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2 Bookstein, Klein and Raita1 . Introduction
This paper continues a series of papers (Bookstein et al. 1992, 1994, 1997) thatapply advanced statistical models to compress bitmaps. The earliest models as-sumed that the 1-bits of a bitmap occur independently (Bookstein et al. 1992).In several environments, however, the independence assumption is not valid. Forexample, consider a concordance built to allow access to a large textual database.In the concordance, each term occurring in the text is associated with a bitmap,and each bit-site to a region of the text obtained by partitioning the text intologically coherent units. The bitmap representing a term has a 1-bit at the positionswhere the corresponding segment contains the word. Within the text, discussionsof speci�c subjects are clustered, and this imposes a clustering tendency on the1-bits within the bitmaps belonging to the terms associated with these subjects.Since bit encoding is determined by the probability of its having a given value (forexample, using arithmetic coding (Witten et al. 1994)), we expect more accuratemodeling to result in improved compression. In this paper we focus on the problemof modeling the clustering rather than on the details of generating codewords.Our �rst attempts to represent this clustering involved the use of a variety ofMarkov Models (Feller 1957). Although signi�cant improvement resulted from usingeven simple Markov models with a small number of states (Bookstein et al. 1997),ultimately we were limited by the �nite memory of such models. We now test analternative approach, based on the principles of Bayesian statistical analysis (Press1989), that may correct for this limitation. We continue with the assumption madein our earlier papers that bits are generated within two states, a cluster state,which tends to produce a high density of 1-bits, and a between-cluster state, whichproduces 1-bits more sparingly. However, we no longer model the state transitions.Instead, we use Bayesian reasoning to assess the likelihood of being in either state,given the data. The data is gathered within a growing window, which is closedwhen we decide a state transition was likely. The probability of the next bit taking
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Simple Bayesian model for bitmap compression 3a value is determined by the data currently in the window, and the bit encodedaccordingly.In the next section we describe, in general, the model on which the remainderof the paper is based. We illustrate these ideas by means of a simple version of theBayesian model, which we then elaborate. In subsequent sections we describe theprotocol used to control the window in which data is collected, as well as describethe experiments used to test the models.
2 . Bayesian ModelingWe conceptualize a bitmap of length D bits as having been generated in a mannersimilar to that of the hidden Markov model described in Rabiner (1989). At anysite in the bitmap, the generator is assumed to be in one of two states: a clusterstate C or a between-cluster state B. These states determine the probability ofgenerating a 1-bit. We diverge from the Markov assumption by no longer modelingstate transitions. Rather, we collect data as we scan the bitmap, and use the datato guess the probability of being in either state, and hence the probability of a 1-bitbeing generated.Our overall strategy is to encode bits using a dynamic window to accumulate thedata. We begin with a window that contains zero bits. As we scan, and encode, bits,the window grows. As we accumulate data in a window, we use Bayesian methodsto improve our estimate of the probability of a 1-bit being generated. If at any pointwe sense a state change, we close the window and begin the process anew.Suppose then that we are just opening a window. Taking a Bayesian approach,we try to determine the probability distribution of the parameter governing datageneration within the window. The parameter here is p, the probability of a 1-bit. We do this by starting with a prior distribution for p, based on not having
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4 Bookstein, Klein and Raitaany information, and then improve the distribution as the window grows and moreinformation accrues.In this problem, the uncertainty in p before developing the window is primarilythe result of our not knowing which state we are in, though also, possibly, eachstate may allow a range of probabilities. Most generally, we assume that in thecluster state C, the distribution of probabilities is given by fC(p), and that thecorresponding distribution in the between-cluster state is denoted by fB(p). Wefurther assume that � is the a priori probability of being in a cluster state.When we begin a new window, we have no data on which to base our esti-mate, and use the prior, unconditional, distribution of p, P0(p). Given the aboveassumptions, we have: P0(p) = � fC(p) + (1� �) fB(p): (1)As we accumulate data in the current window, we want to integrate the informa-tion it contains to improve our estimate of P0(p). We denote this density functionby P (pjW ), indicating that the density function incorporates information aboutthe window W we are scanning. To derive the updated distribution, we use Bayes'formula to get, P (p j W ) = P0(p)P (W j p)R 10 P0(p) P (W j p) dp: (2)But the probability of the occurrence of a certain window, for a �xed p, is simplyP (W j p) = pN1 (1� p)N0 ; (3)where N1 and N0 are, respectively, the number of 1's and the number of zeros inW , which now contains N0 +N1 values.We can now estimate the probability of a 1-bit, given the evidence W in thewindow: P (1 j W ) = R P (1 j p;W )P (p j W ) dp. But since P (1 j p;W ) = p, thisintegral is simply, p̂, the expected value of p, conditional on the evidence in W :p̂ = E(p jW )
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Simple Bayesian model for bitmap compression 5= Z 10 P (p jW ) p dp= R 10 [� fC(p) + (1� �) fB(p)] pN1+1(1� p)N0 dpR 10 [� fC(p) + (1� �) fB(p)] pN1(1� p)N0 dp : (4)To proceed, we have to specify the state based distributions. Below we considertwo models of increasing complexity.2.1. Sharp probability distributionIn the simple �rst model, we assume that the probability is fully determined by thestate; that is, we let pC be the probability of seeing a 1 while in a cluster, and pBthe probability of seeing a 1 while between clusters. Note this allows us to see 1'seven if not in the cluster state, and vice versa. Since the probability is determinedby the state, we have fC(p) = �(p� pC);and fB(p) = �(p� pB):Here �(x) is the Dirac �-function, de�ned as 0 everywhere but x = 0, and whoseintegral satis�es, Z �(x) f(x) dx = f(0):In other words, �(p� pC) is a probability distribution that asserts that p = pC. Byequation 1, the prior, unconditional, distribution of p, is given by,P0(p) = � �(p� pC) + (1� �) �(p� pB);which is a mixture of two Dirac �-functions.As we develop the current window, we want to integrate the data it contains,as prescribed by equation 2. We now apply equation 4 to evaluate p̂, the expected
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6 Bookstein, Klein and Raitavalue of the posterior distribution P (p jW ):
p̂ = Z 10 P (p jW ) p dp= R 10 [� �(p� pC) + (1� �) �(p� pB)] pN1+1(1� p)N0 dpR 10 [� �(p� pC) + (1� �) �(p� pB)] pN1(1� p)N0 dp= � pN1+1C (1� pC)N0 + (1� �) pN1+1B (1� pB)N0� pN1C (1� pC)N0 + (1� �) pN1B (1� pB)N0 : (5)

Special valuesAs a check on the reasonableness of the model, it is useful to examine severallimiting values.For example, if � = 0, we get p̂ = pB, and if � = 1, we get p̂ = pC: in such cases,the state is known, and the formula gives the appropriate probability of producinga 1-bit.We also �nd that if, as the window grows, the value of N1 increases inde�nitelywhile the value of N0 remains �xed, then (assuming pC > pB) p̂ ! pC. That is, asN1 grows relative to N0, the evidence becomes increasingly strong that we are inthe C state, and the appropriate probability is approached.Next we �nd that if pB = 0, we get p̂ = pC. While initially surprising, a littlethought shows this result is correct. First note that pN1B , and hence p̂, is unde�nedfor pB = 0 unless N1 > 0. But if pB = 0, then if we scan a 1 (N1 > 0), we must be ina cluster state, the only state that permits a 1-bit. Similarly, if pC = 1, p̂ is de�nedonly if N0 > 0; but then we must be in a between-cluster state, requiring p̂ to bepB, as is indeed the case. Similar comments could be made for the cases pB = 1 andpC = 0, but these are unrealistic given what these probabilities represent.Finally, if pB = pC, then p̂ = pB = pC. That is, there is in e�ect a single state,and the probability of a 1 being generated is the common probability.
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Simple Bayesian model for bitmap compression 72.2. Beta-Distributed ModelIf we relax the requirement that the state completely determines the probabilityparameter, we can create much more exible models; doing this transcends inprinciple the Hidden Markov Model (HMM) used in our earlier papers. In the modelwe now examine, we still conceptualize the generator as being in one of two states.The state now inuences, but doesn't fully determine, the probability of generatinga 1-bit. We gain this additional exibility by admitting as probability distributions,density functions fC(p) and fB(p) with some dispersion.The beta-distribution (Johnson et al. 1970) o�ers a class of models that allowsa great deal of exibility in controlling the shape of the distribution, while at thesame time being relatively convenient analytically. We include this model as anexample of how the Bayes approach allows us to reach well beyond the Markovframework: we now recognize the possibility that not all clusters are identical, andthat in some clusters, the probability of a one-bit is greater than in others. A similarcomment could be made for the non-cluster state, although a hybrid model, using abeta-model for the cluster state and a delta-function for the between-cluster state,is possible.In the beta-distributed model we assume, for parameters �C > 0 and �C > 0fC(p; �C; �C) = 1B(�C; �C) p�C�1(1� p)�C�1;where, B(�C; �C) � (�C � 1)! (�C � 1)!(�C + �C � 1)! ;a parallel distribution de�nes fB(p;�B; �B). (Note that here the factorial operator,for non-integer values of its argument, is de�ned in the usual way in terms of thegamma-function: x! � �(x+ 1).)Substituting the beta-functions for fC and fB in equation 4, we �nd after inte-gration:
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8 Bookstein, Klein and Raitap̂ = � B(N1 + �C + 1; N0 + �C)B(�C; �C) + (1� �) B(N1 + �B + 1; N0 + �B)B(�B; �B)� B(N1 + �C; N0 + �C)B(�C; �C) + (1� �) B(N1 + �B; N0 + �B)B(�B; �B) : (6)The result is analytically complex, and must be evaluated numerically. We mustadjust the parameters, �C, �B, �C , �B and � to optimize compression e�ciency.However, it is easier to interpret the values of these parameters if we note thatthe expected value of the Beta-distribution is given by (suppressing the subscriptson the �, � parameters) E(p) � �p = �=(� + �), and the variance by V ar(p) =E(p)(1�E(p))=(�+ � + 1), a result reminiscent of the binomial distribution, with� successes, � failures, but M � �+ � +1 tries. It is in terms of �p and M that themodel is most understandingly parameterized, the former indicating the probabilityof a 1-bit, the latter, our con�dence in the parameter. That is, for large M , ourmodel approaches the sharp model described above. Thus, the parameter �pC playsa role parallel to that of pC for the sharp distribution, and similarly for �pB and pB.Experiments will indicate whether the bene�t of exible probabilities within andbetween clusters justify the extra e�ort and the need for an extra two parameters.
3 . Window DynamicsIn the preceding section, we have assumed we are in a region where the state is�xed, but that we do not know what the state is. The parameters � and the beta-distribution parameters allow us to make an information free guess of the likelihoodof being in either state, and thereby the probability of the next bit taking the value0 or 1. We then modify the probability estimate in accordance with the accretionof data as the window grows. In the preceding section, we indicated how to use thedata within a window to estimate the probability of a 1-bit being generated. But asthe bitmap is generated, we are shifting between states. To take this into account,
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Simple Bayesian model for bitmap compression 9we must use a protocol that de�nes how the window grows and when it should beclosed.We begin with a window of size 0, and with the initial probability estimateof eqn 1. Then, as bits are scanned, we upgrade the probability. In principle, weshould let the window grow inde�nitely. But doing so would put us at a severedisadvantage when the state changes. Thus we introduce a parameter, Wmax, andwhen the window-size reaches Wmax we stop growing the window. That is, at thispoint we begin shifting the window, dropping bits at the end while introducing bitsat the front. In practice, a �nite Wmax limits the size of the codeword when a bitinconsistent with the current state is scanned; we choose a value that optimizesperformance during compression.But if at some site an unexpected bit value (or two) is scanned, it suggests thatthe state may have changed and that the estimate of probabilities should beginagain | that is, that the old window may no longer be informative. At this pointthe old window is closed, and a new one is grown. It may be possible to estimateWmax and the start-over point theoretically.The ideal way to assess the predictive power of the current window would be toactually look ahead and evaluate how well we are able to compress the next severalbits (that is, the bits following those already in the window), given the informa-tion within the window. (The performance expected if the probability predictionmechanism is valid could be computed using information theoretic arguments asdiscussed in Cover et al. (1991) and Hamming (1980).) If the performance is lessthan expected, then it indicates we should close the window and begin again.However, the decoder would not be able to follow the same decision procedure,because it does not know the next, incoming bits. This situation is inherent tomany adaptive processes (see, e.g. Vitter (1987) and Welch (1984)), and requiresthat we use a less e�cient, delayed update strategy.The method we adopted is to simulate this strategy retrospectively: after each bithas been encoded, it is appended to the window W and we run a consistency check
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10 Bookstein, Klein and Raita
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Figure 1. Schema of window structure.of the bits recently encoded. We backtrack, in turn, one, two, : : : b bits, where b,the maximum number of bits we can backtrack, is a parameter of our model. Everytime we backtrack, we ask whether the bits being reviewed are more consistent withthe current window than they are with a new window. If the reviewed bits pass thistest for each backtracking step, then we continue, encoding the following bit as anextension of the current window. Otherwise we start a new window. Though thereviewed bits for which the model retrospectively fails have already been encodedas if they were part of the preceding window (which is necessary for the decoder),they are considered as data for the new window. For example, if the �rst window isclosed on the basis of its being inconsistent with the last three bits, those bits actas information for the new window when the next bit is encoded.We now describe our decision rule for opening a new window. For the purposeof this calculation, after backtracking, we consider the (retrospectively) \current"window, now called W1, to contain the data up to the point the backtracked databegins; we treat the backtracked data, T , at the tail of the current window as \new"data, available to both the encoder and decoder. This is illustrated is Figure 1.We examine the data in W1, and consider whether, with hindsight, we shouldhave continued extending W1, or begun a new window, W2. Suppose, looking for-ward, we see T consists of n 1-bits and m 0-bits. On the basis of W1 we estimatea probability p̂1 for a 1-bit, while the corresponding probability for W2 is p̂2. For
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Simple Bayesian model for bitmap compression 11simplicity, we consider these probabilities to be unchanged as we see successivelythe bits of T .We can now use the standard Bayesian argument to estimate the probabilitiesof W1 or W2 being the correct window, given that T follows, where one of the twowindows is assumed to be correct. The probability that W1 is correct is given by:P (W1jm;n) = P (W1)P (m;njW1)P (W1)P (m;njW1) + P (W2)P (m;njW2)= !1p̂1n(1� p̂1)m!1p̂1n(1� p̂1)m + !2p̂2n(1� p̂2)m= 11 + !2!1� p̂2̂p1�n� 1�p̂21�p̂1�mfor !i the probability forWi. Thus the odds in favor of a new window, P (W2)=P (W1)is given by !2!1� p̂2̂p1�n�1� p̂21� p̂1�m: (7)Equation 7, which expresses the evidence infavor of a new window in terms ofan odds ratio, can be used directly if the !'s can be properly assessed. This can betricky. But notice that the !'s are �xed, and the evidence actually inuenced byT is fully expressed by the other two factors. Thus we can empirically determinea threshold, and change the window provided the product of the two right-handfactors exceeds this threshold.It is instructive to rewrite equation 7 as:P (W2)=P (W1) = !2!1 24� p̂21�p̂2�� p̂11�p̂1�35n�1� p̂21� p̂1�n+m : (8)Note that the value n+m, which is just the number of bits observed while lookingahead, is �xed. Only the term in the brackets actually depends on the evidence,and this, in isolation, can serve as a measure of how strong is the claim to start anew window. The factor [(1� p̂2)=(1� p̂1)]n+m is the value of the odds favoring anew window, provided all the bits being tested are zero. Suppose this would resultin one of the windows, say Wi, being selected. Each 1-bit then modi�es this by
finalbayes.tex; 16/08/1999; 16:11; p.11



12 Bookstein, Klein and Raitaa factor of the odds ratio (p̂2=(1 � p̂2))=(p̂1=(1 � p̂1)). If collectively this doesn'tcompensate for the initial weight, we use Wi, else we use the other window.To estimate p1 we used the last probability estimate made from the evidence inW1 before the new evidence was evaluated. A few reasonable options are availablefor estimating p2. For example, we can use the a priori probability, to assess whetherthe evidence in the window is at this point any better than no evidence at all. Anopposite bias can be obtained by estimating p2 from the actual evidence itself, tosee if this high-value estimate is su�ciently larger than that based on W1 to justifyopening a new window.In principle, the window update procedure could be applied recursively to theresulting tail T , perhaps allowing an even better (and shorter) basis for estimatingthe probabilities of the upcoming bits. However, since we restricted the length of Tjust to 6 bits at most, the recursive procedure was not applied in the experiments.We next illustrate the window update protocol by an example. Suppose we justencoded bit b511, and that W now consists of bits b500; b501; � � � ; b511. Next we musttest for the goodness of the window. We do this in stages:First stage: For our �rst consistency check,W1 will consist of bits b500; b501; � � � ; b510and T of the single bit, b511. On the basis of W1, we compute p̂1, the probabilityof a 1-bit, given W1, and the size of the codeword for b511. Get the correspondingquantity for an empty window, and call it p̂2. Evidence for closing the window isgiven by p̂2=p̂1 if b511 is 1, else it is given by (1� p̂2)=(1� p̂1). This is equation 7,ignoring the !'s. We close the window if the ratio is larger than some thresholdvalue , beginning a new window with b511. If the ratio is smaller than , we go tonext stage.Second stage: First we backtrack, rede�ning W1 as b500; b501; � � � ; b509 and T asb510; b511. We compute p̂1, the probability of a 1-bit, given the reconstituted W1; p̂2again is the probability of a 1-bit given the empty window. We now use equation 7to get the weight for a new window, based upon the evidence of T . If the evidence islarge enough, we close the current window, and repeat the process beginning with
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Simple Bayesian model for bitmap compression 13the window consisting of bits b510; b511. Else we continue with the third stage (whichwe suppose, for this example, to be the last).Stage three: We now compute p̂1 on basis of the new W1 = (b500; � � � ; b508), andp̂2, assuming the null window. We then compute the weight favoring a new windowbased on the evidence of the new T , consisting of the bit sequence b509; b510; b511,as given by equation 7. If the weight supports opening a new window, we closethe current window, and begin the cycle again starting with the window madeup of bits b509; b510; b511. Else we accept the old window, make bits b501; � � � ; b511 thecurrent window, and continue. If additional stages are desired, we continue as above.125 130 135 140 145 150 155100 105 110 115 1201 11 1 1 1 1 1 1 1 1 0 0 0 1 0 1 11 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 11 11 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 01 1 0 0 0 1 0 0 1 1
1
11 0 1 1 1 1 1 1 1 1

0 1 1 11
Figure 2. Example of window development.An actual detailed example of window development, taken from the experimentdescribed below, appears as Figure 2. The numbers on top of the �gure denotebit positions of the speci�c bitmap we are studying and the actual bits are shownbeneath. The maximal length of the window, Wmax, is set to 10 and the �guredepicts the window dynamics during the encoding of bits 111 : : : 155. At the start,the window contains the 1-bits at indices 101 : : : 110. This run of 1-bits gives a highprobability for the upcoming 1-bit at index 111. The bit is encoded and insertedinto the window. In the update procedure, we notice that the window W1 is alwaysa better predictor for the corresponding tail T than an empty window, so only one
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14 Bookstein, Klein and Raitachange is made: we discard the oldest bit from the window to prevent an overow.For the next two bits at indices 112 and 113, the same is repeated. When the 0-bit atindex 114 has been encoded, we note that the threshold value used in the consistencycheck allows one spurious bit inside a run of 1-bits, so again, only the oldest bit isdiscarded. However, the next 0-bit gives already enough evidence about the end ofthe run of ones. This is noticed at stage two of the update process: the eight 1-bitsin W1 are not consistent with the pair of zeroes in the tail T , so we open a newwindow and initialize it with the contents of T . In this way, the update procedurecaptures the essential features of the bit sequence: if there are only a few 0-bits ina 1-bit cluster (or vice versa), we are satis�ed with it, since the overall tendencyis clear. Also, when we are scanning a truly heterogeneous bitmap region, there isno reason to change the window radically (see e.g. the situation when the encodingof the bit at index 144 commences). This implies that the change of the state isperformed only when necessary, i.e. at the boundaries where the characteristics ofthe bit string change considerably.
4 . ExperimentsIn order to compare the new technique with previous methods, we used the sametest databases as in our earlier papers, namely: the King James Version of theBible in English (its D = 929 chapters acting as documents); and a subset of theTr�esor de la Langue Fran�caise (TLF). The TLF is a database of 680 MB of Frenchlanguage texts (112 million words) of the 17th{20th centuries (see Bookstein et al.(1992) for more details of the collection), whose uncompressed concordance spansabout 345 MB (excluding references to the 100 most frequent words, consideredas stop-words). The subset used in this study consisted of the the 35070 termsbelonging to the (lexicographic) range between elle and flaube.The models we are developing are intended for terms that show a considerabledegree of clustering. But clustering strength is determined both by the nature of the
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Simple Bayesian model for bitmap compression 15word and the choice of what we de�ne as a document, which is represented as a singlebit in our bitmaps. In our investigation of the TLF, we chose as the document thelevel immediately below the \book" level in the TLF hierarchy, resulting in bitmapsof length D = 38757 bits. The chosen unit is convenient for the construction of theconcordance, but may obscure some of the underlying clustering because of its largesize.Our �rst task is to estimate the parameters which give the best compression,that is, which minimize the function �PDi=1 log p̂i. We here use the fact that wecan encode a bit with log p̂i bits, if the encoding is based on p̂i being the probabilitythat the i-th bit of the bitmap takes the value it does; this probability is determinedby the evidence in the window.Performing this minimization analytically is hard, so we reverted to search meth-ods that may yield sub-optimal parameter values. The parameters divide into twosets: the model parameters (�, pB, and pC for the sharp model); and three windowparameters: the maximum window size Wmax, the maximal backtracking length bin the update process, and the threshold  that controls when we should restartthe window. For the Beta-model, we need �, �pB, �pC, MB and MC. (Recall that the�'s and �'s of the Beta distribution can be expressed in terms of the �p's and M 'sin a straightforward way.)To simplify our task of �nding optimal values for our parameters, we note that,if n1 is the number of 1-bits in the map, the sharp model requires that:n1D = � pC + (1� �)pB;yielding as the value for �, � = n1=D � pBpC � pB :For the Beta-model, there is no �xed probability for bit generation, but we can usethe above formula, with (�pC; �pB) substituted for (pC; pB) as an initial estimate of �.It reasonable to expect that n1=D, the frequency of occurrence of 1-bits, satis�esthe constraint �pB � n1=D � �pC; this implies that 0 � � � 1.
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16 Bookstein, Klein and RaitaFor each set of terms tested, we chose manually several combinations of param-eter values obeying the restrictions above, and then searched for local optima. Thelarge number of optimization runs performed showed, that the overall shape of thefunction is 'rippling' and with high probability, it does not have large minima ormaxima. Due to this, we can safely �x most of the input parameters without anotable loss in compression e�ciency. Some tuning may be appropriate, however,if the 1-bit densities or clumping properties change considerably from bitmap tobitmap.Table 1 gives descriptive statistics for the tested �les and summarizes the com-pression performance of the various models tested. For the Bible, only words ap-pearing in at least 60 chapters, and thus occurring in between 60 and 929 chapters,were considered; for TLF, the terms (bitmaps) were partitioned into three classesaccording to the density of 1-bits. The threshold values were 78, 388 and 1162.
Table I. Statistics and compression resultsDatabase: Bible TLF60{929 78{387 388{1161 1162{38757terms 623 2032 619 381occurrences 131874 352522 402890 1387698independent 2.683 9.09 7.26 4.02best 4-state 2.544 8.48 6.65 3.48HMM 2.490 | 6.62 3.39Bayes-Beta 2.523 8.38 6.55 3.42Bayes-Sharp 2.556 8.44 6.65 3.52
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Simple Bayesian model for bitmap compression 17The upper part of Table 1 shows, for each class, the number of di�erent terms,and their total number of occurrences. The lines of the lower part correspondto various bitmap compression methods. The independence model is the 1-stateMarkov model used in Bookstein et al. (1992); this is a very simple model thatdoes not take clustering into account and therefore performs relatively poorly. InBookstein et al. (1997) we studied the performance of di�erent Markov models; thevalues cited here correspond to choosing, for each class, the model giving the bestcompression among all traditional 4-state Markov models. The line entitled HMMgives the compression �gures of Bookstein et al. (1997) for the hidden Markovmodel. The omission of a HMM result is due to the enormous execution time neededfor the run to produce this �gure. The last lines correspond to the Bayesian modelsdescribed herein.To understand the values in the table, recall that we are representing the toplevel of the concordance as follows: for each term, we list sequentially the documentsin which the term occurs. This list can be conceptualized as a bitmap, D bits inlength, with a 1-bit for each document in which the term occurs. As our measureof compression for the list corresponding to a term, we compute the number of bitsneeded to encode this list with our methods, and divide this value by the numberof documents in which the term occurs. The table gives the average of this quantityfor all the terms in a class. In other words, it is the average, per 1-bit within anuncompressed bitmap, of the number of bits needed to encode the 1-bits of all thebitmaps in this class.As in our earlier studies (Bookstein et al. (1997)), we have not included the costof storing the necessary parameters, which is negligible in most of the cases. Sinceit seems that varying Wmax and the threshold value  does not have a large e�ecton the results, they were �xed throughout the experiments, leaving only three or�ve parameters for the sharp and Beta models, respectively, as compared to fourparameters for each of the HMM and 4-state models. Since only the high frequencyterms are to be compressed, the average number, per term occurrence, of addedbits caused by this overhead, is very small.
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18 Bookstein, Klein and RaitaThe parameter values �pB; �pC; ��pB = pV ar(�pB); ��pC = pV ar(�pC) de�ne thegenerating model. For about 45% of the bitmaps we were able to set � equal tozero, implying that a single beta-distribution su�ces for the majority of terms.Note, however, that this does not invalidate an underlying multi-state generatingprocess. Rather, the intrinsic variability of the beta-distribution seems adequate torepresent the impact of the various states.For the other 55% of the terms, it was useful to incorporate the services of asecond beta-distribution. However, for both the cluster and between cluster distri-butions, the probability of a 1-bit was low: the average value for �pB was 0.005 and for�pC 0.144. The average standard deviations were 0.010 and 0.096, respectively. Thus,for these cases, the spread was comparable to the size of the values themselves.As can be seen, in all our tests, the Bayesian model outperformed the best4-state models by 1{2%. Surprisingly, the new approach even improved upon thecompression obtained by the highly CPU-intensive HMM model in one of the cases.We thus conclude that the Bayesian technique described in this paper gives a goodtime/space tradeo�, compressing better than the faster 4-state models, and usingsigni�cantly less processing time than the HMM.
5 . ConclusionBitmaps can be very convenient when representing concordances. But in realisticapplications, they are large, and storing them is expensive. The simplest techniquesfor compressing bitmaps, based on models that represent bitmap generation as asequence of independent events, in fact work quite well. But when dealing withlarge databases, even a small percent improvement in cost can yield large absolutebene�ts. Our investigations were directed to those applications for which the sizeof the database justi�es the additional complexity.
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Simple Bayesian model for bitmap compression 19As is typical in the design of optimal systems, we found that added complexitytends to improve overall performance, but with each increment in complexity yield-ing diminishing returns. For example, the best 4-state models in fact come quiteclose to the performance of the Hidden Markov Models, which are very exible, andvery expensive, models that we considered as a bound on our ability to improveperformance using the route of simple probabilistic models.In this paper, we were interested in assessing whether alternatives to Markovmodeling, that relieved the constraint of the Markov model's short memory, couldmatch or improve performance. We used an underlying state model, but appliedBayesian reasoning, rather than Markov transition probabilities, to assess the state.Our results were comparable to that of the HMM, and at comparably little cost.The convergence towards the performance of the HMM, and the agreement of tworather di�erent approaches on two very di�erent databases, leads us to expect thatstriking compression improvement is unlikely without a radical increase in modelcomplexity. However, we examined only one application | that of representing theconcordance of a textual database. Other applications, in which clustering is morepronounced, may lead to quite di�erent results, and for which the variety of modelswe developed could be more strongly di�erentiated.
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