (resp. right) son of one of the nodes in P(L;),
corresponds to a prefix of a codeword with length < (resp. > i).

As a first approximation, the construction procedure thus takes the tree obtained by
UL P(L;) (there is clearly no need to include the longest codeword Ly, which is always a
string of £ 1’s), and adjoins the missing sons to turn it into a complete tree in which each
internal node has both a left and a right son. The label on such a new leaf is set equal to the
label of the closest leaf following it in an in-order traversal. In other words, when creating
the path for L;, one first follows a few nodes in the already existing tree, then one branches
off creating new nodes; as to the labeling, the missing right son of any node in the path will
be labeled ¢ 4+ 1 (basing ourselves on the assumption that there are no holes), but only the

missing left sons of any new node in the path will be labeled 7.

A closer look then implies the following refinement. Suppose a codeword L; has a zero in
its rightmost position, i.e., L; = a0 for some string « of length ¢ — 1. Then the first codeword
of length 7 4+ 1 is «10. It follows that only when getting to the i-th bit one can decide if the
length of the current codeword is i or 2 + 1. But if L; terminates in a string of 1’s, L; = 01,
with a > 0 and |3| +a = i — 1, then the first codeword of length i + 1 is 410", so the length
of the codeword can be deduced already after having read the bit following . It follows that
one does not always need the full string L; in the sk-tree, but only its prefix up to and not
including the rightmost zero. Let L} = [3 denote this prefix. The revised version of the above
procedure starts with the tree obtained by U¥Z! P(L¥). The nodes of this tree are depicted
as bullets in Figure 2.14. For each path P(L}) there is a leaf in the tree, and the left son of
this leaf is the new terminal node, represented in Figure 2.14 by a box containing the number
1. The additional leaves are then filled in as explained above.

Space complexity

To evaluate the size of the sk-tree, we count the number of nodes added by path P(L}),
for m < < k. Since the codewords in a canonical code, when ordered by their corresponding
frequencies, are also alphabetically sorted, it suffices to compare L; to L; 1. Let v(m) = 0,
and for i > m, let (i) be the longest common prefix of L; and L; i, e.g., v(7) is the string
10 in our example. Then the number of nodes in the sk-tree is given by:

size =2 (Z max(0, | L] - Iv(i)|)> -1,

since the summation alone is the number of internal nodes (the bullets in Figure 2.14).

The maximum function comes to prevent an extreme case in which the difference might
be negative. For example, if Lg = 010001 and L; = 0101111, the the longest common prefix
is v(7) = 010, but since we consider only the bits up to and not including the rightmost zero,
we have Lf = 01. In this case, indeed, no new nodes are added for P(L%).

An immediate bound on the number of nodes in the sk-tree is O(min(n, k%)), since on the
one hand, there are up to k — 1 paths P(L}) of lengths < k — 2, but on the other hand, it
cannot exceed the number of nodes in the underlying Huffman tree, which is 2n — 1. To get
a tighter bound, consider the nodes in the upper levels of the sk-tree belonging to the full
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binary tree F' with £ — 1 leaves and having the same root as the sk-tree. The depth of F'is
d = [log,(k — 1)], and all its leaves are at level d or d — 1. The tree F' is the part of the
sk-tree where some of the paths P(L?) must be overlapping, so we account for the nodes in F
and for those below separately. There are at most 2k — 1 nodes in F'; there are at most £ — 1
disjoint paths below it, with path P(L}) extending at most ¢ — 2 — |log,(k — 1) | nodes below
F, for log,(k — 1) < ¢ < k. This yields as bound for the number of nodes in the sk-tree:

k—2—log, (k—1)}
2k + 2 ( > z) =2k + (k=2 — [logy(k — 1)])(k — 1 — [logy(k — 1)]).

=1

There are no savings in the worst case, e.g., when there is only one codeword of each
length (except for the longest, for which there are always at least two). More generally, if
the depth of the Huffman tree is Q(n), the savings might not be significant. But such trees
are optimal only for some very skewed distributions. In many applications, like for most
distributions of characters or character pairs or words in most natural languages, the depth
of the Huffman tree is O(logn), and for large n, even the constant ¢, if the depth is clog, n,
must be quite small. For suppose the Huffman tree has a leaf on depth d. Then by [30,
Theorem 1], the probability of the element corresponding to this leaf is p < 1/Fy1, where
F}; is the j-th Fibonacci number, and we get from [17, Exercise 1.2.1-4], that p < (1/¢)?71,
where ¢ = (1 ++/5)/2 is the golden ratio. Thus if d > clog, n, we have

1 clogyn
p< <$> _ yyclom(1/6) _ ,—0.693¢

To give a numeric example, a Huffman tree corresponding to the different words in English, as
extracted from 500 MB (87 million words) of the Wall Street Journal [31], had n = 289,101
leaves. The probability for a tree of this size to have a leaf at level 3log, n is less than
4.4 x 107'2, which means that even if the word with this probability appears only once, the
text must be at least 4400 billion words long, enough to fill about 35,000 CD-Roms! But even
if the original Huffman tree would be deeper, it is sometimes convenient to impose an upper
limit of B = O(logn) on the depth, which often implies only a negligible loss in compression
efficiency [19]. In any case, given a logarithmic bound on the depth, the size of the sk-tree is
about
logn (logn —loglogn).

2.4 Arithmetic Coding

We have dealt so far only with Huffman coding, and even shown that they are optimal under
certain constraints. However, this optimality has often been overemphasized in the past and
it is not always mentioned that Huffman codes have been shown to be optimal only for block
codes: codes in which each new character is encoded by a fixed bit pattern made up of an
integral number of bits.

The constraint of the integral number of bits had probably been considered as obvious,
since the possibility of coding elements in fractional bits is quite surprising. Arithmetic codes
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overcome the limitations of block codes. In fact, arithmetic codes have had a long history
[32, 33], but became especially popular after Witten, Neal and Cleary’s paper [34] in 1987.

The approach taken by arithmetic coding is quite different from that of Huffman coding.
Instead of using the probabilities of the different characters to generate codewords, it defines
a process in the course of which a binary number is generated. Each new character of the text
to be encoded allows a more precise determination of the number. When the last character is
processed, the number is stored or transmitted.

The encoding process starts with the interval [0, 1), which will be narrowed repeatedly.
We assign to each character a sub-interval, the size of which is proportional to the proba-
bility of occurrence of the character. Processing a certain character x is then performed by
replacing the current interval by the sub-interval corresponding to x. Refer to the example in
Figure 2.15. We assume our alphabet consists of the four characters {A, B, C, D}, appearing
with probabilities 0.4, 0.3, 0.1 and 0.2, respectively. We arbitrarily choose a corresponding
partition of the interval [0,1), for example, [0,0.1) for C, [0.1,0.4) for B, [0.4,0.8) for A and
finally [0.8,1) for D. This partition is depicted as the leftmost bar in Figure 2.15.

0.0 /0.10 0.340 0.3640 0.37360 - ——
0.1 0.13 0.346 0.3664 0.37456
B \

0.4 0.22 0.364 0.3736 0.37744

A A
0.8 0.34 0.388 0.3832 0.38128
5 \ \O
1.0 0.40 ——————0.400 0.3880 .38320
FIGURE 2.15: Example of arithmetic coding

Suppose now that the text we wish to encode is BDAAC. The first character is B, so the
new interval after the encoding of B is [0.1,0.4). This interval is now partitioned similarly
to the original one, i.e., the first 10% are assigned to C, the next 30% to B, etc. The new
sub-division can be seen next to the second bar from the left. The second character to be
encoded is D, so the corresponding interval is [0.34,0.40). Repeating now the process, we see
that the next character, A, narrows the chosen sub-interval further to [0.364,0.388), and the
next A to [0.3736,0.3832), and finally the last C to [0.37360, 0.37456).

To allow unambiguous decoding, it is this last interval that should be transmitted. This
would, however, be rather wasteful: as more characters are encoded, the interval will get
narrower, and many of the leftmost digits of its upper limit will overlap with those of its lower
limit. In our example, both limits start with 0.37. One can overcome this inefficiency and
transmit only a single number if some additional information is given. For instance, if the
number of characters is also given to the decoder, or, as is customary, a special end-of-file
character is added at the end of the message, it suffices to transmit any single number within
the final interval. In our case, the best choice would be y = 0.3740234375, because its binary
representation 0.0101111111 is the shortest among the numbers of the interval.
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Decoding is then just the inverse of the above process. Since y is between 0.1 and 0.4, we
know that the first character must be B. If so, the interval has been narrowed to [0.1,0.4).
We thus seek the next sub-interval which contains y, and find it to be [0.34,0.40), which
corresponds to D, etc. Once we get to [0.37360, 0.37456), the process has to be stopped by
some external condition, otherwise we could continue this decoding process indefinitely, for
example by noting that y belongs to [0.373984, 0.374368), which could be interpreted as if the
following character were A, etc.

As has been mentioned, the longer the input string, the more digits or bits are needed to
specify a number encoding the string. Compression is achieved by the fact that a frequently
occurring character only slightly narrows the current interval. The number of bits needed to
represent a number depends on the required precision. The smaller the given interval, the
higher precision is necessary to specify a number in it; if the interval size is p, [— log, p]| bits
might be needed.

To evaluate the number of bits necessary by arithmetic coding, we recall the notation
used in Section 2.1. The text consists of characters ziz5 - -- 2y, each of which belongs to an
alphabet {ay,...,a,}. Let w; be the number of occurrences of letter a;, so that W = Y7, w;
is the total length of the text, and let p; = w;/W be the probability of occurrence of letter a;,
1 <i < n. Denote by p,, the probability associated with the j-th character of the text.

After having processed the first character, =, the interval has been narrowed to size p,,,
after the second character, the interval size is p,, p.,, etc. We get that the size of the final
interval after the whole text has been processed is p,,p., - - - Dz, . Therefore the number of
bits needed to encode the full text is

w w n
—log, (H pmj) = =Y logyp.; = — Y w;logyp
j=1

j=1 =1

= W (—Zp¢10g2p¢> = WH,

=1

where we get the second equality by summing over the letters of the alphabet with their
frequency instead of summing over the characters of the text, and where H is the entropy
of the given probability distribution. Amortizing this per character, we get that the average
number of bits needed to encode a single character is just H, which has been shown in eqn. (2.4)
to be the information theoretic lower bound.

We conclude that from the point of view of compression, arithmetic coding has an optimal
performance. But our presentation and the analysis are oversimplified: they do not take into
account the overhead incurred by the end_of file character, nor the fractions of bits lost by
alignment for each block to be encoded. It can be shown [28] that although these additions are
often negligible relative to the average size of a codeword, they might be significant relative
to the difference between the codeword lengths for Huffman and arithmetic codes. There are
also other technical problems, such as the limited precision of our computers, which does not
allow the computation of a single number for a long text; there is thus a need for incremental
transmission, which further complicates the algorithms, see [34].

In spite of the optimality of arithmetic codes, Huffman codes may still be the preferred
choice in many applications: they are much faster for encoding and especially decoding, they
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are less error prone, and after all, the loss in compression efficiency, if any, is generally very
small.

2.5 Dictionary Based Text Compression

The text compression methods we have seen so far are called statistical methods, as they
exploit the skewness of the distribution of occurrence of the characters. Another family of
compression methods is based on dictionaries, which replace variable length substrings of
the text by (shorter) pointers to a dictionary in which a collection of such substrings has
been stored. Depending on the application and the implementation details, each method can
outperform the other.

Given a fixed amount of RAM which we would allocate for the storage of a dictionary,
the selection of an optimal set of strings to be stored in the dictionary turns out to be a
difficult task, because the potential strings are overlapping. A similar problem is shown to
be NP-complete in [35], but more restricted versions of this problem of optimal dictionary
construction are tractable [36].

For IR applications, the dictionary ought to be fixed, since the compressed text need
be accessed randomly. For the sake of completeness, however, we mention also adaptive
techniques, which are the basis of most popular compression methods. Many of these are
based on two algorithms designed by Lempel and Ziv [37, 38].

In one of the variants of the first algorithm [37], often referred to as LZ77, the dictionary
is in fact the previously scanned text, and pointers to it are of the form (d, /), where d is
an offset (the number of characters from the current location to the previous occurrence of
a substring matching the one that starts at the current location), and £ is the length of the
matching string. There is therefore no need to store an explicit dictionary. In the second
algorithm [38], the dictionary is dynamically expanded by adjoining sub-strings of the text
that could not be parsed. For more details on LZ methods and their variants, the reader is
referred to [25].

Even once the dictionary is given, the compression scheme is not yet well defined, as one
must decide how to parse the text into a sequence of dictionary elements. Generally, the
parsing is done by a greedy method, i.e., at any stage, the longest matching element from
the dictionary is sought. A greedy approach is fast, but not necessarily optimal. Because the
elements of the dictionary are often overlapping, and particularly for LZ77 variants, where
the dictionary is the text itself, a different way of parsing might yield better compression.
For example, assume the dictionary consists of the strings D = {abc, ab, cdef, d, de, ef,
f} and that the text is S = abcdef; assume further that the elements of D are encoded
by some fixed-length code, which means that [log,(|D|)]| bits are used to refer to any of
the elements of D; then parsing S by a greedy method, trying to match always the longest
available string, would yield abc-de-f, requiring three codewords, whereas a better partition
would be ab-cdef, requiring only two.

The various dictionary compression methods differ also by the way they encode the ele-
ments. This is most simply done by a fixed length code, as in the above example. Obviously,
different encoding methods might yield different optimal parsings. Returning to the above



example, if the elements abc, d, de, ef, £, ab, cdef of D are encoded respectively by 1, 2, 3,
4, 5, 6 and 6 bits, then the parsing abc-de-f would need nine bits for its encoding, and for
the encoding of the parsing ab-cdef, 12 bits would be needed. The best parsing, however,
for the given codeword lengths, is abc-d-ef, which is neither a greedy parsing, nor does it
minimize the number of codewords, and requires only seven bits.

The way to search for the optimal parsing is by reduction to a well-known graph theoretical
problem. Consider a text string S consisting of a sequence of n characters S;5s---.S,, each
character S; belonging to a fixed alphabet Y. Substrings of S are referenced by their limiting
indices, i.e., S; - - - §; is the substring starting at the i-th character in S, up to and including the
j-th character. We wish to compress S by means of a dictionary D, which is a set of character
strings {o1,09, ...}, with o, € X*. The dictionary may be explicitly given and finite, as in
the example above, or it may be potentially infinite, e.g., for the Lempel-Ziv variants, where
any previously occurring string can be referenced.

The compression process consists of two independent phases: parsing and encoding. In
the parsing phase, the string S is broken into a sequence of consecutive sub-strings, each

belonging to the dictionary D, i.e., an increasing sequence of indices ig = 0, i1, is, . . . is found,
such that

S = 58-S, = S-S Sip1ccSiy e,
with S;.41---S;.,, € D for j = 0,1,.... One way to assure that at least one such parsing

exists is to force the dictionary D to include each of the individual characters of . The
second phase is based on an encoding function A : D — {0, 1}*, that assigns to each element
of the dictionary a binary string, called its encoding. The assumption on A is that it produces
a code which is UD. This is most easily obtained by a fixed length code, but as has been seen
earlier, a sufficient condition for a code being UD is to choose it as a prefix code.

The problem is the following: given the dictionary D and the encoding function A, we are
looking for the optimal partition of the text string S, i.e., the sequence of indices 1, to, . . . is

sought, that minimizes > ;50 [A(Si; 11+ Si,,.)]-
To solve the problem, a directed, labeled graph G = (V. E) is defined for the given text S.
The set of vertices is V = {1,2,...,n,n+ 1}, with vertex i corresponding to the character S;

for 1 < n, and n + 1 corresponding to the end of the text; E is the set of directed edges: an
ordered pair (7, 7), with ¢ < j, belongs to E if and only if the corresponding substring of the
text, that is, the sequence of characters S;---S;_1, can be encoded as a single unit. In other
words, the sequence S; ---S5;_1 must be a member of the dictionary, or more specifically for
LZ77,if j > ¢+ 1, the string S; - - - S;_; must have appeared earlier in the text. The label L;;
is defined for every edge (i,7) € E as |A(S;---S;_1)|, the number of bits necessary to encode
the corresponding member of the dictionary, for the given encoding scheme at hand. The
problem of finding the optimal parsing of the text, relative to the given dictionary and the
given encoding scheme, therefore reduces to the well-known problem of finding the shortest
path in G from vertex 1 to vertex n + 1. In our case, there is no need to use Dijkstra’s
algorithm, since the directed graph contains no cycles, all edges being of the form (7, j) with
t < j. Thus by a simple dynamic programming method, the shortest path can be found in

time O(|E)).
Figure 2.16 displays a small example of a graph, corresponding to the text abbaabbabab
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FIGURE 2.16:  Graph corresponding to text abbaabbabab

and assuming that LZ77 is used. The edges connecting vertices ¢ to i+ 1, fori = 1,...,n, are
labeled by the character S;.

As an example of an encoding scheme, we refer to the on-the-fly compression routine
recently included in a popular operating system. It is based on [39], a variant of LZ77, using
hashing on character pairs to locate (the beginning of) recurrent strings. The output of the
compression process is thus a sequence of elements, each being either a single (uncompressed)
character, or an offset-length pair (d,¢). The elements are identified by a flag bit, so that
a single character is encoded by a zero, followed by the 8-bit ASCII representation of the
character, and the encoding of each (d, ) pair starts with a 1. The sets of possible offsets
and lengths are split into classes as follows: let B,,(n) denote the standard m-bit binary
representation of n (with leading zeros if necessary), then, denoting the encoding scheme by
)\MI

1B4(d — 1) if1<d<64
Ay (offset d) = { 01Bg(d — 65) if 64 < d < 320
11B(d —321)  if 320 < d < 4416

0 if £ =2
Ayr(length £) = { 1+ 0 B0 —2—2) 2 <0—2<2% forj=0,1,2,...

For example, the first few length encodings are: 0, 10, 1100, 1101, 111000, 111001, 111010,
111011, 11110000, etc. Offsets are thus encoded by 8, 11 or 15 bits, and the number of bits
used to encode the lengths £ is 1 for £ = 2 and 2[log,(¢ — 1)] for £ > 2.

3. DICTIONARIES

All large full-text retrieval systems make extensive use of dictionaries of all kinds. They are
needed to quickly access the concordance, they may be used for compressing the text itself
and they generally provide some useful additional information which can guide the user in the
choice of his keywords.
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Dictionaries can of course be compressed as if they were regular text, but taking their
special structure into account may lead to improved methods [40]. A simple, yet efficient,
technique is the Prefiz Omission Method (POM), a formal definition of which can be found
in [2], where it is called front-end compression.

The method is based on the observation that consecutive entries in a dictionary mostly
share some leading letters. Let x and y be consecutive dictionary entries and let m be the
length (number of letters) of their longest common prefix. Then it suffices to store this
common prefix only once (with x) and to omit it from the following entry, where instead the
length m will be kept. This is easily generalized to a longer list of dictionary entries, as in the
example in Figure 3.1:

dictionary entry prefix length  stored suffix

FORM 0 FORM
FORMALLY 4 ALLY
FORMAT ) T
FORMATION 6 I0N
FORMULATE 4 ULATE
FORMULATING 8 ING
FORTY 3 TY
FORTHWITH 4 HWITH

FiGURE 3.1: Example of the Prefix Omission Method

Note that the value given for the prefix length does not refer to the string which was
actually stored, but rather to the corresponding full-length dictionary entry. The compression
and decompression algorithms are immediate.

If the dictionary entries are coded in standard format, with one byte per character, one
could use the first byte of each entry in the compressed dictionary to store the value of
m. There will mostly be a considerable gain, since the average length of common prefixes
of consecutive entries in large dictionaries is generally much larger than 1. Even when the
entries are already compressed, for example by a character by character Huffman code, one
would still achieve some savings. For convenience, one could choose a fixed integer parameter
k and reserve the first k& bits of every entry to represent values of m for 0 < m < 2%, where
k is not necessarily large enough to accommodate the longest omitted prefix. In the above
example, & could for example be chosen as 3, and the entry corresponding to FORMULATING
would then be (7, TING).

A standard dictionary does however not provide the flexibility required by sophisticated
systems. For instance, a prominent feature would be the possibility of processing truncated
terms of several kinds by means of a variable-length don’t-care character *. Examples of the
use of x for prefix, suffix and infix truncation have been given in Section 1.

Suffix truncation can be handled by the regular dictionary. To enable prefix truncation,
the problem is that the relevant terms are scattered throughout the file and therefore hard to
locate. A possible solution is to adjoin an tnwverse dictionary to the system: for each term, form
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its reversed string, then sort the reversed strings lexicographically. To search, e.g., for xache,
we would access the inverse dictionary with the string ehca, retrieve the entries prefixed by
it (they form a contiguous block), e.g., ehcadaeh and ehcahtoot, and reverse these strings
again to get our terms, e.g., headache and toothache. The solution of the inverse dictionary
can not be extended to deal with prefix and suffix truncation simultaneously.

An elegant method allowing the processing of any kind of truncation is the permuted
dictionary suggested in [2]. Given a dictionary, the corresponding permuted dictionary is

obtained by the following sequence of steps:

1. append to each term a character / which does not appear in any term;

2. for a term x of length n characters, form n+ 1 new terms by cyclically shifting the string

x/ by k characters, 0 < k < n;

3. sort the resulting list alphabetically.

Figure 3.2 shows these steps for the dictionary consisting of the strings JACM, JASIS and
IPM. The first column lists the terms with the appended /. In the second column, the permuted
terms generated by the same original term appear consecutively, and the third column is
sorted. The last column shows how the permuted dictionary can be compressed by POM.

original permuted

JACM JACM/

JASIS ACM/J

IPM CM/JA
M/JAC
/JACM
JASIS/
ASIS/J
SIS/JA
1S/JAS
S/JASI
/JASIS
IPM/
PM/I
M/IP
/IPM

sorted

/IPM
/JACM
/JASIS
ACM/J
ASIS/J
CM/JA
IPM/
I1S/JAS
JACM/
JASIS/
M/IP
M/JAC
PM/1
S/JASI
SIS/JA

compressed
m  suffix

]

/IPM
JACM
SIS
ACM/J
SIS/J
CM/JA
IPM/
S/JAS
JACM/
SIS/
M/IP
JAC
PM/1
S/JASI
IS/JA

—_ O O N O NO OO O WM

FIGURE 3.2: Example of the permuted dictionary

The key for using the permuted dictionary efficiently is a function get(z), which accesses
the file and retrieves all the strings having = as prefix. These strings are easily located since
they appear consecutively, and the corresponding original terms are recovered by a simple
cyclic shift. To process truncated terms, all one needs is to call get() with the appropriate
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parameter. Figure 3.3 shows in its leftmost columns how to deal with suffix, prefix, infix, and
simultaneous prefix and suffix truncations. The other columns then bring an example for each
of these categories: first the query itself, then the corresponding call to get(), the retrieved
entries from the permuted dictionary, and the corresponding reconstructed terms.

X+« get(/X) JAx get(/JA) /JACM, /JASIS JACM, JASIS
X get(X/) *M  get(M/)  M/IP, M/JAC IPM, JACM
XY get(Y/X) JxS  get(S/J) S/JASI JASIS

*Xx  get(X) xAx  get(A) ACM/J, ASIS/J JACM, JASIS

FIGURE 3.3: Processing truncated terms with permuted dictionary

4. CONCORDANCES

Every occurrence of every word in the database can be uniquely characterized by a sequence
of numbers that give its exact position in the text. Typically, such a sequence would consist
of the document number d, the paragraph number p (in the document), the sentence number
s (in the paragraph) and the word number w (in the sentence). The quadruple (d,p, s, w)
is the coordinate of the occurrence, and the corresponding fields will be called for short d-
field, p-field, s-field and w-field. In the sequel, we assume for the ease of discussion that
coordinates of every retrieval system are of this form; however, all the methods can also be
applied to systems with different coordinate structure, such as book-page-line-word, etc. The
concordance contains, for every word of the dictionary, the lexicographically ordered list of
all its coordinates in the text; it is accessed via the dictionary that contains for every word a
pointer to the corresponding list in the concordance. The concordance is kept in compressed
form on secondary storage and parts of it are fetched when needed and decompressed. The
compressed file is partitioned into equi-sized blocks such that one block can be read by a single
[/O operation.

Since the list of coordinates of any given word is ordered, adjacent coordinates will often
have the same d-field, or even the same d- and p-fields, and sometimes, especially for high
frequency words, identical d-, p- and s-fields. Thus POM can be adapted to the compression
of concordances, where to each coordinate a header is adjoined, giving the number of fields
which can be copied from the preceding coordinate; these fields are then omitted. For instance
in our model with coordinates (d, p, s, w), it would suffice to keep a header of 2 bits. The four
possibilities are: don’t copy any field from the previous coordinate, copy the d-field, copy d-
and p-field and copy d-, p- and s-field. Obviously, different coordinates cannot have all four
fields identical.

For convenient computer manipulation, one generally chooses a fixed length for each field,
which therefore has to be large enough to represent the maximal possible values. However,
most stored values are small, thus there is usually much wasted space in each coordinate. In
some situations, some space can be saved at the expense of a longer processing time, as in the
following example.
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At RRP, the maximal length of a sentence is 676 words! Such long sentences can be
explained by the fact that in the Responsa literature punctuation marks are often omitted or
used very scarcely. At TLF, there is even a “sentence” of more than 2000 words (a modern
poem). Since on the other hand most sentences are short and it was preferred to use only
field-sizes which are multiples of half-bytes, the following method is used: the size of the
w-field is chosen to be one byte (8 bits); any sentence of length ¢ > 256 words, such that
¢ =80k +r (0 <r < 80),is split into & units of 80 words, followed (if r > 0) by a sentence of
r words. These sentences form only a negligible percentage of the database. While resolving
the storage problem, the insertion of such “virtual points” in the middle of a sentence creates
some problems for the retrieval process. When in a query one asks to retrieve occurrences of
keywords A and B such that A and B are adjacent or that no more than some small number
of words appear between them, one usually does not allow A and B to appear in different
sentences. This is justified, since “adjacency” and “near vicinity” operators are generally used
to retrieve expressions, and not the coincidental juxtaposition of A at the end of a sentence
with B at the beginning of the following one. However in the presence of virtual points, the
search should be extended also into neighboring “sentences”, if necessary, since the virtual
points are only artificial boundaries which might have split some interesting expression. Hence
this solution further complicates the retrieval algorithms.

The methods presented in the next section not only yield improved compression, but also
get rid of the virtual points.

4.1 Using Variable-Length Fields

The basic idea of all the new methods is to allow the p-, s- and w-fields to have variable
length. As in POM, each compressed coordinate will be prefixed by a header which will
encode the information necessary to decompress the coordinate. The methods differ in their
interpretation of the header. The choice of the length of every field is based on statistics
gathered from the entire database on the distribution of the values in each field. Thus for
dynamically changing databases, the compression method would need frequent updates, so
that the methods are more suitable for retrieval systems with static databases. However, if the
text changes only slowly, say it is a large corpus to which from time to time some documents
are adjoined which have characteristics similar to the documents already in the corpus, then
the methods will still perform well, though not optimally.

The codes in the header can have various interpretations: they can stand for a length 7,
indicating that the corresponding field is encoded in ¢ bits; they can stand for a certain value
v, indicating that the corresponding field contains that value; they can finally indicate that
no value for the corresponding field is stored and that the value of the preceding coordinate
should be used. This is more general than the prefix-omission technique, since one can decide
for every field individually whether or not to omit it, while in POM, the p-field is only omitted
if the d-field is, etc.

The d-field is treated somewhat differently. Since this is the highest level of the hierarchy
in our model, this field may contain also very large numbers (there are rarely 500 words in
a sentence or 500 sentences in a paragraph, but a corpus may contain tens of thousands of
documents). Moreover, the d-fields of most coordinates will contain values, in the representa-
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tion of which one can save at most one or two bits, if at all. On the other hand, the d-field is
the one where the greatest savings are achieved by POM. Thus we shall assume in the sequel
that for the d-field, we just keep one bit in the header, indicating whether the value of the
preceding coordinate should be copied or not; if not, the d-field will appear in its entire length.

We now describe the specific methods in detail.

A. The simple method. The header contains codes for the size (in bits) of every field.

(i) Allocate two bits for each of the p-, s- and w-fields, giving four possible choices for
each.

We consider the following variations:

a. One of the possible codes indicates the omission of the field, thus we are left
with only 3 possible choices for the length of each field.

b. The four choices are used to encode field-lengths, thus not allowing the use of
the preceding coordinate.

c. Use a for the p- and s-fields, and b for the w-field.

Method A(i)c is justified by the fact that consecutive coordinates having the same value in
their w-field are rare (3.5% of the concordance at RRP). The reason is that this corresponds
to a certain word appearing in the same relative location in different sentences, which is
mostly a pure coincidence; on the other hand consecutive coordinates having the same value
in one of their other fields correspond to a certain word appearing more than once in the same
sentence, paragraph or document, and this occurs frequently. For instance, at RRP, 23.4% of
the coordinates have the same s-field as their predecessors, 41.7% have the same p-field and
51.6% have the same d-field.

Note that the header does not contain the binary encoding of the lengths, since this would
require a larger number of bits. By storing a code for the lengths the header is kept smaller,
but at the expense of increasing decompression time, since a table is needed which translates
the codes into actual lengths. This remark applies also to the subsequent methods.

(i) Allocate three bits in the header for each of the p-, s- and w-fields, giving 8 possible
choices for each.

The idea of (ii) is that by increasing the number of possibilities (and hence the overhead for
each coordinate), the range of possible values can be partitioned more efficiently, which should
lead to savings in the remaining part of the coordinate. Again three methods corresponding
to a, b and c of (i) were checked.

B. Using some fields to encode frequent values.

For some very frequent values, the code in the header will be interpreted directly as one of
the values, and not as the length of the field in which they are stored. Thus the corresponding
field can be omitted in all these cases. However, the savings for the frequent values come at
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the expense of reducing the number of possible choices for the lengths of the fields for the
less frequent values. For instance, at RRP, the value 1 appears in the s-field of more than 9
million coordinates (about 24% of the concordance), thus all these coordinates will have no
s-field in their compressed form, and the code in the part of the header corresponding to the
s-field will be interpreted as “value 1 in the s-field”.

(i) Allocate 2 bits in the header for each of the p-, s- and w-fields; one of the codes
points to the most frequent value.

(ii) Allocate 3 bits in the header for each of the p-, s- and w-fields; three of the codes
point to the 3 most frequent values.

There is no subdivision into methods a, b and c as in A (in fact the method used corresponds
to a), because we concluded from our experiments that it is worth to keep the possibility of
using the previous coordinate in case of equal values in some field. Hence one code was
allocated for this purpose, which left only 2 codes to encode the field-lengths in (i) and 4
codes in (ii). For (i) we experimented also with allowing 2 or 4 of the 8 possible choices
to encode the 2 or 4 most frequent values; however, on our data, the optimum was always
obtained for 3. There is some redundancy in the case of consecutive coordinates having both
the same value in some field, and this value being the most frequent one. There are then
two possibilities to encode the second coordinate using the same number of bits. In such a
case, the code for the frequent value should be preferred over the one pointing to the previous
coordinate, as decoding of the former is usually faster.

C. Combining methods A and B.
Choose individually for each of the p-, s- and w-fields, the best of the previous methods.

D. Encoding length-combinations.

If we want to push the idea of A further, we should have a code for every possible length
of a field, but the maxima of the values can be large. For example, at RRP, one needs 10
bits for the maximal value of the w-field, 9 bits for the s-field and 10 bits for the p-field. This
would imply a header length of 4 bits for each of these fields, which cannot be justified by the
negligible improvement over method A(ii).

The size of the header can be reduced by replacing the three codes for the sizes of the p-,
s- and w-fields by a single code in the following way. Denote by [, [ and [,, the lengths of the
p-, 8- and w-fields respectively, i.e., the sizes (in bits) of the binary representations without
leading zeros of the values stored in them. In our model 1 <, [, [, < 10, so there are up to
10? possible triplets (1, s, .,). However, most of these length-combinations occur only rarely,
if at all. At RRP, the 255 most frequent (I, [5, [,,)-triplets account already for 98.05% of the
concordance. Therefore

(i) Allocate 9 bits as header, of which 1 bit is used for the d-field; 255 of the possible
codes in the remaining 8 bits point to the 255 most frequent (1. [, [,,)-triplets; the
last code is used to indicate that the coordinate corresponds to a “rare” triplet, in
which case the p-, s- and w-fields appear already in their decompressed form.
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Although the “compressed” form of the rare coordinates, including a 9-bit header, may in
fact need more space than the original coordinate, we still save on the average.

Two refinements are now superimposed. We first note that one does not need to represent
the integer 0 in any field. Therefore one can use a representation of the integer n — 1 in order
to encode the value n, so that only |logy(n — 1)| + 1 bits are needed instead of |log, n| + 1.
This may seem negligible, because only one bit is saved and only when n is a power of 2,
thus for very few values of n. However, the first few of these values, 1, 2 and 4, appear very
frequently, so that in fact this yields a significant improvement. At RRP, the total size of the
compressed p-, s- and w-fields (using method D) was further reduced by 7.4%, just by shifting
the stored values from n to n — 1.

The second refinement is based on the observation that since we know from the header
the exact length of each field, we know the position of the left-most 1 in it, so that this 1
is also redundant. The possible values in the fields are partitioned into classes C; defined by
Co={0},C; = {£:2"1 </ <2}, and the header gives for the values in each of the p-, s- and
w-fields, the indices 7 of the corresponding classes. Therefore if 7+ < 1, there is no need to store
any additional information because Cy and C; are singletons, and for ¢ € C; for 7 > 1, only the
i — 1 bits representing the number ¢ — 2'=! are kept. For example, suppose the values in the
p-, s- and w-fields are 3, 1 and 28. Then the encoded values are 2, 0 and 27 which belong to
Ca, Cy and Cs respectively. The header thus points to the triplet (2,0,5) (assuming that this
is one of the 255 frequent ones) and the rest of the coordinate consists of the five bits 01011,
which are parsed from left to right as 1 bit for the p-field, 0 bits for the s-field and 4 bits for
the w-field. A similar idea was used in [15] for encoding run-lengths in the compression of
sparse bit-vectors.

(ii) Allocate 8 bits as header of which 1 bit is used for the d-field; the remaining 7 bits
are used to encode the 127 most frequent ([, s, [,,)-triplets.

The 127 most frequent triplets still correspond to 85.19% of the concordance at RRP. This
is therefore an attempt to save one bit in the header of each coordinate at the expense of
having more non-compressed coordinates.

Another possibility is to extend method D also to the d-field. Let b be a Boolean variable
corresponding to the two possibilities for the d-field, namely T = the value is identical to that
of the preceding coordinate, thus omit it, or F = different value, keep it. We therefore have
up to 2000 quadruples (b, l,, ;. 1), which are again sorted by decreasing frequency.

(iii) Allocate 8 bits as header; 255 of the codes point to the 255 most frequent quadru-
ples.

At RRP, these 255 most frequent quadruples cover 87.08% of the concordance. For the last
two methods, one could try to get better results by compressing also some of the coordinates
with the non-frequent length combinations, instead of storing them in their decompressed
form. We did not, however, pursue this possibility.
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Encoding

After choosing the appropriate compression method, the concordance is scanned sequen-
tially and each coordinate is compressed with or without using the preceding one. For each
of the above methods, the length of the header is constant, thus the set of compressed coordi-
nates forms a prefix-code. Therefore the compressed coordinates, which have variable lengths,
can simply be concatenated. The compressed concordance consists of the resulting very long
bit-string. This string is partitioned into blocks of equal size, the size corresponding to the
buffer-size of a read/write operation. If the last coordinate in a block does not fit there in its
entirety, it is moved to the beginning of the next block. The first coordinate of each block is
considered as having no predecessor, so that if in the original encoding process a coordinate
which is the first in a block referred to the previous coordinate, this needs to be corrected.
This allows now to access each block individually, while adding only a negligible number of
bits to each block.

Decoding

Note that for a static information retrieval system, encoding is done only once (when
building the database), whereas decoding directly affects the response-time for on-line queries.
In order to increase the decoding speed, we use a small precomputed table 7 which is stored
in internal memory. For a method with header length k bits, this table has 2% entries. In
entry ¢ of T, 0 < i < 2F we store the relevant information for the header consisting of the
k-bit binary representation of the integer i.

For the methods in A, the relevant information simply consists of the lengths, P, S and W,
of the p-, s- and w-fields (recall that we assume that only one bit is kept in the header for the
d-field, so either the d-field appears in its entire length D, which is constant, or it is omitted),
and of the sum of all these lengths (including D), which is the length of the remaining part
of the coordinate. We shall use the following notations: for a given internal structure of a
decompressed coordinate, let hg, h,, hs and h, be the indices of the leftmost bit of the d-,
p-, 8- and w-fields respectively, the index of the rightmost bit of a coordinate being 0. For
example with a 4 byte coordinate and one byte for each field we would have Ay = 31, h, = 23,
h, = 15 and h,, = 7; these values are constant for the entire database. COOR and LAST are
both addresses of a contiguous space in memory in which a single decompressed coordinate
can fit (hence of length hy + 1 bits). The procedure SHIFT (X, y, z) shifts the substring of X
which is obtained by ignoring its y rightmost bits, by z bits to the left. Then the following
loop could be used for the decoding of a coordinate:

1 loop while there is more input or until a certain coordinate is found

2 H <+ next k bits // read header

3 (TOT,P,S,W) « T (H) // decode header using table
4 COOR < next TOT bits // right justified suffix of coordinate
5. SHIFT(COOR, W, h,, — W) // move d-, p- and s-field

6. SHIFT(COOR, hy, + S, hs — S) // move d- and p-field

7 SHIFT(COOR, hs + P, h, — P) // move d-field

8 if TOT = P 4+ S + W then copy d-field from LAST

9. if P = 0 then copy p-field from LAST

10. if S = 0 then copy s-field from LAST

11. if W = 0 then copy w-field from LAST
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12. LAST + COOR
13.  end of loop

There is no need to initialize LAST, since the first coordinate of a block never refers to
the preceding coordinate.

For the methods in B and C, we store sometimes actual values, and not just the lengths
of the fields. This can be implemented by using negative values in the table 7. For example,
if P = —2, this could be interpreted as “value 2 in the p-field”. Note that when the value
stored in a field is given by the header, this field has length 0 in the remaining part of the
coordinate. Thus we need the following updates to the above algorithm: line 3 is replaced by

(TOT,P1,S1,W1)« T(H)
if P1 <0 then P < 0 else P + P1

and statements similar to the latter for the s- and w-fields. After statement 11 we should
msert

if P1 < 0 then put —P1 in p-field of COOR

and similar statements for the s- and w-fields.

The decoding of the methods in D is equivalent to that of A. The only difference is in the
preparation of the table 7 (which is done only once). While for A to each field correspond
certain fixed bits of the header which determine the length of that field, for D the header is
non-divisible and represents the lengths of all the fields together. This does not affect the
decoding process, since in both methods a table-lookup is used to interpret the header. An
example of the encoding and decoding processes appears in the next section.

Parameter Setting

All the methods of the previous section were compared on the concordance of RRP. Each
coordinate had a (d, p, s, w)-structure and was of length 6 bytes (48 bits). Using POM, the
average length of a compressed coordinate was 4.196 bytes, i.e., a compression gain of 30%.

Table 4.1 gives the frequencies of the first few values in each of the p-, s- and w-fields,
both with and without taking into account the previous coordinate. The frequencies are given
in cumulative percentages, e.g., the row entitled s-field contains in the column headed 7 the
percentage of coordinates having a value < i in their s-field. We have also added the values
for which the cumulative percentage first exceeds 99%.

As one can see, the first four values in the p- and s-fields account already for half of the
concordance. This means that most of the paragraphs consist of only a few sentences and most
of the documents consist of only a few paragraphs. The figures for the w-field are different,
because short sentences are not preponderant. While the (non-cumulative) frequency of the
values 7 in the s-field is a clearly decreasing function of 4, it is interesting to note the peek
at value 2 for the p-field. This can be explained by the specific nature of the Responsa
literature, in which most of the documents have a question-answer structure. Therefore the
first paragraph of a document usually contains just a short question, whereas the answer,
starting from the second paragraph, may be much longer.
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TABLE 4.1: Distribution of values stored in p-, s- and w-fields

Value 1 2 3 4 5 79 83 87 93 119 120
ignoring  p-field 14.1 35.2 46.5 54.2 60.2 99
preceding  s-field 24.2 40.2 51.1 58.8 64.5 99
coordinate w-field 3.0 5.8 86 11.4 14.0 99
using p-field 9.6 25.2 36.5 45.0 51.7 99
preceding s-field 17.9 33.0 44.3 52.6 58.9 99
coordinate w-field 1.9 4.4 7.1 9.7 124 99

When all the coordinates are considered (upper half of Table 4.1), the percentages are
higher than the corresponding percentages for the case where identical fields in adjacent coor-
dinates are omitted (lower half of Table 4.1). This means that the idea of copying certain fields
from the preceding coordinate yields to savings which are, for the small values, larger than
could have been expected from knowing their distribution in the non-compressed concordance.

Using the information collected from the concordance, all the possible variants for each of
the methods in A and B have been checked. Table 4.2 lists for each of the methods the variant
for which maximal compression was achieved. The numbers in boldface are the frequent values
which are used in methods B and C, the other numbers refer to the lengths of the fields. The
value 0 indicates that the field of the preceding coordinate should be copied.

TABLE 4.2: Optimal variants of the methods

Method p-field s-field w-field
A(i)a 02510 0259 046 10
A(i)b 13510 1359 35610
A(i)a 012345610 01234569 013456710
A(i)b 123456710 12345679 123456710
B(i) 02410 0149 04610
B(ii) 012334510 01233459 034535610
C 02510 01233459 35610

The optimal variants for the methods A(ii) are not surprising: since most of the stored
values are small, one could expect the optimal partition to give priority to small field-lengths.
For method C, each field is compressed by the best of the other methods, which are A(i)a for the
p-field, B(ii) for the s-field and A(i)b for the w-field, thus requiring a header of 1+2+3+2 =38
bits (including one bit for the d-field).

The entries of Table 4.2 were computed using the first refinement mentioned in the de-
scription of method D, namely storing n — 1 instead of n. The second refinement (dropping
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the leftmost 1) could not be applied, because it is not true that the leftmost bit in every field
is a 1. Thus for all the calculations with methods A and B, an integer n was supposed to
require |log,(n — 1)| + 1 bits for n > 1 and one bit for n = 1.

As an example for the encoding and decoding processes, consider method C, and a coor-
dinate structure with (hg, hy,, hs, hy) = (8, 8,8, 8), i.e., one byte for each field. The coordinate
we wish to process is (159, 2,2, 35). Suppose further that only the value in the d-field is the
same as in the previous coordinate. Then the length D of the d-field is 0; in the p-field the
value 1 is stored, using two bits; nothing is stored in the s-field, because 2 is one of the fre-
quent values and directly referenced by the header; in the w-field the value 34 is stored, using
6 bits. The possible options for the header are numbered from left to right as they appear
in Table 4.2, hence the header of this coordinate is 0-10-011-11, where dashes separating the
parts corresponding to different fields have been added for clarity; the remaining part of the
coordinate is 01-100010. The table T has 2% = 256 entries; at entry 79 (= 01001111 in binary)
the values stored are (TOT, P1,S1,W1) = (8,2,—2,6). When decoding the compressed co-
ordinate 0100111101100010, the leftmost 8 bits are considered as header and converted to
the integer 79. Table T is then accessed with that index, retrieving the 4-tuple (8,2, —2,6)
which yields the values (P, S, W) = (2,0, 6). The next TOT = 8 bits are therefore loaded into
COOR of size 4 bytes, and after the three shifts we get

COOR = 00000000 — 00000010 — 00000000 — 00100010.

Since TOT = P + S + W the value of the d-field is copied from the last coordinate. Since
P1 < 0, the value —S1 = 2 is put into the s-field.

On our data, the best method was D(i) with an average coordinate length of 3.082 bytes,
corresponding to 49% compression relative to the full 6-byte coordinate, and giving a 27%
improvement over POM. The next best method was C with 3.14 bytes. Nevertheless, the
results depend heavily on the statistics of the specific system at hand, so that for another
database, other methods could be preferable.

The main target of the efforts was to try to eliminate or at least reduce the unused
space in the coordinates. Note that this can easily be achieved by considering the entire
database as a single long run of words, which we could index sequentially from 1 to N, N
being the total number of words in the text. Thus |[log, N | 4 1 bits would be necessary per
coordinate. However, the hierarchical structure is lost, so that, for example, queries asking
for the co-occurrence of several words in the same sentence or paragraph are much harder to
process. Moreover, when a coordinate is represented by a single, usually large, number, we lose
also the possibility to omit certain fields which could be copied from preceding coordinates.
A hierarchical structure of a coordinate is therefore preferable for the retrieval algorithms.
Some of the new compression methods even outperform the simple method of sequentially
numbering the words, since the latter would imply at the RRP database a coordinate length
of 26 bits = 3.25 bytes.

4.2 Model Based Concordance Compression

For our model of a textual database, we assume that the text is divided into documents and
the documents are made up of words. We thus use only a two level hierarchy to identify the
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location of a word, which makes the exposition here easier. The methods can, however, be
readily adapted to more complex concordance structures, like the 4-level hierarchy mentioned
above. In our present model, the conceptual concordance consists, for each word, of a series
of (d,w) pairs, d standing for a document number, and w for the index, or offset, of a word
within the given document:

word; : (dy,wy) (dy,wa) -+ (dy, wpm,)
(d27 wl) (d23 w2) T (dZa wmg)

(d]Vv U71) e (dl\fv w?nN)
words :

For a discussion of the problems of relating this conceptual location to a physical location on
the disc, see [T7].

It is sometimes convenient to translate our 4-level hierarchy to an equivalent one, in which
we indicate the index of the next document containing the word, the number of times the
word occurs in the document, followed by the list of word indices of the various occurrences:

word; : (dy, my ;5 Wi, Wy .. W)
(d27 ma wlﬁ'"awWLg)
(dn, My 3 Wiyenoy Winy)
words :

Our task is to model each of the components of the latter representation, and use standard
compression methods to compress each entity. Below we assume that we know (from the
dictionary) the total number of times a word occurs in the database, the number of different
documents in which it occurs, and (from a separate table) the number of words in each
document. The compression algorithm is then based on predicting the probability distribution
of the various values in the coordinates, devising a code based on the predicted distributions,
and using the codeword corresponding to the actual value given.

We thus need to generate a large number of codes. If so, the Shannon-Fano method (as
defined in [41]) seems the most appropriate if we are concerned with processing speed. Thus
an element, which according to the model at hand appears with probability p, will be encoded
by [—log, p| bits. Once the length of the codeword is determined, the actual codeword is
easily generated. But Shannon-Fano codes are not optimal and might in fact be quite wasteful,
especially for the very low probabilities.

While Shannon-Fano coding is fast, when high precision is required Huffman codes are a
good alternative. Under the constraint that every codeword consists of an integral number
of bits, they are optimal; however their computation is much more involved than that of
Shannon-Fano codes, because every codeword depends on the whole set of probabilities. Thus
more processing time is needed, but compression is improved. On the other hand, Huffman
codes are not effective in the presence of very high probabilities. Elements occurring with
high probability have low information content, yet their Huffman codeword cannot be shorter
than one bit. If this is a prominent feature, arithmetic coding must be considered.
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Arithmetic coding more directly uses the probabilities derived from the model, and over-
comes the problem of high probability elements by encoding entire messages, not just code-
words. Effectively, an element with probability p is encoded by exactly — log, p bits, which
is the information theoretic minimum. While in many contexts arithmetic codes might not
improve much on Huffman codes, their superiority here might be substantial, because the
model may generate many high probabilities. There is of course a time/space tradeoff, as the
computation of arithmetic codes is generally more expensive than that of Huffman codes.

Initially we are at the beginning of the document list and are trying to determine the
probability that the next (when we start, this is the first) document containing a term is d
documents away from our current location. We know the number of documents that con-
tain the term, say N, and the number of documents, say D, from which these are chosen.
(More generally, after we have located a number of documents that contain the term, D and
N will respectively represent the total number of remaining documents, and, of these, the
number that contain the term. Our reasoning will then continue in parallel to that of the first
occurrence. )

Our first question, then, is: what is the probability distribution of the first/next docu-
ment containing the term. Assuming that the events involved are independent and equally
distributed, this is equivalent to asking, if N different objects are selected at random from
an ordered set of D objects, what is the probability that d is the index of the object with
minimum index?

Because of the uniformity assumption, each of the (ﬁ) ways of picking N out of D objects

have same probability, viz, 1/ (][\)[) But of these, only (2:?) satisfy the condition that d is
the minimum index. That is, certainly one document must be the d-th one, so we only have
freedom to choose N — 1 additional documents. Since all of these must have index greater
than d, we have only D — d options for these N — 1 selections. Thus the probability that the

next document has (relative) position d is Pr(d) = (f:?)/(ﬁ)

We first note this is a true probability:

D-N+1 (P-d D1 k
N-1 N-1

;Pr(d): d§1 (D) :k:N—l (D) = (N) =

= 5=
(¥)
where the last equality uses the well known combinatoric identity that permits summation

over the upper value in the binomial coefficient [11]. Second, we note that we can rewrite the
probability as

( N ) x |1 d x |1 d X x 1 d
D—N+1 D D—1 D—-N+2)
If d < D, this is approximately (N/D) x (1 — d/D) ="', which is in turn approximately

proportional to e~ N=U/P or 4 for v = e~ (N=1/P_ This last form is that of the geometric
distribution recommended by Witten et al.[42].

The encoding process is then as follows. We wish to encode the d-field of the next coordi-
nates (d,m; wi,...,w,,). Assuming that the probability distribution of d is given by Pr(d),

we construct a code based on {Pr(d)}2ZN*!. This assigns codewords to all the possible values
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for s«—1to S  /* for each word in concordance */
D +— total number of documents
T  +— total number of occurrences of word s
N +— total number of documents in which word s occurs
do — 0

fori+— 1to N /* for each document containing word s */
{
/* process document i */
output d_code(d; — d;—1, N — i, D)
ifT > N
output m_code(m; —1, (I'— N)/N, T — N)
/* process occurrences of word s in document i */
W +— total number of words in document :
wo — 0
for j «+— 1 to m;
{
output w_code(w; —w;_1,m; — j, W)
w — W — (wj — ’LUJ‘_1)
}
/* update parameters and continue */
D — D — (dL — di—l)
T — T—m;

}
d_code(d, N, D)
{

D—i+1

construct a code C; based on probabilities that d = k: {(Diw_'k)/(wﬁl)}k,l
return C;(d)

m_code(z, A\, max)

{

F o« Ypare /* correction factor for truncated Poisson distribution */
: . k) mazx
construct a code Cy based on probabilities that z = k: {%e‘*%}k_o

return Co(x)

w_code(w,m, W)

{

W—i+1

k=1

construct a code C3 based on probabilities that w = &: {(W,;k)/(nzﬂ}

return Cs(w)

FIGURE 4.3: Concordance compression algorithm
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of d, from which we use the codeword corresponding to the actual value d in our coordinate.
If the estimate is good, the actual value d will be assigned a high probability by the model,
and therefore be encoded with a small number of bits.

Next we encode the number of occurrences of the term in this document. Let us suppose
that we have 7" occurrences of the term remaining (initially, this will be the total number of
occurrences of the term in the database). The T occurrences are to be distributed into the N
remaining documents the word occurs in. Thus we know that each document being considered
must have at least a single term, that is, m = 14z, where x > 0. If T"'= N, then clearly x = 0
(m = 1), and we need output no code — m conveys no information in this case. If T > N,
then we must distribute the T'— N terms not accounted for over the remaining N documents
that contain the term. We assume, for simplicity, that the additional amount, =, going to
the currently considered document is Poisson distributed, with mean A = (7" — N)/N. The
Poisson distribution is given by Pr(z) = e*’\i—f. This allows us to compute the probability of
x for all possible values (z = 0,1,...,7— N) and to then encode 2 using one of the encodings
above.

We must finally encode all the m offsets. But this problem is formally identical to that
of encoding the next document. The current document has W words, so the distribution of
w, the first occurrence of the word, is given by the probabilities (ﬁj’) / (Z) Once this is
encoded, we have a problem identical to the initial one in form. except that we now have
m — 1 positions left to encode and W — w locations. This continues until the last term, which

is uniformly distributed over the remaining word locations.

Then we encode the next document, but this is again a problem identical in form to the
initial problem only we now have one fewer document (N — 1) having the term, and d fewer
target documents (D — d) to consider.

The formal encoding algorithm is given in Figure 4.3. We begin with a conceptual con-
cordance, represented for the purpose of this algorithm as a list of entries. Our concordance
controls S different words. For each word, there is an entry for each document it occurs in, of
the form (d;, m;; wy, ..., wy,), where d;, m; and w; are given similarly to the representation
(2) defined above.

Note that we do not encode the absolute values d; and w;, but the relative increases d; —d;_4
and w; — w;_y; this is necessary, because we redefine, in each iteration, the sizes D, W and
T to be the remaining number of documents, number of words in the current document, and
number of occurrences of the current word, respectively.

In fact, one should also deal with the possibility where the independence assumptions of
the previous section are not necessarily true. In particular, we consider the case where terms
cluster not only within a document, but even at the between document level. Details of this
model can be found in [43].

5. BITMAPS

For every distinct word W of the database, a bit-map B(W) is constructed, which acts as
“occurrence”-map at the document level. The length (in bits) of each map is the number of
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documents in the system. Thus, in the RRP for example, the length of each map is about 6K
bytes. These maps are stored in compressed form on a secondary storage device. At RRP,
the compression algorithm was taken from [44], reducing the size of a map to 350 bytes on the
average. This compression method was used for only about 10% of the words, those which
appear at least 70 times; for the remaining words, the list of document numbers is kept and
transformed into bit-map form at processing time. The space needed for the bit-map file in
its entirety is 33.5 MB, expanding the overall space requirement of the entire retrieval system
by about 5%.

At the beginning of the process dealing with a query of the type given in eqn. (1.1), the
maps B(A;;) are retrieved, for i = 1,...,m and j = 1,...,n;. They are decompressed and a

new map ANDVEC is constructed:

i=1 \j=1

ANDVEC = A (\/ B(Aij)> .

The bit-map ANDVEC serves as a “filter”, for only documents corresponding to 1-bits in
ANDVEC can possibly contain a solution. Note that no more than three full-length maps are
simultaneously needed for its construction.

For certain queries, in particular when keywords with a small number of occurrences in
the text are used, ANDVEC will consist only of zeros, which indicates that nothing should
be retrieved. In such cases the user gets the correct if somewhat meager results, without a
single merge or collate action having been executed. But even if ANDVEC is not null, it will
usually be much sparser than its components. These maps can improve the performance of
the retrieval process in many ways to be now described.

5.1 Usefulness of Bitmaps in IR

First, bit-maps can be helpful in reducing the number of I/O operations involved in the
query-processing phase. Indeed, since the concordance file is usually too big to be stored in
the internal memory, it is kept in compressed form on secondary storage, and parts of it are
fetched when needed and decompressed. The compressed concordance file is partitioned into
equi-sized blocks such that one block can be read by a single I/O operation; it is accessed
via the dictionary, which contains for each word a pointer to the corresponding (first) block.
A block can contain coordinates of many “small” words (i.e., words with low frequency in
the database), but on the other hand, the coordinate list of a single “large” (high-frequency)
word may extend over several consecutive blocks. In the RRP, for example, about half of the
words appear only once, but on the other hand there are some words that occur hundreds of
thousands of times! It is for the large words that the bit-map ANDVEC may lead to significant
savings in the number of 1/O operations. Rather than reading all the blocks to collect the
list of coordinates which will later be merged and/or collated, we access only blocks which
contain coordinates in the documents specified by the 1-bits of ANDVEC. Hence if the map
is sparse enough, only a small subset of the blocks need to be fetched and decompressed. To
implement this idea, we need, in addition to the bit-map, also a small list L(W) for each large
word W, L(W) = {(f;,¢;)}. where f; and ¢; are respectively the document numbers of the
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first and last coordinate of W in block number j, and j runs over the indices of blocks which
contain coordinates of W. The list L(WW) is scanned together with the bit-map, and if there
is no 1-bit in ANDVEC in the bit-range [f;, ¢,], the block j is simply skipped.

There are, however, savings beyond 1/O-operations. Once a concordance block containing
some coordinates which might be relevant is read, it is scanned in parallel with ANDVEC.
Coordinates with document numbers corresponding to 0-bits are skipped. For the axis, which
is the first keyword A; to be handled, this means that only parts of the lists C(A;;) will be
transferred to a working area, where they are merged. In order to save internal memory space
during the query processing, the lists of the keywords Ay;, for & # ¢, are not merged like
the lists of the axis, but are directly collated with the axis. Such collations can be involved
operations, as the distance constraints may cause each coordinate of the axis to be checked
against several coordinates of every variant of other keywords, and conversely every such
coordinate might collate with several coordinates of the axis. Therefore the use of ANDVEC
may save time by reducing the number of collations. Moreover, after all the variants of the
second keyword have been collated with the axis, the coordinates of the axis which were
not matched can be rejected, so that the axis may shrink considerably. Now ANDVEC can
be updated by deleting some of its 1-bits, which again tends to reduce the number of read
operations and collations when handling the following keywords. The updates of the axis and
ANDVEC are repeated after the processing of each keyword A; of the query (1.1).

For conventional query processing algorithms, the consequence of increasing the number
m of keywords is an increased processing time, whereas the set of solutions can only shrink.
When m is increased with the bit-map approach, however, the time needed to retrieve the
maps and to perform some additional logical operations is usually largely compensated for by
the savings in I/O operations caused by a sparser ANDVEC. The new approach seems thus
to be particularly attractive for a large number of keywords. Users are therefore encouraged
to change their policy and to submit more complex queries!

Another possible application of the bit-maps is for getting a selective display of the results.
A wuser is often not interested in finding all the occurrences of a certain phrase in the database,
as specified by the query, but only in a small subset corresponding to a certain author or a
certain period. The usual way to process such special requests consists in executing first the
search ignoring the restrictions, and then filtering out the solutions which are not needed.
This can be very wasteful and time-consuming, particularly if the required sub-range (period
or author(s)) is small. The bit-maps allow the problem to be dealt with in a natural way,
requiring only minor changes to adapt the search program to this application. All we need
is to prepare a small repertoire R of fixed bit-maps, say one for each author, where the 1-
bits indicate the documents written by this author, and a map for the documents of each
year or period, etc. The restrictions can now be formulated at the same time the query is
submitted. In the first line of the above algorithm, ANDVEC will not be initialized by a
string containing only 1’s, but by a logical combination of elements of R, as induced by the
additional restrictions. Thus user-imposed restrictions on required ranges to which solutions
should belong on one hand, and query-imposed restrictions on the co-occurrence of keywords
on the other, are processed in exactly the same way, resulting in a bit-vector, the sparsity of
which depends directly on the severity of the restrictions. As was pointed out earlier, this
may lead to savings in processing time and 1/O operations.
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Finally, bit-maps can be also helpful in handling negative keywords. If a query including
some negative keywords D; is submitted at the document-level, one can use the binary com-
plements B(D;) of the maps, since only documents with no occurrence of D; (indicated by
the 0-bits) can be relevant. However, for other levels, the processing is not so simple. In fact,
if the query is not on the document level, the bit-maps of the negative keywords are useless,
and ANDVEC is formed only by the maps of the positive keywords. This difference in the
treatment of negative and positive keywords is due to the fact that a 0-bit in the bit-vector
of a positive keyword means that the corresponding document cannot possibly be relevant,
whereas a 1-bit in the bit-vector of a negative keyword D; only implies that D; appears in
the corresponding document; however, this document can still be retrieved, if D; is not in
the specified neighborhood of the other keywords. Nevertheless, even though the negative
keywords do not contribute in rendering ANDVEC sparser, ANDVEC will still be useful also
for the negative words: only coordinates in the relevant documents have to be checked not to
fall in the vicinity of the axis, as imposed by the (I;, u;).

5.2 Compression of Bitmaps

It would be wasteful to store the bit-maps in their original form, since they are usually
very sparse (the great majority of the words occur in very few documents). Schuegraf [45]
proposes to use run-length coding for the compression of sparse bit-vectors, in which a string
of consecutive zeros terminated by a one (called a run) is replaced by the length of the run.
A sophisticated run-length coding technique can be found in Teuhola [46]. Jakobsson [47]
suggests to partition each vector into k-bit blocks, and to apply Huffman coding on the 2F
possible bit-patterns. This method is referred below as method NORUN.

5.2.1 Hierarchical compression

In this section we concentrate on hierarchical bit-vector compression: let us partition the
original bit-vector vg of length [y bits into kg equal blocks of rq bits, rq¢ - kg = lg, and drop the
blocks consisting only of zeros. The resulting sequence of non-zero blocks does not allow the
reconstruction of vy, unless we add a list of the indices of these blocks in the original vector.
This list of up to kg indices is kept as a binary vector v, of [; = kg bits, where there is a 1 in
position ¢ if and only if the i-th block of vy is not all zero. Now v; can further be compressed
by the same method.

In other words, a sequence of bit-vectors v; is constructed, each bit in v; being the result of
ORing the bits in the corresponding block in v;_;. The procedure is repeated recursively until
a level t is reached where the vector length reduces to a few bytes, which will form a single
block. The compressed form of vy is then obtained by concatenating all the nonzero blocks of
the various v;, while retaining the block-level information. Decompression is obtained simply
by reversing these operations and their order. We start at level ¢, and pass from one level to
the next by inserting blocks of zeros into level 7 — 1 for every 0-bit in level j.

Figure 5.1 depicts an example of a small vector vy of 27 bits and its derived levels v; and
vy, with r; = 3 for ¢ = 0,1.2 and ¢ = 2. The sizes r; of the blocks are parameters and
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FIGURE 5.1: Hierarchical bit-vector compression

can change from level to level for a given vector, and even from one word of the database to
another, although the latter is not practical for our applications. Because of the structure of
the compressed vector, we call this the TREE method, and shall use in our discussion the usual
tree-vocabulary: the root of the tree is the single block on the top level, and for a block x in
vj41 which is obtained by ORing the blocks y1,...,y,, of v;, we say that z is the parent of
the non-zero blocks among the y;.

The TREE method was proposed by Wedekind & Hérder [48]. It appears also in Vallar-
ino [49], who used it for two-dimensional bit-maps, but only with one level of compression.
In [50], the parameters (block size and height of the tree) are chosen assuming that the bit-
vectors are generated by a memoryless information source, i.e., each bit in vy has a constant
probability py for being 1, independently from each other. However, for bit-maps in infor-
mation retrieval systems, this assumption is not very realistic a priori, as adjacent bits often
represent documents written by the same author; there is a positive correlation for a word to
appear in consecutive documents, because of the specific style of the author or simply because
such documents often treat the same or related subjects.

We first remark that the hierarchical method does not always yield real compression.
Consider for example a vector vy for which the indices of the 1-bits are of the form iry for
i <lo/ro. Then there are no zero-blocks (of size rg) in vy, moreover all the bits of v; for i > 0
will be 1, so that the whole tree must be kept. Therefore the method should be used only for
sparse vectors.

In the other extreme case, when vy is very sparse, the TREE method may again be wasteful:
let d = [log, lo], so that a d-bit number suffices to identify any bit-position in vy. If the vector
is extremely sparse, we could simply list the positions of all the 1-bits, using d bits for each.
This is in fact the inverse of the transformation performed by the bit-vectors: basically, for
every different word W of the database, there is one entry in the inverted file containing the
list of references of W, and this list is transformed into a bit-map; here we change the bit-map
back into its original form of a list.
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A small example will illustrate how the bijection of the previous paragraph between lists
and bit-maps can be used to improve method TREE. Suppose that among the rq - rq - ro first
bits of vg only position j contains a one. The first bit in level 3, which corresponds to the
ORing of these bits, will thus be set to 1 and will point to a sub-tree consisting of three blocks,
one on each of the lower levels. Hence in this case a single 1-bit caused the addition of at
least rg 4+ r1 4+ ro bits to the compressed map, since if it were zero, the whole sub-tree would
have been omitted. We conclude that if ry 4+ 1 + 7o > d, it is preferable to consider position
j as containing zero, thus omitting the bits of the sub-tree, and to add the number j to an
appended list L, using only d bits. This example is readily generalized so as to obtain an
optimal partition between tree and list for every given vector, as will now be shown.

We define [; and k; respectively as the number of bits and the number of blocks in v;, for
0 < j <t. Note that r; - k; = [;. Denote by T'(i, j) the sub-tree rooted at the i-th block of
vj, with 0 < j <tand 1 <i <k;. Let S(4,7) be the size in bits of the compressed form of
the sub-tree T'(7, j), i.e., the total number of bits in all the non-zero blocks in 7(i, 7), and let
N(i,j) be the number of 1-bits in the part of the original vector vy which belongs to T'(4, 7).

During the bottom-up construction of the tree these quantities are recursively evaluated
for0 <j<tand1<1¢<Ek; by:

NG, j) = number of 1-bits in block i of vy if j =0,
! LN (= kb —1) iG>0

0 if 7 =0 and 7T'(¢,0) contains only zeros,
S(i,7) = To it 7 =0 and 7T'(4,0) contains a 1-bit,
Pt LS (= Oyt hg—1) >0

At each step, we check the condition
4+ N(ij) < SGi. ) (5.1

If it holds, we prune the tree at the root of T'(i,j), adding the indices of the N (7, j) 1-bits
to the list L, and setting then N(i,7) and S(7, j) to zero. Hence the algorithm partitions the
set of 1-bits into two disjoint subsets: those which are compressed by the TREE-method and
those kept as a list. In particular, if the pruning action takes place at the only block of the
top level, there will be no tree at all.

Note that by definition of S(7, j), the line corresponding to the case j > 0 should in fact
be slightly different: 7; should be added to the sum X = 3,7, S((i — 1)r; + h,j — 1) only if
X # 0. However, no error will result from letting the definition in its present form. Indeed,
if X =0, then also N(i,7) = 0 so that the inequality in (5.1) is satisfied in this case, thus
S(i,7) will anyway be set to zero. Note also that in case of equality in (5.1), we execute a
pruning action although a priori there is no gain. However, since the number of 1-bits in v;
is thereby reduced, this may enable further prunings in higher levels, which otherwise might
not have been done.

We now further compress the list L (of indices of 1-bits which were “pruned” from the
tree) using POM, which can be adapted to the compression of a list of d-bit numbers: we
choose an integer ¢ < d — 1 as parameter, and form a bit-map v of k = [ly/2°] bits, where
bit 4, for 0 < ¢ < k, is set to 1 if and only if the integer ¢ occurs in the d — ¢ leftmost bits
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of at least one number in L. Thus a 1-bit in position 7 of v indicates that there are one or
more numbers in L in the range [i2¢ (i + 1)2¢ — 1]. For each 1-bit in v, the numbers of the
corresponding range can now be stored as relative indices in that range, using only ¢ bits for
each, and an additional bit per index serving as flag, which identifies the last index of each
range. Further compression of the list L is thus worthwhile only if

d-|L| > k+ (c+1)[L]. (5.2)

The left hand side of (5.2) corresponds to the number of bits needed to keep the list L
uncompressed. Therefore this secondary compression is justified only when the number of
elements in L exceeds k/(d —c—1).

For example, for lj = 128 and ¢ = 5, there are 4 blocks of 2° bits each; suppose the
numbers in L are 36, 50, 62, 105 and 116 (at least five elements are necessary to justify
further compression). Then there are three elements in the second block, with relative indices
4, 18 and 30, and there are two elements in the fourth block, with relative indices 9 and 20,
the two other blocks being empty. This is shown in Figure 5.2.

v 0101

0-00100 0-10010 1-11110 0-01001 1-10100

indicates the end of the sequence

FIGURE 5.2: Further compression of index list

Finally we get even better compression by adapting the cut-off condition (5.1) dynamically
to the number of elements in L. During the construction of the tree, we keep track of this
number and as soon as it exceeds k/(d — ¢ — 1), i.e., it is worthwhile to further compress the
list, we can relax the condition in (5.1) to

(c+1) N(i,j) < S0, 7), (5.3)
since any index which will be added to L, will use only ¢ + 1 bits for its encoding.

In fact, after recognizing that L will be compressed, we should check again the blocks al-
ready handled, since a sub-tree T'(i, j) may satisfy (5.3) without satisfying (5.1). Nevertheless,
we have preferred to keep the simplicity of the algorithm and not to check again previously
handled blocks, even at the price of losing some of the compression efficiency. Often, there
will be no such loss, since if we are at the top level when |L| becomes large enough to satisfy
(5.2), this means that the vector vy will be kept in its entirety as a list. If we are not at the
top level, say at the root of T'(7,j) for j < t, then all the previously handled trees will be
reconsidered as part of larger trees, which are rooted on the next higher level. Hence it is
possible that the sub-tree T'(4, j), which satisfies (5.3) but not (5.1) (and thus was not pruned
at level 7), will be removed as part of a larger sub-tree rooted at level j + 1.
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5.2.2 Combining Huffman and run-length coding

As we are interested in sparse bit-strings, we can assume that the probability p of a block
of k consecutive bits being zero is high. If p > 0.5, method NORUN assigns to this 0-block a
codeword of length one bit, so we can never expect a better compression factor than k. On the
other hand, k& cannot be too large since we must generate codewords for 2% different blocks.

In order to get a better compression, we extend the idea of method NORUN in the following
way: there will be codewords for the 2¥ — 1 non-zero blocks of length k, plus some additional
codewords representing runs of zero-blocks of different lengths. In the sequel, we use the term
‘Tun’ to designate a run of zero-blocks of £ bits each.

The length (number of k-bit blocks) of a run can take any value up to lo/k, so it is
impractical to generate a codeword for each: as was just pointed out, k£ cannot be very large,
but Iy is large for applications of practical importance. On the other hand, using a fixed-
length code for the run length would be wasteful since this code must suffice for the maximal
length, while most of the runs are short. The following methods attempt to overcome these
difficulties.

Starting with a fixed-length code for the run-lengths, we like to get rid of the leading zeros
in the binary representation B(¢) of run-length ¢, but we clearly cannot simply omit them,
since this would lead to ambiguities. We can omit the leading zeros if we have additional in-
formation such as the position of the leftmost 1 in B(¢). Hence, partition the possible lengths
into classes C;, containing run-lengths ¢ which satisfy 27! < ¢ < 2 i =1,... , |[log,(lo/k)].
The 2* — 1 non-zero block-patterns and the classes C; are assigned Huffman codewords cor-
responding to the frequency of their occurrence in the file; a run of length ¢ belonging to
class C; is encoded by the codeword for C;, followed by ¢ — 1 bits representing the number
¢ — 271, For example, a run of 77 0-blocks is assigned the codeword for C followed by the
6 bits 001101. Note that a run consisting of a single 0-block is encoded by the codeword for
(1, without being followed by any supplementary bits.

The Huffman decoding procedure has to be modified in the following way: The table
contains for every codeword the corresponding class C; as well as ¢ — 1. Then, when the
codeword which corresponds to class C; is identified, the next ¢ — 1 bits are considered as
the binary representation of an integer m. The codeword for C; followed by those ¢ — 1 bits
represent together a run of length m 4 2:71; the decoding according to Huffman’s procedure
resumes at the i-th bit following the codeword for C;. Summarizing, we in fact encode the
length of the binary representation of the length of a run, and the method is henceforth called
LLRUN.

Method LLRUN seems to be efficient since the number of bits in the binary representation
of integers is reduced to a minimum and the lengths of the codewords are optimized by
Huffman’s algorithm. But encoding and decoding are admittedly complicated and thus time
consuming. We therefore propose other methods for which the encoded file will consist only
of codewords, each representing a certain string of bits. Even if their compression factor is
lower than LLRUN’s, these methods are justified by their simpler processing.

To the 2¥ —1 codewords for non-zero blocks, a set S of t codewords is adjoined representing
hg, hi, ..., hi_1 consecutive 0-blocks. Any run of zero-blocks will now be encoded by a suitable

59



linear combination of some of these codes. The number ¢ depends on the numeration system
according to which we choose the h;’s and on the maximal run-length M, but should be low
compared to 2¥. Thus in comparison with method NORUN, the table used for compressing and
decoding should only slightly increase in size, but long runs are handled more efficiently. The
encoding algorithm now becomes:

Step 1: Collect statistics on the distribution of run-lengths and on the set NZ of the
2% — 1 possible non-zero blocks. The total number of occurrences of these
blocks is denoted by Ny and is fixed for a given set of bit-maps.

Step 2: Decompose the integers representing the run-lengths in the numeration sys-
tem with set S of “basis” elements; denote by TNO(S) the total number of
occurrences of the elements of S.

Step 3: Evaluate the relative frequency of appearance of the 28 — 1 + ¢ elements of
NZ U S and assign a Huffman code accordingly.

For any = € (NZ U S), let p(xz) be the probability of the occurrence of z and ¢(z) the
length (in bits) of the codeword assigned to z by the Huffman algorithm. The weighted
average length of a codeword is then given by AL(S) = 32, Nzus) P(2){(x) and the size of
the compressed file is

AL(S) x (No + TNO(S)).

After fixing k so as to allow easy processing of k-bit blocks, the only parameter in the algorithm
is the set S. In what follows, we propose several possible choices for the set S = {1 = hy <
hy < ... < hi_1}. To overcome coding problems, the h; and the bounds on the associated
digits a; should be so that there is a unique representation of the form L = >, a;h; for every
natural number L.

Given such a set S, the representation of an integer L is obtained by the following simple
procedure:

fori « t—1 to 0 by —1
a; < LL/th
L + L—aixhi
end

The digit a; is the number of times the codeword for h; is repeated. This algorithm

produces a representation L = ﬁ;é a;h; which satisfies
J
Zaihi < h/]’+1 for 3=0,...,t—1. (54)
i=0

Condition (5.4) guarantees uniqueness of representation (see [51]).

A natural choice for S is the standard binary system (method POW2), h; = 2, i > 0, or
higher base numeration systems such as h; = m', i > 0 for some m > 2. If the run-length is
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L it will be expressed as L = 3, a;m?, with 0 < a; < m and if a; > 0, the codeword for m'
will be repeated a; times. Higher base systems can be motivated by the following reason.

If p is the probability that a k-bit block consists only of zeros, then the probability of a run
of r blocks is roughly p"(1—p), i.e., the run-lengths have approximately geometric distribution.
The distribution is not exactly geometric since the involved events (some adjacent blocks
contain only zeros, i.e., a certain word does not appear in some consecutive documents) are
not independent. Nevertheless the experiments showed that the number of runs of a given
length is an exponentially decreasing function of run-length (see Figure 2.1 below). Hence
with increasing base of the numeration systems, the relative weight of the h; for small ¢ will
rise, which yields a less uniform distribution for the elements of NZ U S calculated in Step 3.
This has a tendency to improve the compression obtained by the Huffman codes. Therefore
passing to higher order numeration systems will reduce the value of AL(S).

On the other hand, when numeration systems to base m are used, TNO(SS) is an increasing
function of m. Define r by m" < M < m"*! so that at most r m-ary digits are required to
express a run-length. If the lengths are uniformly distributed, the average number of basis
elements needed (counting multiplicities) is proportional to (m —1)r = (m —1)log,, M, which
is increasing for m > 1, and this was also the case for our nearly geometric distribution. Thus
from this point of view, lower base numeration systems are preferable.

As an attempt to reduce TNO(SS), we pass to numeration systems with special properties,
such as systems based on Fibonacci numbers

F():O, Fl == 1, Fi:E,1+Fi,2 for 222

(a)  The binary Fibonacci numeration system (method FIB2): h; = F; 5. Any integer L
can be expressed as L = Y, b; F;12 with b; = 0 or 1, such that this binary representation of L
consisting of the string of b;’s contains no adjacent 1’s. This fact for a binary Fibonacci system
is equivalent to condition (5.4), and reduces the number of codewords we need to represent
a specific run-length, even though the number of added codewords is larger than for POW2
(instead of ¢(POW2) = |log, M | we have t(FIB2) = [log,(v5M)| — 1, where ¢ = (1+ v/5)/2
is the golden ratio). For example, when all the run-lengths are equally probable, the average
number of codewords per run is asymptotically (as k — oo) (1 — 1/+/5)¢(FIB2) instead of
1t(POW2).

(b) A ternary Fibonacci numeration system: h; = Fy41), i.e., we use only Fibonacci
numbers with even indices. This system has the property that there is at least one 0 between
any two 2’s. This fact for a ternary Fibonacci system is again equivalent to (5.4).

6. FINAL REMARKS

Modern Information Retrieval Systems are generally based on inverted files and require large
amounts of storage space and powerful machines for the processing of sophisticated queries.
Data compression techniques that are specifically adapted to the various files in an IR environ-
ment can improve the performance, both by reducing the space needed to store the numerous
auxiliary files, and by reducing the necessary data transfer and thereby achieving a speedup.
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We have presented a selected choice of techniques pertaining to the different files involved
in a full-text IR system; some are given with considerable detail, others are only roughly
described. We hope that, nevertheless, the reader will get a useful overall picture, which can
be completed by means of the appended literature.

Our main focus has been on IR systems using inverted files. With the development of
ever more powerful computers, it may well be that brute force methods, like searching large
files using some pattern matching techniques (see, e.g., [52]) or probabilistic approaches using
signature files (see, e.g., [53]), will again be considered a feasible alternative, even for very
large files.
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