Simple Bayesian Model for Bitmap Compression *

A. Bookstein (a-bookstein@uchicago.edu)

University of Chicago, 1010 E. 59 St., Chicago, IL 60637, USA

S. T. Klein (tomi@cs.biu.ac.il)

Dept. of Math. & Comp. Sc., Bar-Ilan University, Ramat-Gan 52900, Israel

T. Raita (raita@cs.utu.fi)

Comp. Sci. Dept., University of Turku, 20520 Turku, Finland

Abstract. Bitmaps are a useful, but storage voracious, component of many information retrieval
systems. Earlier efforts to compress bitmaps were based on models of bit generation, particularly
Markov models. While these permitted considerable reduction in storage, the short memory of
Markov models may limit their compression efficiency. In this paper we accept the state orientation
of Markov models, but introduce a Bayesian approach to assess the state; the analysis is based
on data accumulating in a growing window. The paper describes the details of the probabilistic
assumptions governing the Bayesian analysis, as well as the protocol for controlling the window
that receives the data. We find slight improvement over the best performing strictly Markov

models.
Keywords: IR models, concordances, bitmap compression, Markov modelling

ACM Computing Classification System: E4, G3, H.3.1

* This work was supported, in part, by NSF Grant TRI-9307895-A01 (A.B.), grant 8560195 of
the Israeli Ministry of Science (S.K.) and grant 865431 of the Academy of Finland (T.R.). The

authors gratefully acknowledge these supports.

';:‘ © 1999 Kluwer Academic Publishers. Printed in the Netherlands.

finalbayes.tex; 16/08/1999; 16:11; p.1

2 Bookstein, Klein and Raita

1 . Introduction

This paper continues a series of papers (Bookstein et al. 1992, 1994, 1997) that
apply advanced statistical models to compress bitmaps. The earliest models as-
sumed that the 1-bits of a bitmap occur independently (Bookstein et al. 1992).
In several environments, however, the independence assumption is not valid. For
example, consider a concordance built to allow access to a large textual database.
In the concordance, each term occurring in the text is associated with a bitmap,
and each bit-site to a region of the text obtained by partitioning the text into
logically coherent units. The bitmap representing a term has a 1-bit at the positions
where the corresponding segment contains the word. Within the text, discussions
of specific subjects are clustered, and this imposes a clustering tendency on the
1-bits within the bitmaps belonging to the terms associated with these subjects.
Since bit encoding is determined by the probability of its having a given value (for
example, using arithmetic coding (Witten et al. 1994)), we expect more accurate
modeling to result in improved compression. In this paper we focus on the problem

of modeling the clustering rather than on the details of generating codewords.

Our first attempts to represent this clustering involved the use of a variety of
Markov Models (Feller 1957). Although significant improvement resulted from using
even simple Markov models with a small number of states (Bookstein et al. 1997),
ultimately we were limited by the finite memory of such models. We now test an
alternative approach, based on the principles of Bayesian statistical analysis (Press
1989), that may correct for this limitation. We continue with the assumption made
in our earlier papers that bits are generated within two states, a cluster state,
which tends to produce a high density of 1-bits, and a between-cluster state, which
produces 1-bits more sparingly. However, we no longer model the state transitions.
Instead, we use Bayesian reasoning to assess the likelihood of being in either state,
given the data. The data is gathered within a growing window, which is closed

when we decide a state transition was likely. The probability of the next bit taking

finalbayes.tex; 16/08/1999; 16:11; p.2

Simple Bayesian model for bitmap compression 3

a value is determined by the data currently in the window, and the bit encoded

accordingly.

In the next section we describe, in general, the model on which the remainder
of the paper is based. We illustrate these ideas by means of a simple version of the
Bayesian model, which we then elaborate. In subsequent sections we describe the
protocol used to control the window in which data is collected, as well as describe

the experiments used to test the models.

2 . Bayesian Modeling

We conceptualize a bitmap of length D bits as having been generated in a manner
similar to that of the hidden Markov model described in Rabiner (1989). At any
site in the bitmap, the generator is assumed to be in one of two states: a cluster
state C or a between-cluster state B. These states determine the probability of
generating a 1-bit. We diverge from the Markov assumption by no longer modeling
state transitions. Rather, we collect data as we scan the bitmap, and use the data
to guess the probability of being in either state, and hence the probability of a 1-bit

being generated.

Our overall strategy is to encode bits using a dynamic window to accumulate the
data. We begin with a window that contains zero bits. As we scan, and encode, bits,
the window grows. As we accumulate data in a window, we use Bayesian methods
to improve our estimate of the probability of a 1-bit being generated. If at any point

we sense a state change, we close the window and begin the process anew.

Suppose then that we are just opening a window. Taking a Bayesian approach,
we try to determine the probability distribution of the parameter governing data
generation within the window. The parameter here is p, the probability of a 1-

bit. We do this by starting with a prior distribution for p, based on not having

finalbayes.tex; 16/08/1999; 16:11; p.3

4 Bookstein, Klein and Raita

any information, and then improve the distribution as the window grows and more

information accrues.

In this problem, the uncertainty in p before developing the window is primarily
the result of our not knowing which state we are in, though also, possibly, each
state may allow a range of probabilities. Most generally, we assume that in the
cluster state C, the distribution of probabilities is given by fc(p), and that the
corresponding distribution in the between-cluster state is denoted by fz(p). We

further assume that 6 is the a priori probability of being in a cluster state.

When we begin a new window, we have no data on which to base our esti-
mate, and use the prior, unconditional, distribution of p, Py(p). Given the above

assumptions, we have:
Po(p) =0 fe(p) + (1—0) fa(p). (1)

As we accumulate data in the current window, we want to integrate the informa-
tion it contains to improve our estimate of Py(p). We denote this density function
by P(p|W), indicating that the density function incorporates information about
the window W we are scanning. To derive the updated distribution, we use Bayes’

formula to get,
By(p)P(W | p)
Jo Polp) P(W | p) dp

But the probability of the occurrence of a certain window, for a fixed p, is simply

Pp|W) = (2)

P(W |p) = p™ (1-p)™, (3)

where N; and Ny are, respectively, the number of 1’s and the number of zeros in

W, which now contains Ny + N; values.

We can now estimate the probability of a 1-bit, given the evidence W in the
window: P(1 | W) = [P(1 | p,W)P(p | W) dp. But since P(1 | p, W) = p, this

integral is simply, p, the expected value of p, conditional on the evidence in W':

p=Ep|W)

finalbayes.tex; 16/08/1999; 16:11; p.4

ot

Simple Bayesian model for bitmap compression

= /OIP(pIW)pdp

Rl felp) + (1= 0) fa(p)] PV (L - p)™ dp
Ji10 fe(p) + (1 —0) fs(p)] pPM(1 —p)Nodp

(4)

To proceed, we have to specify the state based distributions. Below we consider

two models of increasing complexity.

2.1. Sharp probability distribution

In the simple first model, we assume that the probability is fully determined by the
state; that is, we let pc be the probability of seeing a 1 while in a cluster, and pg
the probability of seeing a 1 while between clusters. Note this allows us to see 1’s
even if not in the cluster state, and vice versa. Since the probability is determined

by the state, we have
fe(p) = d(p — pe),
and

f5(p) = d(p — ps).

Here (z) is the Dirac d-function, defined as 0 everywhere but z = 0, and whose

integral satisfies,

In other words, d(p — pc) is a probability distribution that asserts that p = pc. By

equation 1, the prior, unconditional, distribution of p, is given by,

Py(p) =0 6(p—pe) + (1—0) d(p—ps),

which is a mixture of two Dirac d-functions.

As we develop the current window, we want to integrate the data it contains,

as prescribed by equation 2. We now apply equation 4 to evaluate p, the expected

finalbayes.tex; 16/08/1999; 16:11; p.5

6 Bookstein, Klein and Raita

value of the posterior distribution P(p | W):

1
b= / P(p | W) p dp
0

JiT08(p—pe) + (1—0) 8(p — ps)] pM1H1(1 — p)™e dp
106 —pe) + (1—6) 6(p—ps)] p™ (1 — p)™o dp
_ 0T (L pe) + (1 6) pgl“(ps)™
0 e (1 —pe)™o + (1 —6) py'(1 —pzs)

Special values

As a check on the reasonableness of the model, it is useful to examine several

limiting values.

For example, if # = 0, we get p = pg, and if § = 1, we get p = pe: in such cases,
the state is known, and the formula gives the appropriate probability of producing

a 1-bit.

We also find that if, as the window grows, the value of V| increases indefinitely
while the value of Ny remains fixed, then (assuming pe > pg) p — pe. That is, as
N; grows relative to Ny, the evidence becomes increasingly strong that we are in

the C' state, and the appropriate probability is approached.

Next we find that if pg = 0, we get p = pc. While initially surprising, a little
thought shows this result is correct. First note that pgl, and hence p, is undefined
for ps = 0 unless N; > 0. But if ps = 0, then if we scan a 1 (N; > 0), we must be in
a cluster state, the only state that permits a 1-bit. Similarly, if pc = 1, p is defined
only if Ny > 0; but then we must be in a between-cluster state, requiring p to be
ps, as is indeed the case. Similar comments could be made for the cases pg = 1 and

pe = 0, but these are unrealistic given what these probabilities represent.

Finally, if pg = pc, then p = pg = pc. That is, there is in effect a single state,
and the probability of a 1 being generated is the common probability.

finalbayes.tex; 16/08/1999; 16:11; p.6

Simple Bayesian model for bitmap compression 7

2.2. Beta-Distributed Model

If we relax the requirement that the state completely determines the probability
parameter, we can create much more flexible models; doing this transcends in
principle the Hidden Markov Model (HMM) used in our earlier papers. In the model
we now examine, we still conceptualize the generator as being in one of two states.
The state now influences, but doesn’t fully determine, the probability of generating
a 1-bit. We gain this additional flexibility by admitting as probability distributions,

density functions fe¢(p) and fz(p) with some dispersion.

The beta-distribution (Johnson et al. 1970) offers a class of models that allows
a great deal of flexibility in controlling the shape of the distribution, while at the
same time being relatively convenient analytically. We include this model as an
example of how the Bayes approach allows us to reach well beyond the Markov
framework: we now recognize the possibility that not all clusters are identical, and
that in some clusters, the probability of a one-bit is greater than in others. A similar
comment could be made for the non-cluster state, although a hybrid model, using a
beta-model for the cluster state and a delta-function for the between-cluster state,

is possible.

In the beta-distributed model we assume, for parameters ac > 0 and Gz > 0

fe(lp; ac,Be) = m pe=H(1 — p)fPet,
where,
B(Oéaﬁc) = (aC - 1)' (ﬁC - 1)'

(e + fe — 1)1 7
a parallel distribution defines fz(p; ag, f5). (Note that here the factorial operator,

for non-integer values of its argument, is defined in the usual way in terms of the

gamma-function: z! = I'(x + 1).)

Substituting the beta-functions for fe and fz in equation 4, we find after inte-

gration:

finalbayes.tex; 16/08/1999; 16:11; p.7

8 Bookstein, Klein and Raita

B(N; +ac +1, Ny + B¢) B(Ny + as + 1, Ny + Bs)

p 0 Blae, Be) +(1-0) B(ag,) (6)
QB(N1+0467N0+6C)+(1_9) B(N1+anN0+/BB) -
Blac, fe) B(as, Bs)

The result is analytically complex, and must be evaluated numerically. We must
adjust the parameters, ac, ag, ¢, Bz and 6 to optimize compression efficiency.
However, it is easier to interpret the values of these parameters if we note that
the expected value of the Beta-distribution is given by (suppressing the subscripts
on the «, parameters) E(p) = p = /(o +), and the variance by Var(p) =
E(p)(1—E(p))/(a+ p+ 1), a result reminiscent of the binomial distribution, with
« successes, (3 failures, but M = a+ 3+ 1 tries. It is in terms of p and M that the
model is most understandingly parameterized, the former indicating the probability
of a 1-bit, the latter, our confidence in the parameter. That is, for large M, our
model approaches the sharp model described above. Thus, the parameter pc plays

a role parallel to that of pe for the sharp distribution, and similarly for ps and pg.

Experiments will indicate whether the benefit of flexible probabilities within and

between clusters justify the extra effort and the need for an extra two parameters.

3 . Window Dynamics

In the preceding section, we have assumed we are in a region where the state is
fixed, but that we do not know what the state is. The parameters f and the beta-
distribution parameters allow us to make an information free guess of the likelihood
of being in either state, and thereby the probability of the next bit taking the value
0 or 1. We then modify the probability estimate in accordance with the accretion
of data as the window grows. In the preceding section, we indicated how to use the
data within a window to estimate the probability of a 1-bit being generated. But as

the bitmap is generated, we are shifting between states. To take this into account,

finalbayes.tex; 16/08/1999; 16:11; p.8

Simple Bayesian model for bitmap compression 9

we must use a protocol that defines how the window grows and when it should be

closed.

We begin with a window of size 0, and with the initial probability estimate
of eqn 1. Then, as bits are scanned, we upgrade the probability. In principle, we
should let the window grow indefinitely. But doing so would put us at a severe
disadvantage when the state changes. Thus we introduce a parameter, Wyay, and
when the window-size reaches Wiax we stop growing the window. That is, at this
point we begin shifting the window, dropping bits at the end while introducing bits
at the front. In practice, a finite Wy« limits the size of the codeword when a bit
inconsistent with the current state is scanned; we choose a value that optimizes

performance during compression.

But if at some site an unexpected bit value (or two) is scanned, it suggests that
the state may have changed and that the estimate of probabilities should begin
again — that is, that the old window may no longer be informative. At this point
the old window is closed, and a new one is grown. It may be possible to estimate

Whax and the start-over point theoretically.

The ideal way to assess the predictive power of the current window would be to
actually look ahead and evaluate how well we are able to compress the next several
bits (that is, the bits following those already in the window), given the informa-
tion within the window. (The performance expected if the probability prediction
mechanism is valid could be computed using information theoretic arguments as
discussed in Cover et al. (1991) and Hamming (1980).) If the performance is less
than expected, then it indicates we should close the window and begin again.
However, the decoder would not be able to follow the same decision procedure,
because it does not know the next, incoming bits. This situation is inherent to
many adaptive processes (see, e.g. Vitter (1987) and Welch (1984)), and requires

that we use a less efficient, delayed update strategy.

The method we adopted is to simulate this strategy retrospectively: after each bit

has been encoded, it is appended to the window W and we run a consistency check

finalbayes.tex; 16/08/1999; 16:11; p.9

10 Bookstein, Klein and Raita

Full window

Window W, Tail T

History bits Next bit to
(do not have an effect be encoded
on the representation
of the unencoded bits)

Figure 1. Schema of window structure.

of the bits recently encoded. We backtrack, in turn, one, two, ...b bits, where b,
the maximum number of bits we can backtrack, is a parameter of our model. Every
time we backtrack, we ask whether the bits being reviewed are more consistent with
the current window than they are with a new window. If the reviewed bits pass this
test for each backtracking step, then we continue, encoding the following bit as an
extension of the current window. Otherwise we start a new window. Though the
reviewed bits for which the model retrospectively fails have already been encoded
as if they were part of the preceding window (which is necessary for the decoder),
they are considered as data for the new window. For example, if the first window is
closed on the basis of its being inconsistent with the last three bits, those bits act

as information for the new window when the next bit is encoded.

We now describe our decision rule for opening a new window. For the purpose
of this calculation, after backtracking, we consider the (retrospectively) “current”
window, now called W7, to contain the data up to the point the backtracked data
begins; we treat the backtracked data, 7', at the tail of the current window as “new”

data, available to both the encoder and decoder. This is illustrated is Figure 1.

We examine the data in Wy, and consider whether, with hindsight, we should
have continued extending W, or begun a new window, W5. Suppose, looking for-
ward, we see T' consists of n 1-bits and m 0-bits. On the basis of W) we estimate

a probability p; for a 1-bit, while the corresponding probability for Wy is p,. For

finalbayes.tex; 16/08/1999; 16:11; p.10

Simple Bayesian model for bitmap compression 11

simplicity, we consider these probabilities to be unchanged as we see successively

the bits of 7.

We can now use the standard Bayesian argument to estimate the probabilities
of Wy or Wy being the correct window, given that 7" follows, where one of the two
windows is assumed to be correct. The probability that W; is correct is given by:

P(W:)P(m,n|W)
P(W1)P(m,n|Wy) + P(W,)P(m, n|W2)
w1ﬁ1n(1 - ﬁl)m
wipr"(1 = p1)™ + wapp" (1 — po)™
1

for w; the probability for W;. Thus the odds in favor of a new window, P(Ws)/P (W)
)
w1 \ P1 1 —p '

Equation 7, which expresses the evidence infavor of a new window in terms of

P(W1|m7 ’I?,) =

is given by

an odds ratio, can be used directly if the w’s can be properly assessed. This can be
tricky. But notice that the w’s are fixed, and the evidence actually influenced by
T is fully expressed by the other two factors. Thus we can empirically determine
a threshold, and change the window provided the product of the two right-hand

factors exceeds this threshold.

It is instructive to rewrite equation 7 as:

wo <1€§32> ' 1—p\™"

PP = 5 50 = ®)
1-p1

Note that the value n+m, which is just the number of bits observed while looking

ahead, is fixed. Only the term in the brackets actually depends on the evidence,

and this, in isolation, can serve as a measure of how strong is the claim to start a

new window. The factor [(1 — p2)/(1 — py)]™™™ is the value of the odds favoring a

new window, provided all the bits being tested are zero. Suppose this would result

in one of the windows, say W;, being selected. Each 1-bit then modifies this by

finalbayes.tex; 16/08/1999; 16:11; p.11

12 Bookstein, Klein and Raita

a factor of the odds ratio (p2/(1 — p2))/(p1/(1 — p1)). If collectively this doesn’t

compensate for the initial weight, we use W;, else we use the other window.

To estimate p; we used the last probability estimate made from the evidence in
W1 before the new evidence was evaluated. A few reasonable options are available
for estimating p,. For example, we can use the a priori probability, to assess whether
the evidence in the window is at this point any better than no evidence at all. An
opposite bias can be obtained by estimating p, from the actual evidence itself, to
see if this high-value estimate is sufficiently larger than that based on W; to justify

opening a new window.

In principle, the window update procedure could be applied recursively to the
resulting tail 7', perhaps allowing an even better (and shorter) basis for estimating
the probabilities of the upcoming bits. However, since we restricted the length of T'

just to 6 bits at most, the recursive procedure was not applied in the experiments.

We next illustrate the window update protocol by an example. Suppose we just
encoded bit bs11, and that W now consists of bits bso, bso1, - - -, bs11. Next we must

test for the goodness of the window. We do this in stages:

First stage: For our first consistency check, W, will consist of bits b5o, b501, - * -, b510
and T of the single bit, bs;;. On the basis of W, we compute p;, the probability
of a 1-bit, given Wy, and the size of the codeword for b5;;. Get the corresponding
quantity for an empty window, and call it py. Evidence for closing the window is
given by po/py if bsyp is 1, else it is given by (1 — ps)/(1 — p;). This is equation 7,
ignoring the w’s. We close the window if the ratio is larger than some threshold
value v, beginning a new window with bs;;. If the ratio is smaller than v, we go to

next stage.

Second stage: First we backtrack, redefining Wy as bsgg, bso1, - - -, bsgg and T as
bs10, bs11- We compute pp, the probability of a 1-bit, given the reconstituted Wy; p,
again is the probability of a 1-bit given the empty window. We now use equation 7
to get the weight for a new window, based upon the evidence of T'. If the evidence is

large enough, we close the current window, and repeat the process beginning with

finalbayes.tex; 16/08/1999; 16:11; p.12

Simple Bayesian model for bitmap compression 13

the window consisting of bits bs10, b511. Else we continue with the third stage (which

we suppose, for this example, to be the last).

Stage three: We now compute p; on basis of the new Wy = (b, - - -, bsos), and
Pa, assuming the null window. We then compute the weight favoring a new window
based on the evidence of the new 7', consisting of the bit sequence bsgg, bs10, bs11,
as given by equation 7. If the weight supports opening a new window, we close
the current window, and begin the cycle again starting with the window made
up of bits bsgg, b510, b511. Else we accept the old window, make bits bsgy, - - -, bs11 the

current window, and continue. If additional stages are desired, we continue as above.

100 105 110 115 120 125 130 135 140 145 150 155
1

1111111111%1100010111111001000000010011111011111111111111

Figure 2. Example of window development.

An actual detailed example of window development, taken from the experiment
described below, appears as Figure 2. The numbers on top of the figure denote
bit positions of the specific bitmap we are studying and the actual bits are shown
beneath. The maximal length of the window, W,,,;, is set to 10 and the figure
depicts the window dynamics during the encoding of bits 111...155. At the start,
the window contains the 1-bits at indices 101...110. This run of 1-bits gives a high
probability for the upcoming 1-bit at index 111. The bit is encoded and inserted
into the window. In the update procedure, we notice that the window W is always

a better predictor for the corresponding tail 7" than an empty window, so only one

finalbayes.tex; 16/08/1999; 16:11; p.13

14 Bookstein, Klein and Raita

change is made: we discard the oldest bit from the window to prevent an overflow.
For the next two bits at indices 112 and 113, the same is repeated. When the 0-bit at
index 114 has been encoded, we note that the threshold value used in the consistency
check allows one spurious bit inside a run of 1-bits, so again, only the oldest bit is
discarded. However, the next 0-bit gives already enough evidence about the end of
the run of ones. This is noticed at stage two of the update process: the eight 1-bits
in W, are not consistent with the pair of zeroes in the tail T', so we open a new
window and initialize it with the contents of T". In this way, the update procedure
captures the essential features of the bit sequence: if there are only a few 0-bits in
a 1-bit cluster (or vice versa), we are satisfied with it, since the overall tendency
is clear. Also, when we are scanning a truly heterogeneous bitmap region, there is
no reason to change the window radically (see e.g. the situation when the encoding
of the bit at index 144 commences). This implies that the change of the state is
performed only when necessary, i.e. at the boundaries where the characteristics of

the bit string change considerably.

4 . Experiments

In order to compare the new technique with previous methods, we used the same
test databases as in our earlier papers, namely: the King James Version of the
Bible in English (its D = 929 chapters acting as documents); and a subset of the
Trésor de la Langue Francgaise (TLF). The TLF is a database of 680 MB of French
language texts (112 million words) of the 1720 centuries (see Bookstein et al.
(1992) for more details of the collection), whose uncompressed concordance spans
about 345 MB (excluding references to the 100 most frequent words, considered
as stop-words). The subset used in this study consisted of the the 35070 terms

belonging to the (lexicographic) range between elle and flaube.

The models we are developing are intended for terms that show a considerable

degree of clustering. But clustering strength is determined both by the nature of the

finalbayes.tex; 16/08/1999; 16:11; p.14

Simple Bayesian model for bitmap compression 15

word and the choice of what we define as a document, which is represented as a single
bit in our bitmaps. In our investigation of the TLF, we chose as the document the
level immediately below the “book” level in the TLF hierarchy, resulting in bitmaps
of length D = 38757 bits. The chosen unit is convenient for the construction of the
concordance, but may obscure some of the underlying clustering because of its large

size.

Our first task is to estimate the parameters which give the best compression,
that is, which minimize the function — Zfil logp;. We here use the fact that we
can encode a bit with log p; bits, if the encoding is based on p; being the probability
that the i-th bit of the bitmap takes the value it does; this probability is determined

by the evidence in the window.

Performing this minimization analytically is hard, so we reverted to search meth-
ods that may yield sub-optimal parameter values. The parameters divide into two
sets: the model parameters (6, pg, and pe for the sharp model); and three window
parameters: the maximum window size Wj,ax, the maximal backtracking length b
in the update process, and the threshold v that controls when we should restart
the window. For the Beta-model, we need 6, pg, pc, Mz and Mc. (Recall that the
a’s and (3’s of the Beta distribution can be expressed in terms of the p’s and M’s

in a straightforward way.)

To simplify our task of finding optimal values for our parameters, we note that,

if n; is the number of 1-bits in the map, the sharp model requires that:

ny
— =40 1—-6
D pe + ()ps,
yielding as the value for 6,
0 — ni/D —ps
Pc — PB

For the Beta-model, there is no fixed probability for bit generation, but we can use
the above formula, with (p¢, pg) substituted for (pc, ps) as an initial estimate of 6.
It reasonable to expect that n,/D, the frequency of occurrence of 1-bits, satisfies

the constraint ps < ny/D < p¢; this implies that 0 < 0 < 1.

finalbayes.tex; 16/08/1999; 16:11; p.15

16 Bookstein, Klein and Raita

For each set of terms tested, we chose manually several combinations of param-
eter values obeying the restrictions above, and then searched for local optima. The
large number of optimization runs performed showed, that the overall shape of the
function is 'rippling” and with high probability, it does not have large minima or
maxima. Due to this, we can safely fix most of the input parameters without a
notable loss in compression efficiency. Some tuning may be appropriate, however,
if the 1-bit densities or clumping properties change considerably from bitmap to

bitmap.

Table 1 gives descriptive statistics for the tested files and summarizes the com-
pression performance of the various models tested. For the Bible, only words ap-
pearing in at least 60 chapters, and thus occurring in between 60 and 929 chapters,
were considered; for TLF, the terms (bitmaps) were partitioned into three classes

according to the density of 1-bits. The threshold values were 78, 388 and 1162.

Table I. Statistics and compression results

Database: Bible TLF
60-929 78-387 388-1161 1162-38757
terms 623 2032 619 381
OCCurrences 131874 352522 402890 1387698
independent 2.683 9.09 7.26 4.02
best 4-state 2.544 8.48 6.65 3.48
HMM 2.490 — 6.62 3.39
Bayes-Beta 2.523 8.38 6.55 3.42
Bayes-Sharp 2.556 8.44 6.65 3.52

finalbayes.tex; 16/08/1999; 16:11; p.16

Simple Bayesian model for bitmap compression 17

The upper part of Table 1 shows, for each class, the number of different terms,
and their total number of occurrences. The lines of the lower part correspond
to various bitmap compression methods. The independence model is the 1-state
Markov model used in Bookstein et al. (1992); this is a very simple model that
does not take clustering into account and therefore performs relatively poorly. In
Bookstein et al. (1997) we studied the performance of different Markov models; the
values cited here correspond to choosing, for each class, the model giving the best
compression among all traditional 4-state Markov models. The line entitled HMM
gives the compression figures of Bookstein et al. (1997) for the hidden Markov
model. The omission of a HMM result is due to the enormous execution time needed
for the run to produce this figure. The last lines correspond to the Bayesian models

described herein.

To understand the values in the table, recall that we are representing the top
level of the concordance as follows: for each term, we list sequentially the documents
in which the term occurs. This list can be conceptualized as a bitmap, D bits in
length, with a 1-bit for each document in which the term occurs. As our measure
of compression for the list corresponding to a term, we compute the number of bits
needed to encode this list with our methods, and divide this value by the number
of documents in which the term occurs. The table gives the average of this quantity
for all the terms in a class. In other words, it is the average, per 1-bit within an
uncompressed bitmap, of the number of bits needed to encode the 1-bits of all the

bitmaps in this class.

As in our earlier studies (Bookstein et al. (1997)), we have not included the cost
of storing the necessary parameters, which is negligible in most of the cases. Since
it seems that varying Wpax and the threshold value v does not have a large effect
on the results, they were fixed throughout the experiments, leaving only three or
five parameters for the sharp and Beta models, respectively, as compared to four
parameters for each of the HMM and 4-state models. Since only the high frequency
terms are to be compressed, the average number, per term occurrence, of added

bits caused by this overhead, is very small.

finalbayes.tex; 16/08/1999; 16:11; p.17

18 Bookstein, Klein and Raita

The parameter values pg,pc, 05, = /Var(ps),05, = /Var(pe) define the

generating model. For about 45% of the bitmaps we were able to set 6 equal to
zero, implying that a single beta-distribution suffices for the majority of terms.
Note, however, that this does not invalidate an underlying multi-state generating
process. Rather, the intrinsic variability of the beta-distribution seems adequate to

represent the impact of the various states.

For the other 55% of the terms, it was useful to incorporate the services of a
second beta-distribution. However, for both the cluster and between cluster distri-
butions, the probability of a 1-bit was low: the average value for ps was 0.005 and for
pe 0.144. The average standard deviations were 0.010 and 0.096, respectively. Thus,

for these cases, the spread was comparable to the size of the values themselves.

As can be seen, in all our tests, the Bayesian model outperformed the best
4-state models by 1-2%. Surprisingly, the new approach even improved upon the
compression obtained by the highly CPU-intensive HMM model in one of the cases.
We thus conclude that the Bayesian technique described in this paper gives a good
time/space tradeoff, compressing better than the faster 4-state models, and using

significantly less processing time than the HMM.

5 . Conclusion

Bitmaps can be very convenient when representing concordances. But in realistic
applications, they are large, and storing them is expensive. The simplest techniques
for compressing bitmaps, based on models that represent bitmap generation as a
sequence of independent events, in fact work quite well. But when dealing with
large databases, even a small percent improvement in cost can yield large absolute
benefits. Our investigations were directed to those applications for which the size

of the database justifies the additional complexity.

finalbayes.tex; 16/08/1999; 16:11; p.18

Simple Bayesian model for bitmap compression 19

As is typical in the design of optimal systems, we found that added complexity
tends to improve overall performance, but with each increment in complexity yield-
ing diminishing returns. For example, the best 4-state models in fact come quite
close to the performance of the Hidden Markov Models, which are very flexible, and
very expensive, models that we considered as a bound on our ability to improve

performance using the route of simple probabilistic models.

In this paper, we were interested in assessing whether alternatives to Markov
modeling, that relieved the constraint of the Markov model’s short memory, could
match or improve performance. We used an underlying state model, but applied
Bayesian reasoning, rather than Markov transition probabilities, to assess the state.

Our results were comparable to that of the HMM, and at comparably little cost.

The convergence towards the performance of the HMM, and the agreement of two
rather different approaches on two very different databases, leads us to expect that
striking compression improvement is unlikely without a radical increase in model
complexity. However, we examined only one application — that of representing the
concordance of a textual database. Other applications, in which clustering is more
pronounced, may lead to quite different results, and for which the variety of models

we developed could be more strongly differentiated.

6 . References

Bookstein A, Klein S.T and Raita T (1992) Model based concordance compression.
In: Storer J.A and Cohn M, eds. Proc. Data Compression Conference DCC-92,
Snowbird, Utah, pp. 82-91.

Bookstein A, Klein S.T and Raita T (1994) Markov models for clusters in con-

cordance compression. In: Storer J.A and Cohn M, eds. Proc. Data Compression
Conference DCC-94, Snowbird, Utah, pp. 116-125.

finalbayes.tex; 16/08/1999; 16:11; p.19

20 Bookstein, Klein and Raita

Bookstein A, Klein S.T and Raita T (1997) Modeling word occurrences for the
compression of concordances. ACM Transactions on Information Systems, 15:254—
290.

Bookstein A, Klein S.T and Ziff D.A (1992) A systematic approach to compressing
a full text retrieval system. Information Processing and Management, 28:795-806.

Cover T.M and Thomas J.A (1991) Elements of Information Theory. John Wiley
& Sons, New York.

Feller, W (1957) An Introduction to Probability Theory and Its Applications, vol
I[. John Wiley & Sons, New York.

Hamming, R. W (1980) Coding and Information Theory. Prentice-Hall, Englewood
Cliffs, NJ.

Johnson, N.L and Kotz, S (1970) Distributions in Statistics: Continuous Univeriate
Distributions—2. Wiley, New York.

Moffat, A and Stuiver, L (1996): Exploiting Clustering in Inverted File Compres-
sion, In: Storer J.A and Cohn M, eds. Proc. Data Compression Conference DCC-96,
Snowbird, Utah, pp. 82-91.

Press, J.S (1989) Bayesian statistics : principles, models, and applications. Wiley,
New York.

Rabiner L.R (1989) A tutorial on hidden Markov models and selected applications
in speech recognition. Proc. IEEE, 77:257-286.

Vitter J.S (1987) Design and analysis of dynamic Huffman codes. Journal of the
ACM, 34:825-845.

Welch T.A (1984) A technique for high performance data compression. IEEE Com-
puter, 17:8-19.

Witten I.LH, Moffat A and Bell T.C (1994) Managing Gigabytes, Compressing and
Indexing Documents and Images. International Thomson Publishing, London.

Address for Offprints: Timo Raita
Dept. of Computer Science
University of Turku

SF-20500 Turku

Finland

finalbayes.tex; 16/08/1999; 16:11; p.20

