
Bidirectional Hu�man CodingAviezri S. Fraenkel1 and Shmuel T. Klein21 Department of Applied Mathematics and Computer ScienceThe Weizmann Institute of ScienceRehovot 76100, Israel2 Graduate Library SchoolUniversity of Chicago, IL 60637
August 1989
ABSTRACTUnder what conditions can Hu�man codes be e�ciently decoded in bothdirections? The usual decoding procedure works also for backward decodingonly if the code has the a�x property, i.e., both pre�x and su�x properties.Some a�x Hu�man codes are exhibited, and necessary conditions for the ex-istence of such codes are given. An algorithm is presented which, for a givenset of codeword lengths, constructs an a�x code, if there exists one. Since formany distributions there is no a�x code giving the same compression as theHu�man code, a new algorithm for backward decoding of non-a�x Hu�mancodes is presented, and its worst case complexity is proved to be linear in thelength of the encoded text.

1. IntroductionFor a given sequence of n weights w1; : : : ; wn, with wi > 0, Hu�man's well-known algorithm [9] constructs an optimum pre�x code. We use throughout theterm `code' as abbreviation for `set of codewords'. In a pre�x code no codeword isthe pre�x of any other. A Hu�man code, consisting of codewords ci of length li,1 � i � n, is optimum in the sense that it minimizes the weighted average lengthPni=iwili. For most sets of weights there is a large number of optimum codes. Itis thus natural to look for optimum codes having some additional properties. Forexample Schwartz & Kallick [18] proposed a code for which the codewords, whensorted by their respective weights, are also ordered lexicographically. More recently,Ferguson & Rabinowitz [3] studied Hu�man codes having a synchronizing codewordc, i.e., if c appears in the encoded string, the codewords following it are recognized,regardless of possible errors preceding c.In this paper, we investigate Hu�man codes as to their ability of allowing ef-�cient bidirectional decoding. The pre�x-property ensures that an encoded stringcan instantaneously be deciphered when it is processed from the beginning towardsthe end (left to right). However, if we want to decode the encoded text backwards,this is easily done only if the Hu�man code has also the su�x property (which isusually not the case), so that no codeword is the pre�x or the su�x of any other. Acode having both pre�x and su�x properties is called an a�x code (as in Peterson[14]). Bidirectional decoding may be useful in the following applications:1) KWIC display. In full-text information retrieval systems a query consists ofone or several keywords, the occurrences of which are to be located. This is done withthe help of a \concordance" which contains for every di�erent word of the databasea list of pointers to all its appearances in the text. A convenient way to present theretrieved items to the user is in form of a \KeyWord In Context" (KWIC) index (seeHeaps [8]): typically, a context of k words is displayed for each occurrence, with oneof the keywords centered, where k is a �xed or variable integer chosen by the user.Hence starting with the pointer to the keyword, the k words of the KWIC must becollected processing the text both forward and backward. Therefore the text �leis usually encoded by some �xed-length code, which can be very wasteful. A�xHu�man codes can thus be used for text compression, permitting the display of anarbitrarily long segment of text preceding any keyword. This question of KWICdisplay and other possible applications of a�x codes, have been communicated tous by Prof. Y. Choueka, and it was one of the motivations for this work.2) Retrieval of truncated terms. The problem is to �nd the pattern �X� in agiven text �le, where X is a string and � is a variable-length-don't-care character,that is, the � represent arbitrary, possibly empty, strings, which complete the stringX to a word appearing in the text. In order to retrieve the word matched by thepattern �X�, we decode forwards and backwards from the location where X wasdetected up to the nearest blanks. Again this is done easily with �xed-length codes,but with variable-length codes only if they have the a�x property.{ 2 {

3) Use of tapes. Some information stored on tapes can be processed during therewind operations. For instance, the PL/1 programming language allows �les onmagnetic tapes to be accessed in reverse order using the \BACKWARDS" attribute.If such a feature is desired, we need a�x codes to enable the use of variable-lengthcodes for compression purposes.4) Implementation of deques. Many algorithms use linear lists such as dequeswhich are often implemented by sequential allocation (see Knuth [11, pp. 240{251]).The size of these lists can be reduced when we allow their records to be encodedby a variable-length code, which must have the a�x property since records can beretrieved from both ends of a deque.It should be noted that one can easily construct a�x variable-length codes, ifone does not insist on optimum compression. For example, �x any binary pattern� and consider the set Y of strings of the form y = �x�, where x is a binary stringsuch that the pattern � appears in y only as pre�x and su�x. Clearly, Y is a�x, butbidirectional decoding is still possible even if � appears only once, say as pre�x, ineach codeword as proposed by Gilbert [5], who was concerned with synchronization.We shall restrict our discussion to complete �nite a�x codes, the constructionof which is more di�cult. A code C is complete if by adjoining any codeword c =2 C,one obtains a set C0 = C [fcg which is not uniquely decipherable. Note that in anapplication to data communication, it is not always recommended to use a completea�x code, because for such a code (unless it is the trivial code consisting of f0; 1gonly) it is well-known that if a bit gets lost or an extraneous bit is picked up, thedecoding process will never resynchronize after the error. On the other hand, thepossibility for e�cient backward decoding may be useful in case of a transmissionerror. For example, if the original text is in some natural language, the error canbe located approximately as the point from which on the decoded text seems to begarbled. The lost tail can be restored at least partially by backward decoding ofthe compressed text, starting at the end of the message, so that the damage of theerror can be restricted to a local perturbation.A�x codes are already mentioned in Gilbert & Moore [6] (where they are callednever-self-synchronizing) and in Sch�utzenberger [16]; they are extensively studiedin Berstel & Perrin [1, Chapter III] under the name of bipre�x codes. We furtherrestrict attention to binary codes, but all the results are easily extendable to k-arycodes for any k � 2. New results on the existence of complete a�x codes are pre-sented in the next section. In Section 3 we sketch an algorithm for the constructionof a complete a�x code, if it exists, and report on experiments which suggest thatweight-distributions admitting an a�x code giving optimum compression, are rare.Therefore we deal in Section 4 with a method for e�cient backward decoding ofHu�man codes which lack the su�x property.A binary code has the property of �nite decipherability delay if there exists aconstant K such that the knowledge of the �rst K bits of any encoded text T su�cesto determine the �rst codeword of T . This permits the construction of a decoding{ 3 {

automaton with �nite memory. For example, every pre�x code has �nite delaywith K = maximum codeword length. The problem with a non-a�x Hu�man codeis that the corresponding reversed code (which is actually used for the backwarddecoding) does not have �nite decipherability delay. This is already mentioned inLevenshtein [12] and proved for every complete pre�x code in Sch�utzenberger [17].It follows that for every non-a�x Hu�man code, an encoded text can be found,the backward decoding of which recognizes its �rst codeword only after the entirestring is read. In our application for backward decoding, we are however interestedin the average number of bits which need to be processed before a codeword is rec-ognized. We de�ne accordingly the average decipherability delay of the code, whichalso corresponds to the average space complexity of the decoding algorithm. Weshow below that assuming a reasonable probability model, we get that the averagedecipherability delay is bounded by a constant depending only on the Hu�man code.The reversal of a Hu�man code being still a uniquely decipherable (UD) code,one could use known algorithms for decoding general UD codes. For example,Even [2, Problems 4.1 and 4.2] proposes to scan the entire message in both directions,which for any pre�x code as in the Hu�man case discussed here, reduces to the simpleforward decoding. The new algorithm of Section 4, however, as well as its analysis,assume not only the code being UD, but rely on the fact that it is the reversal of aHu�man code, which yields the constant average delay.2. Existence of A�x CodesThere is a natural correspondence between Hu�man codes and Hu�man trees,and we shall henceforth use the languages of codes (codewords and their lengths) andtrees (leaves and their levels) interchangeably. A binary Hu�man tree for n weightshas n�1 internal nodes, from each of which emanate two edges, one labelled `0' andthe other labelled `1'. There are thus 2n�1 possible Hu�man trees, which correspondto 2n�1 di�erent assignments of codewords ci to the weights wi, for 1 � i � n. Thenumber of optimum codes is smaller, since by switching the labels of the edgesemanating from an internal node, the left and right subtrees of which are identicalin structure, the set of codewords is not altered, only their assignment to the weightsis permuted. However our search for a�x codes should not be restricted to this setof Hu�man codes, since there are optimum codes which cannot be obtained via theHu�man algorithm. Consider for example the following sequence of nine weights:(w1; : : : ; w9) = (1; 1; 1; 1; 3; 3; 3; 3; 7). The only vector of lengths minimizing Pwiliis (l1; : : : ; l9) = (4; 4; 4; 4; 3; 3; 3; 3; 2), but none of the Hu�man codes with this lengthvector has the a�x property. On the other hand, the tree depicted in Figure 1(a),which is not a Hu�man tree for these weights (since in a Hu�man tree, the four leaveswith weight 1 belong to the same subtree of depth 2), is nevertheless optimum, andthe corresponding code in Figure 1(b) is a�x.We shall therefore consider, for each sequence of weights, the class of all the{ 4 {

codes having the same length-vector as the Hu�man code for these weights, so thatthe string hn1; : : : ; n`i, where ni is the number of codewords of length i, can beused to identify this class. Note that Pì=1 ni2�i = 1 (see [11, Exercise 2.3.4.5{3]).Such a string is called a quantized source in [3], or simply source in the sequel.For example the source corresponding to the code in Figure 1 is h0; 1; 4; 4i. Mostweight distributions have a unique source, but some can have more, for example thesequence of weights (1; 1; 2; 2; 4) has three sources: h1; 1; 1; 2i, h1; 0; 4i and h0; 3; 2i.Thus when looking for an a�x code for a certain sequence of weights, all its sourcesmust be considered.

(a)
0 10 0 01 0 01 1 01 1 10 0 1 00 0 1 11 0 1 01 0 1 1(b)Figure 1: Example of an a�x codeOur �rst concern is to show that our requirements on the su�xes is not toorestrictive and that a�x codes actually exist. Indeed, every �xed-length code hasthe a�x property, but from the point of view of compression capability, �xed lengthcodes are not very interesting since they are optimum only for uniform or almostuniform distributions. Henceforth any �xed-length code is called a trivial a�x code.Proposition 1. There are in�nitely many nontrivial a�x codes.Proof: The example in Figure 1 shows that at least one such code exists. Theproof is completed if we show that for every given a�x code, there is another a�xcode with a larger number of codewords. Let A = f�1; : : : ; �ng be an a�x code.Consider the set B = f�1; : : : ; �2ng de�ned by �2i = �i0, �2i�1 = �i1 for 1 � i � n,i.e., the tree corresponding to B is obtained from the tree corresponding to A bysplitting all its leaves. Obviously, B is an a�x code.On the other hand, there are sources for which no complete a�x code exists.Proposition 2. Let S = hn1; : : : ; n`i be a source with n1 6= 0. Then no nontrivialcomplete a�x code exists for S. { 5 {

Proof: If the code is nontrivial, then ` > 1. From n1 6= 0 follows that thereis precisely one codeword of length 1, which can be either `0' or `1'. But in everycomplete code, both `0' and `1' are su�xes of certain codewords.Proposition 2 does not apply to commonly encountered distributions, sincethe existence of a codeword of length 1 implies that one of the weights is at least(Pwi)=3 (Johnsen [10]). The shortest codewords for many distributions of alpha-bets of natural languages are of length 2 or 3. Let m denote, here and in the sequel,the length of the shortest codeword(s) for a given source, i.e., m = minfi j ni > 0g.Proposition 2 dealt with the case m = 1, and in the next theorem we generalize itto larger m. We �rst introduce the followingDe�nition: A Shift-Register Sequence with word-length t, denoted in the sequel bySt, is a sequence of k codewords fc0; : : : ; ck�1g, all of length t bits, such that for0 � i < k, the su�x of length t� 1 of ci is identical with the pre�x of length t� 1of c(i+1 mod k).The name of such a \cyclic sequence" of codewords was chosen because theelements of every St can be viewed as the consecutive states of a shift register of tstages (see for example Golomb [7]). Every St containing k elements is generated bya string of k bits A = a0 � � �ak�1 which are to be thought of as being written on acircle; the codewords of St are obtained by collecting t consecutive bits of this cyclicstring, starting from a0, and shifting the starting point for each subsequent codewordby one bit, i.e., ci = aiai�1 � � �ai�(t�1) for 0 � i < k, where, here and below, �denotes addition modulo k. Let St(A) denote St generated by A. For example,the string A = 010011 generates S4(A) = f0100; 1001; 0011; 0110; 1101; 1010g. Thegenerating string can also be smaller than the word-length, for example S3(10) =f101; 010g.Theorem 1. A complete a�x code is trivial if and only if the set of shortestcodewords includes some shift register sequence with word-length m.Proof: If all the codewords have the same length m bits, then all the 2m possiblebit-patterns are codewords, in particular the string of m zeros, which is the uniqueelement of Sm(0).Conversely, suppose that for a given complete a�x code C, the set of shortestcodewords includes the k elements of some Sm(A), for A = a0 � � �ak�1. Let B denotethe in�nite binary string obtained by concatenating A with in�nitely many copies ofitself, and let B(i) denote the pre�x of length i bits of B. We show by induction on rthe truth of the statement �(r) :\the 2r binary strings de�ned by d1 � � �drB(m�r),where the bits di take all their possible values, are also codewords".For r = 1, consider the in�nite binary string D = d1B. The string D traces apath through a hypothetical in�nite binary tree (with, say, 0 indicating a left turnand 1 a right turn). Exactly one pre�x e of D corresponds to a path from the root{ 6 {

to a leaf in the �nite tree associated with C, since C is complete. In other words,e is a codeword. If e has more than m bits, then its last m bits are of the formaiai�1 � � �ai�(m�1) for some 0 � i < k. By hypothesis, aiai�1 � � �ai�(m�1) is acodeword ci of Sm(A). But it is also a su�x of e, contradicting the fact that C isan a�x code. Hence e has exactly m bits so that both 0B(m� 1) and 1B(m� 1)belong to C, which proves �(1).Suppose the truth of �(j) for 1 � j � r � 1 < m, and consider the in�nitebinary string D = d1 � � �drB. As above, there is a unique pre�x e of D which is acodeword. The length of e is less than m + r, since otherwise the su�x of lengthm of e is one of the codewords of Sm(A). Moreover, the length of e cannot bem� 1 + j for any 2 � j � r, since otherwise e has a su�x of length m of the formdj � � �drB(m� r+ j�1), but by �(r� j+1) this is a codeword. Thus e has exactlym bits which proves �(r).Summarizing, �(i) is true for all i, in particular for i = m, which means that Cis a �xed-length code.Note that for m = 1 we get Proposition 2, since both f0g and f1g are S1's. Theimportance of Theorem 1 is that it will guide us in the construction of a�x codesin the following section. It also gives information on the maximal size of the set ofshortest codewords, as will now be shown.Corollary 1. Let S = hn1; : : : ; n`i be a source. If nm > H(m), where H(m) =2m� 1mPmi=1 2(i;m) and (x; y) denotes the greatest common divisor of x and y, thenno nontrivial complete a�x code exists for S.Proof: Consider the set A of the 2m binary strings of length m, and de�ne abinary relation R on A by: elements x and y of A are related by R if and only if onecan be obtained by cyclically shifting the other. Clearly,R is an equivalence relation,so let Z(m) be the number of equivalence classes in the partition of A induced by R.It is easy to see that every equivalence class is an Sm. From the disjointness of theclasses follows that at least one element of every class must be excluded from the setof shortest codewords, so that an a�x code can exist only if nm � 2m�Z(m). Thecorollary thus follows from Golomb [7, Chapter VI, Theorem 1], where it is shownthat Z(m) = 1mPmi=1 2(i;m).We note in passing that the generalization of Corollary 1 to k-ary codes impliesZk(m) = 1mPmi=1 k(i;m). In particular, Pmi=1 k(i;m) � 0 (mod m), for all positiveintegers m and k. See also Riordan [15, Chapter VI, Problem 37].Since H(1) = 0, we again get Proposition 2 for m = 1. For m = 2, the corollarystates that there can be only one shortest codeword of length 2; for m = 3 at most4 codewords can be of shortest length and for m = 4 at most 10.Note that the corollary does not a�rm the existence of a set of codewords of sizeH(m) not including an Sm. Indeed, the Sm used in the partition are all generated by{ 7 {

strings of length m, where in each Sm multiple elements are dropped. For example,for m = 3, the generating strings can be 000, 001, 011 and 111, yielding respectivelythe Sm: f000g, f001; 010; 100g, f011; 101; 110g and f111g. However, other Smcan exist, which are generated by strings of length 6= m, for example S3(01) =f010; 101g, which also have to be avoided. Therefore if we want to construct a setof shortest codewords of size H(m), the element to be dropped from each class mustbe chosen carefully and it is not clear that this can be done so as to avoid every shiftregister sequence. For m � 4 it is possible to choose sets of size H(m), for example:for m = 2: f01gfor m = 3: f001; 010; 110; 011gfor m = 4: f0001; 0011; 0111; 1110; 1100; 1011; 1010; 0110; 0010; 0100g:
An easy way to see that a set of codewords contains no Sm is to consider thefollowing directed graph: the vertices are the 2m binary strings of length m andthere is a directed edge from v to w if w is the successor of v in some shift-registersequence, i.e., the m�1 leftmost bits of w coincide with the m�1 rightmost bits ofv. The full graph of 2m vertices, where each vertex has indegree and outdegree 2, isknown as the (binary) de Bruijn diagram of order m (see [7]). A set C of codewordsincludes no Sm, if and only if the subgraph of the de Bruijn diagram induced by Ccontains no directed cycles. Figure 2 shows the subgraph corresponding to the setof size H(4) of the above example.

Figure 2: Example of a set of H(4) = 10 strings including no S4On the other hand, we have no proof that for all possible values of nm thereactually exists an a�x code having a set C of nm shortest codewords, even if C canbe chosen so that it includes no Sm. For m � 3, we found examples of a�x codesfor all the possible values of nm, as shown in Figure 1 and in the four examples ofFigure 3. { 8 {

0 0 10 0 0 00 1 0 00 1 0 10 1 1 00 1 1 11 0 0 01 0 1 01 0 1 11 1 0 01 1 0 11 1 1 01 1 1 11 0 0 1 01 0 0 1 10 0 0 1 00 0 0 1 1

0 0 11 0 10 0 0 00 1 0 00 1 1 00 1 1 11 0 0 01 1 0 01 1 1 01 1 1 11 1 0 1 01 1 0 1 11 0 0 1 01 0 0 1 10 1 0 1 00 1 0 1 10 0 0 1 00 0 0 1 1

0 0 10 1 01 1 00 0 0 00 1 1 11 0 0 01 0 1 11 1 1 11 1 1 0 01 1 1 0 11 0 1 0 01 0 1 0 11 0 0 1 10 1 1 0 00 1 1 0 10 0 0 1 10 0 0 1 0 00 0 0 1 0 11 0 0 1 0 01 0 0 1 0 1

0 0 10 1 00 1 11 1 00 0 0 01 0 0 01 1 1 11 1 1 0 01 1 1 0 11 0 1 1 11 0 1 0 01 0 1 0 10 0 0 1 1 10 0 0 1 0 00 0 0 1 0 11 0 0 1 1 11 0 0 1 0 01 0 0 1 0 11 0 1 1 0 01 0 1 1 0 11 0 0 1 1 0 01 0 0 1 1 0 10 0 0 1 1 0 00 0 0 1 1 0 1Figure 3: Examples of a�x codes with 1, 2, 3, 4 shortest codewords of 3 bitsUsing repeatedly the proof of Proposition 1, we conclude from the last example thatthere exist a�x codes for sources with m � 3 and nm = 2m�1. Note also that theexample for h0; 0; 2; 8; 8i is not the one obtained from the example in Figure 1 viathe proof of Proposition 1.Summarizing, Theorem 1 and its corollary provide necessary, but not su�cientconditions for the existence of a complete a�x code.3. Construction of A�x CodesGiven a source S = hn1; : : : ; n`i, we are interested in an algorithm which con-structs an a�x code for S if there exists one. The number of complete pre�x codesfor a given source is N (S) = Ỳi=1�2i �Pi�1j=1 2i�jnjni �;since once the set A of codewords of length < i is �xed, we can choose the nicodewords of length i among the set of 2i possible codewords, from which we excludeall those having an element of A as pre�x, and there are 2i�j codewords of length ihaving the same pre�x of length j. For certain sources, the number of pre�x codescan be large enough to make an exhaustive search for an a�x code prohibitive.For example, the source of the distribution of the English alphabet, as given in [8],is h0; 0; 2; 7; 7; 5; 1; 1; 1; 2i, and there are 127,733,760 di�erent pre�x codes for thissource. { 9 {

Every Hu�man tree has the property that any of its subtrees Ti is a Hu�mantree for the weights corresponding to the leaves of Ti. However the a�x propertyis not \hereditary", in other words it is not true that any subtree of an a�x treehas the a�x property. For example, the left subtree of Figure 1a is not a�x byProposition 2. Hence a bottom-up construction as the one used by Hu�man willnot work in our case.A �rst cut-back in the number of potential a�x codes is obtained from the fol-lowing theorem which is cited in [6] and proved in [16]. For a source S = hn1; : : : ; n`i,let d(S) = 1n1 2�1 + 2n2 2�2 + � � �+ ` n` 2�`:The quantity d(S) is called the degree of the source S.Theorem (Gilbert, Moore, Sch�utzenberger). The degree of any complete a�xcode is an integer.For example, the tree in Figure 1a has degree 3 and all the trees in Figure 3have degree 4. The above source for English yields a non-integer degree, so there isno a�x code for the English alphabet giving the same compression as the Hu�mancode.The converse of the above theorem is not true, i.e., there are sources withintegral degree, but for which no complete a�x code exists. For example the sourceh1; 0; 4i has degree 2 but satis�es the conditions of Proposition 2.The algorithm for the construction of an a�x code for a given source S thereforestarts by evaluating d(S), and proceeds only if this is an integer. The tree is thenconstructed top-down, level by level. There are Ni nodes (internal or leaves) onlevel i, where Ni = �n` for i = `,ni +Ni+1=2 for i < `.On level i, ni among the Ni nodes must be chosen to be leaves in the �nal tree, theremaining nodes on level i are split, giving the 2(Ni � ni) = Ni+1 nodes of leveli+1. The procedure is most easily understood considering for a given source S thefollowing \tree of trees" T (S), which we introduce through the example in Figure 4for S = h1; 0; 2; 4i, ` = 4 and (N1; : : : ; N4) = (2; 2; 4; 4).Every node on level i of T (S), 0 � i � `, contains a binary tree of depth iwhich corresponds to the upper part of one of the possible trees for the source S,and every tree in a node is an extension of the tree in the father-node. In particular,the root of T (S) contains a binary tree of depth zero, which is a unique node. Thetree in a node on level i of T (S) has Ni leaves on its level i, Ni � ni of which aremarked by a dot as being internal nodes in the �nal tree. Every node on level i < `of T (S) has �Ni+1ni+1� sons, which all contain the same binary tree and di�er only inthe choice of the dotted leaves. The leaves of T (S) contain all the possible binarytrees for the source S, so there are N (S) leaves, in our example N (h1; 0; 2; 4i) = 12.{ 10 {

Figure 4: The \tree of trees" T (h1; 0; 2; 4i)A preorder traversal of the tree T (S) may be used to generate all the possibletrees for S in an exhaustive search: every time a leaf is reached, the correspondingtree is checked for the a�x property. We can however do better, checking alreadyin higher levels of T (S) if there are a�x-trees in its nodes. There is no need to visita subtree rooted at a node of T (S) which contains a non-a�x tree. If on the otherhand, it contains an a�x tree, the number of sons of this node which should bevisited will often be much smaller than �Nini�, as we consider only extensions whichpreserve the a�x property. Therefore large parts of T (S) can be pruned so that thetime complexity of traversing the tree is reduced. In the worst case it will still beequivalent to exhaustive search, but for almost all our experiments we got on-lineresults in a few seconds.Description of the algorithmThe algorithm for searching for an a�x tree performs a recursive preordertraversal of the tree T (S), parts of which are dynamically pruned. It stops with apositive answer when one of the leaves is reached, or with a negative answer at theend of the traversal.To initialize, we start with the full binary tree with m levels (levelm of T (S)).{ 11 {

There are �2mnm� possibilities to choose the leaves, and there is one node in T (S) foreach of the choices, but because of Theorem 1, only sets of nm codewords notincluding an Sm need to be considered. The number of sets to be checked can bereduced further, by remarking that for every given a�x code the set of the binarycomplements of the codewords is also an a�x code; hence it su�ces to consider onlysets of nm codewords such that the leftmost bit of at least dnm=2e of them is zero,and even this set can be restricted further: for example for m = 3 and nm = 2,there is no need to check both f001; 101g and f110; 010g. The general step is nowcalled for each node x on level m of T (S), such that the tree in x satis�es theseconditions.The general step for level i > m is called with a node x on level i � 1 ofT (S) as parameter. The dotted leaves of the tree in x are split, giving a tree Txwith Ni nodes on level i, which are partitioned into two disjoint subsets: INT { theset of those which must be internal nodes because they correspond to one of the\forbidden" codewords, i.e., they have another codeword (corresponding to a leafon level j < i of Tx) as su�x; and LV { the set of those nodes which can be leaves.If jLVj < ni, then the tree Tx cannot be extended to an a�x tree for S, thusthe subtree of T (S) rooted at x can be pruned, and we return from this recursivecall. Otherwise Tx can be extended, but we need only to consider a subset of thesons of x. Indeed, if i < `, we choose ni among the jLVj \permitted" leaves on leveli in Tx, so the number of sons of x in T (S) which need to be considered is only�jLVjni � instead of �Nini�. The general step is then recursively repeated with each ofthese sons as parameter. The subtrees of T (S) rooted at the other sons are pruned.If i = ` (note that �N`n`� = 1), we have reached a leaf of T (S) and the tree inthis leaf is a�x, so we are done.An exact analysis of this algorithm seems not to be an easy task. The problemis to evaluate the size of the set LV for every internal node of T (S). If we bound jLVjby its possible maximum (Ni for a node on level i of T (S)), we get O(n2N (S)),where n = Pì=i ni, as bound for the complexity of the algorithm, which is notpolynomial. However, an intuitive argument could be that the deeper we get intothe tree T (S), the more codewords are �xed for every node and the smaller LV willbe, since it must avoid a larger set of su�xes. Thus even if there is a large numberof alternatives to be checked on the �rst few levels, the branching on the next levelswill be much more restricted, and deeper levels will often not be reached.It is not even easy to check the validity of this argument experimentally, sayon the sources of various \real-life" distributions, because sources with integraldegree are not abundant. For the weight distributions of the characters of sevennatural languages, we have constructed Hu�man codes and codes which are optimumsubject to the additional constraint that the lengths of the codewords are boundedby some integer D, for various values of D smaller than the depth of the Hu�mantree ([4]). None of the 48 sources we got has an integral degree. For a 26-letteralphabet, there are 40115 possible sources hn1; : : : ; n`i with ` � 11; only 77 of{ 12 {

them have integral degrees, and from these, 47 are rejected by Proposition 2 orCorollary 1. We have applied the algorithm on the remaining sources and foundthat h0; 1; 1; 3; 9; 8; 4i is the only source with ` � 11 andPì=1 ni = 26 for which thereexists a complete a�x code. The algorithm was generally fast with the number ofcalls to the \general step", on these examples of up to 32 characters, rarely exceeding150. The largest example on which we have tried the algorithm was for the sourceS = h0; 0; 2; 0; 10; 24; 8i, for which we knew by the proof of Proposition 1 that thereexists an a�x code, since we found one for h0; 1; 0; 5; 12; 4i. The algorithm had tovisit 139,293 nodes of T (S), but compared to the possible maximum, this is stillonly 1:2� 10�7N (S).Since apparently there are many \real-life" distributions which have no a�xcode, we treat in the next section the problem of backward decoding of (not neces-sarily a�x) Hu�man codes.4. Backward decoding of Hu�man encoded stringsWe are given a �nite alphabet � = f�1; : : : ; �ng the elements of which arecalled letters, and a text T 2 �� we wish to encode using some binary code C =fc1; : : : ; cng of the letters, i.e., if the text is T = �i1�i2 � � ��ik then the correspondingencoded text is C = ci1ci2 � � � cik , with ij 2 f1; : : : ; ng for 1 � j � k. For such � andC, we de�ne the associated binary tree A(�; C) as follows: every edge in A(�; C)pointing to a left (resp. right) son is labelled 0 (resp. 1); to each element of Ccorresponds a unique node of A(�; C) such that the binary string ci is obtainedby concatenating the labels of the edges on the path from the root to the nodecorresponding to the codeword ci; A(�; C) is the union of all these paths, in otherwords, every node corresponds to a pre�x of at least one of the codewords; the nodecorresponding to ci is labelled �i.If a Hu�man code H = fh1; : : : ; hng is used, the associated tree A(�; H) iscalled a Hu�man tree and has the following properties:i : since every Hu�man code is pre�x, there are no internal nodes which arelabelled, hence a node is labelled if and only if it is a leaf;ii : since every Hu�man code is complete, all the internal nodes have two sons.Due to property i, the standard decoding procedure is very simple: the al-gorithm uses a pointer P to the current position in the Hu�man tree; P pointsinitially to the root. In the general step, the algorithm inspects the next bit b of theencoded text C and updates P to point to the left (resp. right) son of the currentposition, if b = 0 (resp. if b = 1). If now P points to a leaf, its label � (which is thecorresponding element of �) is printed, and P is reset to the root.Property ii, which is a consequence of the optimality of Hu�man codes, impliesthat any binary string can be \decoded". This can be a disadvantage, as an errorin the input string may only be detected at its end, if at all.{ 13 {

For the backward decoding algorithm, we de�ne H = fh1; : : : ; hng as the set ofreversed Hu�man codewords, and we shall use the associated tree A(�; H). If H isan a�x code, then H is pre�x so that A(�; H) is a Hu�man tree and the standarddecoding procedure can be used. If H is not a�x, property i does not hold for Hand we must at each stage of the backward processing of C keep track of all thepossible decodings up to this point. Somewhat surprisingly, the absence of propertyii will then help to resolve these local ambiguities.A(�; H) A(�; H)
Figure 5: Associated trees for H = f0; 11; 100; 101gFor example, let � = fA; B; C; Dg and H = f0; 100; 101; 11g. The trees A(�; H)and A(�; H) are depicted in Figure 5, in which labelled nodes are represented bysquares with their labels written above, and non-labelled nodes are circles. InA(�; H) the nodes are numbered to facilitate references. Note for A(�; H) thelack of property i (node 2 is labelled although it is not a leaf) and property ii(nodes 2, 4 and 5 are internal with only one son).The backward decoding algorithm maintains a linear linked list L, the elementsE of which are of the form E = (P; S), where P is one of the nodes of the treeA(�; H) and S 2 �� is a, possibly empty, string of letters of the alphabet. Everyelement E represents one of the possible decodings of a given su�x of the encodedtext C, with P being the current node in the tree and S the current string of decodedletters. For each bit read from the encoded text, there is one iteration during whichthe list L is updated, so that at the end of the iteration L will contain all thepossible decodings up to this point. Using the above example, suppose a su�x of Cis 011100, which should be read from right to left. Then the list at the end of the6-th iteration is L = f(5; DAA); (2; DB); (1; ADB)g.Description of the algorithmPrelude: to initialize, the list contains a single element (P; S), with P beingthe root of A(�; H) and S the empty string �. Now the encoded text is processedstarting with the rightmost bit and going left.After having read the next bit b, the main iteration is entered. Here andbelow, an iteration of the algorithm is the processing of one bit of the encoded text.The list L is scanned linearly and each of its elements E = (PE; SE) is updated{ 14 {

according to b in the following way. Let Q be the left (resp. right) son of PE if b = 0(resp. b = 1). If PE does not have such a son (i.e., if Q is now the null-pointer nil),then the element E cannot be the decoding of the su�x of C processed so far, so wedelete E from L. Suppose now that the son Q of PE exists. If Q is a leaf labelled,say, by �i, this means that for the present decoding E a new codeword was detected,thus PE is reset to the root and �i is concatenated to the left of SE. Hence supposethat Q is an internal node. Then there is no need to change SE, only PE is set toQ. However, if Q is labelled, say, by �j , a new element F = (root; SF) must beadjoined to L, where SF is obtained by concatenating �j to the left of SE. This willhappen if the last bit(s) read from C are ambiguous in the sense that they can forma codeword (this possibility is accounted for by the decoding F) and also the propersu�x of one or more other codewords (represented by the updated form of E). Theelement F should be adjoined to L in such a way that it will not be processed anymore in the present iteration.To continue the previous example, suppose that the next bit read (the 7-thfrom the end) is b = 0. Scanning the elements of L, (5; DAA) is deleted becausenode 5 has no left son; (2; DB) is transformed into (4; DB), since the left son of 2exists but is not labelled; (1; ADB) is transformed into (2; ADB), but since 2 is anode labelled by A, a new element (1; AADB) is adjoined to the list so that �nallyL = f(4; DB); (1; AADB); (2; ADB)g.Let S = fSE : E = (PE; SE) 2 Lg denote the set of strings in the elementsof L. Let SUF be the longest su�x which is common to all the elements of S(in the example, SUF = DB). Since L contains all the possible decodings, the bitscorresponding to SUF are unambiguous, therefore SUF can be transferred to theoutput bu�er. Then SUF is deleted from the right end of each element in S, yieldingin our example L = f(4;�); (1; AA); (2; A)g. We refer to the updated strings in S asthe truncated strings SE. In fact, the algorithm would be valid even without thesetruncations, which are only needed to bound the space complexity. This terminatesthe iteration for the current bit b.Postlude: after having exhausted the input string, the algorithm scans the listL until an element E = (PE; SE) is found for which PE = root (we show below thatthere is always exactly one such element). The corresponding string SE is transferredto the output bu�er and this completes the decoding of C. If in the example above,the seventh bit is the last one, i.e., C = 0011100, then the string AA is transferred tothe output bu�er which therefore contains AADB; this is the desired decoding of C.Using the fact that property ii does not hold, it is easy to implement an error-detecting mechanism. If at some iteration the list L is completely emptied or if at theend there is no element with PE = root, this means that there is no possible decoding,thus an error must have occurred. If an error has transformed one codeword intoanother of equal size, this cannot be detected. In the other case however, chancesare good to get stuck after a small number of iterations.{ 15 {

AnalysisThe complexity of the algorithm obviously depends on jLj, the size of the list.The list grows by 1 every time a labelled internal node is reached and shrinks by 1every time the nil-pointer is encountered, thus jLj depends on the structure of thetree A(�; H). In the worst case, the complexity could a priori be exponential: if insome iteration, all the elements of L point to labelled internal nodes of A(�; H), thesize of L doubles in this iteration. We show that this cannot happen and moreoverthat the complexity is linear in the length of the decoded text.Theorem 2. At the beginning of each iteration, distinct elements of L point tointernal nodes of A(�; H) which are on di�erent levels.Proof: For a node P , denote by c(P) the binary string obtained by concatenatingthe labels of the edges on the (reversed) path from P to the root, i.e., c(P) isa codeword hi of the Hu�man code H if P is a labelled (square) node, or it isthe su�x of one of the codewords hi if P is an unlabelled internal node. Let bjbe the bit processed in the j-th iteration. Consider two elements E = (PE; SE)and F = (PF ; SF) of L at the beginning of the i-th iteration, that is after havingprocessed the su�x B = bi�1 � � � b1 of the encoded text.Since all the elements of L are obtained by processing some pre�x of the stringB, it follows that either c(PE) is a pre�x of c(PF), or c(PF) is a pre�x of c(PE). Thusif PE and PF are on the same level ` (which is the length in bits of c(PE)), we musthave c(PE) = c(PF). On the other hand, both SE and SF are decodings of the binarystring bi�`�1 � � � b1. This implies SE = SF because the Hu�man code is uniquelydecipherable. Hence if PE and PF are on the same level, then E = F .It remains to show that L never contains multiple copies of any element E.Suppose this assertion is not true and let j be the index of the �rst iteration whichcontains at its beginning at least two copies of some element E = (PE; SE). Since inthe �rst iteration L contains only one element, we have j > 1. If PE is not the root,then there were at least two copies of (Q;SE) at the beginning of iteration j � 1,where Q is the father of PE in A(�; H). Hence we may suppose PE = root. Let SE =�0s � � ��01, where �0i 2 �, and let ` be the length of the codeword h0s corresponding to�0s in the Hu�man code. Then h0s = bj�1 � � � bj�`, and at the beginning of iterationj� 1, there were at least two copies of the element (Q; �0s�1 � � ��01) in L, where Q isthe node such that c(Q) = bj�2 � � � bj�`. Thus for every possibility of PE, we get acontradiction to the minimality of j.Corollary 2. The postlude of the algorithm is well-de�ned.Proof: From Theorem 2 follows that after having processed the input string,there is at most one element in L pointing to the root. On the other hand there isat least one, since L contains the true decoding.{ 16 {

Corollary 3. The worst case time complexity of the backward decoding algorithmfor an encoded text of k bits is O(k).Proof: By Theorem 2, the number of elements in L can never exceed thenumber of levels in A(�; H), which is bounded by j�j � 1. In every iteration thereis a constant amount of work to be done for the updating of each element of L.In order to �nd the longest common su�x SUF, the rightmost letters of all thestrings SE are compared. If they are all identical (call this a successful comparison),this letter is transferred to the output bu�er and the strings are updated. Thenthe process is repeated until the �rst unsuccessful comparison, i.e., until not all therightmost letters of the strings SE are identical. There are thus possibly severalsuccessful comparisons, followed by a single unsuccessful one for every iteration. Ifthe input string has k bits, the total number of unsuccessful comparisons is exactlyk. Although the number of successful comparisons for a given iteration may reachO(k), the total number of successful comparisons in the k iterations is the numberof letters in the output string, which is clearly bounded by k. Summarizing, thetime complexity of the algorithm is O(j�j k), but since the size of the alphabet is aconstant not depending on k, this is O(k).Corollary 4. The number of elements in L increases at most by 1 per iteration.Proof: By Theorem 2, as every new added element points to the root.The example in Figure 5 shows that the number of elements in the list L canactually reach the number of levels of A(�; H). This, however, is not true for everyHu�man code. As we saw in the proof of Theorem 2, c(PE) is a pre�x of c(PF) orconversely, for all PE and PF in L. It follows that at the beginning of each iteration,all the strings c(PE) for PE in L are pre�xes of the same binary string B, which is thelongest among the strings c(PE). On the other hand, we know that there are no twostrings c(PE) of equal length. Therefore the number of elements in L can be `, where` is the number of levels in A(�; H), only if B is a su�x of length `�1 of one of thelongest codewords, and there is one element in L for every pre�x of B. An exampleshowing that the maximal size of L may be less than the depth of A(�; H) is theHu�man code H = f00; 01; 100; 110; 111; 10100; 10101; 10110; 10111g. The depth ofthe tree is 5. However, there are no nodes in A(�; H) corresponding to the strings010 and 011, but the su�x of length `�1 of every longest codeword has one of thesetwo strings as pre�x. Hence jLj cannot exceed 4 in this example. The exact boundon the size of the list can therefore be re�ned to:maxi fnumber of pre�xes p of a proper su�x of hi :9P 2 A(�; H) with p = c(P)g: (2)Note that this bound can be evaluated using only the Hu�man code since it doesnot depend on the encoded text. { 17 {

For the average time complexity, one could imagine that if the chances to reacha labelled internal node are much larger than the chances of being at a node havingonly one son and proceeding in the direction of the missing son, then L would havea tendency to grow constantly up to its maximal possible size. This would force usto choose the Hu�man code so as to minimize this bias. Fortunately one can showthat in a certain sense, the tree A(�; H) is \balanced" for every Hu�man code H,as will be shown in the next theorem.Let E = E(�; H) denote the binary tree which is obtained from A(�; H) byadding the missing son to all the internal nodes which have only one son. The addednodes are called nil-nodes. Using E instead of A(�; H), a part of the algorithm canbe reformulated as follows: \for a given bit of input and element of L, proceedfrom the current node in the direction indicated by the bit; if the new current nodeis a nil-node, discard this element of L". We de�ne the position of an elementE = (PE; SE) 2 L in a given iteration as the node PE 2 E which is reached afterhaving proceeded, but before discarding the element from L (if PE is a nil-node) orresetting it to the root (if PE is labelled). Hence the position of an element of L canbe any node of E , except the root.In order to evaluate the average time complexity, we assume a probability modelin which the probability for an arbitrary element of L to have its position on a nodeon level i of E is proportional to 2�i, for i > 0. This model corresponds to adyadic probability distribution over the alphabet, i.e., the probability of occurrenceof every letter � 2 � is an integral power of 2�1. There cannot be too great adi�erence between the actual probability distribution and the dyadic one assumedin the model, since both yield the same Hu�man tree. In Longo & Galasso [13], theset of probability distributions over a �nite alphabet is given a \pseudometric", andan upper bound is derived for the distance from any probability distribution to thedyadic distribution giving the same Hu�man tree.Denote by N the increase in the size of L caused by the processing of anarbitrary element E of L, i.e., N is a random variable which assumes values fromf�1; 0; 1g.Theorem 3. For the given probability model, the expected value of N is zero.Proof: The expectation of N , E(N), is evaluated by conditioning on the positionof the given element in the tree E :E(N) = Xv2EnfrootgE(N j position is v) P(position is v): (3)Let l(v) denote the level of v in E and K = Pw2Enfrootg 2�l(w). Then we have inour model P(position is v) = 1K 2�l(v): (4)Let U , V and W respectively denote the set of labelled internal nodes, the set ofnil-nodes and the set of labelled leaves of E . Once the position of the element of L{ 18 {

is �xed, the value of N is determined, soE(N j position is v) = (1 if v 2 U ;�1 if v 2 V ;0 otherwise. (5)Thus it follows from (3){(5) thatE(N) = 1K�Xv2U 2�l(v) �Xv2V 2�l(v)�: (6)But each labelled node is at the same level as in the Hu�man tree, which is complete,so that Xv2U 2�l(v) + Xv2W 2�l(v) = 1: (7)On the other hand, the leaves V [W of E also constitute a complete code, thusXv2V 2�l(v) + Xv2W 2�l(v) = 1: (8)From (6){(8) follows E(N) = 0.Theorem 3 should be understood as a property of the tree E(�; H), namelythat the number and position of the labelled internal nodes and the nil-nodes areclosely related, independently of the code H. We cannot infer from Theorem 3 thatthe expected size of L will be constant, because we assumed an ideal probabilitymodel. For instance, during the processing of the �rst i bits of the encoded text, theprobability for an element of L to have its position on level j > i is zero. Howeverour experiments, which are described below, indicate that the model is quite closeto what happens in \real-life" examples, and we actually found that the size of L ismore or less constant, rather than only bounded as implied by Corollary 3.The space complexity of the algorithm is de�ned to be the total lengths ofthe truncated strings SE which are stored simultaneously in L. Since the timecomplexity is O(k), also the space complexity is O(k) for an encoded text of lengthk bits and because of the in�nite decipherability delay of non-a�x Hu�man codes,the worst case space complexity is
(k). For example, using again the Hu�mancode of Figure 5, suppose that the text is DrB (where xr denotes the concatenationof r copies of the string x), yielding the encoded text 12r+100. Then the list at theend of iteration 2j + 1, for 1 � j � r + 1, is L = f(3; Dj�1AA); (1; Dj�1B)g, and thestrings cannot be truncated.There is always exactly one element in L corresponding to the true decoding ofthe current part of the encoded text. The other elements are called false elements.For every false element E, let IT(E) be the index of the �rst iteration for which thedecoding corresponding to E di�ers from the true decoding. In other words, IT(E)is either the index of the iteration at which E was created, or it is the index of theiteration in which E \gave birth" to a new element F , which corresponds to the truedecoding, so E with its updated pointer is a false element. To evaluate the averagespace complexity, weaker probability assumptions than in Theorem 3 are su�cient.{ 19 {

Theorem 4. Suppose there is a real constant q > 0 such that q is a lower bound onthe probability of every false element E to be discarded in any iteration with indexi > IT(E). Then the average space complexity, and thus the average decipherabilitydelay, is O(1).Remark: Under the assumption of the model and the notations of Theorem 3, weget q = 1K Pw2fnil-nodesg 2�l(w).Proof: For every i we de�ne the index t(i) < i such that at the beginningof iteration i, the string which was already transferred to the output bu�er is thedecoding of bt(i) � � � b1. Hence, all the truncated strings SE in the elements of Lat the beginning of iteration i are decodings of some su�xes of the string Bi =bibi�1 � � � bt(i)+1. Consider for iteration i the false element Ei such that IT(Ei) isminimal among all the IT(E) for E 2 L (by Corollary 4, exactly one such elementexists for each i). Then IT(Ei) � t(i) + 1, since otherwise one or more of therightmost bits of Bi are unambiguous and their decoding could have been transferredto the output bu�er. The lengths of the truncated strings SF for F 2 L, which areclearly bounded above by the length of the string Bi, are therefore bounded aboveby i� IT(Ei). But in our model, for any false element E, the number of iterationsfrom IT(E) until E is deleted is a geometrically distributed random variable withprobability of success � q. Therefore the expected value of i � IT(Ei) is boundedabove by 1=q. This bound, as well as the bound on the number of elements in L,depending only on the Hu�man code, not on the encoded text, the expected spacecomplexity is O(1).Experimental ResultsWe have applied the backward decoding algorithm on various texts and collectedthe following statistics. The �rst text was an English technical text of 77000 upper-case characters not containing any special symbols, except blank. In order to checkthe algorithm on a di�erent natural language, we chose as second text the 98681Hebrew characters of the book of Genesis (including one blank after each word).Finally we wanted to check the inuence of the size of the alphabet, so we tookas third text a technical paper of 90000 characters which was used as input �le toKnuth's TEX typesetting system. The texts were Hu�man coded and the associatedtrees of reversed codewords were constructed.Table 1: Statistics of Hu�man codesAverage Nbr of PossibleText j�j Source codeword nodes in maximumlength A(�;H) jLjEnglish 27 h0; 0; 2; 7; 7; 4; 2; 3; 2i 4.16 67 8Hebrew 28 h0; 1; 0; 7; 6; 4; 6; 4i 4.11 67 7TEX-input 89 h0; 0; 1; 6; 7; 8; 11; 6; 12; 19; 6; 6; 2; 3; 2i 4.90 338 9{ 20 {

Table 1 lists some statistical information on the three �les: the size of thealphabet �, the source obtained from Hu�man's algorithm, the average length of acodeword in bits, the number of nodes in the associated tree of reversed codewordsand the possible maximal length of the list L, which was computed using (2). Notethat the latter was less than the depth of the tree for all three examples. None ofthe sources admits an a�x code, because they all have non-integral degree.Table 2: Experimental ResultsLength of English Hebrew TEX-inputencoded jLj length of SE jLj length of SE jLj length of SEtext (chars) average max average average max average average max average1000 5.107 20 6.534 5.018 23 5.020 6.845 26 7.52610000 5.134 31 6.925 5.009 30 5.118 6.875 47 7.52630000 5.126 36 6.864 5.033 30 5.079 6.900 57 8.63050000 5.127 38 6.858 5.041 35 5.134 6.915 64 9.07470000 5.128 38 6.841 5.045 35 5.137 6.925 69 8.87190000 5.048 35 5.143 6.925 69 8.805The backward decoding algorithm was then applied on substrings of variouslengths of the encodings of the original texts, and with various starting points.Table 2 summarizes the values which were obtained for the number of elements inthe list L at the end of each iteration and for the number of characters in the stringsSE. The maximal possible values for jLj were obtained for all the examples, and infact already for encoded texts of 50 characters length.The average number of elements of L can be seen to be practically constant.The experiments showed that the three most frequent values (f4; 5; 6g for Englishand Hebrew and f6; 7; 8g for TEX-input) occurred about 90%, 96% and 85% of thetime respectively, independently of the length of the encoded text.

Figure 6: Distribution of lengths of the strings SE{ 21 {

As to the strings SE which are stored in the elements of L, their maximal lengthincreases only slowly with the size of the text, and their average length again seemsto be constant. The distributions of the lengths of SE for the experiments with 10000characters or more are plotted in Figure 6, which gives for each possible length theprobability of its occurrence. The points for English are represented by diamonds,those for Hebrew by squares and those for TEX-input by triangles. For each text, thecorresponding graphs are practically overlapping (the values extending beyond thelimits of the �gure are all smaller than 0.0003). This suggests that the distributionof the lengths of the SE is a function of the Hu�man code only.The lengths of the strings deserve some special attention. In contrast to the listL, the elements of which are allocated only when they are needed, the straightfor-ward way to store the strings is by reserving in each element of L enough space forthe longest possible string. We thus need some a priori knowledge of the maximallength. On the other hand this approach can be very wasteful. We can circumventthe problem as follows: the maximal size M of the strings will be �xed arbitrarily;if M has to be exceeded, one or more new elements are adjoined to L immediatelyfollowing the current one and serving as its \continuation". Therefore the algorithmmust check during the processing of each element if it has continuation-elements, butthis will increase the execution time only by a small constant factor. In practice, thesize M can usually be chosen small enough to satisfy the given constraints on avail-able space, and large enough to get a very small probability for having continuationelements.When constructing a KWIC-index (application 1 of the introduction), the ex-pected length of the strings gives also information about how far we must go back-wards from the located keyword. From Figure 6 we can conclude that if k wordspreceding the keyword are wanted, there is only a very small probability that onemust decode more than k + 2 words, or about 11 bits more than for the wordsfollowing the keyword.We have also collected statistics on the number of times the position of theelements of L were on level i of E(�; H), and found that it was indeed nearlyproportional to 2�i, as assumed in the model used in Theorem 3. Another interestingfeature was the change in the size of L for consecutive iterations. We saw already inCorollary 4 that jLj cannot increase by more than 1. The maximal decrease againdepends on the structure of the tree A(�; H): it was 3, 3 and 2 for the English,Hebrew and TEX-input texts respectively.5. Concluding Remarks and Future WorkThe possibility to decode a variable-length encoded text in both directions maylead to savings in various applications in which �xed-length codes were normallyused. The gain is not only in space, but often also in time: more information canbe read in each input operation, thus reducing the number of needed I/O accesses,and this generally compensates largely for the time spent on decompressing.{ 22 {

Once the source of the optimum Hu�man code is given, the �rst step shouldbe to check if it is possible to build an a�x code. If this is not the case, backwarddecoding is still possible using the algorithm of the previous section, without changein the order of magnitude of the complexity.There are several open questions which we leave for further research:(1) How can the results of Section 2 be extended? In particular can one for-mulate necessary and su�cient conditions for the existence of a�x codes for certainsources?(2) Is there a polynomial algorithm which, for a given sourcehn1; : : : ; n`i of a complete code (i.e., with Pni2�i = 1) with integral degree, con-structs an a�x code, whenever there exists one? Or perhaps can it be shown thateven the decision problem whether such an a�x code exists is NP-complete?(3) How can one �nd the complete a�x code giving best compression, if thereis one? Perhaps should one not insist on completeness, since non-complete codes,though never optimum for compression, enhance error-detection? How can one �ndthe optimum (not necessarily complete) a�x code? There is always one, since any�xed length code is a�x.(4) For the backward decoding algorithm, how can one choose the Hu�mancode so as to minimize the possible maximal length of the list L and thus the worstcase time complexity?
References[1] Berstel J., Perrin D., Theory of Codes, Academic Press Inc., Orlando,Florida (1985).[2] Even S., Graph Algorithms, Computer Science Press (1979).[3] Ferguson T.J., Rabinowitz J.H., Self-synchronizing Hu�man codes,IEEE Trans. on Inf. Th. IT{30 (1984) 687{693.[4] Fraenkel A.S., Klein S.T. Bounding the depth of search trees, to appearin The Computer Journal.[5] Gilbert E.N., Synchronization of binary messages, IRE Trans. on Inf. Th.IT{6 (1960) 470{477.[6] Gilbert E.N., Moore E.F., Variable-length binary encodings, The BellSystem Technical Journal 38 (1959) 933{968.{ 23 {

[7] Golomb S.W., Shift Register Sequences, Aegean Park Press, Laguna Hills,California (1982).[8] Heaps P., Information Retrieval, Computational and Theoretical Aspects,Academic Press, New York (1978).[9] Hu�man D., A method for the construction of minimum redundancy codes,Proc. of the IRE 40 (1952) 1098{1101.[10] Johnsen O., On the redundancy of binary Hu�man codes, IEEE Trans. onInf. Th., IT{26 (1980) 220{222.[11] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental al-gorithms, Addison-Wesley, Reading, Mass. (1973).[12] Levenshtein V.I., Certain properties of code systems, Soviet Physics |Doklady Vol 6 (1962) 858{860.[13] Longo G., Galasso G., An application of informational divergence to Hu�-man codes, IEEE Trans. on Inf. Th. IT{28 (1982) 36{43.[14] Peterson J.L., Computer programs for detecting and correcting spellingerrors, Comm. ACM 23 (1980) 676{687.[15] Riordan J., An Introduction to Combinatorial Analysis, John Wiley & SonsInc., New York (1958).[16] Sch�utzenberger M.P., On a special class of recurrent events, Ann. Math.Stat. 32 (1961) 1201{1213.[17] Sch�utzenberger M.P., On a question concerning certain free monoids, J.Comb. Theory 1 (1966) 437{442.[18] Schwartz E.S., Kallick B., Generating a canonical pre�x encoding,Comm. ACM 7 (1964) 166{169.

{ 24 {

