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Abstract

A Wavelet Tree is a compact data structure which is used in order to
perform various well defined operations directly on the compressed form of
a file. As random access is one of these operations, the underlying file is not
needed anymore, and is often discarded because it can be restored, when
necessary, by repeated accesses. This paper concentrates on cases in which
partial decoding of a contiguous portion of the file, or even its full decoding,
is still needed. We show how to accelerate the decoding relative to repeatedly
performing random accesses on the consecutive indices. Experiments on
partial and full decoding support the effectiveness of our approach, and
present an improvement of about 50% of the run-time for full decoding, and
about 30% or more for partial decoding of large enough ranges.
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1. Introduction

The compressed pattern matching paradigm was defined by Amir and
Benson [1] for directly searching for a pattern within a compressed file with-
out decompressing it. The challenge was to be able to achieve an answer
to a query in time proportional to the size of the compressed input file. In
recent years the focus shifted to attaining a faster query response at the
price of some more preprocessing. This led to the development of a new
discipline known as compact data structures [21], suggesting a compressed
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representation of the data involved, that still provides means for efficient
query operations. The objective is to design data structures for support-
ing well defined specific operations known in advance, for example, random
access, using just about the information theoretic lower bound amount of
space, and retaining the ability for efficient queries in-place, and without
any decompression.

The existence of algorithms enabling random access causes the com-
pressed text itself to be redundant, so that it is not needed any more and
may be discarded. In case further operations are desired, the original file,
or its relevant parts, can be reconstructed using random access repeatedly.

One of the relevant data structures in this context is known as a Wavelet
tree, and will be defined in more detail below. Given such a Wavelet tree, we
suggest in this paper to enhance random access for a sequence of consecutive
indices, possibly the entire file, via range decoding, unlike the acceleration
of a single random access in [3]. The proposed method uses the dependency
between the consecutive indices, exploiting the fact that the corresponding
search paths in the Wavelet tree have some overlapping prefix, rather than
repeatedly performing random access on each index independently from the
others. Experiments on partial and full decoding support the effectiveness of
our approach, and present an improvement of about 50% of the run-time for
full decoding, and about 30% for partial decoding for large enough ranges.

There are obviously many scenarios in which the partial decoding of a
large compressed file is needed, and we shall mention only one example.
Searches in large full text retrieval systems are generally not performed
by direct pattern matching, but are rather based on so-called inverted files,
dictionaries and concordances that have been built in a pre-processing stage,
see, e.g., [15, Section 8.1.1]. To answer a query, rather than scanning the
text for the occurrences of the requested terms, the sorted lists of their
locations are retrieved from the auxiliary files and are processed according
to the Boolean query at hand. This results in a series of pointers `1, . . . , `r
into the given text, and it is only at this stage that the compressed file is
accessed, directly at `1, then at `2, etc. For each of these locations, the
user is generally interested in seeing not just the requested terms of the
query, but also some of their local contexts. These contexts are known as
snippets or KWICs (KeyWord In Context) [19], and consist of about one
or two lines of text. If according to this short excerpt, the user judges that
the occurrence is relevant, a larger portion of the file may be decoded. In
any case, for a single query, the compressed file may be accessed at many
different locations, and the possibility of partial decoding is critical for this
application.
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Our paper is organized as follows. Section 2 introduces the relevant no-
tions and discusses previous research dealing with random access to files
encoded using variable length codes. Section 3 recalls the details of Wavelet
trees and presents our proposed algorithm for accelerating partial decod-
ing. Section 4 then empirically compares our suggested algorithm to the
traditional one. Finally, Section 5 concludes.

2. Definitions and Previous Research

The binary tree corresponding to a prefix code C is defined as follows:
we imagine that every edge pointing to a left child is labeled 0 and every
edge pointing to a right child is labeled 1; each node v is associated with
the bit string obtained by concatenating the labels on the edges on the path
from the root to v; finally, the tree is defined as the binary tree for which
the set of bit strings associated with its leaves is the code C.

Given a probability distribution {p1, p2, . . . , pσ} for the elements of an
alphabet Σ of size σ, Huffman’s [12] algorithm generates an optimal prefix
code, known as a Huffman code, in the sense that it assigns codewords of
lengths {`1, `2, . . . , `σ} to the characters of Σ such that the weighted average
codeword length

∑σ
i=1 pi`i is minimized. The corresponding tree is called a

Huffman tree.
One of the common fundamental compact data structures is a bitmap,

also known as a bit-vector , which is a finite size array of bits for supporting
operations rank and select, as well as random access. More formally, given a
bitmap B of size n and a bit b ∈ {0, 1},

rankb(B, i) returns the number of occurrences of b in B up to and
including position i;

selectb(B, i) returns the position of the ith occurrence of b in B; and

access(B, i) returns the bit B[i] for any 1 ≤ i ≤ n.

Jacobson [13] showed that rank, on a bitmap of length n, can be com-
puted in constant time using n+O(n log logn

logn ) = n+o(n) bits. Other efficient
implementations for rank and select are due to Raman et al. [24], Okanohara
and Sadakane [23], Barbay et al. [2] and Navarro and Providel [22], to list
only a few.

Bit-vectors are generalized to compact data structures that support the
same set of operations, but consider a finite alphabet Σ = {a1, . . . , aσ} of
size σ rather than a binary one.
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A well known succinct data structure suggested to cope with the three
operations rank, select and random access performed on a file T , is the
Wavelet tree (WT), defined by Grossi et al. [10]. A balanced Wavelet
tree for a text file T of size n over an alphabet Σ, is a full binary tree
(all leaves are on the lowest or on the two lowest levels), whose leaves
are labeled by the elements of Σ, and whose internal nodes store bitmaps.
The alphabet of symbols {a1, . . . , aσ} is divided into two sets {a1, . . . , aσ/2}
and {aσ/2+1, . . . , aσ}. The root of the Wavelet tree holds the bitmap B
so that B[i] = 0 if T [i] ∈ {a1, . . . , aσ/2} and B[i] = 1, otherwise. The
bitmap B of size n, one bit for each character of the text T , is then used
to partition the text into to subsequences T1 = {T [i] | B[i] = 0}ni=1 and
T2 = {T [i] | B[i] = 1}ni=1. The process is repeated recursively on the subse-
quences T1 and T2 of T corresponding to the left and right subtrees of the
root. Using constant time rank and select on the bitmaps yields balanced
Wavelet trees constructed in O(n log σ) time and require n log σ(1 + O(1))
bits.

A balanced Wavelet tree is induced by a fixed length code of size ≈ log σ
and can be generalized to any prefix free code. The Wavelet tree is then
associated with the corresponding compressed file E(T ). The root of the
Wavelet tree holds the bitmap obtained by concatenating the first bit of
each of the sequence of codewords in the order they appear in E(T ). The
left and right children of the root hold, respectively, the bitmaps obtained
by concatenating, again in the given order, the second bit of each of the
codewords starting with 0, respectively with 1. This process is repeated
similarly with the grand-children of the root that hold the bitmap obtained
by concatenating the third bit of the sequence of codewords, and so on. An
example of a Wavelet tree induced by a non-balanced Huffman tree, is given
in the following section.

Wavelet trees require space of nHh + O(n log logn
logσ n

) bits, for all h ≥ 0,
where Hh denotes the hth-order empirical entropy of the text, which is at
most log σ; processing time is just O(m log σ+polylog(n)) for searching any
pattern sequence of length m.

Multiary Wavelet trees replace the bitmaps by sequences over sublog-
arithmic sized alphabets in order to reduce the O(log σ) height of binary
Wavelet trees, and obtain the same space as the binary ones, but their times
are reduced by an O(log log n) factor. If the alphabet Σ is small enough, say
σ = O(polylog(n)), the tree height is a constant and so are the query times.

Klein and Shapira [16] applied a pruning strategy to WTs based on
Fibonacci Codes, so that in addition to supporting improved rank, select
and random access to the corresponding Fibonacci encoded file, the size of
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the Fibonacci based WT is reduced. However, for any finite probability
distribution, the compression by a prefix of the Fibonacci code will always
be inferior to what can be achieved by a Huffman code. In a following
research [3], we therefore suggested a different method based on pruning a
Huffman shaped Wavelet tree according to the underlying skeleton Huffman
tree [14]. The resulting smaller WT is especially designed to support faster
random access for a single index and saves memory storage, at the price
of less effective rank and select operations, when compared to the original
Huffman shaped WTs. The general idea is to apply some cut-off strategy on
the internal nodes of the WTs, so that the overhead of the additional storage,
used by the data structures for processing the stored bitmaps, is reduced.
Moreover, the average path lengths corresponding to the codewords is also
decreased, and so is also the average time spent for traversing the paths
from the root to the desired leaf, which is the basic processing component
used to evaluate random access.

If the text is encoded by using some standard fixed length code, such
as ascii, random access to the ith codeword is straightforward for any i.
However, fixed length codes are wasteful from the storage point of view,
and have therefore been replaced in many applications by variable length
codes. This may improve the compression performance, but at the price of
losing the simple random access, because the beginning position of the ith
codeword is the sum of the lengths of all the preceding ones.

A possible solution to allow random access is to divide the encoded file
into blocks of size b codewords, and to use an auxiliary vector to indicate the
beginning of each block. The time complexity of random access depends on
the size b, as we can begin from the sampled bit address of the i

bth block to
retrieve the ith codeword. This method, known as sampling , thus suggests
a processing time vs. memory storage tradeoff, since direct access requires
decoding i− b ibcb codewords, i.e., less than b.

Ferragina and Venturini [6] replace every block of a fixed number ` of
symbols by a single codeword of a Huffman code built according to the
frequencies of occurrence of the blocks. Their idea is to represent T as
a sequence of dn` e macro-symbols over the macro-alphabet Σ`, where ` is

chosen as
⌈
logσ n

2

⌉
. To guarantee constant time direct access to the encoding

of the blocks, they use a two level storage scheme for the starting positions:
absolute ones every Θ(log n) contiguous blocks, and relative ones for the

rest. Their representation uses O
(
n log logn
logσ n

)
bits.

Teuhola [25] extends Moffat and Stuiver’s work [20] on Interpolative cod-
ing , so that direct access, as well as finding the position in which the prefix
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sum exceeds some threshold, is achieved in O(log n) time. They consider
the successive gaps in the sequence as basic elements, and build a complete
binary tree of pairwise sums with the elements as leaves.

Variable Byte (VByte) codes [28] are byte-aligned codewords designed
for speeding up decoding. The highest bit of every byte composing the
codeword is used as a flag-bit to distinguish between the byte that starts
the codeword and the remaining bytes. The highest bit of each codeword is
0 in the byte holding the most significant bits and 1 in the others. Thus,
the 0 bits acts as a comma between a sequence of codewords.

Brisaboa et al. [4] apply an n-ary Wavelet tree on VBytes instead of a
binary one as follows. The root of the Wavelet tree contains the first byte,
rater than the first bit, of all the codewords, in the same order as they
appear in the original text. The second level nodes then store the second
byte of the corresponding codewords, and so on. The reordering of the
compressed text bits becomes an implicit index representation of the text,
which is empirically shown in [4] to be better than explicit main memory
inverted indexes built on the same collection of words, when little extra
space in addition to the compressed text is available.

The idea of VByte codes is generalized to any block of a fixed size of
b bits rather than 8 used in the original definition of VByte codes. In the
worst case, these codes lose one bit per b bits plus b bits for an almost
empty leading block. The rank data structures are integrated into these
extended Vbyte codes to form directly accessible codes (DACs) [5]. DACs
can be regarded as a reorganization of the bits of the extended Vbyte, plus
extra space for the rank structures, that enables direct access to it. First,
all the least significant blocks of all codewords are concatenated, then the
second least significant blocks of all codewords having at least two blocks,
and so on. Then the rank data structure is applied on the flag bits for
attaining log(M)

b direct access processing time, where M is the maximum
integer to be encoded. The authors suggest trade-offs of space and access
time by different constructions of DACs using different values of b for each
level, possibly introducing more levels, and thus slower access time.

Külekci [18] suggested the usage of Wavelet trees for Elias and Rice
variable length codes. The method is based on handling separately the
unary and binary parts of the codeword in different strings so that random
access is supported in constant time. As an alternative, applying WTs over
the lengths of the unary section of each Elias or Rice codeword is proposed,
while storing their binary section, allowing direct access in time log r, where
r is the number of distinct unary lengths in the file.
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3. Accelerating partial decoding for Wavelet Trees

3.1. Wavelet tree details

As mentioned above, the nodes of the WT are annotated by bitmaps.
These bitmaps can be stored as a single bit stream by concatenating them
in order of any predetermined top-down tree traversal, such as depth-first
or breadth-first. No delimiters between the individual bitmaps are required,
since we can restore the tree topology along with the bitmaps lengths at
each node, once the size n of the text is given in the header of the file.

For the sake of keeping this paper self-contained, we repeat here in Fig-
ure 1 the example Wavelet tree of [3] induced by the Huffman tree for the
example text T = A--HUFFMAN--WAVELET--TREE--MATTERS. We assume the
alphabet to be Σ ={-,E,A,T,F,M, R,H,L,N,S,U,V,W}, and its elements
appear in the sample text T with frequencies 8, 5, 4, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
respectively. The Huffman encoded file is a binary string, the beginning of
which is:

E(T ) = 011 00 00 11001 11101 1010 1010 1011 · · ·

A - - H U F F M · · ·

in which spaces between the codewords have been added for clarity. The
WT is the entire figure including the annotating bitmaps.

The bitmaps stored in the nodes of the WT are in fact a reordering of the
bits of the encoded file. The bitmap stored in the root consists of 34 bits, one
for each of the characters of T , and starts with 00011111· · · , corresponding to
the underlined bits above. More specifically, the bitmap is the concatenation
of the first bits of the 34 codewords in the encoding of T . These codewords
are then partitioned into those starting with a 0-bit, in positions 1, 2, 3, 9,
11, 12, 14, 16, 18, etc, and those starting with a 1-bit, in the other positions.
The root’s left child then refers to the 17 codewords starting with a 0-bit.
Collecting the second bits of these codewords in the order they appear in the
sample text, results in the bitmap 10010011100110011, which is stored in
the root’s left child. Similarly, the second bits of the 17 codewords starting
with 1 are concatenated to yield 11000111100100011, which is stored in
the right child of the root; the first few bits of this string correspond to
the overlined bits in the sample above. This process of splitting the set of
codewords corresponding to some node into two sub-sets that are assigned
to the node’s children, and collecting the i-th bit of the codewords for nodes
on level i, continues for all internal nodes.

The algorithm for extracting the i-th element of the text T by means of a
WT rooted by vroot is given in Figure 2, using the function call extract(vroot,i).
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0001111101001010101001100001011011

10010011100110011

111000010

11000111100100011

11100100

0011

010110001

01100 0110

100 10 10 10

-

E A T

F M

R H L N S U V W

Figure 1: The WT induced by the Huffman tree corresponding to the
frequencies {8,5,4,4,2,2,2,1,1,1,1,1,1,1} of {-,E,A,T,F,M,R,H,L,N,S,U,V,W},

respectively, assigned to the leaves, left to right.

Bv denotes the bitmap belonging to vertex v of the WT, and the dot · de-
notes concatenation. Computing the new index in the following bitmap is
done by the rank operation in lines 2.1.2 and 2.2.2. The decoding of the
codeword cw in line 3 using the decoding function D can be done by a
preprocessed lookup table.

The straightforward decoding algorithm works on successive indices in-
dependently, starting each time at the root, and working its way down the
WT until a leaf is reached, where the information for that index is extracted.
The formal algorithm for partial decoding of a range of elements with in-
dices between i and j is given in Figure 3, where the decoding is output to
an array A.

3.2. The new partial decoding method

Unlike the traditional approach, the proposed algorithm takes advantage
of the fact that partial decoding is applied on a strictly monotonic increasing
series of indices. During runtime, partial calculations are stored so that the
same computations are not done more than once. A similar idea is performed
in the well known KMP algorithm [17] for pattern matching, in which the
algorithm makes sure that it does not match any character more than once.

In spite of the fact that there exist constant time solutions for rank and
select that require sublinear extra space, in many practical cases, simple
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extract(v, i)
1 cw ←− ε
2 while v is not a leaf
2.1 if Bv[i] = 0 then
2.1.1 cw ←− cw · 0
2.1.2 i←− rank0(Bv, i)
2.1.3 v ←− left(v)
2.2 else
2.2.1 cw ←− cw · 1
2.2.2 i←− rank1(Bv, i)
2.2.3 v ←− right(v)
3 return D(cw)

Figure 2: Extracting the i-th element of T from a WT rooted at v.

range decoding(i, j)
1 for k = i to j
1.1 A[k − i]←− extract(root, k)
2 return A

Figure 3: Traditional range decoding.

solutions are better in terms of time and space [9]. Thus, in order to save
space, the rank operation in lines 2.1.2 and 2.2.2 is not necessarily done in
O(1) time. In either case, it can even be done faster using the fact that
the ranks of consecutive zeros or consecutive ones in a given bitvector differ
only by one. More precisely, if for indices i and j, it holds that Bv[i] = 0
and Bv[j] = 0, but for each index k between i and j, Bv[k] 6= 0, then

rank0(Bv, j) = rank0(Bv, i) + 1.

For this reason the rank results are maintained for each internal node of the
WT which has already been visited during the production of the solution of
the current range decoding query.

Each time a node is visited for the first time, the rank queries in lines
2.1.2 and 2.2.2 of Figure 3 are fully computed for the corresponding bit
using the rank/select data structures. The resulting value is then stored at
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the node for future use. If, during the computation of extract(i), a node
is reached that has already been visited, the stored value is extracted and
incremented, rather than recalculated from scratch by the rank operation, as
done for the first time. In the special case of full decoding, the rank results
for all nodes are initialized by zero and none of them are obtained by means
of the rank/select data structure.

Since rank1−b(B, i) = i− rankb(B, i), only one of the two, say, rank0(B, i)
needs to be stored. We denote the stored value in node v by rnk(v). At
allocation time of a new node, its rnk value will be initialized by -1. The
line i←− rank0(Bv, i) in Figure 2 is replaced by the top half of the code of
Figure 4 indicated by 2.1.2, whereas the line i ←− rank1(Bv, i) in Figure 2
is replaced by the bottom half of the code, indicated by 2.2.2.

2.1.2 if rnk(v) < 0 // first visit at v

i←− rank0(Bv, i)
else

i←− rnk(v) + 1
rnk(v)←− i

2.2.2 if rnk(v) < 0 // first visit at v

rnk(v)←− rank0(Bv, i)
i←− i− rnk(v)

else
i←− (i− rnk(v)) + 1

Figure 4: Partial decoding acceleration.

Note that the two parts are not completely symmetrical. The upper
part, 2.1.2, corresponds to a 0-bit, so the assignment to rnk(v) is excluded
from the if-clause, as it has to be performed on any visit to the node v. The
lower part, 2.2.2, corresponds to a 1-bit, thus the value of rnk(v) is only set
at the first visit to the node, since it does not change on recurring visits:
rank0(Bv, i) = rank0(Bv, i− 1) when the ith bit is 1.

3.3. Analysis

The impact of the proposed amendment for partial decoding obviously
depends on the subset of characters of the alphabet which appear in the given
range. It is therefore not possible to assess the expected savings relative
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to the traditional approach analytically, and we shall report on empirical
experiments in the next section. Our theoretical analysis will be restricted
to point to the extreme cases between which the performance savings will
fluctuate.

A first observation is that the suggested improvement is mostly indeed
such, since the number of required rank evaluations is in the worst case
the same as for the traditional method without the rnk(v) variable, and in
all other cases, this number can only be reduced. The time spent on the
additional if-statements in 2.1.2 and 2.2.2 will generally be compensated for
by the savings in the number of the much more expensive rank operations.

Let h(y) denote the codeword assigned by the given Huffman code to the
character y ∈ Σ, and let x1, x2, . . . , xt denote the t (not necessarily different)
characters in the range to be decoded. The traditional decoding method,
denoted as T , traverses the Huffman tree shaped WT repeatedly from its
root to the leaves corresponding to h(x1), h(x2), etc. The total number of
visited internal nodes is thus

∑t
i=1 |h(xi)|, and there is one rank evaluation

for each of these nodes. By contrast, in the new improved version, denoted
N , a standard rank evaluation is only performed on the first visit at a given
node, so that the overall number of evaluations is the number of different
visited internal nodes. For full decoding, even the initializing rank evaluation
may be saved as mentioned above.

The largest savings by using N instead of T will thus be achieved for
a range containing t copies of a single character z: there will be t|h(z)|
evaluations for T and only |h(z)| for N , an improvement by a factor of t.

The other extreme case is when all the characters in the range are differ-
ent, and moreover, the paths in the WT leading from the root to the leaves
corresponding to these t characters share as few common nodes as possible.
These paths can not be disjoint: they all start at the root, and only at level
dlog2 te are there at least t nodes, so that above this level in the WT, some
paths must share some common nodes. In this worst case from the point of
view of the improvement of N over T , the paths from level dlog2 te to the
leaves will be disjoint, so for this part, the numbers of rank evaluations will
be the same for N and T . For the upper parts of these paths, the number
of evaluations for T will be t(dlog2 te−1), while for N it will be the number
of nodes in these levels, which is roughly t

2 + t
4 + · · ·+ 2 + 1 = t− 1. There

are thus additive savings of at least t log t− 2t rank evaluations, even in the
worst case.
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4. Experimental Results

We considered six texts of different languages and alphabet sizes. ftxt is
the French version of the European Union’s JOC corpus, a collection of pairs
of questions and answers on various topics used in the arcade evaluation
project [26]; ebib is the Bible (King James version) in English, in which the
text was stripped of all punctuation signs; English is the concatenation of
English text files selected from etext02 to etext05 collections of the Guten-
berg Project, from which the headers related to the project were deleted so
as to leave just the real text; and dblp is an XML file providing bibliographic
information on major Computer Science journals and proceedings, obtained
from dblp.uni-trier.de; Einstein is the collection of all the versions of the
Wikipedia page about Albert Einstein in English; and sources is formed by
C/Java source codes obtained by concatenating all the .c, .h and .java files
of the linux-2.6.11.6 distributions.

Table 1 presents some information on the data files involved. The second
column presents the original file sizes in MB, and the third column gives the
sizes of the alphabets, i.e., the number of encoded characters.

File size (MB) |Σ|
ftxt 7.6 132
ebib 3.5 53

English 200.0 225
dblp 200.0 96

Einstein 446.0 139
sources 200.0 230

Table 1: Information about the used datasets

Our implementation used the Succinct Data Structure Library [7], which
is an open-source library implementing succinct data structures efficiently
in C++. All experiments were conducted on a machine running 64 bit Linux
Ubuntu with an Intel Core i7-6700 at 2.60GHz processor, 6144K L3 cache
size of the CPU, and 32GB of main memory.

Our first experiment considers several variants of the Wavelet tree with
different topology and different rank data structure implementations. As
all variants produced basically the same results for full decoding, we present
here the ones for the Huffman based Wavelet tree and rank implementation of
Vigna [27]. Table 2 compares the processing times of full decoding, averaging
10 independent runs, of the traditional approach to that of our algorithm.
The second and third columns give the processing times, in seconds, of the
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traditional and the proposed algorithm, respectively, and the fourth column
is the ratio of the latter to the former. As can be seen, our method is
about 50% faster, and consistently achieves a significant processing time
improvement relative to the traditional approach.

File traditional proposed ratio

ftxt 0.80 0.39 0.49
ebib 0.31 0.14 0.45

English 20.41 10.94 0.54
dblp 22.52 8.92 0.40

Einstein 51.61 26.91 0.52
sources 22.94 11.05 0.48

Table 2: Full decoding processing time comparison.

Our next experiment compares the processing times for partial decoding.
The range sizes were chosen as a series of increasing powers of 2 until the
size of the entire file is reached. As, for the shorter ranges, the results are
only slightly different, the times, in microseconds, are given explicitly in
Table 3. For each of the test files and range sizes given in the title line, the
partial decoding was run 100 times, with randomly chosen starting points.
The displayed numbers are the averages over these runs. The same setup
was used also for the results displayed in Figure 5 and Table 4.

File 4 8 16 32 64 128
ftxt traditional 2.42 3.17 4.02 5.67 8.82 14.87

proposed 2.72 3.2 3.91 5.23 8.34 10.87

ebib traditional 2.22 2.79 3.67 4.58 7.38 12.30
proposed 2.38 2.86 3.21 4.37 5.68 9.23

English traditional 3.16 3.81 4.98 7.07 10.03 17.24
proposed 2.91 3.90 4.75 6.28 8.11 12.69

dblp traditional 3.29 4.09 5.42 7.39 12.32 19.99
proposed 3.87 4.52 5.60 6.32 8.93 13.07

Einstein traditional 4.78 4.13 5.83 8.02 11.86 21.01
proposed 3.99 3.64 4.83 6.66 10.01 14.57

sources traditional 3.07 4.03 6.52 7.41 12.09 20.15
proposed 2.82 3.83 5.31 6.93 9.53 14.25

Table 3: Partial decoding processing time comparison for short ranges.

As can be seen, the traditional method is slightly faster only for the
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very small ranges, typically up to the value of 16. In all cases, our method
becomes faster for ranges beyond this threshold. This phenomenon can be
clarified by the fact that on average, most of the nodes are visited for the
first time in the case shorter ranges are considered. As a result, an extra if
clause is performed as compared to the traditional approach. That is, the
new approach is worthwhile when nodes are revisited, so that the time saved
by eliminating rank operations will ultimately dominate the time consumed
by this extra if clause.

Figure 5 displays the processing times for the ebib dataset on the larger
ranges. The plots are given on a log-log scale, showing the processing time,
in microseconds, as function of the range size, measured in number of char-
acters. The results for the other test files were similar.

 1

 10

 100

 1000

 10000

 100000

 

  256  1K  4K  16K  64K  256K  1M  

traditional
proposed

Figure 5: Range decoding applied on ebib for longer ranges.

The plots are almost straight lines, showing a linear dependency of the
decoding time on the size of the range. The fact that the lines are roughly
parallel implies an almost constant ratio of the speed of the proposed method
to that of the traditional one. Though the lines seem to be close, recall that
the display uses a log-scale — the actual ratio being about 0.45.

Our last experiment wishes to verify that the better performance of the
proposed method does not depend neither on a specific implementation of
Wavelet trees, nor on different implementations of rank and select. Table 4
considers a fixed length range of 512 bytes, and compares the processing
times of both methods using different implementations of Wavelet trees and
rank and select on the file ebib. Test results on the other files were similar. As
to Wavelet trees, their shape can be that of a Huffman tree, or according to
Hu Tucker’s algorithm [11], in which the ordered set of codewords is assigned
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to the symbols in alphabetic order, or simply a balanced tree. For rank and
select, the first and second approaches of Vigna [27] are used, as well as
Gog and Petri’s method [8] called interleaving, and two implementations of
Raman et al. [24], using different block sizes [22].

WT rank/select traditional proposed ratio
implementation implementation method method

Vigna1 51 30 0.59
Vigna2 100 32 0.32

Huffman interleaving 96 33 0.34
RRR–15 341 200 0.59
RRR–63 1358 625 0.46
Vigna1 50 29 0.59
Vigna2 100 31 0.31

Hu Tucker interleaving 111 35 0.32
RRR–15 390 151 0.39
RRR–63 1736 758 0.44
Vigna1 82 35 0.43
Vigna2 141 38 0.27

Balanced interleaving 192 57 0.30
RRR–15 500 256 0.51
RRR–63 1669 666 0.40

Table 4: Comparison on different Wavelet trees and rank/select implementations.

5. Conclusion

We have presented an enhanced range decoding especially designed for
Wavelet trees, and gave empirical evidence that the running time perfor-
mance of full and partial decoding is significantly improved as compared
to the running time of the traditional approach. Our improvement can be
implemented without any additional storage: the rnk values are generated
and used only during run time and need only O(Σ) bytes of RAM, which is
independent of the size of the text.
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