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ABSTRACT 

An Information Retrieval approach to the prediction of values of time series is suggested. Instead of 
trying to model the data, a pattern is searched for in a history file serving as “text” , and relevant 
occurrences are used as basis for extrapolation. The application is to meteorological data, providing 
short-term predictions for certain weather features.  The experiments show that the algorithm has a good 
ability of predicting the requested information, and that the predictions are far more accurate than those 
provided by an analytical prediction procedure, based on approximations using Fourier transforms. 
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1. Introduction 
 

Classical Information Retrieval is concerned, on the one hand, with procedures to help a user satisfy her 

information needs by facilitating her access to large amounts of data, on the other hand, with techniques 

to evaluate her (dis)satisfaction with whatever data the system provided. The underlying database is 

usually a large collection of textual documents, written in some natural language. The present study is a 

spin-off of the classical IR paradigm, trying to apply Information Retrieval techniques to a similar, yet 

different, environment.  

The database we consider consists of meteorological data, collected over some period of time.  

The “text”  thus is a long sequence of measurements, taken at regular intervals, and representing 

temperature, wind speed, wind direction, etc.  Such data is typically used in weather forecasts and has 

obvious importance to many aspects of our lives.  One way to predict the weather in the near future is to 

try to model the (latest) measured values as some function  f, and then assume that future values will 

follow the same function f, which allows extrapolation.  We shall try to predict the future using an 

Information Retrieval approach: instead of formulating a query consisting of keywords and searching for 
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their occurrences within a given text, our query consists of a given weather pattern, e.g., some 

meteorological values collected in the past three hours. This pattern is then looked for in the database, 

with the underlying assumption that if a similar pattern has been observed at some earlier point in time, 

the continuation of the earlier occurrence is a good estimate to the continuation of the current 

occurrence. 

There are of course some major differences which have to be taken into account.  Our data is 

continuous, so that an exact match of the pattern is not expected to be found.  We shall therefore have to 

define metrics and use approximate matching techniques.  Instead of relying on subjective user evaluation 

as to the relevance of the retrieved items, the degree of relevance can then actually be measured, and the 

highest-ranking matches can be combined with appropriate weights to form the requested extrapolation. 

The organization of the paper is as follows: in the next section, we formalize our definitions and 

review some of the previous work. Section 3 presents the algorithm used and deals with implementation 

issues, and Section 4 addresses the comparison with analytical prediction. Finally, Section 5 describes the 

experiments, comparing all the methods. 

 

2. Background and Definitions 
 

Quantitative methods of future forecasting are based on the assumption that tomorrow's world will be 

similar to today's, and that patterns observed in the past will continue into the future. If historical patterns 

can be expected to persist into the future, one should be able to produce a relatively accurate forecast. 

A time series consists of measurements or observations of a natural, technical or economic process 

that are made sequentially in time. In general, consecutive samples of time series are dependent on each 

other to an extent dictated by the underlying process in question. Because of this dependency, it makes 

sense and it is possible to predict the future of the series [1]. Making a prediction of time series is in fact 

modeling the dependencies between consecutive samples made by a process. There are many statistical 

methods that specialize in this, whether the dependencies are linear or nonlinear in nature. However, there 

are two major problems relating to these measurements. The first problem is noise that entered during the 

measuring process. The second problem is the possibility that the process involves unknown variables, 

which have not been measured. 
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In order to overcome these problems some analytical models and theories based on the available 

measurements only were developed in the 1980s.  Packard et al. [2] and Takens [3] introduced the first 

formal demonstration of the connection between the observed measurements and the underlying process. 

Takens' Time-Delay Embedding Theorem implies that there exists, in principle, a non-linear 

autoregression of the form )](,),2(),1([)( Ttxtxtxgtx −−−= �  which models the series exactly. The 

problem that remains is how to find this non-linear regression. 

In 1987, based on Takens' and Packard et al. works, Farmer and Sidorowich [4] have found that 

chaotic time series prediction using local approximation techniques is several orders of magnitude better 

than using global approximations. This gave rise to the use of local approximation methods including 

nearest neighbor methods or pattern imitation for time series prediction. 

Beside the traditional statistical methods, one can also find analytical methods for calculating 

approximations. While considering the time series as a set of samples of a continuous process acting like 

a continuous function, one can calculate approximations for the function at a certain point using 

techniques such as interpolation, Taylor series expansion (local approximation), Fourier analysis (global 

approximation), etc.  More recently, advanced methods on prediction such as neural networks, genetic 

algorithms, fuzzy methods [5] and general regression neural networks [6] have also been frequently used.   

A large number of studies have been done in order to predict financial data such as stock and 

currency rates, development of production and consumption etc. In this research we concentrate on 

predicting local meteorological data such as temperature, wind speed and direction. We focus on this 

problem because of its vast impact on our life: from the influence on our daily activity, through more 

important issues such as planning the activity of naval fleets or aerial forces, to critical influence on 

people’s lives such as the ability to analyze the spreading of chemical and biological materials during 

unconventional warfare. 

Given a time-series ,...2,1,0),( =ttx
�

, the current state of the series is defined as the last (current) 

element of the series. One can expand this definition to the vector that contains the currently last m 

elements of the series. We will index the current state of a series with the index of the last element in the 

sequence: 

)}1(),...,1(),({ +−−= mtxtxtxxt

����
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The current state is in fact our query pattern.  Similarly, any sequence of m elements from the series will 

be defined as a state: 

)}1(),...,1(),({ +−−= mjxjxjxx j

����
     where m 

�
 j 

�
 t �  

Providing an estimation of only one value into the future of the time series is called simple 

prediction, while the prediction of several consequent values into the future is called multiple forecasting.  

One can carry out multiple forecasting by repeating the simple prediction process p times, where each 

time the predicted value is added to the end of the series and updates the current state (iterative forecast / 

prediction), or alternatively, one can perform p-steps ahead prediction (direct forecast / prediction). 

In the domain of meteorology, forecasts usually refer to a lead time (in most cases 12 or 24 hours, 

but sometimes it could be a few minutes — depending on the purpose of the forecast). Producing 

predictions according to a known lead time is actually performing multiple forecasting with a desired 

length. 

 

3. The Suggested Algorithm 
 

In contrast to some of the above mentioned methods, our suggested algorithm produces a 

prediction in a simple manner without the need to perform complicated calculations such as calibrating 

and maintaining neural networks. The algorithm is based on the k-nearest neighbors method. This method 

is usually used as a general classification technique, and we use it in order to make prediction in the 

following way: for a given time series with n elements, 1,...,2,1,0),( −= nttx�  (each element is a vector with 

one or more values), and for the current point in time t, we consider the current state vector of length m 

tx� as a query or a pattern, and try to find along the time series k past states ,1, kix
it

≤≤
�

 which are the 

closest or the most similar to the current state. The matching grade will be determined according to a 

chosen method for measuring distances between patterns (i.e. Euclidian, Voronoi, Hamming, Manhattan 

etc.) 

After finding the k nearest neighbors of the query pattern, we retrieve the continuation of each one 

of them. Now we have k new sub-sequences, and we use these to calculate the sequence that represents 

the future of the current state.  At the end of this process, we can evaluate the success of prediction by 
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calculating the distance between the prediction produced and the true values measured (assuming they 

exist). 

There are two common methods for implementing pattern matching on multi-attribute series. The 

first method is serializing the series. Using this method, we break the time series into multi-dimensional 

pieces (past states). The values of each dimension of a state are written next to the values of a previous 

dimension, forming a one-dimensional sequence, but  l times longer, where l is the number of dimensions.  

The second method is a repetition of the pattern matching process separately for each dimension of the 

query pattern. 

A wide range of algorithms has been developed for the general pattern-matching problem over a 

given alphabet. There are particularly elegant linear-time O(n+m) algorithms (by Knuth-Morris-Pratt and 

Boyer-Moore [7]) and practical searching utilities for more general patterns instead of query strings Q 

(e.g., regular patterns in the Unix utility grep). However, time series data in continuous domains is 

inherently inexact, due to the unavoidable imprecision of measuring devices and clocking strategies. This 

forces us to work with the approximate version of the various matching problems [8]: Given a tolerance 

0≥ε and a distance metric D between sequences, sequences S1 and S2 match approximately within 

tolerance ε  when ε≤),( 21 SSD . 

 

 

3.1 Defining a distance 
 

There are many methods for measuring the distance between sequences or vectors, some of which are 

more complex as every element in each vector is a vector itself. We shall deal with this problem by 

dividing it into two sections: first, defining a distance function between two discrete points of a time 

series, second, defining a distance measure between two subsequences. 

Although there have been many distance functions proposed, by far the most commonly used is the 

Euclidian Distance, defined as: 

(1)        
�

=
−==

l

i
ii yxyxdyxL

1

2
2 )(),(),( ����  
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where x
�

 and y
�

 are vectors of length l and ix is the  i-th component of vector x
�

. Euclidean distance is a 

special case of the Lp norms: 
pl

i

p

iip yxyxL
/1

1

),(
������

−= �
=

		
 where p=2.  The Euclidian distance function 

has two major weaknesses: 

1. If one of the input attributes has a relatively wide range, then it can dominate the other attributes. 

For example, if an application has just two attributes, A and B, and A can have values from 1 to 

1000, and B has values only from 1 to 10, then B’s influence on the distance function will usually 

be dominated by that of A [9].  

2. If the amplitude of changes in one of the attributes of each vector is intrinsically much larger or 

smaller than that of the others, then the distance function could reflect a wrong interpretation of 

changes in each attribute. For instance, consider a meteorological application that contains data 

based on vectors of two attributes, one attribute being the wind speed and the other wind 

direction. Direction can be measured in degrees in the range 0 to 360, whereas speed values, 

measured in meters per second, exceed 40 only in hurricanes.  The Euclidian distance function 

does not reflect this difference. 

 

To overcome these problems while using Euclidian distance, it is necessary to use normalization 

[8]. We shall normalize each attribute in a vector based on its average and standard deviation. We shall 

therefore define: 

),...,,( 21 normnormnorm lnorm xxxx =



where 
i

ii
i

xx
x

norm σ
−=  

with ix  being the average value of attribute i, ,,,1 li �=  over all elements of a time series, and iσ  its 

standard deviation. Based on equation (1) we get the following definition for the distance between two 

points of a time-series: 

���
===

−
=

�

����� −
−

−
=−=
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Given two time series S1 and S2 of m elements each, denote by Si[j] the j-th element of the i-th 

series. The distance between the sequences will be defined using Lp norms. We examine two cases: 

1. Using Lp with p=2, i.e., Euclidean distance: 

(2)        
�

=

=
m

j

jSjSdSSL
1

2
21212 ])[],[(),(  

This method suffers from the problem that the distance between two sequences which have a large 

number of points and in which the sequences are relatively close to each other could be greater than the 

distance between two short and very dissimilar sequences [10]. This may be overcome by dividing by the 

number of points: 

�

=

=
m

j

jSjSd
m

SSD
1

2
21212 ])[],[(

1
),(  

Because we are dealing with sequences of identical length, we will use this technique only when 

calculating the error measure at the end of the prediction process. 

2. Using Lp with p = � . This gives: 

(3)    ]))[],[((max),( 21
1

21 jSjSdSSD
mj ≤≤∞ =  

When looking for a sequence that matches a query approximately within toleranceε , the meaning of this 

distance function is searching for a sequence inside an m-dimensional sphere of radius ε  around the 

query.   We have tested both distance metrics in order to find their impact on the prediction effectiveness. 

The natural way of searching for the location of a query pattern in a large database is the naïve 

sequential scan, also known as the sliding window method: a window of length m elements (as the length 

of the query) is sliding along the time series, and the distance between the query and the subsequence 

inside the window is measured. The indices of the k nearest neighbors of the query are dynamically kept 

in a heap. The time complexity of the comparisons is: O((n-m+1)*m)=O(mn), updating the heap takes 

O(n log k). 

Since the values at hand are not discrete, standard pattern matching is not an option here. Some 

attempts to deal with time series were based on the promising techniques of multidimensional indexing 

(R-Tree, R+-Tree, R*-Tree, X-Tree, SR-Tree, etc.) [11][12]. While using these methods, similar objects 

could be retrieved in sublinear time. 
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One problem which arises when trying to index sequences with spatial access methods is the so-

called dimensionality curse [12][13]: spatial access methods typically work only when the number of 

dimensions is low, and as the number of dimensions grows, the effectiveness of these methods is not 

better than the sequential scan.  This leads to the idea of reducing the number of dimensions of the 

indexed vectors. Dimensionality reduction is generally done by extracting a signature of low 

dimensionality from the original sequences, in a manner which to some extent preserves the distances 

between them, and then perform the indexing and the searching in the signature space [13].  Faloutsos et 

al. [11][14] describe the general solution of extracting and indexing signatures. They show that in order 

to guarantee completeness (no false alarms), the distance function used in the signature space must 

underestimate the true distance measure. 

 

Some methods for extracting signatures have been developed including spectral signatures, 

minimal bounding rectangles and piecewise constant approximation [13]. There are some applications in 

which the dimensionality reduction may in itself speed up the sequential scan [10][13]. In our algorithm 

we chose to try and improve performance by pruning irrelevant solutions during scanning using an 

aggregate distance measure. The principle of this method is avoiding unnecessary calculations, when the 

partial evaluation shows that the current comparison will not be useful for the global solution, and should 

therefore be stopped.  Implementing this in our algorithm is done as follows: using the distance 

definitions (equations 2,3), it is possible to use iterative calculations of the distance between the query 

pattern Q and any subsequence S. In each iteration, the distance between consecutive points of each 

sequence is added to the partial distance that was accumulated so far. In each step we have to compare 

the aggregated distance to a known distance measure (in our case – the distance R of the kth closest 

neighbor to the query pattern Q). If the aggregated distance is greater than R, we should stop calculating 

the distance between the query and the current subsequence, and shift the window to the next 

subsequence. 
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3.2 Calculating prediction errors 
 

We chose to use an error measure, which is quite common in prediction researches [1][15], and shall 

refer to it as the error ratio. To define it, we need two other measures: an absolute prediction error and 

its “standard deviation” . Let t be the current point in time and p the size of the requested prediction. The 

true values of the time series in the immediate future are )(),...,2(),1( ptxtxtxS +++=
���

and the 

corresponding series of predictions is )(ˆ),...,1(ˆˆ ptxtxS ++=
��

; the absolute prediction error is then defined 

as the distance between these sequences: )ˆ,( SSDE = . The “standard deviation”  is defined as 

),( SSDSD = , the distance between the test-set series S and the series of averages xxxS
���

,...,,= , 

consisting of p identical elements, each being a vector of l components ),...,,( 21 lxxxx =
�

 where the i-th 

component is the average of the i-th components of all the elements in the series up to point t,  

)(
1

1 jxx
t

j iti

�
=

= (recall that each element )( jx� of the time series is itself a vector, denoted by 

( ))(,),(1 jxjx l
� ). This “standard deviation”  is in fact the absolute error in the case where the prediction 

was the average of the time-series itself.  The error ratio is then defined as: 

(4)      .
),(

)ˆ,(

SSD

SSD

SD

E
Error ==  

This measure shows how much using the prediction results is more effective than using the plain 

average of the series. If this value is zero, the prediction is perfect. However, if it is larger than 1, then the 

predictions are not better than the average of the time series. 

 

3.3 Forming the prediction pattern 
 

One of the most common methods of calculating the prediction is a projection of the continuation of the 

nearest sequences to the continuation of the current state through averaging [15][16]: 

(5)    �
=

+=+
k

i
i dtx

k
dtx

1

)(
1

)(ˆ �� for d=1,…, p, 

where ti are the ending indices of the k nearest matches to the current state. This, however, does not take 

the various distances of the k neighbors into account. In fact the average should be weighted, with 
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weights that are inversely proportional to the distance. Actually we took them inversely proportional to 

the squares of the distances to put a larger penalty on more distant patterns.  For example, suppose the 

k=3 closest patterns are at distances a, b and c, the corresponding weights should then be 222

2

/1/1/1
/1

cba
a

++ , 

222

2

/1/1/1
/1

cba
b

++ and 222

2

/1/1/1
/1

cba
c

++ . Formally: 

(7) �
�

=

=
+

=+
k

i
i

k

i
ii

w

dtxw

dtx

1

1

)(
)(ˆ

��
  where           

2

),(
1 ���

�����=
itt

i xxD
w ��  

Care is needed in case one or more of the neighbors match exactly (distance zero), in which case the 

corresponding wi should be set to 1 and the wi of the other neighbors should be zero. 
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Figure 1: Comparison of decay functions 

Another option could be to model weights decaying exponentially with increasing distances. A 

constant K > 1 is chosen, and wi is set to .
),(

itt xxD

i Kw 		−=  The size of K controls the exponential bias: K = 

1 corresponds to uniform weights, and with growing K the elements at closer distances are increasingly 

dominant. We chose K = 2.  Figure 1 shows a plot of wi as function of the distance d for both 2−= dwi  

and .2 d
iw −=  The main difference is close to 0, meaning that if there is a subsequence matching almost 

perfectly, 2−= dwi will give it a weight tending to infinity which has the effect of practically ignoring the 

other neighbors, while d
iw −= 2 is more moderate, tending to 1. For higher d values, the two functions 

are very similar. 

 

Each point of the current state is a data vector of different meteorological variables. Since there 

may be some degree of dependency among the variables, the searches and the prediction process are 



 11 

performed on multivariate series. As comparison, we also split the multivariate pattern into several 

univariate ones, on which independent searches are conducted in parallel; the resulting predictions are 

then merged into a unified one.  

 

4. Comparison with Analytical Prediction 
 

We compare the results obtained by the algorithm based on pattern matching to the results produced by 

analytical approximation of a time series based on the Fourier transform, implemented by the well known 

Fast Fourier Transform (FFT) algorithm [7].  The FFT approximation algorithm uses the last 2s sampling 

points of the time series (until the point from which the prediction starts) in order to calculate a function, 

which is an approximation to the function that underlies the observed time series. The values of this 

function for the points beyond the known 2s points are the predicted values of the time series.  We used  

s=10, that is, 1024 points. 

One problem with FFT estimations is that it may succeed in revealing a global trend, but locally 

some delays are possible. Since we focus on local prediction, one may improve the results by performing 

a local shift of the values that are generated by the approximation function. This shift will be based on 

three variables: b, a parameter that denotes the number of the last points of the given series S; p, 

indicating the prediction length; and r, for possible shift values. Denote the estimated series obtained by 

the approximated function by EST. A window of size b is placed at the end of the estimated time series 

(inside the window one can find the last b observed points), and is shifted to the left r times. For each 

shift, the distance between the sequence inside the window and the last b points of the given series is 

evaluated, and the shift giving the minimum distance is selected: 

])1024[]11024[],1024[]11024[(min
0

SbSiESTibESTDDist
ri

�� +−−−+−=
≤≤

 

The value of r corresponds to the number of points within one period, if some periodicity, e.g., a full 24 

hour day, is known. Denote by i0 the shift size corresponding to the minimal distance. We will use this 

size for shifting the estimated series in order to get a better prediction in the following way: 

]1024[]11024[ 00 piESTiESTpred +−+−= � . 

Creating an approximation to a function using FFT is a technique suitable for univariate time-

series. Therefore, we will make some comparisons:  
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1. We will calculate a prediction for each meteorological variable using the suggested algorithm and 

using FFT and we will compare between the results.  

2. We will build a merged prediction using FFT and we will compare this result to the best result that 

would be achieved by the suggested algorithm using a multivariate prediction or a unified prediction. 

 

5. Experiments and Results 
 

The experiments were performed using a meteorological database, giving at each entry point the 

following data: wind direction (degrees), wind speed (m/sec), temperature (Celsius) and θσ , the standard 

deviation of wind direction measurements (the wind direction field is the average of all the measures that 

were done in the last 10 minutes, and this field contains the standard deviation of these measurements). 

Using the above notation we thus have l = 4. The four parameters were chosen because they are quite 

standard in many meteorological applications, in particular, θσ  is a known parameter for classifying 

atmospheric stability [17]. The data points were recorded in regular intervals every 10 minutes. 

First, the multivariate prediction for the 4 variables was evaluated, then the univariate predictions 

for each variable independently, which were combined into a unified prediction. We experimented with 

both weighted and regular averages. Finally, FFT was used for an analytical prediction, and all the results 

were compared based on their error ratios.  

Another set of experiments examined the effectiveness of the techniques to improve searches and 

accelerate running time.  We tried queries of different lengths, from 1 to 144, and prediction length from 

1 to 60.  We compared the number of performed comparisons between using the pruning by the 

aggregated distance method and relative to when no pruning is used.  In all the experiments we used 

10=k  nearest neighbors. The reason for choosing 10=k  was a practical one, to simplify the 

programming. It might have been appropriate to try to optimize k by seeking to minimize the error 

between the predicted and observed values on sample runs, but this could not be exploited for our true 

predictions, where no actual values are available. In fact, the number k of elements chosen should reflect 

the variability in the numbers of “closest”  patterns: if only 2 or 3 are very close and the others are 

significantly farther away (call this case 1), prediction should be based just on the very close ones. But if 

many patterns, say 15, are almost at the same distance from the one searched for (call this case 2), 
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probably all of these should participate in the prediction. Choosing a constant, rather arbitrary, value of k, 

has the advantage of simplifying the program and yet taking this possible difference in variability into 

account. Indeed, the decaying weighting functions (see Figure 1) imply that in case 1, the more distant 

values, while participating in the calculations, will get negligible weight and thus have almost no impact. 

Case 2 will generally occur when no good match for our query window has been found and all the 

candidates are equally bad. In that case we anyway do not expect a good prediction. Choosing then 

constant k with the given weighting means basing the prediction on a sub-sample and giving to all the 

elements similar weights. 

Analyzing the results of the different experiments performed, it is evident that even though our 

database was quite small (only 5 months of data), the suggested algorithm is capable of producing very 

high quality predictions (in the majority of experiments the error ratio was less than 0.5). For larger data 

collections the results are expected to be improved. 

Table 1. Comparison of average error ratios 

 D2+Weighted 

Avg. 

D2+Regular 

Avg. 

D � +Weighted 

Avg. 

D � +Regular 

Avg. 

Error 
Ratio 

0.487 0.514 0.745 0.753 

 

Table 1 shows the average of the minimum error ratio (equation 4), averaged over all the 

experiments, and one can see that the Euclidian distance D2 provides better results than the use of D � , 

and using weighted averages (equation 6) is better than using regular averages (equation 5). 

The average error ratio turned out to be a decreasing function of the prediction length. The 

following features were observed: 

1. Using short query patterns (based on 1 to 22 sample points) usually produces poor quality 

predictions. 

2. Enlarging the query pattern length does not necessarily give a better error ratio.  

3. No obvious rule relates the pattern length to obtain the minimal error ratio for a prediction of a 

certain length. Usually, the query pattern that gave the global minimum could be enlarged without 

damaging the error ratio. 
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We therefore suggest the heuristic of using a pattern which is 3 times larger than the requested prediction 

length, this yielded predictions which are on the average only 12% worse than the optimal ones. 

All the experiments were run on a Pentium III 800Mhz processor. On this platform, calculating a 

multivariate prediction, based on 40 to 80 sample points, and a database of 6000 points (about 2 months 

of data), takes about 2 seconds. This rose to 4 seconds for 16,000 sample points (5 months). Because the 

running time of this algorithm is linear in the size of the database, expanding it to contain dozens or even 

hundreds of months will enable us to receive prediction results in a few minutes at most. 

We saw that unified univariate prediction is a plausible alternative, as the predictions yielded error 

ratios smaller than 1. However, the average error ratio of predictions based on this method is higher by 

18% than that for multivariate predictions. This shows that there is a certain dependency among the 

specific meteorological variables. When separating the variables, we damaged the added value that has 

come from this dependency, and therefore the results were poorer. 

In order to produce the unified prediction we calculated a prediction for each meteorological 

variable using our suggested algorithm. What emerges from the results is that the temperature was easy 

to predict (mean error ratio of 0.15) while the ���  parameter was the most difficult one (mean error ratio 

of 0.81). The algorithm produced good predictions for wind speed and wind direction variables (mean 

error ratio of 0.41, 0.49 respectively). 

Comparing the results of the analytical prediction to the multivariate prediction revealed the 

following facts: 

1. The longer the length of prediction, the better its quality. The reason for this is that approximation 

based on FFT captures the global trends of a time series, but locally there are some delays. 

Therefore, a prediction based on FFT is better for long-term prediction since global trends are 

exposed only through long periods of time. 

2. The quality of predictions based on the suggested algorithm is 80%-180% higher than predictions 

made by FFT approximation. 
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Examples for the quality of predictions are given in Figures 2 to 5, corresponding to temperature, 

wind direction, wind speed and ��� , respectively. We performed a very large number of tests, varying the 

different parameters over large ranges. The four figures above were chosen as representative sample, 

illustrating the relative performance of the various algorithms for each of the meteorological parameters. 

In each figure there is a graphical illustration of the historical data of the given variable (to the left of the 

vertical line) and the prediction results (to its right).  The query pattern that was chosen for the prediction 

is at the end of the history and is colored in green. The blue line represents the projection of the specific 

variable from a multivariate prediction, and the brown line the univariate prediction made for this 

variable. The orange line gives the FFT approximation (after shifting) and the red line is the FFT 

prediction. All the predictions follow immediately the query pattern. In these figures one can see that the 

Figure 2.     Temperature prediction –   
Pattern length=64, prediction length=53. 

Figure 3.     Direction prediction –      
Pattern length=97, prediction length=43. 

Figure 4.     Speed prediction –                 
Pattern length=64, prediction length=53. 

Figure 5.     � �  prediction –                     
 Pattern length=97, prediction length=47. 
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projection of a specific variable from a multivariate prediction is congruent and sometimes even overlaps 

with the real measured data (the grey line). One might also observe that the univariate prediction is close 

to the multivariate one, but it is less accurate. Moreover, it is evident that FFT approximations are not as 

accurate as predictions produced by the suggested algorithm and Figure 2 also demonstrates that the FFT 

approximation revealed the global trend but failed in doing so locally, even after the adjustment, because 

of the delay problem mentioned above. 

As to processing speed, we found that using pruning based on aggregated distance can accelerate 

the search for similar patterns up to 5.6 times with the D �  distance and up to 3.9 times with Euclidean 

distance. The effectiveness of pruning increased with the size of the database and also with the length of 

the query. However, for D2 the effectiveness starts to decrease when the query becomes longer than 25 

points, while for D � , there is no such decrease. The reason for this behavior is that the Euclidean distance 

between two subsequences is based on the distance between all the points, and when we use D � , only one 

pair of points determines the distance. 

 

 

 

 

 

 

Figure 6:  Comparing exponential and quadratic weights 

 

Figure 6 compares the use, in equation 7, of exponential weights 
),(
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(red lines with rectangles). We found that for 

predictions based on short patterns there was no difference at all (Figure 6 – pattern length = 30). 

However, for prediction based on longer patterns, there was an observable improvement for the 

exponential weights (pattern length = 50, 80). The reason for this is that we used aggregate distance 

between patterns, and therefore long patterns led to a larger distance, which affected the results (the 
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influence of distant neighbors on the prediction result became negligible). 

 

6. Concluding Remarks 
 

We examined the possibility to predict local meteorological data with an algorithm based on pattern 

matching. The algorithm refers to the sequence of values immediately preceding the point from which the 

prediction is needed as a query pattern. Then, a search for similar patterns in the given history is 

performed in order to extrapolate a prediction based on the continuations of similar patterns. 

Contrarily to standard IR systems, for which relevance judgment is often based on user decisions, a 

more objective evaluation is possible in our case.  All we need is choosing the “current point”  somewhere 

in the history, so that true data is available against which the “future”  predictions may be compared. The 

results were encouraging and showed that it is possible to produce high quality predictions using the 

suggested method. Moreover, a comparison to predictions produced by one analytical method (FFT 

approximation) indicated that the predictions made by our algorithm are far better. It remains to see if our 

algorithm does also yield improved results relative to other analytical approaches, such as general 

regression neural networks [6]. 
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