Bidirectional Huffman Coding
Aviezri S. Fraenkel! and Shmuel T. Klein?

1 Department of Applied Mathematics and Computer Science
The Weizmann Institute of Science
Rehovot 76100, Israel

2 Graduate Library School
University of Chicago, IL 60637

August 1989

ABSTRACT

Under what conditions can Huffman codes be efficiently decoded in both
directions? The usual decoding procedure works also for backward decoding
only if the code has the affix property, i.e., both prefix and suffix properties.
Some affix Huffman codes are exhibited, and necessary conditions for the ex-
istence of such codes are given. An algorithm is presented which, for a given
set of codeword lengths, constructs an affix code, if there exists one. Since for
many distributions there is no affix code giving the same compression as the
Huffman code, a new algorithm for backward decoding of non-affix Huffman
codes is presented, and its worst case complexity is proved to be linear in the
length of the encoded text.

1. Introduction

For a given sequence of n weights wq,...,wy,, with w; > 0, Huffman’s well-
known algorithm [9] constructs an optimum prefiz code. We use throughout the
term ‘code’ as abbreviation for ‘set of codewords’. In a prefix code no codeword is
the prefix of any other. A Huffman code, consisting of codewords ¢; of length [;,
1 <14 < n, is optimum in the sense that it minimizes the weighted average length

i w;l;. For most sets of weights there is a large number of optimum codes. It
is thus natural to look for optimum codes having some additional properties. For
example Schwartz & Kallick [18] proposed a code for which the codewords, when
sorted by their respective weights, are also ordered lexicographically. More recently,
Ferguson & Rabinowitz [3] studied Huffman codes having a synchronizing codeword
¢, i.e., if ¢ appears in the encoded string, the codewords following it are recognized,
regardless of possible errors preceding c.

In this paper, we investigate Huffman codes as to their ability of allowing ef-
ficient bidirectional decoding. The prefix-property ensures that an encoded string
can instantaneously be deciphered when it is processed from the beginning towards
the end (left to right). However, if we want to decode the encoded text backwards,
this is easily done only if the Huffman code has also the suffiz property (which is
usually not the case), so that no codeword is the prefix or the suffix of any other. A
code having both prefix and suffix properties is called an affiz code (as in Peterson
[14]). Bidirectional decoding may be useful in the following applications:

1) KWIC display. In full-text information retrieval systems a query consists of
one or several keywords, the occurrences of which are to be located. This is done with
the help of a “concordance” which contains for every different word of the database
a list of pointers to all its appearances in the text. A convenient way to present the
retrieved items to the user is in form of a “KeyWord In Context” (KWIC) index (see
Heaps [8]): typically, a context of k& words is displayed for each occurrence, with one
of the keywords centered, where £ is a fixed or variable integer chosen by the user.
Hence starting with the pointer to the keyword, the £ words of the KWIC must be
collected processing the text both forward and backward. Therefore the text file
is usually encoded by some fixed-length code, which can be very wasteful. Affix
Huffman codes can thus be used for text compression, permitting the display of an
arbitrarily long segment of text preceding any keyword. This question of KWIC
display and other possible applications of affix codes, have been communicated to
us by Prof. Y. Choueka, and it was one of the motivations for this work.

2) Retrieval of truncated terms. The problem is to find the pattern *Xx in a
given text file, where X is a string and # is a variable-length-don’t-care character,
that is, the * represent arbitrary, possibly empty, strings, which complete the string
X to a word appearing in the text. In order to retrieve the word matched by the
pattern *X*, we decode forwards and backwards from the location where X was
detected up to the nearest blanks. Again this is done easily with fixed-length codes,
but with variable-length codes only if they have the affix property.

- 92 —

3) Use of tapes. Some information stored on tapes can be processed during the
rewind operations. For instance, the PL/1 programming language allows files on
magnetic tapes to be accessed in reverse order using the “BACKWARDS” attribute.
If such a feature is desired, we need affix codes to enable the use of variable-length
codes for compression purposes.

4) Implementation of deques. Many algorithms use linear lists such as deques
which are often implemented by sequential allocation (see Knuth [11, pp. 240-251]).
The size of these lists can be reduced when we allow their records to be encoded
by a variable-length code, which must have the affix property since records can be
retrieved from both ends of a deque.

It should be noted that one can easily construct affix variable-length codes, if
one does not insist on optimum compression. For example, fix any binary pattern
7w and consider the set Y of strings of the form y = wamw, where x is a binary string
such that the pattern 7 appears in y only as prefix and suffix. Clearly, Y is affix, but
bidirectional decoding is still possible even if © appears only once, say as prefix, in
each codeword as proposed by Gilbert [5], who was concerned with synchronization.

We shall restrict our discussion to complete finite affix codes, the construction
of which is more difficult. A code C is complete if by adjoining any codeword ¢ ¢ C,
one obtains a set ' = C U {c} which is not uniquely decipherable. Note that in an
application to data communication, it is not always recommended to use a complete
affix code, because for such a code (unless it is the trivial code consisting of {0,1}
only) it is well-known that if a bit gets lost or an extraneous bit is picked up, the
decoding process will never resynchronize after the error. On the other hand, the
possibility for efficient backward decoding may be useful in case of a transmission
error. For example, if the original text is in some natural language, the error can
be located approximately as the point from which on the decoded text seems to be
garbled. The lost tail can be restored at least partially by backward decoding of
the compressed text, starting at the end of the message, so that the damage of the
error can be restricted to a local perturbation.

Affix codes are already mentioned in Gilbert & Moore [6] (where they are called
never-self-synchronizing) and in Schiitzenberger [16]; they are extensively studied
in Berstel & Perrin [1, Chapter III] under the name of biprefix codes. We further
restrict attention to binary codes, but all the results are easily extendable to k-ary
codes for any k > 2. New results on the existence of complete affix codes are pre-
sented in the next section. In Section 3 we sketch an algorithm for the construction
of a complete affix code, if it exists, and report on experiments which suggest that
weight-distributions admitting an affix code giving optimum compression, are rare.
Therefore we deal in Section 4 with a method for efficient backward decoding of
Huffman codes which lack the suffix property.

A binary code has the property of finite decipherability delay if there exists a
constant K such that the knowledge of the first K bits of any encoded text 7 suffices
to determine the first codeword of 7. This permits the construction of a decoding

- 8 —

automaton with finite memory. For example, every prefix code has finite delay
with K = maximum codeword length. The problem with a non-affix Huffman code
is that the corresponding reversed code (which is actually used for the backward
decoding) does not have finite decipherability delay. This is already mentioned in
Levenshtein [12] and proved for every complete prefix code in Schiitzenberger [17].
It follows that for every non-affix Huffman code, an encoded text can be found,
the backward decoding of which recognizes its first codeword only after the entire
string is read. In our application for backward decoding, we are however interested
in the average number of bits which need to be processed before a codeword is rec-
ognized. We define accordingly the average decipherability delay of the code, which
also corresponds to the average space complexity of the decoding algorithm. We
show below that assuming a reasonable probability model, we get that the average
decipherability delay is bounded by a constant depending only on the Huffman code.

The reversal of a Huffman code being still a uniquely decipherable (UD) code,
one could use known algorithms for decoding general UD codes. For example,
Even [2, Problems 4.1 and 4.2] proposes to scan the entire message in both directions,
which for any prefix code as in the Huffman case discussed here, reduces to the simple
forward decoding. The new algorithm of Section 4, however, as well as its analysis,
assume not only the code being UD, but rely on the fact that it is the reversal of a
Huffman code, which yields the constant average delay.

2. Existence of Affix Codes

There is a natural correspondence between Huffman codes and Huffman trees,
and we shall henceforth use the languages of codes (codewords and their lengths) and
trees (leaves and their levels) interchangeably. A binary Huffman tree for n weights
has n — 1 internal nodes, from each of which emanate two edges, one labelled ‘0" and
the other labelled ‘1’. There are thus 2"~ ! possible Huffman trees, which correspond
to 27~1 different assignments of codewords ¢; to the weights w;, for 1 < i < n. The
number of optimum codes is smaller, since by switching the labels of the edges
emanating from an internal node, the left and right subtrees of which are identical
in structure, the set of codewords is not altered, only their assignment to the weights
is permuted. However our search for affix codes should not be restricted to this set
of Huffman codes, since there are optimum codes which cannot be obtained via the
Huffman algorithm. Consider for example the following sequence of nine weights:
(wi,...,wg) = (1,1,1,1,3,3,3,3,7). The only vector of lengths minimizing > w;l;
is (I1,...,l9) = (4,4,4,4,3,3,3,3,2), but none of the Huffman codes with this length
vector has the affix property. On the other hand, the tree depicted in Figure 1(a),
which is not a Huffman tree for these weights (since in a Huffman tree, the four leaves
with weight 1 belong to the same subtree of depth 2), is nevertheless optimum, and
the corresponding code in Figure 1(b) is affix.

We shall therefore consider, for each sequence of weights, the class of all the

,4,

codes having the same length-vector as the Huffman code for these weights, so that
the string (ny,...,ny), where n; is the number of codewords of length i, can be
used to identify this class. Note that Zle n;27" =1 (see [11, Exercise 2.3.4.5-3]).
Such a string is called a quantized source in [3], or simply source in the sequel.
For example the source corresponding to the code in Figure 1 is (0,1,4,4). Most
weight distributions have a unique source, but some can have more, for example the
sequence of weights (1,1,2,2,4) has three sources: (1,1,1,2), (1,0,4) and (0, 3, 2).
Thus when looking for an affix code for a certain sequence of weights, all its sources
must be considered.

— R OO KR, M~ KMH,OO
—~ O O OO O == O o =
—_— o = O

(a)

Figure 1: Example of an affix code

o
R N e e = e

Our first concern is to show that our requirements on the suffixes is not too
restrictive and that affix codes actually exist. Indeed, every fixed-length code has
the affix property, but from the point of view of compression capability, fixed length
codes are not very interesting since they are optimum only for uniform or almost
uniform distributions. Henceforth any fixed-length code is called a trivial affix code.

Proposition 1. There are infinitely many nontrivial affix codes.

Proof: The example in Figure 1 shows that at least one such code exists. The
proof is completed if we show that for every given affix code, there is another affix
code with a larger number of codewords. Let A = {«aq,...,a,} be an affix code.
Consider the set B = {f1,..., B2, } defined by B2; = «;0, Bo; 1 = a1 for 1 < i < n,
i.e., the tree corresponding to B is obtained from the tree corresponding to A by
splitting all its leaves. Obviously, B is an affix code. |

On the other hand, there are sources for which no complete affix code exists.

Proposition 2. Let S = (ny,...,ny) be a source with n; # 0. Then no nontrivial
complete affix code exists for S.

— 5 —

Proof: If the code is nontrivial, then ¢ > 1. From ny # 0 follows that there
is precisely one codeword of length 1, which can be either ‘0’ or ‘1’. But in every
complete code, both ‘0’ and ‘1’ are suffixes of certain codewords. |

Proposition 2 does not apply to commonly encountered distributions, since
the existence of a codeword of length 1 implies that one of the weights is at least
(3" w;)/3 (Johnsen [10]). The shortest codewords for many distributions of alpha-
bets of natural languages are of length 2 or 3. Let m denote, here and in the sequel,
the length of the shortest codeword(s) for a given source, i.e., m = min{i | n; > 0}.
Proposition 2 dealt with the case m = 1, and in the next theorem we generalize it
to larger m. We first introduce the following

Definition: A Shift-Register Sequence with word-length t, denoted in the sequel by
St, is a sequence of k codewords {cq,...,ci_1}, all of length ¢ bits, such that for
0 <% < k, the suffix of length ¢ — 1 of ¢; is identical with the prefix of length ¢ — 1

of C(i4+1 mod k)

The name of such a “cyclic sequence” of codewords was chosen because the
elements of every St can be viewed as the consecutive states of a shift register of ¢
stages (see for example Golomb [7]). Every S; containing k elements is generated by
a string of k bits A = ag---ap_1 which are to be thought of as being written on a
circle; the codewords of S¢ are obtained by collecting ¢ consecutive bits of this cyclic
string, starting from ag, and shifting the starting point for each subsequent codeword
by one bit, i.e., ¢; = a;a;g1 " ‘G (t—1) for 0 < ¢ < k, where, here and below, @
denotes addition modulo k. Let S¢(A) denote S generated by A. For example,
the string A = 010011 generates S4(A) = {0100, 1001,0011,0110,1101,1010}. The
generating string can also be smaller than the word-length, for example S3(10) =
{101, 010}.

Theorem 1. A complete affix code is trivial if and only if the set of shortest
codewords includes some shift register sequence with word-length m.

Proof: If all the codewords have the same length m bits, then all the 2" possible
bit-patterns are codewords, in particular the string of m zeros, which is the unique
element of Sy, (0).

Conversely, suppose that for a given complete affix code C, the set of shortest
codewords includes the & elements of some S, (A), for A = ag---ap_1. Let B denote
the infinite binary string obtained by concatenating A with infinitely many copies of
itself, and let B(¢) denote the prefix of length i bits of B. We show by induction on r
the truth of the statement I'(r) : “the 2" binary strings defined by dy - - - d, B(m —r),
where the bits d; take all their possible values, are also codewords”.

For r = 1, consider the infinite binary string D = dyB. The string D traces a
path through a hypothetical infinite binary tree (with, say, 0 indicating a left turn
and 1 a right turn). Exactly one prefix e of D corresponds to a path from the root

- 6 —

to a leaf in the finite tree associated with C, since C is complete. In other words,
e is a codeword. If e has more than m bits, then its last m bits are of the form
@il Gig(m—1) for some 0 < 7 < k. By hypothesis, a;a;p1 - Ui (m—1) is a
codeword ¢; of Sy, (A). But it is also a suffix of e, contradicting the fact that C is
an affix code. Hence e has exactly m bits so that both 0B(m — 1) and 1B(m — 1)
belong to C, which proves I'(1).

Suppose the truth of I'(j) for 1 < j < r — 1 < m, and consider the infinite
binary string D = dy ---d,.B. As above, there is a unique prefix e of D which is a
codeword. The length of e is less than m + r, since otherwise the suffix of length
m of e is one of the codewords of Sy,(A). Moreover, the length of e cannot be
m — 14 j for any 2 < j < r, since otherwise e has a suffix of length m of the form
dj--d.B(m—r+7—1), but by I'(r — 5 +1) this is a codeword. Thus e has exactly
m bits which proves T'(r).

Summarizing, I'(¢) is true for all 4, in particular for ¢ = m, which means that C
is a fixed-length code. |

Note that for m = 1 we get Proposition 2, since both {0} and {1} are S1’s. The
importance of Theorem 1 is that it will guide us in the construction of affix codes
in the following section. It also gives information on the maximal size of the set of
shortest codewords, as will now be shown.

Corollary 1. Let S = (ny,...,ny) be a source. If ny, > H(m), where H(m) =

2 — % i 20m) and (z,y) denotes the greatest common divisor of = and y, then
no nontrivial complete affix code exists for S.

Proof: Consider the set A of the 2™ binary strings of length m, and define a
binary relation R on A by: elements z and y of A are related by R if and only if one
can be obtained by cyclically shifting the other. Clearly, R is an equivalence relation,
so let Z(m) be the number of equivalence classes in the partition of A induced by R.
It is easy to see that every equivalence class is an &;,. From the disjointness of the
classes follows that at least one element of every class must be excluded from the set
of shortest codewords, so that an affix code can exist only if ny, < 2™ —Z(m). The
corollary thus follows from Golomb [7, Chapter VI, Theorem 1], where it is shown
that Z(m) = L S°m, 26m), |

We note in passing that the generalization of Corollary 1 to k-ary codes implies
Zp(m) = % > k(&™) In particular, i Em) =0 (mod m), for all positive
integers m and k. See also Riordan [15, Chapter VI, Problem 37].

Since H (1) = 0, we again get Proposition 2 for m = 1. For m = 2, the corollary
states that there can be only one shortest codeword of length 2; for m = 3 at most
4 codewords can be of shortest length and for m = 4 at most 10.

Note that the corollary does not affirm the existence of a set of codewords of size
H(m) not including an Sy,. Indeed, the Sy, used in the partition are all generated by

-1 -

strings of length m, where in each S, multiple elements are dropped. For example,
for m = 3, the generating strings can be 000, 001, 011 and 111, yielding respectively
the S,,: {000}, {001,010,100}, {011,101,110} and {111}. However, other S,
can exist, which are generated by strings of length # m, for example S3(01) =
{010,101}, which also have to be avoided. Therefore if we want to construct a set
of shortest codewords of size H(m), the element to be dropped from each class must
be chosen carefully and it is not clear that this can be done so as to avoid every shift
register sequence. For m < 4 it is possible to choose sets of size H(m), for example:

for m = 2: {01}
for m = 3: {001,010,110,011}
for m = 4: {0001,0011,0111,1110, 1100, 1011, 1010, 0110, 0010, 0100}.

An easy way to see that a set of codewords contains no S, is to consider the
following directed graph: the vertices are the 2" binary strings of length m and
there is a directed edge from v to w if w is the successor of v in some shift-register
sequence, i.e., the m — 1 leftmost bits of w coincide with the m — 1 rightmost bits of
v. The full graph of 2" vertices, where each vertex has indegree and outdegree 2, is
known as the (binary) de Bruijn diagram of order m (see [7]). A set C of codewords
includes no Sy, if and only if the subgraph of the de Bruijn diagram induced by C
contains no directed cycles. Figure 2 shows the subgraph corresponding to the set
of size H(4) of the above example.

Figure 2: Example of a set of H(4) = 10 strings including no Sa

On the other hand, we have no proof that for all possible values of n,, there
actually exists an affix code having a set C' of n,, shortest codewords, even if C can
be chosen so that it includes no Sy,. For m < 3, we found examples of affix codes
for all the possible values of n,,, as shown in Figure 1 and in the four examples of
Figure 3.

- 8 —

001 001 001 001
0000 101 010 010
0100 0000 110 011
0101 0100 0000 110
0110 0110 0111 0000
0111 0111 1000 1000
1000 1000 1011 1111
1010 1100 1111 11100
1011 1110 11100 11101
1100 1111 11101 10111
1101 11010 10100 10100
1110 11011 10101 10101
1111 10010 10011 000111
10010 10011 01100 000100
10011 01010 01101 000101
00010 01011 00011 100111
00011 00010 000100 100100
00011 000101 100101
100100 101100
100101 101101
1001100
1001101
0001100
0001101
Figure 3: Examples of affix codes with 1, 2, 3, 4 shortest codewords of 3 bits

Using repeatedly the proof of Proposition 1, we conclude from the last example that
there exist affix codes for sources with m > 3 and n,, = 2™~ 1. Note also that the
example for (0,0,2,8,8) is not the one obtained from the example in Figure 1 via
the proof of Proposition 1.

Summarizing, Theorem 1 and its corollary provide necessary, but not sufficient
conditions for the existence of a complete affix code.

3. Construction of Affix Codes

Given a source S = (ny,...,ny), we are interested in an algorithm which con-
structs an affix code for S if there exists one. The number of complete prefix codes
for a given source is

b i _ il gi—j,,
_ 7=1 J
V=11 (¥ =),
since once the set A of codewords of length < ¢ is fixed, we can choose the n;
codewords of length i among the set of 2 possible codewords, from which we exclude
all those having an element of A as prefix, and there are 27 codewords of length i
having the same prefix of length j. For certain sources, the number of prefix codes
can be large enough to make an exhaustive search for an affix code prohibitive.
For example, the source of the distribution of the English alphabet, as given in [8],
is (0,0,2,7,7,5,1,1,1,2), and there are 127,733,760 different prefix codes for this
source.

-9 —

Every Huffman tree has the property that any of its subtrees T; is a Huffman
tree for the weights corresponding to the leaves of T;. However the affix property
is not “hereditary”, in other words it is not true that any subtree of an affix tree
has the affix property. For example, the left subtree of Figure la is not affix by
Proposition 2. Hence a bottom-up construction as the one used by Huffman will
not work in our case.

A first cut-back in the number of potential affix codes is obtained from the fol-
lowing theorem which is cited in [6] and proved in [16]. For a source S = (ny,...,ny),
let

d(S)=1n12"" +2n92 2+ +4np27%
The quantity d(S) is called the degree of the source S.

Theorem (Gilbert, Moore, Schiitzenberger). The degree of any complete affix
code is an integer.

For example, the tree in Figure 1a has degree 3 and all the trees in Figure 3
have degree 4. The above source for English yields a non-integer degree, so there is
no affix code for the English alphabet giving the same compression as the Huffman
code.

The converse of the above theorem is not true, i.e., there are sources with
integral degree, but for which no complete affix code exists. For example the source
(1,0,4) has degree 2 but satisfies the conditions of Proposition 2.

The algorithm for the construction of an affix code for a given source S therefore
starts by evaluating d(S), and proceeds only if this is an integer. The tree is then
constructed top-down, level by level. There are N; nodes (internal or leaves) on

level 7, where
N for ¢ =/,
L ”i+Ni+1/2 for ¢+ < £.

On level 7, n; among the N; nodes must be chosen to be leaves in the final tree, the
remaining nodes on level i are split, giving the 2(N; — n;) = N;11 nodes of level
t + 1. The procedure is most easily understood considering for a given source S the
following “tree of trees” T (.S), which we introduce through the example in Figure 4
for S =(1,0,2,4), £ =4 and (Ny,...,Nyg) = (2,2,4,4).

Every node on level i of T7(S), 0 < i < £, contains a binary tree of depth i
which corresponds to the upper part of one of the possible trees for the source S,
and every tree in a node is an extension of the tree in the father-node. In particular,
the root of 7(S) contains a binary tree of depth zero, which is a unique node. The
tree in a node on level i of 7(S) has N; leaves on its level i, N; — n; of which are
marked by a dot as being internal nodes in the final tree. Every node on level ¢ < /
of T(S) has (]T\[;_‘lfll) sons, which all contain the same binary tree and differ only in

the choice of the dotted leaves. The leaves of 7(S) contain all the possible binary
trees for the source S, so there are N'(S) leaves, in our example N ((1,0,2,4)) = 12.

— 10 -

Figure 4: The “tree of trees” T((1,0,2,4))

A preorder traversal of the tree 7(.S) may be used to generate all the possible
trees for S in an exhaustive search: every time a leaf is reached, the corresponding
tree is checked for the affix property. We can however do better, checking already
in higher levels of 7(5) if there are affix-trees in its nodes. There is no need to visit
a subtree rooted at a node of 7(S) which contains a non-affix tree. If on the other
hand, it contains an affix tree, the number of sons of this node which should be
visited will often be much smaller than (]7\[;), as we consider only extensions which
preserve the affix property. Therefore large parts of 7(S) can be pruned so that the
time complexity of traversing the tree is reduced. In the worst case it will still be
equivalent to exhaustive search, but for almost all our experiments we got on-line
results in a few seconds.

Description of the algorithm

The algorithm for searching for an affix tree performs a recursive preorder
traversal of the tree T (S), parts of which are dynamically pruned. It stops with a
positive answer when one of the leaves is reached, or with a negative answer at the
end of the traversal.

To initialize, we start with the full binary tree with m levels (level m of T(S)).

— 11 -

There are (Z:Z) possibilities to choose the leaves, and there is one node in 7(S) for
each of the choices, but because of Theorem 1, only sets of n,, codewords not
including an &, need to be considered. The number of sets to be checked can be
reduced further, by remarking that for every given affix code the set of the binary
complements of the codewords is also an affix code; hence it suffices to consider only
sets of ny, codewords such that the leftmost bit of at least [n,,/2] of them is zero,
and even this set can be restricted further: for example for m = 3 and n,, = 2,
there is no need to check both {001,101} and {110,010}. The general step is now
called for each node x on level m of T(S), such that the tree in x satisfies these
conditions.

The general step for level ¢ > m is called with a node on level ¢ — 1 of
T(S) as parameter. The dotted leaves of the tree in z are split, giving a tree T
with N; nodes on level ¢, which are partitioned into two disjoint subsets: INT — the
set. of those which must be internal nodes because they correspond to one of the
“forbidden” codewords, i.e., they have another codeword (corresponding to a leaf
on level j < i of T}) as suffix; and LV — the set of those nodes which can be leaves.

If |[LV| < n;, then the tree T, cannot be extended to an affix tree for S, thus
the subtree of 7(S) rooted at = can be pruned, and we return from this recursive
call. Otherwise T, can be extended, but we need only to consider a subset of the
sons of z. Indeed, if i < £, we choose n; among the |LV| “permitted” leaves on level
i in Ty, so the number of sons of = in 7(S) which need to be considered is only

(|Iﬁ\;|) instead of (]r\[f) The general step is then recursively repeated with each of
these sons as parameter. The subtrees of 7(S) rooted at the other sons are pruned.

If i = ¢ (note that (]7\[5) = 1), we have reached a leaf of 7(S) and the tree in
this leaf is affix, so we are done.

An exact analysis of this algorithm seems not to be an easy task. The problem
is to evaluate the size of the set LV for every internal node of 7(S). If we bound |LV|
by its possible maximum (N; for a node on level i of T(S)), we get O(n?N(S)),
where n = Efzz n;, as bound for the complexity of the algorithm, which is not
polynomial. However, an intuitive argument could be that the deeper we get into
the tree 7(S), the more codewords are fixed for every node and the smaller LV will
be, since it must avoid a larger set of suffixes. Thus even if there is a large number
of alternatives to be checked on the first few levels, the branching on the next levels
will be much more restricted, and deeper levels will often not be reached.

It is not even easy to check the validity of this argument experimentally, say
on the sources of various “real-life” distributions, because sources with integral
degree are not abundant. For the weight distributions of the characters of seven
natural languages, we have constructed Huffman codes and codes which are optimum
subject to the additional constraint that the lengths of the codewords are bounded
by some integer D, for various values of D smaller than the depth of the Huffman
tree ([4]). None of the 48 sources we got has an integral degree. For a 26-letter
alphabet, there are 40115 possible sources (nq,...,ny) with £ < 11; only 77 of

- 12 —

them have integral degrees, and from these, 47 are rejected by Proposition 2 or
Corollary 1. We have applied the algorithm on the remaining sources and found
that (0,1,1,3,9,8,4) is the only source with £ < 11 and Zle n; = 26 for which there
exists a complete affix code. The algorithm was generally fast with the number of
calls to the “general step”, on these examples of up to 32 characters, rarely exceeding
150. The largest example on which we have tried the algorithm was for the source
S =10,0,2,0,10,24, 8), for which we knew by the proof of Proposition 1 that there
exists an affix code, since we found one for (0,1,0,5,12,4). The algorithm had to
visit 139,293 nodes of 7(S), but compared to the possible maximum, this is still
only 1.2 x 107N (S).

Since apparently there are many “real-life” distributions which have no affix
code, we treat in the next section the problem of backward decoding of (not neces-
sarily affix) Huffman codes.

4. Backward decoding of Huffman encoded strings

We are given a finite alphabet ¥ = {o1,...,0,} the elements of which are
called letters, and a text T' € ¥* we wish to encode using some binary code C' =
{c1,...,cn} of the letters, i.e., if the text is T = oy, 04, - - - 0;, then the corresponding
encoded text is C = ¢;, ¢;, - -+ ¢;,, with i; € {1,...,n} for 1 < j < k. For such ¥ and
C, we define the associated binary tree A(X,C) as follows: every edge in A(%, C)
pointing to a left (resp. right) son is labelled 0 (resp. 1); to each element of C
corresponds a unique node of A(X,C) such that the binary string ¢; is obtained
by concatenating the labels of the edges on the path from the root to the node
corresponding to the codeword ¢;; A(X, C) is the union of all these paths, in other
words, every node corresponds to a prefix of at least one of the codewords; the node
corresponding to ¢; is labelled o;.

If a Huffman code H = {hq,...,hy} is used, the associated tree A(X, H) is
called a Huffman tree and has the following properties:

i : since every Huffman code is prefix, there are no internal nodes which are
labelled, hence a node is labelled if and only if it is a leaf;

ii : since every Huffman code is complete, all the internal nodes have two sons.

Due to property i, the standard decoding procedure is very simple: the al-
gorithm uses a pointer P to the current position in the Huffman tree; P points
initially to the root. In the general step, the algorithm inspects the next bit b of the
encoded text C and updates P to point to the left (resp. right) son of the current
position, if b= 0 (resp. if b = 1). If now P points to a leaf, its label o (which is the
corresponding element of ¥) is printed, and P is reset to the root.

Property ii, which is a consequence of the optimality of Huffman codes, implies
that any binary string can be “decoded”. This can be a disadvantage, as an error
in the input string may only be detected at its end, if at all.

- 18 —

For the backward decoding algorithm, we define H = {h_l, . ,H} as the set of
reversed Huffman codewords, and we shall use the associated tree A(X, H). If H is
an affix code, then H is prefix so that A(X, H) is a Huffman tree and the standard
decoding procedure can be used. If H is not affix, property i does not hold for H
and we must at each stage of the backward processing of C keep track of all the
possible decodings up to this point. Somewhat surprisingly, the absence of property
ii will then help to resolve these local ambiguities.

A, H) A2, H)

Figure 5: Associated trees for H = {0,11,100,101}

For example, let ¥ = {A,B,C,D} and H = {0,100,101,11}. The trees A(%, H)
and A(X, H) are depicted in Figure 5, in which labelled nodes are represented by
squares with their labels written above, and non-labelled nodes are circles. In
A(Z, H) the nodes are numbered to facilitate references. Note for A(X, H) the
lack of property i (node 2 is labelled although it is not a leaf) and property ii
(nodes 2, 4 and 5 are internal with only one son).

The backward decoding algorithm maintains a linear linked list £, the elements
E of which are of the form E = (P,S), where P is one of the nodes of the tree
A(Z, H) and S € ¥* is a, possibly empty, string of letters of the alphabet. Every
element E represents one of the possible decodings of a given suffix of the encoded
text C, with P being the current node in the tree and S the current string of decoded
letters. For each bit read from the encoded text, there is one iteration during which
the list £ is updated, so that at the end of the iteration £ will contain all the
possible decodings up to this point. Using the above example, suppose a suffix of C
is 011100, which should be read from right to left. Then the list at the end of the
6-th iteration is £ = {(5,DAA), (2,DB), (1, ADB)}.

Description of the algorithm

Prelude: to initialize, the list contains a single element (P, S), with P being
the root of A(X, H) and S the empty string A. Now the encoded text is processed
starting with the rightmost bit and going left.

After having read the next bit b, the main iteration is entered. Here and
below, an iteration of the algorithm is the processing of one bit of the encoded text.
The list £ is scanned linearly and each of its elements F = (P, Sg) is updated

,14,

according to b in the following way. Let @ be the left (resp. right) son of B if b =0
(resp. b =1). If B; does not have such a son (i.e., if @ is now the null-pointer nil),
then the element F cannot be the decoding of the suffix of C processed so far, so we
delete E¥ from L. Suppose now that the son) of F; exists. If () is a leaf labelled,
say, by o;, this means that for the present decoding F a new codeword was detected,
thus B is reset to the root and o; is concatenated to the left of Sz. Hence suppose
that @ is an internal node. Then there is no need to change Sg, only % is set to
Q. However, if) is labelled, say, by o, a new element F' = (root, Sp) must be
adjoined to £, where Sy is obtained by concatenating o; to the left of Sg. This will
happen if the last bit(s) read from C are ambiguous in the sense that they can form
a codeword (this possibility is accounted for by the decoding F') and also the proper
suffix of one or more other codewords (represented by the updated form of E). The
element F' should be adjoined to £ in such a way that it will not be processed any
more in the present iteration.

To continue the previous example, suppose that the next bit read (the 7-th
from the end) is b = 0. Scanning the elements of £, (5,DAA) is deleted because
node 5 has no left son; (2,DB) is transformed into (4,DB), since the left son of 2
exists but is not labelled; (1,ADB) is transformed into (2,ADB), but since 2 is a
node labelled by A, a new element (1,AADB) is adjoined to the list so that finally
L = {(4,DB), (1, AADB), (2, ADB)}.

Let S = {Sg : E = (P, Sg) € L} denote the set of strings in the elements
of L. Let SUF be the longest suffix which is common to all the elements of &
(in the example, SUF = DB). Since £ contains all the possible decodings, the bits
corresponding to SUF are unambiguous, therefore SUF can be transferred to the
output buffer. Then SUF is deleted from the right end of each element in S, yielding
in our example £ = {(4,A), (1,A4),(2,4)}. We refer to the updated strings in S as
the truncated strings Sg. In fact, the algorithm would be valid even without these
truncations, which are only needed to bound the space complexity. This terminates
the iteration for the current bit b.

Postlude: after having exhausted the input string, the algorithm scans the list
L until an element E = (B, Sg) is found for which B; = root (we show below that
there is always exactly one such element). The corresponding string Sg is transferred
to the output buffer and this completes the decoding of C. If in the example above,
the seventh bit is the last one, i.e., C = 0011100, then the string AA is transferred to
the output buffer which therefore contains AADB; this is the desired decoding of C.

Using the fact that property ii does not hold, it is easy to implement an error-
detecting mechanism. If at some iteration the list £ is completely emptied or if at the
end there is no element with F; = root, this means that there is no possible decoding,
thus an error must have occurred. If an error has transformed one codeword into
another of equal size, this cannot be detected. In the other case however, chances
are good to get stuck after a small number of iterations.

— 15 —

Analysis

The complexity of the algorithm obviously depends on |L£|, the size of the list.
The list grows by 1 every time a labelled internal node is reached and shrinks by 1
every time the nil-pointer is encountered, thus |£| depends on the structure of the
tree A(X, H). In the worst case, the complexity could a priori be exponential: if in
some iteration, all the elements of £ point to labelled internal nodes of A(X, H), the
size of L doubles in this iteration. We show that this cannot happen and moreover
that the complexity is linear in the length of the decoded text.

Theorem 2. At the beginning of each iteration, distinct elements of L point to
internal nodes of A(X, H) which are on different levels.

Proof: For anode P, denote by ¢(P) the binary string obtained by concatenating
the labels of the edges on the (reversed) path from P to the root, i.e., ¢(P) is
a codeword h; of the Huffman code H if P is a labelled (square) node, or it is
the suffix of one of the codewords h; if P is an unlabelled internal node. Let b;
be the bit processed in the j-th iteration. Consider two elements F = (B, Sg)
and F' = (B, Sr) of L at the beginning of the i-th iteration, that is after having
processed the suffix B = b;_q - -- by of the encoded text.

Since all the elements of £ are obtained by processing some prefix of the string
B, it follows that either ¢(Fy) is a prefix of ¢(Br), or ¢(B) is a prefix of ¢(F;). Thus
if By and B are on the same level £ (which is the length in bits of ¢(Fy)), we must
have ¢(F;) = ¢(B-). On the other hand, both Sg and Sg are decodings of the binary
string b;_y_1---by. This implies Sy = Sr because the Huffman code is uniquely
decipherable. Hence if F; and B- are on the same level, then £ = F.

It remains to show that £ never contains multiple copies of any element E.
Suppose this assertion is not true and let 5 be the index of the first iteration which
contains at its beginning at least two copies of some element F = (Fy, Sg). Since in
the first iteration £ contains only one element, we have 7 > 1. If F; is not the root,
then there were at least two copies of (@, Sg) at the beginning of iteration j — 1,
where @ is the father of B; in A(X, H). Hence we may suppose P = root. Let Sg =
ol -0, where o} € 3, and let £ be the length of the codeword A, corresponding to
o’ in the Huffman code. Then A/, = bj—1---bj_g, and at the beginning of iteration
j — 1, there were at least two copies of the element (Q,0%_;---01) in £, where Q is
the node such that ¢(Q) = bj_o---b;j_p. Thus for every possibility of B, we get a
contradiction to the minimality of j. |

Corollary 2. The postlude of the algorithm is well-defined.

Proof: From Theorem 2 follows that after having processed the input string,
there is at most one element in £ pointing to the root. On the other hand there is
at least one, since £ contains the true decoding. |

— 16 -

Corollary 3. The worst case time complexity of the backward decoding algorithm
for an encoded text of k bits is O(k).

Proof: By Theorem 2, the number of elements in £ can never exceed the
number of levels in A(X, H), which is bounded by |¥| — 1. In every iteration there
is a constant amount of work to be done for the updating of each element of L.
In order to find the longest common suffix SUF, the rightmost letters of all the
strings Sp are compared. If they are all identical (call this a successful comparison),
this letter is transferred to the output buffer and the strings are updated. Then
the process is repeated until the first unsuccessful comparison, i.e., until not all the
rightmost letters of the strings Sg are identical. There are thus possibly several
successful comparisons, followed by a single unsuccessful one for every iteration. If
the input string has £ bits, the total number of unsuccessful comparisons is exactly
k. Although the number of successful comparisons for a given iteration may reach
O(k), the total number of successful comparisons in the k iterations is the number
of letters in the output string, which is clearly bounded by k. Summarizing, the
time complexity of the algorithm is O(|X] k), but since the size of the alphabet is a
constant not depending on k, this is O(k). i

Corollary 4. The number of elements in L increases at most by 1 per iteration.
Proof: By Theorem 2, as every new added element points to the root. |

The example in Figure 5 shows that the number of elements in the list £ can
actually reach the number of levels of A(X, H). This, however, is not true for every
Huffman code. As we saw in the proof of Theorem 2, ¢(F;) is a prefix of ¢(B) or
conversely, for all F; and F- in L. Tt follows that at the beginning of each iteration,
all the strings ¢(F) for B in £ are prefixes of the same binary string B, which is the
longest among the strings ¢(FB;). On the other hand, we know that there are no two
strings ¢(F;) of equal length. Therefore the number of elements in £ can be £, where
¢ is the number of levels in A(X, H), only if B is a suffix of length £ — 1 of one of the
longest codewords, and there is one element in L for every prefix of B. An example
showing that the maximal size of £ may be less than the depth of A(X, H) is the
Huffman code H = {00,01, 100, 110, 111, 10100, 10101, 10110, 10111}. The depth of
the tree is 5. However, there are no nodes in A(X, H) corresponding to the strings
010 and 011, but the suffix of length £ —1 of every longest codeword has one of these
two strings as prefix. Hence |£| cannot exceed 4 in this example. The exact bound
on the size of the list can therefore be refined to:

max{number of prefixes p of a proper suffix of h; :
' _ (2)
P € A(X, H) with p = c¢(P)}.

Note that this bound can be evaluated using only the Huffman code since it does
not depend on the encoded text.

— 17 -

For the average time complexity, one could imagine that if the chances to reach
a labelled internal node are much larger than the chances of being at a node having
only one son and proceeding in the direction of the missing son, then £ would have
a tendency to grow constantly up to its maximal possible size. This would force us
to choose the Huffman code so as to minimize this bias. Fortunately one can show
that in a certain sense, the tree A(X, H) is “balanced” for every Huffman code H,
as will be shown in the next theorem.

Let £ = £(%, H) denote the binary tree which is obtained from A(X, H) by
adding the missing son to all the internal nodes which have only one son. The added
nodes are called nil-nodes. Using £ instead of A(X, H), a part of the algorithm can
be reformulated as follows: “for a given bit of input and element of L, proceed
from the current node in the direction indicated by the bit; if the new current node
is a nil-node, discard this element of L”. We define the position of an element
E = (B, Sg) € L in a given iteration as the node By € £ which is reached after
having proceeded, but before discarding the element from £ (if B is a nil-node) or
resetting it to the root (if B is labelled). Hence the position of an element of £ can
be any node of £, except the root.

In order to evaluate the average time complexity, we assume a probability model
in which the probability for an arbitrary element of £ to have its position on a node
on level i of £ is proportional to 2% for 4 > 0. This model corresponds to a
dyadic probability distribution over the alphabet, i.e., the probability of occurrence
of every letter o € ¥ is an integral power of 271, There cannot be too great a
difference between the actual probability distribution and the dyadic one assumed
in the model, since both yield the same Huffman tree. In Longo & Galasso [13], the
set of probability distributions over a finite alphabet is given a “pseudometric”, and
an upper bound is derived for the distance from any probability distribution to the
dyadic distribution giving the same Huffman tree.

Denote by N the increase in the size of £ caused by the processing of an
arbitrary element E of L, i.e., N is a random variable which assumes values from

{-1,0,1}.
Theorem 3. For the given probability model, the expected value of N is zero.

Proof: The expectation of N, E(N), is evaluated by conditioning on the position
of the given element in the tree &:

E(N)= Y E(N| position is v) P(position is v). (3)
vEE\{root}

Let [(v) denote the level of v in £ and K = D weE\{root} 2~H®), Then we have in
our model

P(position is v) = %2_“”). (4)
Let U, V and W respectively denote the set of labelled internal nodes, the set of

nil-nodes and the set of labelled leaves of £. Once the position of the element of £

— 18 —

is fixed, the value of N is determined, so

1 if v e U,
E(N | positionisv) =4¢ —1 ifv e V; (5)
0 otherwise.

Thus it follows from (3)—(5) that

E(N) = %(Z 210 _ 37 2—l<v>). (6)

velU veV
But each labelled node is at the same level as in the Huffman tree, which is complete,

so that
PP IRRES AL § (7)
velU veWw

On the other hand, the leaves VU W of £ also constitute a complete code, thus

Y27 N ol =, (8)

veV veW
From (6)—(8) follows E(IV) = 0. i

Theorem 3 should be understood as a property of the tree £(%, H), namely
that the number and position of the labelled internal nodes and the nil-nodes are
closely related, independently of the code H. We cannot infer from Theorem 3 that
the expected size of £ will be constant, because we assumed an ideal probability
model. For instance, during the processing of the first ¢ bits of the encoded text, the
probability for an element of £ to have its position on level j > 7 is zero. However
our experiments, which are described below, indicate that the model is quite close
to what happens in “real-life” examples, and we actually found that the size of L is
more or less constant, rather than only bounded as implied by Corollary 3.

The space complexity of the algorithm is defined to be the total lengths of
the truncated strings Sp which are stored simultaneously in £. Since the time
complexity is O(k), also the space complexity is O(k) for an encoded text of length
k bits and because of the infinite decipherability delay of non-affix Huffman codes,
the worst case space complexity is Q(k). For example, using again the Huffman
code of Figure 5, suppose that the text is D"B (where 2" denotes the concatenation
of r copies of the string z), yielding the encoded text 127+100. Then the list at the
end of iteration 25 + 1, for 1 < j <r+1,is £ = {(3,0/71a4), (1,D/~1B)}, and the
strings cannot be truncated.

There is always exactly one element in £ corresponding to the true decoding of
the current part of the encoded text. The other elements are called false elements.
For every false element F, let IT(F) be the index of the first iteration for which the
decoding corresponding to F differs from the true decoding. In other words, IT(F)
is either the index of the iteration at which E was created, or it is the index of the
iteration in which F “gave birth” to a new element F', which corresponds to the true
decoding, so E with its updated pointer is a false element. To evaluate the average
space complexity, weaker probability assumptions than in Theorem 3 are sufficient.

- 19 —

Theorem 4. Suppose there is a real constant ¢ > 0 such that q is a lower bound on
the probability of every false element E to be discarded in any iteration with index
i > IT(FE). Then the average space complexity, and thus the average decipherability
delay, is O(1).

Remark: Under the assumption of the model and the notations of Theorem 3, we
get ¢ = % Zwe{nil—nodes} 2~ W),

Proof: For every i we define the index #(i) < i such that at the beginning
of iteration %, the string which was already transferred to the output buffer is the
decoding of by(;)---b1. Hence, all the truncated strings Sy in the elements of £
at the beginning of iteration ¢ are decodings of some suffixes of the string B; =
bibi—1 - - - by(;)41- Consider for iteration ¢ the false element E' such that IT(E?) is
minimal among all the IT(E) for E € L (by Corollary 4, exactly one such element
exists for each 7). Then IT(E?) < t(i) + 1, since otherwise one or more of the
rightmost bits of B; are unambiguous and their decoding could have been transferred
to the output buffer. The lengths of the truncated strings Sp for F' € £, which are
clearly bounded above by the length of the string B;, are therefore bounded above
by i — IT(Ei). But in our model, for any false element F, the number of iterations
from IT(E) until E is deleted is a geometrically distributed random variable with
probability of success > q. Therefore the expected value of i — IT(E") is bounded
above by 1/q. This bound, as well as the bound on the number of elements in L,
depending only on the Huffman code, not on the encoded text, the expected space
complexity is O(1). i

Experimental Results

We have applied the backward decoding algorithm on various texts and collected
the following statistics. The first text was an English technical text of 77000 upper-
case characters not containing any special symbols, except blank. In order to check
the algorithm on a different natural language, we chose as second text the 98681
Hebrew characters of the book of Genesis (including one blank after each word).
Finally we wanted to check the influence of the size of the alphabet, so we took
as third text a technical paper of 90000 characters which was used as input file to
Knuth’s TEX typesetting system. The texts were Huffman coded and the associated
trees of reversed codewords were constructed.

Table 1: Statistics of Huffman codes

Average | Nbr of | Possible

Text |2] Source codeword | nodes in | maximum
length | A(S, H) |L|
English | 27 |(0,0,2,7,7,4,2,3,2) 4.16 67 8
Hebrew | 28 |(0,1,0,7,6,4,6,4) 4.11 67 7
TEX-input | 89 | (0,0,1,6,7,8,11,6,12,19,6,6,2,3,2) | 4.90 338 9

— 920 —

Table 1 lists some statistical information on the three files: the size of the
alphabet 3, the source obtained from Huffman’s algorithm, the average length of a
codeword in bits, the number of nodes in the associated tree of reversed codewords
and the possible maximal length of the list £, which was computed using (2). Note
that the latter was less than the depth of the tree for all three examples. None of
the sources admits an affix code, because they all have non-integral degree.

Table 2: Experimental Results

Length of English Hebrew TEX-input
encoded |L| length of Sg |L] length of S |L] length of Sg
text (chars) | average | max | average | average | max | average | average | max | average
1000 5.107 | 20 | 6.534 5.018 23 5.020 6.845 26 7.526
10000 5.134 | 31 6.925 5.009 30 | 5.118 6.875 | 47 | 7.526
30000 5.126 36 6.864 5.033 30 | 5.079 6.900 [57 | 8.630
50000 5.127 | 38 6.858 5.041 35 5.134 6.915 64 | 9.074
70000 5.128 38 6.841 5.045 35 5.137 6.925 69 8.871
90000 5.048 35 5.143 6.925 69 8.805

The backward decoding algorithm was then applied on substrings of various
lengths of the encodings of the original texts, and with various starting points.
Table 2 summarizes the values which were obtained for the number of elements in
the list £ at the end of each iteration and for the number of characters in the strings
Sg. The maximal possible values for |£| were obtained for all the examples, and in
fact already for encoded texts of 50 characters length.

The average number of elements of £ can be seen to be practically constant.
The experiments showed that the three most frequent values ({4,5,6} for English
and Hebrew and {6, 7,8} for TEX-input) occurred about 90%, 96% and 85% of the
time respectively, independently of the length of the encoded text.

Figure 6: Distribution of lengths of the strings Sg

- 921 —

As to the strings Sg which are stored in the elements of £, their maximal length
increases only slowly with the size of the text, and their average length again seems
to be constant. The distributions of the lengths of Sg for the experiments with 10000
characters or more are plotted in Figure 6, which gives for each possible length the
probability of its occurrence. The points for English are represented by diamonds,
those for Hebrew by squares and those for TEX-input by triangles. For each text, the
corresponding graphs are practically overlapping (the values extending beyond the
limits of the figure are all smaller than 0.0003). This suggests that the distribution
of the lengths of the Sy is a function of the Huffman code only.

The lengths of the strings deserve some special attention. In contrast to the list
L, the elements of which are allocated only when they are needed, the straightfor-
ward way to store the strings is by reserving in each element of £ enough space for
the longest possible string. We thus need some a priori knowledge of the maximal
length. On the other hand this approach can be very wasteful. We can circumvent
the problem as follows: the maximal size M of the strings will be fixed arbitrarily;
if M has to be exceeded, one or more new elements are adjoined to £ immediately
following the current one and serving as its “continuation”. Therefore the algorithm
must check during the processing of each element if it has continuation-elements, but
this will increase the execution time only by a small constant factor. In practice, the
size M can usually be chosen small enough to satisfy the given constraints on avail-
able space, and large enough to get a very small probability for having continuation
elements.

When constructing a KWIC-index (application 1 of the introduction), the ex-
pected length of the strings gives also information about how far we must go back-
wards from the located keyword. From Figure 6 we can conclude that if & words
preceding the keyword are wanted, there is only a very small probability that one
must decode more than k& + 2 words, or about 11 bits more than for the words
following the keyword.

We have also collected statistics on the number of times the position of the
elements of £ were on level i of £(X, H), and found that it was indeed nearly
proportional to 27, as assumed in the model used in Theorem 3. Another interesting
feature was the change in the size of £ for consecutive iterations. We saw already in
Corollary 4 that |£| cannot increase by more than 1. The maximal decrease again
depends on the structure of the tree A(X, H): it was 3, 3 and 2 for the English,
Hebrew and TEX-input texts respectively.

5. Concluding Remarks and Future Work

The possibility to decode a variable-length encoded text in both directions may
lead to savings in various applications in which fixed-length codes were normally
used. The gain is not only in space, but often also in time: more information can
be read in each input operation, thus reducing the number of needed I/O accesses,
and this generally compensates largely for the time spent on decompressing.

— 929 _

Once the source of the optimum Huffman code is given, the first step should
be to check if it is possible to build an affix code. If this is not the case, backward
decoding is still possible using the algorithm of the previous section, without change
in the order of magnitude of the complexity.

There are several open questions which we leave for further research:

(1) How can the results of Section 2 be extended? In particular can one for-
mulate necessary and sufficient conditions for the existence of affix codes for certain
sources?

(2) Is there a polynomial algorithm which, for a given source
(n1,...,np) of a complete code (i.e., with 3" 7,27 = 1) with integral degree, con-
structs an affix code, whenever there exists one? Or perhaps can it be shown that
even the decision problem whether such an affix code exists is NP-complete?

(3) How can one find the complete affix code giving best compression, if there
is one? Perhaps should one not insist on completeness, since non-complete codes,
though never optimum for compression, enhance error-detection? How can one find
the optimum (not necessarily complete) affix code? There is always one, since any
fixed length code is affix.

(4) For the backward decoding algorithm, how can one choose the Huffman
code so as to minimize the possible maximal length of the list £ and thus the worst
case time complexity?

References

[1] Berstel J., Perrin D., Theory of Codes, Academic Press Inc., Orlando,
Florida (1985).

[2] Even S., Graph Algorithms, Computer Science Press (1979).

[3] Ferguson T.J., Rabinowitz J.H., Self-synchronizing Huffman codes,
IEEFE Trans. on Inf. Th. IT-30 (1984) 687-693.

(4] Fraenkel A.S., Klein S.T. Bounding the depth of search trees, to appear
in The Computer Journal.

[5] Gilbert E.N., Synchronization of binary messages, IRE Trans. on Inf. Th.
IT—6 (1960) 470-477.

(6] Gilbert E.N., Moore E.F., Variable-length binary encodings, The Bell
System Technical Journal 38 (1959) 933-968.

- 923 —

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Golomb S.W., Shift Register Sequences, Aegean Park Press, Laguna Hills,
California (1982).

Heaps P., Information Retrieval, Computational and Theoretical Aspects,
Academic Press, New York (1978).

Huffman D., A method for the construction of minimum redundancy codes,
Proc. of the IRE 40 (1952) 1098-1101.

Johnsen O., On the redundancy of binary Huffman codes, IEEFE Trans. on
Inf. Th., IT—26 (19830) 220-222.

Knuth D.E., The Art of Computer Programming, Vol I, Fundamental al-
gorithms, Addison-Wesley, Reading, Mass. (1973).

Levenshtein V.I., Certain properties of code systems, Soviet Physics —
Doklady Vol 6 (1962) 858-860.

Longo G., Galasso G., An application of informational divergence to Huff-
man codes, IEEFE Trans. on Inf. Th. IT—28 (1982) 36-43.

Peterson J.L., Computer programs for detecting and correcting spelling
errors, Comm. ACM 23 (1980) 676—687.

Riordan J., An Introduction to Combinatorial Analysis, John Wiley & Sons
Inc., New York (1958).

Schiitzenberger M.P., On a special class of recurrent events, Ann. Math.
Stat. 32 (1961) 1201-1213.

Schiitzenberger M.P., On a question concerning certain free monoids, J.
Comb. Theory 1 (1966) 437—442.

Schwartz E.S., Kallick B., Generating a canonical prefix encoding,
Comm. ACM 7 (1964) 166-169.

,24,

